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Abstract

Segmentations a modification to the Field-Programmablé&ate
Array (FPGA) routing architecturethat reducesthe propagation
delay of interconnectsignalsby using longer wire segmentgo

decreaseseriesresistanceand parasitic capacitance. Detailed
routers are used to assign segmentsand routing switchesto

specific connectionsin way which limits resourcewastageand

decreasepropagationdelay. This thesisdescribesa software
organizatiorwhich separatethe FPGA routing architectureérom

the routing algorithm. Two key results arise from this

organization: an easily configurableFPGA routing architecture
which enables further research itie issuesf segmentatioand

switch placementand a modifiable code basefor implementing
and exploring different routing algorithms.

To demonstrateuse of the code and provide a first-generation
detailedrouterfor future comparisonsa new routing algorithm,
SEGA, is implemented. SEGA yields excellentrouting resultsin
termsof minimum track usageandits effective useof segments,
as measuredy the numberandlength of segmentsllocatedfor
each connection.
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Chapter 1

| ntroduction

An important objective of a digital systemdeveloperis to minimize cost while maximizing
performance. Although high performancewrould be realizedby producingcustomizedntegrated
circuits, suchsystemscan be prohibitively expensivefor low volume units dueto the high setup
costassociatedvith the fabricationprocess. Cost-sensitivelevelopersnustseekalternativeways
to implement their digital system, compromising performance for the sake of cost.

Oneviable alternativeto customizedC designhasbeenthe useof Field-Programmabl&ate
Arrays (FPGAs). FPGAs are capableof implementingdigital circuits with fairly high logic
densitiesyet they canbe programmedy the user. Additionally, ratherthansendinga designto a
fabricationfacility where customsilicon would be formed in a few weeksto months,it can be
programmednto an FPGA in minutes. Shoulda designerror be found, the fault canbe fixed and
changes tested almost immediately.

The flexibility offered by the FPGA makesit invaluable for prototyping or small-scale
production,for example. At the sametime, however,it also hindersspeedperformance. While
custom gate array connectionsbenefit from using metal wires tailored to the length of the
connectionthe programmabilityof the FPGA requiresmanyshortwire segments to be connected
togetherthroughrouting switches. Theserouting switchesadd a distributedresistive-capacitive
load to the connection, increasing the propagation delay of signal transitions. This ultimégely
the speed of the FPGA circuit and makes FPGAs unattractive for high-speed applications.

To improve the speedperformanceof FPGAS, and thus increasetheir usefulness,the
architectureof FPGAshasevolvedto include wire segmentf varied lengthsand fewer routing
switches. This typically improvesthe speedof connectionsbetweenpossibly distant circuit
elementdy decreasinghe numberof routing switchesthroughwhich the signalmustpropagate,
and by decreasinghe numberof unusedrouting switchesforming an unnecessaryoad. It is
possible,however,to decreasgerformanceby using long wire segmentdor short connections,
becausehe long segmentould probablybe betterutilized by a long connectionandit represents
an larger capacitiveload thanwhat a shorterwire segmentvould incur. Thus,the assignmenbf

1



Chapterl

wire segmentgdo connectionscan influence the speedperformanceof a circuit realizedin an
FPGA.

1.1 FPGA Software

The useof good Computer-AidedDesign(CAD) tools for programmingFPGAsis essentiafor
effective use of the FPGA resourcesecausehe vast possibilitiescan quickly overwhelmany
human designer. FPGA CAibols mustdoto digital circuitswhata compilerdoesto sourcecode
in a high-levelprogrammindanguagejt musttranslatethe sourcespecificationinto a binary code
which utilizes the device resources in an efficient way.

Like a compiler, thgorocessof convertingthe sourcespecificationinto a binary codeis broken
into a numberof sequentiabtagedo makethe problemmoretractable. FPGA programmingwith
CAD tools typically involves the following steps: initial design entry, logic optimization,
technology mapping, placement,and routing [1]. While the first two steps perform obvious
functions, technologynappingpartitionsthe logic functionsof the circuit into blockswhich canbe
implementedy logic elementsof the FPGA, placemenfinds ideal locationsfor the blocksin the
organizatiorof the FPGA androuting connectghe appropriatd=PGA logic blockstogethersothe
desired circuit can be rendered.

The routing stage can be brokeninto two sequentialprocesses. The first, called global
routing, mustassigneachto connectioranimprecisepathway,a coarse graph, throughthe FPGA
interconnect. Thesecoarsegraphsare usedby the secondstage,detailed routing, as a basisfor
determininga precisepath. The setof thesedetailed paths form the detailedroute which canbe
usedto programthe interconnecimediumof the FPGA. Quite obviously,the detailedgraphsare
dependent upon trerganizatiorof theinterconnect— the placemenbf wire segmentsndrouting
switches.

1.2 Motivation

Although FPGAs are capableof high logic capacities speedperformancehas becomea critical
issue for expanding their role in digital design. The generalized interconnect strutherERGA
forms the largest speedbottleneck. To improve performance,current researchfocuseson
determining the best organization and layout of an FPGA, knownaashttecture.
Many approachesre being usedto improve uponthe speedof FPGAs. Onesuchapproach
attempts to keepignalsout of the routinginterconnecas muchaspossibleby improvinguponthe
2



Chapterl
logic functionality presentat a local level. Inevitably, however,signalsmusttravel throughthe

interconnecto form a largecircuit. Thus,speedingip theinterconnecttself is animportantgoal.
This is doneby modifying the routing architectureso that minimal delay is imposedupon each
connection formed therein.

To aid current research in the developmergagfdFPGA architecturesit is importantto have
CAD toolswhich caneffectively utilize the FPGA’sresources.In particular,routing architecture
research needs good routing software to fairly evathateapabilitiesof eachFPGA design. This
thesis describes a software organization which facilitates resealitiofy architecturesindtheir
algorithms. To aid bothresearchareasgleardistinctionis madebetweercodedependentiponthe
FPGA architectureand architecturally-independentode. The abilities of the software are
demonstrateavith the implementationof a new detailedrouting algorithm, called SEGA, which
considers wire segmentation as part of the routing problem.

1.3 Organization

This thesisis organizedas follows. Chapter2 providesinformation aboutthe algorithm of the
detailedrouterimplemented SEGA, and associatedesults. Chapter3 describeghe designand
organizationof the softwareusedto separatehe architectureandthe algorithm. The last chapter
draws conclusions from the work, and outlines future work that can be done with the design.



