
Designing for High Speed-Performance
in CPLDs and FPGAs

Zeljko Zilic, Guy Lemieux, Kelvin Loveless, Stephen Brown, and Zvonko Vranesic

Department of Electrical and Computer Engineering,
University of Toronto, Canada

email: zeljko | lemieux | kelvin | brown | zvonko @eecg.toronto.edu

Abstract
We review some of the techniques for designing with
FPGAs and CPLDs used in our design of a large-scale
multiprocessor. Several issues concerning high-speed
design are addressed: selecting the appropriate program-
mable logic family, obtaining the fastest circuits with given
families, and supplementing the synthesis software. We
describe techniques that we used for designing controllers
and counters with both CPLDs and FPGAs.

1 Introduction

With the development of new types of sophisticated pro-
grammable logic devices, such as Complex PLDs (CPLDs)
and FPGAs, the process of designing digital hardware has
changed dramatically over the past few years. The number
of applications for large PLDs has grown so rapidly that
many companies have produced competing products and
there is now a wide assortment of devices to choose from.
A designer who is not familiar with the various products
faces a daunting task in order to discover all of the different
types of chips, try to understand what they can best be used
for, choose a particular company’s device, and then design
the hardware.

The purpose of this paper is to discuss the practical
issues that face designers who wish to implement circuits in
today’s sophisticated CPLDs and FPGAs. Our focus is on
the most demanding class of application circuits: those that
require state-of-the-art speed-performance. The specific
PLDs used are Altera MAX 7000 CPLDs and Altera FLEX
8000 FPGAs, and the circuits are mapped using Altera’s
MAX+Plus II (ver. 5.2) CAD system. We have chosen
Altera PLDs because of their high performance in both the
CPLD and FPGA categories. Using examples from a mod-
ern multiprocessor system design, we show that only
through careful (and clever) design effort can the maximum
speed-performance available in today’s PLDs be realized.
More specifically, we will address the following questions:

• For specific applications, which devices provide higher
speed-performance: CPLDs or FPGAs?

• How can circuits be designed to achieve the highest
possible speed-performance in a given device?

• How can CAD tools be assisted, or designs modified to
achieve higher speed-performance results?

2 Motivation

Issues facing designers who wish to use PLDs are fairly
straightforward when applications are relatively small. For
this reason, our focus is on applications that require larger
PLDs, namely those that fit within the Complex PLD
(CPLD) and Field-Programmable Gate Array (FPGA) cate-
gories. We will illustrate that speed-performance achievable
for a given application circuit is greatly affected by which of
these two categories of chips is selected. For example, cir-
cuits that require fairly wide gates (such as state machines or
decoders) almost always operate faster in CPLDs.

Even within a single category of device, products from
different manufacturers (or even the same manufacturer) can
result in significant differences in performance. Section 3
will illustrate this by showing the effects of matching the
structure of a design to the architecture of the chip being
used. It is important to note that such subtleties can be
appreciated only through experience with the devices. PLD
marketing literature often gives the impression that a certain
level of performance is available for a wide range of appli-
cation circuits; the reality is that maximum performance can
be obtained only for subcomponents of applications that are
well-matched to the PLD architecture. A corollary is that
while today’s CAD tools are sophisticated enough to map
fairly abstract descriptions of a circuit into a PLD, maxi-
mum performance will only be obtained for circuits that are
described in a way that provides an obvious mapping from
the circuit description into the device.

As an example of how PLD architecture affects speed-
performance, consider a generic finite state machine (a real
example of such a circuit is given in the next section). If a
FSM is to be implemented in an FPGA, then the amount of
logic feeding each state machine flip-flop must be mini-
mized. This follows because in FPGAs flip-flops are directly
fed by logic blocks that have relatively few inputs (typically
4 - 8). If the state machine flip-flops are fed by more logic
than will fit into a single logic block, then multiple levels of
logic blocks will be needed, and speed-performance will
decrease. For this reason, designers usually use “one-hot”
state machine encoding when targeting FPGAs, so that the
amount of logic that sets each flip-flop is minimized. Even
in a CPLD architecture, speed-performance of a state
machine can be significantly affected by state bit encoding;

for example, in the Altera MAX 7000 CPLDs, flip-flops
that are fed by five or fewer product terms OR-ed together
will operate faster than those that require more than five
terms. In general, designers who wish to obtain maximum
performance for applications need to constantly consider
the nuances of their PLDs architecture.

