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Abstract—Reduced-precision arithmetic improves the size,
cost, power and performance of neural networks in digital logic.
In convolutional neural networks, the use of 1b weights can
achieve state-of-the-art error rates while eliminating multipli-
cation, reducing storage and improving power efficiency. The
BinaryConnect binary-weighted system, for example, achieves
9.9% error using floating-point activations on the CIFAR-10
dataset. In this paper, we introduce TinBiNN, a lightweight vector
processor overlay for accelerating inference computations with 1b
weights and 8b activations. The overlay is very small – it uses
about 5,000 4-input LUTs and fits into a low cost iCE40 UltraPlus
FPGA from Lattice Semiconductor. To show this can be useful,
we build two embedded ‘person detector’ systems by shrinking
the original BinaryConnect network. The first is a 10-category
classifier with a 89% smaller network that runs in 1,315ms and
achieves 13.6% error. The other is a 1-category classifier that is
even smaller, runs in 195ms, and has only 0.4% error. In both
classifiers, the error can be attributed entirely to training and
not reduced precision.

I. DESCRIPTION

State-of-the-art machine learning in computer vision uses
Convolutional Neural Networks (CNNs), where the compute
kernel is a 2D convolution (often 3 × 3). This computation
is repeated at every position in the input map, producing an
output map of similar size. The outputs become inputs for the
next layer, and the process is repeated.

CNNs typically use floating-point data types when comput-
ing with GPUs. BinaryConnect [1] is a new training method
that uses 1b weights to represent ±1, but still computes with
floating-point data. This saves memory storage and bandwidth,
and replaces all multiplications with conditional negation.
BinaryConnect reportedly achieved 9.9% test error rate on
CIFAR-10 [2]; our reproduction achieved 10.3% error. The
error is measured as the fraction of test set images that are
incorrectly categorized.

In this paper we make three contributions. First, we opti-
mized the BinaryConnect system by reducing the network size
and computed precision. We reduced the network size from:

(2 × 128C3)-MP2-(2 × 256C3)-MP2-(2 × 512C3)-MP2-(2 × 1024FC)-10SVM

to:
(2 × 48C3)-MP2-(2 × 96C3)-MP2-(2 × 128C3)-MP2-(2 × 256FC)-10SVM

where C3 is a 3× 3 ReLU convolution layer, MP2 is a 2× 2
max-pooling layer, FC is a fully connected layer, and SVM is
a L2-SVM output layer. The new network, shown in Figure 3,
has 89% fewer operations than the BinaryConnect reproduction
and achieved 11.8% error on CIFAR-10. For performance,
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we also dropped ZCA whitening, increasing error to 13.6%.
As well, we converted all computation to fixed point, with
hidden layer outputs (activations) using 8b unsigned integers
and intermediate sums using 16b and 32b signed integers,
maintaining the same error rate of 13.6%.

Second, for performance, we implemented a hardware
accelerator for CNNs with binary weights and 8b inputs,
shown in Figure 2. The accelerator computes two overlapping
convolutions in parallel. In use, input data is fetched down a
column, accepting 8 consecutive bytes each cycle as its two
32b operands. Two passes over the same column are made.
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Fig. 3. Reduced binarized CNN structure with 89% less computation, giving 13.6% error on CIFAR-10

The first pass computes two 16b output convolutions starting
at byte offsets 0 and 1 of the input column. The second pass
computes two more outputs at byte offsets 2 and 3. After that,
the input column advances by 4 bytes and maintains alignment.

Third, for performance and flexibility, we developed the
TinBiNN overlay system. We started with the ORCA [3]
soft RISC-V processor augmented with Lightweight Vector
Extensions (LVE) [4].1 LVE streams data from a dedicated
scratchpad through the RISC-V ALU, enabling efficient vector
and matrix operations without any loop, memory access, or
address generation overhead. Since LVE allows custom ALUs
to be inserted, we added the CNN accelerator, as well as
a quad-16b to 32b SIMD add, and a 32b-to-8b activation
function. These latter two custom instructions allow us to
avoid overflows but maintain performance by accumulating
16b convolutions into 32b sums every 16 input maps, and
ultimately produce an 8b activation.

The entire system, shown in Figure 1, uses a Lattice iCE40
UltraPlus Mobile Development Platform (MDP). The scratch-
pad is built from single-ported 128kB RAM; this operates at
72MHz to provide two reads and one write every 24MHz CPU
clock. Operating concurrently with the CPU, a DMA engine
transfers multiple 32b values from the SPI Flash ROM, which
stores the binary weights (about 270kB), into the scratchpad.
A VGA-resolution camera (640 × 480 pixels) using RGB565
colour is downscaled to 40× 30 pixels in hardware, and uses
DMA to write 32b-aligned RGBA pixels into the scratchpad.
Software de-interleaves these pixels into three separate colour
planes, padding each plane with black to 40 × 34 pixels.
Convolutions are computed over a 32× 32 centred region.

We created a person detector by training a 10-category clas-
sifier with a modified CIFAR-10 dataset, replacing the ‘deer’
images with duplicated images from the ‘people’ superclass
of CIFAR-100. In the sample results of Figure 4, classifier
scores are shown for the ten categories using floating-point
(left) and 8b fixed-point (right) activations. A more positive
score is better.

For better performance, we reduced the network structure
further and trained a new 1-category classifier using a propri-
etary database of 175,000 faces and non-face images.

II. RESULTS

On the MDP, the 10-category classifier runs in 1,315ms.
The CPU runs at 24MHz, using 4,895 (of 5,280) 4-input LUTs,
4 (of 8) DSP blocks, 26 (of 30) 4096b BRAM, and all four

1ORCA implements a pipelined RV32IM instruction set. LVE is proprietary.

Fig. 4. Person detection, sample results

32kB SPRAM in the Lattice iCE40 UltraPlus-5K FPGA. The
accelerator improves ORCA RISC-V runtime of convolution
layers 73×, and LVE improves runtime of dense layers 8×,
for an overall speedup of 71×. In comparison, a 4.00GHz Intel
i7-4790k desktop, using Python/Lasagne, takes 6.4ms.

The 1-category classifier runs in 195ms (2.0ms on the i7-
4790k) with 0.4% error and consumes 21.8 mW. A power-
optimized version, designed to run at one frame per second,
consumes just 4.6 mW.
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