Chapter 2

SEGA Algorithm and Results

The detailedrouting algorithmcalled SEGA s first describedn [2]. Here,the FPGA modelused
by SEGA is introduced and the SEGA algoritlsnexplained. It is pertinentto describethe SEGA
algorithmto give necessanpackgroundnformation and insight into the operationof a detailed
router. In this way, the software underlying SEGA can be better understood. The chapter
concludedhy presentingouting resultsproducedby SEGA, showingit to be an effective routing
algorithm.

2.1 The FPGA Model

SEGA is designedas a successoto the CoarseGraph Expansion(CGE) algorithm originally
presentedn [3][4]. Both of thesetools are designedo route FPGAswhich fit the symmetrical
model, described below.

The model represents FPGAasa rectangulaarrayof Logic (L) blocks, depictedn Figure
2.1. Often, logic blocks containprogrammableslementsof randomand sequentialogic, but no
assumptioraboutthatorganizatioris madein this software. More importantly,the spacebetween
the logic blocks forms an interconnectionrmedium composedof horizontal and vertical routing
channels. Each channelis brokenup into alternatingConnection (C) blocks and Switch (S)
blocks aswell as metalwire segments andlogic block pins. The C blocksand S blocks contain
programmableswitcheswhich can connectwire segmentgo pins and to other wire segments,
respectively. The channelwidth, W, denotesthe numberof tracks, or rows (columns),of wire

segments contained within. Wire segments can span one or more C blocks, passing through zero or

more S blocksin the process. Figure 2.1 showsan FPGA with channelwidth of three,and each
wire segment spans a single C block.
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Figure2.1. An M x N FPGA.

2.1.1 Wire Segments

Wire segmentdorm the backboneof the routing network. They can be thoughtof as buswires
which can be connected together via S block routing switches to form a longer bus wire.
The lengthof a wire segmentis definedas the numberof C blocksthroughwhich it passes.
When a long wiresegments usedfor partof along connectionspeedoerformanceanbe greater.
This is becausehe signaldoesnot haveto passthroughas manyrouting switchesat the S blocks,
eachof which cancausesignificantdelay. However,longerwire segmenthiaveinherentlygreater
parasitic capacitance, potentially increasing delay for short connechaolationally, usinga long
wire segmentfor a short connectionwastesresourcespreventingother connectionsfrom being
formed. This cancausea circuit to be unroutable meaningnot all of the desiredconnectiongan
be formed. Thus, only segments appropriate for the connection length should be chosen.
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2.1.2 TheSBlock

Frequently,wire segmentsnust be connectedogetherto form longerconnections. The S block
holds routing switches that enable a wire segment to connect taviithsegments.An S block is
representeds a generalfour-sidedswitch box wherehorizontaland vertical wire segmentsneet.
The maximumnumberof otherwire segmentsany segmentcan connectto within an S block is
determinedby the flexibility of the S block, Fs. In Figure 2.1a, switchesattachedo long wire
segmentpassingthroughthe S block arerepresenteavith an X, and switcheswhich connectthe
endsof segmentarerepresentedvith a dashedine. Researchhasshownthata goodvaluefor Fg
is three[5][6]—this is reflectedin Figure2.1a. This valueof Fgis animportantassumptiorused
throughoutmostof the thesis,sinceit clearly limits the fanoutwhich canoccurat an S block to
one.

2.1.3 TheC Block

When a signal enters or leaves the interconneuigtdo sothrougha C block connectiorswitch.
The switch, when set, connects a pin to a wire segment. The flexibility bfak? parametef,
is definedas the numberof wire segmentgo which a particularpin may connect. Figure 2.2b
showsan exampleC block whereF is two, i.e. eachpin can connectto two of the threewire
segmentdllustrated. For example pin two of the left logic block canconnecto wire segmentsn
tracks two and three.

1 2 3 1 2 3
3 s 3 2
L 2 L
2 : \ 2 Block 1 Block
1 e —— 1 1
1 2 3 1 2 3
a) The S block. b) The C block.

Figure2.2. Examples of S and C blocks.
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2.2 Problem Definition

As describedabove,routingis divided into global routing and detailedrouting. Global routing is
done separately as preparation for detailed routing. The global router used divides connections into
two-point connectionsand routes each separately. While routing, it attemptsto distribute the
densityof connectionsevenly throughoutthe channelsas well as minimize the numberof turns a
connectionmakes. Theseare importantconceptsbecausehe routing resourcegpresentin each
channel segment are limited, and straight connections can better utilizetpngntsf theydo not
turn corners.

The global router assignsa coarsegraphto eachtwo-point connection. The coarsegraph
defines a route through the channelsof the FPGA, specified by a sequenceof coordinates
representinghannelsegmentswhich connectdogic block pins together. This information forms
the input netlist, used by the detailed router as a templatefor allocating wire segmentsto
connections.

Sincemulti-point connectionsare divided into a numberof two-point ones,someconnections
that are part of the same net will overlaithin a routingchannel. Specialconsideratiorshouldbe
made to allow these connectionsto be recombinedand reduce possible wastageof routing
resources.

For eachcoarsegraph,the detailedrouter must analyzethe numerouspathsallowed by the
routing architectureand choosethe “best” one. The bestpath is defined as one which would
presentminimal delayto the signaland havethe leastimpactuponthe routability of othercoarse
graphs. These ideals are not always simultaneously satisfiable, so tradeoffs must occur.

In orderto illustrate the possibleproblemsinvolved, considerthe routing examplein Figure
2.3. As indicatedby thicker wire segmentsthe figure showsthe possibilitiesfor three different
connections.ConnectionA hastwo possibledetailedpaths,oneon track two andanotheron track
three. Shouldthe routerusetrack two asthe detailedpath, both ConnectionB and ConnectionC
areleft to rely upononly one possiblepath (track one). Since ConnectionB and ConnectionC
carry different signals, they cannot both be routed on track one.

The aboveexampledoeshavea solutionif ConnectionA is formedusingtrack three. Then,
ConnectionB and ConnectionC canbe formedby choosingtrack onefor one of them,andtrack
two for the other. If segmeniengthsare matchedto the connectionlengths,the bestchoicefor
ConnectiorB is track two andthe bestchoicefor connectionC is track three. Unfortunately,the
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bestchoicesare not always so obvious, so a detailedrouter must sometimesmake guessedgor
difficult decisions.