3 High-Speed Design

In this section, we describe several examples of applica-
tion circuits that we have implemented in both CPLDs and
FPGAs. The purpose of this discussion is to show the rela-
tive speed-performance of each example in both types of
devices and also to illustrate the effects that the way in
which the circuit is described to the CAD system can
affect performance. All of the design examples are real
circuits from the NUMAchine multiprocessor system [6].

3.1 Simple Sequential Circuit

The example discussed in this section is a fairly small
sequential circuit consisting of a FSM with registered
inputs. Figures 1 and 2 illustrate the structure of the circuit
(note that the exact functionality of the circuit is not
important for our purposes). Fig. 1 shows the manner in
which each of the inputs to the circuit is registered; the
arrangement of FFs shown captures all of the inputs into
the in_r[] register (all inputs are treated identically atin[])
and then does not latch again until all bits of thein_r[]
register are cleared (by the FSM). The structure of the
FSM is indicated by the bubble diagram in Fig. 2, from
which the observant reader will realize than the machine
implements a classic priority-based arbitration scheme. To
illustrate performance of this circuit in both CPLDs and
FPGAs, we implemented two versions of the circuit: one
with only five input bits, and one with 13 input bits (the
real circuit used in our multiprocessor has 13 bits).

Table 1 clearly shows that the CPLD implementation
of the sequential circuit is much faster than the FPGA ver-
sion. However, the most interesting aspect of this result is
the difference between the five-bit and 13-bit versions of
the circuit. Both versions operated at about 100 MHz for

d q

d q
in_r[0]in[0]

in_r[] from the
other input bits

r

r

to FSM

from FSM

Figure 1 - Small Sequential Circuit.

clk

the CPLD implementation, while the 13-bit version was
much slower than its smaller counterpart for the FPGA.
This is a good example of how FPGAs are less suitable for
implementing circuits that require “wide” logic gates (the
14-input AND-gates and the FSM logic for this example),
whereas CPLDs can easily implement such designs.

3.2 Data Path Implementation

One of the most challenging aspects of design of high-per-
formance computer systems is the connection of the micro-
processor(s) to the rest of the system components. It is
convenient to implement the requirements of wide data path
circuits for interfacing to RISC processors and other system
components (such as memory, I/O devices, and communi-
cation controllers) in large PLDs. In fact, in real systems
much of the available board space is often occupied for this
purpose. Invariably, the data flow is bidirectional and
involves multiplexing and simple processing, such as
address/data multiplexing, change in data width, and simple
bit manipulation.

It is widely accepted by designers who use PLDs that
FPGAs are the best choice for data paths, because wide
logic gates are not required and the number of flip-flops
needed is large. Also, there is a large number of I/O pins is
required. For example, one simple bidirectional 64-bit latch
with tri-state control requires more than 130 pins. These
high I/O requirements, combined with simple logic needs is
a good match for the resources in a typical FPGA, such as
the 4-input look-up-table-based FLEX 8000 series from
Altera. In some cases it may be possible to implement an
entire wide data path in a single large FPGA, but it is more
cost effective to partition the circuit intobit slices and
assign each bit slice to a smaller device.

CPLD FPGA
5-bit 13-bit 5-bit 13-bit

Speed 100 Mhz 100 Mhz 57 Mhz 40 Mhz

Table 1 - Speed-Performance of Sequential Circuit.

Idle

Gnt0 Gnt1 Gntn

in_r[0] in_r[1]
& !in_r[0]

in_r[n] &
!in_r[0] &
!in_r[1] &
... &
!in_r[n-1]

Figure 2 - Small Finite State Machine.

On the other hand, when speed of the concrete design
is taken into account, CPLDs may be a better choice. For
example, an implementation of the 64-bit wide datapath
that we use in NUMAchine processor interface can run as
fast as 83 MHz using CPLDs, while the FPGAs can only
achieve 44 MHz. CPLDs provided better performance
because of their simple structure that provides for very
high-speed paths from input pins, through AND-OR logic
and flip-flops, to output pins.

This is an interesting example which shows that the
“accepted” guidelines for which type of PLD to use cannot
be followed blindly; both CPLDs and FPGAs should be
investigated.

3.3 Control for Data Paths

Circuits that control data paths have a very specific struc-
ture. The control can be realized by communicating state
machines. Each of these machines possesses a characteris-
tic structure of a tree-like FSM diagram, where the main
branching is done in one of the initial states, as shown in
Fig. 3. Other than that, the decisions that would change the
control flow are rare. Experience shows that for large state
machines of this type, CPLDs provide the only architec-
ture that can ensure high speeds.

The most significant factor affecting speed-perfor-
mance of state machines lies in thestate assignment, the
selection of codes for each state of the machine so that the
resulting combinatorial logic. State assignment problem is
very difficult because it is hard to estimate the complexity
of the logic required for any assignment (an NP complete
problem), and the number of possible assignments is large,

on order of (2n!). State assignment has been extensively
studied, and approximate solutions can be outlined only
when two-level AND-OR architectures are targeted. How-
ever, for multiple-level architectures, such as those found
in FPGAs and some modern CPLDs, a simple AND-OR
structure is not a precise enough model. Several heuristics
have been developed for the state assignment for CPLDs
and FPGAs. For both architectures, one-hot encoding
seems to be the best choice [1, 2], especially if joined with
the standard FSM decomposition and state splitting tech-
niques. Indeed, our experience shows that most medium-
size (10-20) state machines perform best using one-hot
encoding in CPLDs.

Controller Implementations Using CPLDs

For controllers implemented using CPLDs, because of the
limited number of FFs available, it is often desirable to
minimize the number of state bits used. However, it is
often impossible to use minimal length encoding. Indeed,
for our larger state machines, minimal length assignments
either could not fit into the designated CPLD or resulted in

poor speed-performance. The reason is that the number of
product terms that result by such assignments is too large.

In order to improve the speed, as well as to be able to fit
the designs, we were forced to investigate alternatives. One
observation that helped shape the search for the solution is
that by minimizing the number of 1’s in the encoding the
resulting logic becomes simpler. A key observation that
shaped this class of solutions is that there is a typical struc-
ture in state machines, as already shown in Fig. 3.

The state assignment scheme that we propose is a com-
bination of one-hot encoding to decode a “branch” and a
binary encoding of position in the branch. If there areB
branches with at mostD states, then the number of bits
needed isB log D, as opposed to the worst caseB*D. Addi-
tional bits that describe a position within a branch are
assigned in a way that simplifies the logic to generate the
outputs (this method is calledface embeddingfor input
encoding [3]).

Such assignments were used for some of our most com-
plex state machines. One such controller consisted of 52
states, had 27 inputs and controlled 41 outputs. The control-
ler was decomposed into several smaller (1-4 states) and
two large FSMs, with 17 and 20 states. To encode the states
of these two machines, we needed 8 and 11 state bits,
respectively. Both large state machines had branching struc-
ture as in Fig. 4. With our state assignment technique, the
controller achieved a speed-performance of 55MHz, using
the relatively slow (with 12 ns pin-to-pin delay) Altera
CPLD device 7192-12 and the “normal” logic synthesis
style. With the same parameters, the machines produced
using both the Altera-provided binary encoding and one-hot
encoding ran at 40 MHz.

Controller Implementation using FPGAs

It is much harder to design fast state machines using
lookup-table based FPGAs, as compared to CPLDs. First,
the state assignment problem is much harder than for the
two-level logic based devices. Second, and more important,

...

B

D

Figure 3 - A Tree-like FSM.

Idle

FPGAs are slower and more unpredictable, and so much
more care is needed to achieve fast designs using FPGAs.
Hence, in general they can be used in high speed applica-
tions only for relatively simple controllers.

 We propose a scheme for designing controllers in FPGAs
that further exploits the structure of the controllers; it uses
on a large scale the decomposability of FSMs. It produces
an assignment that uses less state bits than the one-hot
encoding, and yet is faster for a given structure of control-
lers. The assignment roughly corresponds to orthogonal
“coordinates” in the state of the system, and at the same
time exploits if some of these are not time critical.