One final note should be made about optimizing the speed of each connidsomell known
thatthe greatesamountof effort to improve performanceshouldbe spentuponthoseconnections
which lie in the critical path of the circuit. Unfortunately,it is very difficult to automatically
determinewherethe critical path lies so that it can be optimized. Thus, it is assumedhat all
connections should be optimized in order to have the greatest chance of speed improvement.

Routing 1
Options for -- F——% — 2
Connection A 8
Routing 1
Options for R } 2
Connection B - - - 3

[4]
Routing 1
Options for g
Connection C

&
all
@l
o

Figure2.3. An example of an FPGA routing problem.

2.3 The SEGA Algorithm

After inputting the coarsegraphsfrom the global router, the SEGA algorithm proceedsn two
phases.In the first phase eachcoarsegraphis assigneda numberof alternativedetailedpaths.
The secondphasefollows by selectingwhich detailedpathis to be usedfor eachcoarsegraph. By
enumeratinghe alternativesn thefirst phase SEGA canconsiderthe side effect of choosingone
alternativeover anotherin the secondphase. This enablesSEGA to matchconnectionlengthsto
segment lengths without unnecessarily compromising the desired result of forming all connections.

2.3.1 Phasel. Enumeratingthe Detailed Routes

In the first phase, SEGA expands each coarse gnéphll detailedpathspermittedby the routing
architecture. By limitind~g to three,no fanoutcanoccurat an S block andeachcoarsegraphwill

8
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expand into a maximum &% detailedpaths. Figure2.4 illustratesa coarsegraphbeingexpanded

into its detailed paths.

COORDINATES

COORDINATES

0,4

0,4

0,3

0,3

3,3

3,0

4,0

|||||||

|||||||

|||||||

|||||||

|||||||

4

3

2

1
Figure2.4. Expansion of a coarse graph.
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2.3.2 Phase2: Connection Formation

Oncethe coarsegraphshavebeenfully expandedthe secondohaseproceedso selectonedetailed
pathfor eachcoarsegraph. The selectiondecisionis madeby choosingthe lowest cost path (the
costof a pathwill be describedelow), however,any connectionsvhich are deemedsssential are
alwaysconsideredirst. An essentiabonnectionis definedasa coarsegraphwhich hasonly one
possiblepathremaining;otheralternativeqif any) havebeenexhaustedy the formationof other
connections. Pseudo code representing this part of the algorithm is presented iB.$igure

place all detailed paths into the path |ist
while the path list is not enpty

if any essential paths exist in the path |ist

sel ect the essential path with the | owest cost
el se

select path with the | owest cost
end if

mark the graph corresponding to the selected path as routed,
and renove all paths in this graph fromthe path |ist.

find all paths that would conflict with the selected path
(i.e. all paths that are part of different nets, but
rely upon a wire segnent just allocated to the sel ected
path) and remove themfromthe path list. |[If a graph
loses its last remaining path, it is deemed unroutable.
update the cost of all affected paths
end while

Figure2.5. Pseudo code for Phase 2 of SEGA.

2.3.3 TheCost Function

The selectionmechanismin Phase2 of SEGA is driven by a multi-part costfunction definedfor
each pathp, as:

Cost(p) = WaCa(p) + WeCs(p) + WeCe( p) + WCi (). 2.1

10
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The first two terms in the cost function reflect an effort to efficiently assign segmentsof
appropriatelengthsto a connectionand the last two are concernedwvith successfullyrouting all
connections. Each cost term is further described below:

Ca(p) = total length of all segmentsminimum possible segment length 292
total length of all segments '
Ca(p) = number of segments minimum possible number of segments 23
number of segments '
number of remaining paths
Ce(p) = gp 2.4
Fe
C: /* pseudo code to compute Cf */
for each path p
Cf(p) =0.0

for each wire segnent win p
for each path q which al so contains w

/* find the nunber of alternatives */
alt = # paths in expanded graph of q
whi ch don't conflict with p

CG(p) += 1.0/ alt

end for
end for

if d(p) < mnimmthen mnimm= C(p)
if G(p) > maxi numthen maxi mum = C (p)

end for

/* rescale */
for each path p

aG(p) = (A(p) - mninum / (maxi mum - m ni nun
end for

The Ca costis similar to the onedescribedn [7]. Its purposeis to encourageusing paths
which do not useverly long wire segmentsor a connection. The Cp cost,similar to the oneused
in [7] and[8], encouragethe useof pathsusingasfew wire segmentsspossible. Thethird cost,
Ce, gives priority to pathsof graphswhich are running out of remainingchoices. Finally, Ct
defersthe useof pathscontainingwire segmentsn high demand. C: is the samecostfunctionas

11



Chapter2

used in [3][4], except the result is linearly rescaled so that the mini@iuimund maps to zero and
themaximumCs found mapsto one. Thisway, all of the costtermsarein therange[0,1] andno
single term can dominate by becoming very large. If the user wishes to emplasizaenrouting
objective,thew coefficientscanbe choserto form an appropriatenveightingscheme. For circuits
which needto run faster,wa andwg canbeincreasedwhile circuits which are difficult to route
can havean: andw increased.

When choosing the path with the minimum cost results in a tie, the cost comparator tfaours
path with the lowesEr cost in order to minimize the negative impact on others.

2.4 Results

To testthe effectivenes®f the SEGA routing algorithm, the programwasrun on a setof circuits,
mostof which are derivedfrom the MCNC benchmarksuite. For all experimentsFg is threeand
Fc is equalto W. Additionally, the Ci termis not addedto the costfunction (i.e. its weight is
zero),butit is usedto breakties. Theresultsaredivided into threesections: the first showsthat
the algorithmobtainsexcellentresultsin termsof routing completion,the secondshowshow wire
segmentllocationis improvedusing C« and Cg, andthe third illustratesthe impact of segment

allocation upon routing completion.

2.4.1 Routing Completion Results

To demonstrat&SEGA'’s routing ability, the FPGA was configuredto consistof only unit length
wire segments. This allows SEGA to be directly comparedwith CGE, a detailed router
specifically designedfor this configuration. Also included are results from a “maze” router,
obtainedby disabling CGE's cost function. This turnsit into a sequentialouter, similar to a
classical maze router.