As in the previous section, we rely on the structure of state
machines that idle until there is a request for execution,
and then perform arun. We use two types of information
for describing the run. We use a notion of aphase, which
is responsible for sequencing, i.e. executing the correct
sequence. Phases are always strictly defined in time (its
beginning and end). Usually, a phase can be imagined as a
state that has one incoming and one outgoing point. Then,
a single flip-flop with a small fan in can be used to realize
the phase. In addition, we usequalifiers, which describe
permanent characteristics of a run. For example,phases
can correspond to specific actions like opening up paths to
registers, arbitration phases and the like, while thequalifi-
ers can denote the direction of operation (e.g. read/write),
the type of the data item being processed and other fea-
tures characteristic for a run. Fig. 4 shows an example of
one such run initiated by an input I0, which starts the phase
φ1, and memorizes the qualifier θ1. The run is dependent
on the inputs I1 and I2 at the end of the next two phases
and qualifierθ2 which starts the last phase.

The main reason that this scheme achieves the fast design
lies in the fact that only phase bits change for most of the

Ι2

Ι0

Ο1

Ι1
φ1

Start

φ2
...

φ3

θ1

θ2

φ4

Stop

Qualifiers Phases In/Out

Figure 4 - Example of a controller run

time, similarly to the case when one-hot encoding is used.
Furthermore, we eliminate a special idle state at which the
machine starts. This is important because the logic needed
to generate this state is often the most complex in the entire
state machine. Furthermore, qualifiers of a run are not time
critical; their activation and deactivation can be moved in
time for several clock cycles. This gives us an additional
opportunity to eliminate these false critical paths.

The state space of the controller given is on the order of
the product of the number of qualifiers and the phases,
while the total number of bits needed for encoding the state
machine is on the order of the sum of these. Such an encod-
ing uses as many bits as possible to encode the orthogonal
characteristics of the state space. While in FPGAs we are
not primarily concerned with the number of bits used for the
controller encoding, this approach has significant advantage
even for the speed-performance because Altera FPGAs are
hierarchical, and so produce significantly faster circuits
when there is a locality in the state bit placement.

Using this approach, we designed a small bus interface
controller that can transfer three sizes of data in two direc-
tions (16, 32 and 64-bit wide), and which performs several
additional functions, like remapping of the address space
and recognition of the type of the bus to which it is
attached. It also includes conversion from 64 bit wide bus to
the 32 bits on one bus, and 16 bits on another. Additionally,
one bus has time multiplexed address and data lines, while
another has separate address and data lines. The controller
was able to run at 62.9 MHz on the Altera FLEX 8452A-3
device. We estimate that one-hot encoding would result in
speeds well below 50 MHz. To encode over 25 states, we
used 12 bits.

3.4 High-Speed Counter Design

In our multiprocessor system, a high-speed counter is
required as part of a hardware monitoring system. The
counter must be loadable, clearable, readable, and generate
an overflow signal for cascading or interrupting a CPU.
Clearly, the counter must be large enough to minimize over-
flows (32 bits is sufficient). Additionally, latency is not
important, but being able to count an event every clock
cycle is.

Basic Counter Design

A basic 32-bit counter was implemented in both FLEX
8000 and MAX 7000 parts by cascading eight of Altera’s
74161 macrofunctions. Altera has optimized these macros
separately for each device family; the FPGA implementa-
tion uses the dedicated carry chain while the CPLD just
uses a single product term for each bit. The first two rows of
Table 2 show the highest possible speed of this counter

using the fastest and smallest possible devices capable of a
fit, namely the FLEX 8820A-2 and the MAX 7096-7.

The speed of CPLD-based counters is independent of
the counter size (up to about 32 bits) and equals the maxi-
mum possible speed set bytpd plus flip-flop setup time.
This is because each counter bit needs to OR four product
terms of up to 34 inputs, and the CPLD implements this
easily. For the FPGA devices, wide product terms are not
available. Instead, a dedicated carry chain is employed to
implement the required wide AND. The speed of this carry
chain limits the speed of the FLEX-based counter because
a counter of double the size has twice the carry chain
length and approximately half the speed performance.

Using the carry chain in FPGAs, however, hinders
routability as well as limiting the speed of large counters.
Because the carry chain is a fixed resource, all bits of the
counter must be physically placed in an ordered, packed
format. The packed format makes routing less likely to
succeed because local density is higher and there are fewer
placement alternatives. Furthermore, the ordered format
restricts routing because CAD tools rely upon shuffling the
order of logic blocks to improve limited interconnect con-
nectivity. As described in the next section, both routability
and speed can be reclaimed through clever design.

Improved Counter Design

As mentioned earlier, CPLD-based counters easily attain
their highest speed capabilities, but FPGA-based counters
suffer from slower speed and also poor routability. A lin-
ear feedback shift register is a very good alternative
because it is easily routed and runs at very high speeds.
However, this is not practical for our purposes because of
the overhead involved in converting the shift register con-
tents back into a count [4]. Fortunately, [5] describes a
binary counter design which can be scaled to virtually
unlimited size yet increment in constant time. We
employed this technique in the Altera FLEX devices with
promising results.

The key observation to make with the constant-time
counter is that the high-order bits are incremented very
infrequently, but they must all be able to change within a

Device Type
Cells (%
 of Device)

Maximum
 Frequency

Basic
Design

CPLD 32 (33%) 125 MHz

FPGA 34 (5%) 65 MHz

Design A
FPGA

39 (5%) 103 MHz

Design B 48 (7%) 164 MHz

Table 2 - Speed-performance of 32-bit counters.

single clock cycle. The counter can be broken into blocks of
increasing size, where each block’s carry-in is actually a
load enable for its flip-flops. The load enable removes the
carry chain from the critical path by allowing carry propa-
gation during the long idle time between increments of the
block. However, a fast load-enable is crucial when an incre-
ment must be performed. Careful attention must be paid to
this load-enable signal to achieve good counter perfor-
mance.

We initially partitioned the counter into blocks of size
1, 2, 1, 8, and 20 bits (because multiples of 4 are easy to
handle). At first, this design yielded very poor results; the
counter ran at speeds close to 30 MHz* . By tuning the logic
according to the architecture, such as forcing certain inputs
and functions together in a lookup-table to reduce critical
signal logic depth, speed was increased to about
80MHz* (!). Further performance was extracted by hand-
placing the critical logic elements of the counter: roughly
25% of the logic cells were manually placed and speed was
measured at 103 MHz. This result is entered as design A in
Table 2.

In design A, the critical path lies in logic that generates
the load-enable signal because there are too many blocks to
fit in a LAB, each requiring fast load-enable signals, and the
blocks were small so overhead would grow too quickly if
the logic was duplicated. Once these problems were identi-
fied, a new partitioning of 4, 4, and 24 bits was determined
to be much better. Since it is no longer time critical, the
carry chain in the 24 bit block is broken many times to aid
placement. Also, by replicating the lower 4 bits, a fast load-
enable signal can be generated within a LAB for the second
and third blocks. The resulting speed was a surprising 164
MHz and is entered as design B in the table.

It is worthwhile to note that design A and B both obtain
very high counter speeds with little logic overhead; only 48
logic cells were needed to implement a 32-bit counter. This
is significant when compared to counter designs that are
suggested by Altera. Altera’s 16-bit prescaled counter runs
at 143 MHz in a slower device (the A-2 speed grade was not
available at that time), yet it used 101 logic cells. The logic
savings is important to our application because it demands
multiple counters to fit in inexpensive devices.

Although speed-performance was greatly improved,
the effect on routability has not been shown. To demon-
strate the routability improvement, a more complex circuit
which requires four 32-bit counters is used. To reduce pin
requirements and increase interaction, the counters share a
read and write port via a 32-bit bidirectional data bus. A 4-
to-1 multiplexer, which is pipelined for speed reasons, and

* Speed was extrapolated to 8820A-2; actual speed was
33% slower in an 8452A-3.

tristate buffers connect the counters to the data bus. This
circuit was routed in Altera FPGAs of various sizes and
pin capacities, and a typical result is presented in Table3.
In this table, the number of unrouted signals after each
pass of the router was recorded. The number of passes and
the number of unrouted signals illustrate the difficulty the
router had with the circuit. In all our experiments, the
improved counter required fewer passes of the router (usu-
ally only one) and always routed. In fact, the example in
the table shows that only the most improved version was
able to route.