Routing ability is measured by tinemberof tracksrequiredto route100%of all connections.
The resultsin Table 2.1 indicate the minimum channelwidth requiredby eachrouter to route
100% of all connections. Theseresultsare boundedby a minimum value, the channeldensity,
sincethatindicatesthe maximumnumberof connectionglacedin a singlechannelsegmenby the
global router. As shown, the SEGA results are consistently very close to the minimum
possible—intotal, it requiresonly sevenextra tracks. Also, the table indicatesthat SEGA
performs slightly better than CGE by using six fewer traakdmuchbetterthanthe mazerouter.

12



Chapter2

The mazeresultsshow how importantit is to considerside effects when forming connections.
Obviously, SEGA addresses this issue well.

Circuit Channd Minimum W for Minimum W for | Minimum W for
Name Density SEGA CGE M aze

9symml 10 10 10 12
alu2 10 11 12 17
alu4 13 15 15 20
apex’ 13 13 13 15
example2 17 17 18 21
k2 15 17 19 27
terml 9 10 10 13
too_large 11 12 13 17
vda 13 13 14 19
z03 14 14 14 21
Total 125 132 138 182

Table2.1. Benchmark circuit characteristics.

2.4.2 Wire Segment Allocation Results

Theability to effectively allocatewire segmentss shownby configuringthe FPGA with segments
of variouslengths. The FPGA usedfor theseexperimentshasa channelwidth of 20 and its
segmentiengthsdeterminedby a Poissondistribution with mean0.5. This resultedin a wire
segmentiength distribution with approximately60% of length one, 30% length two, 8% length
three, and 2% longer than three.

Of the benchmarksuite, only thosecircuits which could be 100% routed in the segmented
FPGAareincluded. Thelengthandnumberof segmentsisedin therouting of all the circuitswas
summedand normalizedagainstthe minimum possible. The minimum total lengthis equalto the
numberof single length segmentsouting all the connectionswould require, and the minimum
numberof segmentss equalto the total numberof straightsectionspresentn the coarsegraph.
After normalization, the minimum value possible for either metric is one.

Theeffect C« and Cg haveuponsegmentllocationis shownin Figure2.6. Whenboth costs
aredisabledby settingtheir weightsto zero,no concernis givento segmengallocation. Enabling
either cost shows a marked improvement in the segment allocation quality: the nusegeneits

13
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useddropsfrom 49%in excesdo 28%in excesf the minimum,andthe lengthof segmentsised
drops from 21% in excess to 6%. WHmth costsareenabledbothaspectof segmentllocation
deteriorateonly slightly comparedto their individual minima, to 29% and 8% in excess. This
showsthat the two costsdo not unduly competewith eachother when usedtogether,and the
overall result is better segment allocation.

------- Minimum —2—— Segment Length Use —o— Number of Segments Us¢

075 4 - - - - - - - - - - - - - oo oo oo oo oo oo o oo oo oo oo oo oo

05 4 - - & oL

(O I e e e

0 } }

Alpha Alpha Alpha Alpha
Weight=0, Weight=0, Weight=1, Weight=1,
Beta Weight=0 Beta Weight=1 Beta Weight=0 Beta Weight=1

Figure2.6. Segment allocation results.

2.4.3 Segment Allocation Impact on Routing Completion

For this experimentthe FPGA was configuredwith a Poissondistributionof segmentss before,
but ratherthanfixing the channelwidth to 20 the minimum channelwidth requiredto route 100%
of the connections was measured.

The effect of wisely allocatingsegmentsaipon minimum channelwidth is shownin Table2.2.
Wheneitherof the segmengllocationcostsare enabledthe numberof tracksrequiredgenerally
increases as expected. Of particular interest, however, is the faCt tbatises a marked increase
of 22% in channelwidth requirementdbut Ca only causesa mild increaseof 7%. This canbe
explainedby understandinghat Cu reduceghe distancewhich a signalcandepartfrom its global
route at eachturn, therebyhelping to reducethe inflated channeldensity inherit in segmented
channels. Additionally, when both costs are used @&fyetracksareneededo routethecircuits.

14
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This indicatesthat effective segmentallocation with SEGA doesnot come without incurring a
penalty on routability.

Circuit Name wWg=0, wg=0 wg=1, wg=0 wg=0, wp=1 wo=1, wp=1
9symml 11 12 12 13
alu2 14 13 15 16
alu4 15 16 20 21
apex7 13 13 15 17
bus_cntlD4 11 11 14 14
C880 15 14 17 18
cht 17 17 20 19
dmaD4 12 13 15 15
dram_fsmD4 12 14 14 15
EbnrD4 13 17 16 18
example2 17 18 22 23
k2 18 20 24 26
terml 11 12 12 13
too_large 12 15 16 16
vda 15 16 19 20
z03 15 16 19 19
TOTAL 221 237 270 283

Table2.2. Impact ofCq andCB on routing completion.

2.5 Conclusions

The evolution of FPGA routing architectures to include wire segments of various Ipreghata
newandchallengingissueto the detailedrouting problem. The SEGA algorithm presentedn this

chapteris a simple yet proficient methodcapableof achievingexcellentrouting completionand
intelligent segmentallocation. Additionally, the tradeoff betweengood segmentallocation and
routability is shownto be roughly 20% better segmentallocation at the expenseof 30% more
routingtracks. It would be prudentto exploreSEGA'’s capabilitieswith theseissuesat a morein-

depth level in the future by varying the channel segmentation and routing switch placement.
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Chapter 3

Softwar e Design

The softwaresupportingthe implementationof SEGA is a flexible, modular designintendedto
assistthe developmentof routing architecturesand algorithms. Code involving the FPGA
architecture is kept distinctly separate from code implementing the routing algorithm.

The variousmoduleswill be describedn detail below. The lowestlevel, the FPGA Module,
will be describedfirst, followed in layer order by the Path Module, the Route Module, and the
Main Module. An additional Plotting Module, which aids visualization and debugging by
displaying a graphical representation of the FPGA and its routing, is also briefly discussed.

3.1 Organizational Overview

The software systemis organizedinto numerouslayers, similar to a multi-layered operating
system. The layeredconceptpermits outer layersto accessproceduresof inner layers, either
directly or indirectly, but it does not allow innlayersto accesouterones. This modelallowsthe
layersto run simultaneouslyin a concurrentenvironmentwithout fear of internal deadlock;the
resourceallocationgraphis guaranteedo be cycle-freebecausealthougha higher level can be
waiting for a lower level, a lower level can never be waiting upon a higher level.