Further Insight

Although many benefits were realized with counter
designB, obtaining a high-speed design required a great
amount of effort. While optimizing, many difficulties were
encountered and solved. By describing some of these pit-
falls, we hope to help other high-speed FPGA designers.

First, the load-enable signals for higher-order sub-
blocks are heavily loaded and can easily limit the speed
performance; Altera devices quickly degrade when fan-out
is large. We limit fan-out to 16 logic cells by replicating
the load-enable signal. Altera’s default way of doing this is
to use an extra logic cell as a buffer, but the normal
lookup-table inputs are too slow. The fastest way to pro-
duce a duplicate signal in Altera devices is to use the cas-
cade input or to replicate the logic that produces it. We use
the former approach with good results.

Also, replicating high fan-out signals to improve
speed works, but there should be a way to mark them as
“equivalent” so the CAD tool could automatically distrib-
ute them. Otherwise, assignments are made manually and
we have seen this hinder routability.

Care must be taken when carry chains are used to pro-
duce wide-AND functions because they are glitch-sensi-
tive. This was observed when generating the load-enable
for the second subblock; glitches were delayed in the inter-
connect and arrived close enough to a clock edge to cause
false increments. By latching the load-enable signal close
to the carry chain output, the glitch is removed. While this
causes the upper bits of the counter to be delayed by one

Counter
Partitioning

Number of Unrouted
Signals after each Pass

full carry chain 40, 33, 33, 33, 33, 33

1, 2, 1, 28 26, 23, 22, 22, 18, 15

1, 2, 1, 8, 20 22, 12, 4, 2, 2

4, 4, (8+8+8) 7, 0 (successful)

Table 3 - Routability of Different Counter Organizations.

clock cycle, it increases performance by removing the first
subblock’s carry chain from the load-enable critical path.

Dividing the counter into subblocks made initializing
the counter very tricky. After loading a new value into the
counter, a few idle cycles are required to settle the carry
chain. Also, control signals must also be properly delayed
to compensate for the pipelined load-enable.

Features such as cliques, which are a hint that certain
logic should be kept together, help improve speed but are
not strict enough. Better results were obtained by forcing
certain logic into a cell and by forcing placement locality,
although the latter step can hinder routability.

Summary

Altera CPLDs can easily implement very fast counters. In
comparison, FPGAs are faster and better suited for this pur-
pose, but performance and routability are compromised
when the carry chain hardware is used. Both performance
and routability can be improved by enhancing the counter
design with a very a small cost in area. However, these
gains cannot be realized without intimate knowledge of the
FPGA architecture and a great deal of manual work on the
part of the designer.

4 Final Remarks
We have presented several examples of high-speed digital
circuits and have shown implementations in both CPLDs
and FPGAs. For most applications, speed-performance in
CPLDs is higher than in FPGAs. The examples also show
that in order to obtain maximum speed-performance, it is
often necessary to have intimate knowledge of the structure
of the PLD, and to investigate many design alternatives.

References

[1] S. K. Knapp,Accelerate FPGA Macros with One-Hot
Approach,Electronic Design, Vol. 38 No. 17, pp 71-78,
Sept. 1990.

[2] Z. Zilic and Z. Vranesic, “On Retargeting With FPGA
Technology,” The First Canadian Workshop on FPGAs, pp.
14-1 - 14-5, June 1993.

[3] P. Ashar, S. Devadas, and A.R. Newton,Sequential Logic
Synthesis,Kluwer Academic Publishers, 1992.

[4] Douglas W. Clark and Lih-Jyh Weng, “Maximal and Near-
Maximal Shift Register Sequences: Efficient Event
Counters and Easy Discrete Logarithms,” IEEE Transac-
tions on Computers, Vol. 43 No.5, May 1994.

[5] J.E. Vuillemin, “Constant Time Arbitrary Length Synchro-
nous Binary Counters,” 1991 IEEE 10th Symposium on
Computer Arithmetic, Grenoble, France, June 1991.

[6] Z. G. Vranesic et al. “The NUMAchine Multiprocessor”,
Computer Systems Research Inst. Tech. Report, CSRI-324,
Toronto, April 1995.

[7] Altera Corporation, Application Brief 124, “FLEX 8000
Handbook”, 1994.