To further supportconcurrencyno global variablesare permittedwithin a layer. Thus, all
datastructuresmustbe instantiated. An instanceof a structureis requestedy a highersoftware
layer, andsuccessiveeferenceso the structurerequirean instancepointer. Sincethe lower layer
doesnot containany stateinformation, it canactasa serverfor multiple higherlevel clients. The
motivation for providing this level distinctionis twofold: it clearly separateslata structuresto
reduce module interdependencieand it enablesthe software layers to run in a distributed
environment, on multiple networked workstations with separate memory spaces for example.
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3.1.1 General Implementation Details

Layerscommunicateisinga messag@assingnterfacewhich funnelsall procedureshrougha
singlefunctionwith alargeswitch{}  statement.By concentratinghe interfaceto onelocation,
it is easierto changethe methodof communication. Currently, the softwareruns as a single
processand communicationis donewith a function call, but it could be easily modified to use
multiple processesand remote procedurecalls, pipes, or some other form of interprocess
communication. To help simplify notation,macroshavebeendefinedwhich makethe codemore
functional. For example, a normal message would be passed by:

rc = Fpga( pFpga, FPGA SET_X, 42, NULL );
This has been simplified with a macro to just:
rc = FPGA _SET_X( pFpga, 42 );

Layersareencouragedo haveits datatypesinternalizedso they cannotbe seenby any other
layer. Thisis implementedusingtwo typesof headeffiles: a.hfile anda _i.hfile. Theregular.h
file is exportedto other layers, so it containsmessagealefinitions and such. The _i.h file is
considered an “internal” header file which defines local data structures not seen externally.

As oftenas possible variablenamesfollow the Hungariannotationstyle standard. This is a
form of prefix notationwhich encodeshe datatype within the variablename. It is useful for
keeping mental notes about the range of a value which can be stored, how manyptmes@an
be dereferencedandsoforth. For example someof the morecommonprefixesare“a” for array,
“p” for pointer, and “i” for integer.

The lowestlayer, the FPGA Module, managesall datastructuresdependentiponthe FPGA
architecture. Above thatis the PathModule which housescostfunctions,the coarsegraphs,and
detailedpaths. Driving the PathModule is the Route Module wherehigh-level routing decisions
aremade. Finally, at the highestlevel, is the Main Module. The Main Module actsan interface
routine which translatesuser requirementsfrom the UNIX commandline into appropriate
messageso the underlying software. Each of thesemodulesand its related data structuresis
explained in detail below.
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3.2 FPGA Module

The FPGA Module forms the kernel of this software. This module builds a data structure
representationf the FPGA modeldepictedin Chapter2, and providesaccesdo that information
through a programminginterface. Conceptually,it is important to encapsulateall FPGA
architecturally-dependeffeatureswithin this moduleso that othermodulesneedonly considerthe
task of routing.

3.2.1 Creating and Initializing an FPGA Instance

To usethe FPGA Module, an instanceof an FPGA mustfirst be created. Higher layersalways
refer to the instanceusing an instancepointer declaredwith the PFPGAdatatype. To createa
usable FPGA, the following steps are required:

1. Call FPGA_CREATE to allocate memory for an instance structure.

2. Prepare the FPGA by sending relevant architectural information (more on this below).

3. Call FPGA_INIT to construct a representation of the FPGA.
An exampleof thesestepscanbe foundin Figure3.1. After initialization, it is importantthat the
architectural parametengver change; a more robust implementation shéngl theseparameters
as read-only at this point.

#i ncl ude “fpga. h”
#i ncl ude “fpgamacros. h”

PFPGA  pFpga = NULL; /* instance pointer */
RC rc; [* return code */

pFpga = FPGA CREATE( pFpga ); /* create the instance */

/* architectural features */

rc = FPGA SET _X( pFpga, 12 ); [/* set |argest FPGA coordi nates */

rc = FPGA SET_Y( pFpga, 10 );

rc = FPGA SET_ W pFpga, 8 ); [/* set nunber of tracks per channel */
rc = FPGA I NI T( pFpga ); /[* initialize the instance */

/* The instance is ready for use */

Figure3.1. Code to create a simple 10 x 12 FPGA with 8 tracks per channel.
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3.2.2 Defining the FPGA Routing Architecture

To analyze different routing architectures,control over the placementof switchesand wire
segments is important. The architecture can be summarized by three major features:

1. S block topology,

2. C block topology, and

3. Length and placement of wire segments.
Previousresearchhasfocusedon determininggood S and C block topologies[5][6], while wire
segmentatiois largely unexplored. This softwareallows customizatiorof eachthesefeaturesby
placingthemin independenprocedures. The currentimplementationconstructssimple S and C
blocks, yet providesa large degreeof flexibility for wire segmeniengthand placement. Eachof
these features will be discussed in detail below.

3.2.2.1 SBlock Topology

The S block is implementedwith a flexibility parameterof three. This meansthat eachwire
segment touching the S block can conneetritaximumof threeotherwire segments.Sincethe S
block is four-sided, it is natural for a wisegmenendingat oneedgeto connecto a wire segment
at each of the other three edges. This allows a connection to pass througlotkeoSturn up or
down.

A long wire segmentwhich passeghroughthe S block is only permittedto connectto one
(long) or two otherwire segmentsit the top andbottomedges. This limits fanoutof the expanded
graphnearthe root of the graphonly (wherethe logic block pin connectsto a C block), andis
important to maintain control over the number of detailed paths examined by SEGA. Although this
is a limitation of SEGA, the FPGA Moduleis written to supportfanoutat the S block. Onemust
exerciseextremecaution when allowing fanout, however,lest the large numberof possibilities
overwhelm the practical limitations of the hardware (growth is exponential!).

Exploration into S block topologies is a simple matter of modifying one routine,
FpgaConnectSegments in s_block.c . The proceduredoopsthroughall S blocksin the
FPGA and connectsthe appropriatewire segmentgogetherin eachblock. The datastructures
representing this are discussed further below.

Currently, the only option available to modify the S block is the ability to depoadgteents.
This option preventsS block switchesfrom being placedin the middle of the wire segmentj.e.
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only thetwo S blocksat the endsof a wire segmentcontainswitches. This option is hazardous
because it can result in very few available turns at each S block.

3.2.2.2 C Block Topology

The designof anefficient C block is a difficult problembeyondthe scopeof this thesis. If alogic
block pin is to havelessthanfull connectivityto the channel(i.e. F; < W), caremustbe takento
ensurethatall logic block pinsit might connectwith haveconnectivityswitcheson asmanyof the
sametracksas possible. Furthermorethe notion of pin equivalencé increaseghe complexity of
this problem.

To eliminate problems which may occur due to inefficlertitiocks, F¢ is assumedo equalthe
channelwidth. Futurework shouldimplementa more practical alternative,possibly using this
software to help determine a good topology.

The C blocks are built in a similar way S blocks are: FpgaConnectLogicBlocks in
c_block.c  loopsthroughall C blocksandconnectghe pinsavailableat eachlogic block to the
C block. Also like the S block, switch depopulationis supported. This meansatfter all the C
blocksare connectedanotherroutine canbe usedto disconnectll logic block pins which connect
to the middle of a wire segment.

3.2.2.3 Wire Segmentation

The primary concernof the FPGA moduleis with the constructiorof the wire segmentayout. An
exactdescriptionof the segmentayoutis very difficult to achieve,so an approximatemethodis
used.

FPGA wire segmentsare placed using a segmentlength generatorto determinethe next
segment length. Each segment is placed end-over-endaickauntil thetrackis full, thenthe next
track is begun. Whenthe currentchannelis filled, the next channelis startedjust like the first.
This means that the segmentation is ultimately determined by the segment length generator.

The segmentength generatoris capableof generatingengthsfrom a variety of probability
distributions, including but not limited to Poisson,geometric,and binomial. Additionally, a
channelcan be divided into a numberof groupsof tracks, and eachgroup can have its own

Iwhentwo pins are inputs to the samelook-up table in a logic block, they are said to be equivalent
becauseeither pin may be selectedor useprovidedthe contentsof the look-up table reflect the desired
logic function.
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distribution parameters. This degreeof flexibility makesit possibleto define a wide range of
segmentation types.

3.2.3 Routing Architecture Data Structures

The S blocks,C blocks,andwire segmentsireall representetdy a complexdataconstructrooted
by theinstancestructuregivenin Figure3.2. Theinstancestructure, fpga , alsostoresall the
architecturalparametersusedto build the FPGA, suchas Fc and Fg.  The data structures
representing the FPGA are presented below.

struct _fpga {
BOOL

blinit; /* flag indicating an initialized FPGA */
COCRD coor dvax; /* maxi mum si ze of the cell array */
u_int ui Wa,  ui W, /* tracks per [hv]channel (channel w dth) */
u_int ui Fc, ui Fs; [* connectivity characteristics */
u_int ui Pi nsPerL; /* pins per L block */
u_int ui QurrTrackGp; [/* state info for segnent generator */
u_int ui Numfrack@ ps; /* nunber of track groups bel ow */
TRACKGERP *aTr ackQ ps; /* array of track groups, one elemper grp */
PCPI NFO Popl nf o; /* popul ation info */
CHANNELS hChannel s; /* the channel |ayouts thensel ves */
CHANNELS vChannel s;
W RESEA D ws| DNext ; /* the next available wire segrment 1D */
PW RESEG pwsArray; /* array holding *all* WRESEG structures */
i nt i WBAr raySi ze;
BOCL bConser veMenor y;

I8
typedef struct _fpga FPGA

Figure3.2. FPGA instance data structure.

3.2.3.1 FPGA Channels

The data structurerepresentatiorof the FPGA is hierarchical,like the model. The FPGA is
dividedinto channelsplocks(S or C), andtracksby a three-dimensionarray. This s illustrated
in Figure 3.3, wherepointersare displayedas solid lines and array indicesas dashedines. To
understand how the data structure is used, consider the following example.

Suppossét is necessaryo determinewvhich wire segmentpassthroughthe C block locatedat
coordinateg2,1). Sincethe abscissas evenandthe ordinateis odd, it caneasilybe seenthatthe
C block lies within a horizontal channel. The horizontal channel number is then derived ffm the
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componer®t, andthe X componentanbe useddirectly asa block offset into the channel. These
values form the first two indices into th€hannels array; by forminga third indexwith a track
number,a specificwire segmenpointercanbe obtained. The wire segmenpointer, describedn
the next section, uniquely identifies a wire segment.

Althoughthe aboveexamplereferences C block, referencingan S block is similar. The key
differenceis that a single S block is accessiblefrom both the horizontal and vertical routing
channelsput only horizontalwire segmentsre presenin the horizontalchannelgthe situationis
similar for vertical segmentsand channels). Also, note that a track which has wire segments
ending in theadjacentC blocksdoesnot referencesitherwire segmentsothe entryis denotedwith
anil pointer. This impliesthatonly long wire segmentganbe referencedat S blocks,andonly at
those S blocks which it passes directly through.

FPGA\ Mhséaraece

atray pf CFAAUNRNELSs
hChannelt se— chaimed D 0
chammsl 1 atrappf Bf KIKEKs
atragpf of
: chamred? 2 o blbsk 0 WIRESH
PWSAHAYY o chame ¥ # . bbbkl 1 poibttrers
: ; bR 2 o] taekcR 0
[bsschameinel] X coosdidateate . traekck 1
. traakcR 2 o

atraypf vfewire

é\» (unused})

wireessegawpnin® ID

bsstireire
segment

Figure3.3. FPGA routing channel data structures.

2The macraCOORDtoCHAN provided for this purpose.
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3.2.3.2 Wire Segments

As seenso far, the S and C blocks are merely represente@s groupsof wire segmentswithout
routing switches. This is becauseouting switchesare associatedvith eachwire segmentyather
thanthe S or C blockin whichit lies. In sodoing,the wire segmenbecomesn objectthatknows
about which other objects it can connect to. Therefores tiveC block topologyis only neededo
build the interrelationships between wire segments and pins (and not for routing).
Detailsabouta wire segmentirestoredin a _wireseg  structure shownin Figure3.4. The
first field, wsID, storesan identifying integer unique to the wire segment. This numberis
importantbecauseother layersrefer to wire segmentdy their wire segmentD3. To avoid the
possibleconfusionof associatinga wire segmentiD of zerowith a NULL pointeror a FALSE
Booleanvalue,wire segmentDs areassignedstartingat one. Also, incrementf oneareusedso
that a wire segmentiD can be useddirectly as an arrayindex. In particular,the wire segment
structures themselves are stored in an array which can be indexed by a wire segment ID.

struct _wreseg {

W RESEQ D wsl D /* wire segnment |D nunber */

BOCOL bHori z; [* vert. or horiz. running segment */
COCRD coordOrigin; [/* smallest possible coords */

u_char ucLengt h; /* length of segnent, in C bl ocks */
u_int ui Tr ack; /* track # of segnent */

/* a 2-d array of connections

* first index is block (S or C bl ock)

* second i ndex cycles through all possible
* connections at that bl ock

*/

CONNECTI ON **ppConnect i on;

¥
typedef struct wireseg WRESEG

Figure 3.4. Wire segment data structure.

The next few fields of the _wireseg structureare fairly self-explanatory. If the wire
segmenties in a horizontalchannelbHoriz is true. The coordinatesf the leftmost/lowermost
endof the wire segmen{alwaysa C block) arestoredin coordOrigin , andits length(in units

3In particular, the Path Module uses the wire segment ID to index an array.
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of C blocks)is in ucLength . Finally, thetrack numberin which the wire segmenties canbe
found inuiTrack

3.2.3.3 Wire Segment Connections

Themostimportantfield of thewire segmenstructureis ppConnection . This purposeof this
field is to describe which pins and wire segments can be connectedwad¢rsegment.|It consists
of a ragged two-dimensional array of CONNECTIONCconstructs, where the data type
CONNECTIONdentifies either a pin or a wire segment using a C language union.

The first dimensionof ppConnection  refersto which C or S block the wire segment
connectsn, andthe seconddimensiorformsthe array of connectionghat canbe madewithin that
block. Thesizeof thefirst dimensionis alwaysequalto 2 x ucLength+ 1, sincea wire segment
goesthroughucLength C blocksandtouchesuponucLength + 1 S blocks (including thoseat the
segment'sendpoints). The blocks are orderedconsecutivelyin the array suchthat the smallest
coordinates at the zerothindex,andS blocksarealwaysat anevenindex. For example the bold
wire segmentn Figure3.5 canhaveconnectionsn the S blocksat (1,1) and(3,1) aswell astheC
block at (2,1). Here,ppConnection[0] would referto connectiongossiblein the S block at
(1,1), ppConnection[1] would refer to connectionsat (2,1), and ppConnection[2]
would refer to connections €3,1). If noconnections possibleat a block, or if the block doesnot
exist, the ppConnection[ i] value may be NULL. This always occursfor wire segments
which reachthe edgeof the FPGA, sincethe endof sucha wire segmentioesnot havean S block
to connectin. For examplethe horizontalwire segmentmmediatelyleft of the bold onein Figure
3.5 reachesthe left edge of the FPGA, so its ppConnection[0] is NULL and its
ppConnection[1] refersto connectionsn the C block at (0,1). Becauseof this, it is prudent
to check the result of the first index for a non-NULL value before forming the second index.

The secondppConnection  array dimensionindexeseachconnectionwhich can be made
within theblock. It canbe of arbitrarysize— thus,the ppConnection  arrayis ragged— so
the last elements indicatedby a NULL entry. Furthermorethereis no particularordergivento
the entries in this part of the array.

When a particular connectionresult is obtainedvia ppConnection[ ][ j], it canbe
eithera wire segment pointer or a terminal. A wire segmenpointeris returnedwheni is even
(i.e. at an S block), and it points directly to the _wireseg structureof a connectablewire
segment. Otherwise, wheénis odd, a terminal is returned.
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Terminals are specially computed integers which uniquely identify ldgek pins. While two
different logic blocks may both havea pin zero, the terminal numbersof eachpin is different.

Thus, a single terminal number can indicate a particular logic block and pin. For easeof
debuggingonly, all terminal numbersare negative. This helps differentiate them from wire
segmentpointers,which are most often located at lower memory addresse®nd so appearas
positive integers to most computers.

Ratherthanusingterminalnumbergto indicatea logic block pin, a pointerto somedatatype
could be used. This would allow pins to be treatedas objects, like wire segmentsand permit
greaterflexibility in their use. This may be usefulif a routeris programmedo take advantagef
pin equivalence, where alternative pins would be useful information stored in such a structure.

2 L L L
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Figure 3.5. Wire segment connectivity in a small FPGA.
3.2.4 Usingthe FPGA

The FPGA data structuresdescribedabove are not visible to other software layers, so a
programming interface for routing is required.
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3.2.4.1 FPGA Channel Expansion Using Lines

The FPGAIs modeledasa numberof horizontalandvertical channelgshroughwhich a signalmay
travel. Uppersoftwarelayersattemptsto createdetailedroutesthroughthe FPGA from a coarse
graph,i.e. a sequenceof channelsegments. Theseideasare mergedhere by the intermediary
conceptof lines. A line is definedto be a partial detailedroute, consistingof a list of wire

segmentsvithin a single channel. Therefore,a detailedroute would consistof oneor morelines
which are connectable at S blocks.

Lines are createdby breakingdown a coarsegraphinto a numberof straight sectionsand
having the FPGA Module considereachstraight sectionindependently. For eachsection,the
FPGA Module enumeratesll possiblepathsthroughthe channeland assignseachto a line. If
thereis no S block fanout, thereare alwaysW lines in eachstraightsection. Note that S block
fanoutcan causea greatnumberof linesto be createdfor any sectionconsistingof more than 2
S blocks, so caution should be used under thesamstancesNormally, however the problemis
not present because fanout is not used.

3.2.4.2 Connecting Lines Together With Reductions

Oncea coarsegraphis subdividedinto straight sectionsand eachsectionis expandednto its

respectivelines, lines from different sectionsmust be connectedogetherto form eachdetailed
route. While the procesf actuallyconnectinghe linesis primarily the responsibilityof the Path
Module, the FPGA Module mustdeterminewhethertwo lines canbe connectedogether. This is

doneby reducingthe setof lines createdduring expansiorinto a subseta line becomes member
of the subset if it is capable of connecting to a user-specified wire segment or terminal.

For efficiency, upperlayersare permittedto “peek” into the reducedline set. The message
FPGA_GET_LINE_ARRAYreturnsa null-terminatedarray. Each elementof this array is a
reducedine setconsistingof a null-terminatedarray of wire segmentDs. The wire segmentDs
at the endsof a line can be usedto reduceanothersetof lines. This processcontinuesuntil a
sequence of lines has been found which connects to the logic block pins, and a path can be formed.

26



Chapter3

3.3 Path Module

The PathModule makesonly a few basicassumptionsboutthe FPGA architecture. It assumes
the FPGA conformsto the symmetricalmodel,andthat straightwire segment®f variouslengths
fill the channels.

The purposeof the PathModule is to manageall detailspertainingto the coarsegraphsand
detailedpaths. The objectiveis to provide a flexible and clean programminginterface which
enablegdifferent detailedrouting algorithmsto be implementedby changingthe upper software
layers. It is recognizedthat the first implementationof this module cannot anticipate every
possiblefeaturedesiredfor different algorithms,but it is hopedthat over time this module will
develop a full-featured interface capableof serving a variety of algorithms. Therefore,this
implementatiorfocusesupon the featuresnecessaryo implementthe SEGA algorithm, but with
general routing algorithms in mind.

3.3.1 Creating and Initializing a Netlist Instance

Becausehis module maintainsboth pathsand graphsforming a type of netlist, a Path Module
instanceis alsocalleda netlistinstance. A portion of the netlist structureis shownin Figure 3.6;
trivial fields havebeendeletedfor clarity. Preparingthe instances similar to that for an FPGA:
an instance is created, parameters are set, and then an initialization message is sent.

Beforetheinitialization messagetwo parametersnustbe set. First, a file pointerto the input
netlist must be set. Second,the FPGA instancepointer being used must be sentto the path
instancebefore the FPGA instance is initialized. This is becausdt&aModule mustbe ableset
the FPGA dimensiongequiredby the input netlist. Oncetheseparametersre fixed, the netlist
instance can be initialized.

Initializing the netlistinstanceinputs a coarsegraph,G, from the file pointer previouslyset.
The format of the input file consistsof one or more netsoutlining a coarsegraph. A single net
looks like:

<net name> <net nunber >
<X1> <y1> 1 <pinl>
<Xp> <yo> 1

ékﬁ_1> <Yn-1> 1
<Xp> <yp> 0 <pi n2>
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where<net_name> is a whitespace-fre¢ext string describingthe net, <net_number> is an
integer identifying the electrically equivalentnets, the <xj > and <y; > values are integers
indicating FPGA coordinate$ and<pin> givesthe logic block pin number. The 1 or 0 in the
third columnindicateswhetherthis is the last <x,> <y> pair andthe last value, <pin2> ,
should be read.

typedef struct _netlist {

PFPGA pFpga; /* the architecture for this netlist */
FI LE *fp_netlist;
u_int ui Si ze G aphArray; /* size of graphs array */
GRAPH  **ppG aphArray; /* the graphs in the netlist */
u_int ui Si zer Pat hArray; /* size of paths array */
PATH **ppPat hArr ay; /* the paths in the netlist */
PPATH **pppPat h_W\5; /* Special arrays: zeroth elenent is size
*/
GRAPH WS **ppQG aph_W5; [* of array, other elenments are data */
u_int ui Numhs; /* nunber of wire segnments in fpga */
u_char *pucWbLengt h; /* array, zeroth el em garbage */
STACK i neSt ack; /* stack of lines along a path */
STACK pat hSt ack; /* stack of lines along a path */
} NETLI ST;

Figure 3.6. A portion of the netlist structure.

As mentionedn section3.2.4.1,the G mustbe divided into a sequenc®f straightsectionsto
expandinto lines. Thesestraightsectionsare computedat initialization time while the netlist is
being read from the input file. The resultis called a coarsegraph with expressedges,Gy,
illustrated in Figure.7. Express edges refer to tlbag straightsectionswhich quickly jump from
turn to turn in the coarseroute. Obviously, expressedgesallow quick identification of sections
which can be given to the FPGA Module for expansion.

4The sequencef coordinatesmust describea valid path of adjacentblocks. Minimally, it will be an
L-C-L block sequence.lt will alwaysbe of the form L-C-(S-C)-L, where(S-C) is repeatedd or more
times.
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Grid Grid
Block  coordinates Block coordinates
L 0.4 L 0,4
pin# - pin#- -
C 0,3 C 0,3
S 13 IS Express
' N Edge
C 2,3 C
S 3,3 S 3,3
c 3,2 C
S 3,1 S
C 3,0 c 3,0
pin#- - pin#------
L 4,0 L 40

Figure3.7. (a) A coarse graph and (b) the coarse graph with express edges.

3.3.2 Enumerating Graphsand Paths

Once all of the graphs have bdarilt, accesgo themis providedthroughthe useof enumerations.
An enumeration forms an ordered set of unique items,asglaphswhich canbe cycledthrough
item by item. Eachitem canhavea numberof operationsperformeduponit, but thesewill be
described in a later section. For now, the use of enumerations is described.

An enumerationis started with the messagePATH_ENUM_BEGIN and a parameter
indicatingthe typesof objectsto be enumerated.Currently,the objectswhich canbe enumerated
includegraphs paths,essentiapaths,andnon-essentigbaths. Whenan enumerations no longer
needed, the PATH_ENUM_END message is used to free up allocated memory.

The next (possibly first) item in an enumeration can be obtained with the
PATH_ENUM_GET_NEXT message. If there are no more items left, a NULL is returned.
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Whena enumeratiorof pathsis begun,anadditionalmessageanbesentto it. This message,
PATH_ENUM_REORDER, finds the lowest cost path (costs are discussed in the next section)
placesit first in the enumeration. The searchfor the lowestcostpathis necessaryo implement
most types of routing algorithms, where the lowest cost path is chosen in preference to others.

Enumerationgorm a consistenimethodof hiding the PathModule datastructuresrom other
modules,but it is an inefficient methodfor practicalusein a commercialrouter. Optimizations,
such as the use of a heap structures, can be impleniieatedutiontime of the algorithmgetstoo
large. However, such optimizations can complicate the organizationof the Path Module
significantly, since the dynamic nature of the cost functions and weights force many heap updates.

3.3.3 Cost Function

The reordering of enumerated paths is bageuha costfunction. Ideally, the costfunctionwould
be completely specifiable by a routing algorithm developer at the Route Module level.
Unfortunately this is not feasiblebecausemostcostfunctionsrequireinformationonly presentn
the PathModule. To compromisemultiple costfunctionsare summedin the PathModule using
an assignable weighting scheme.

Currently,four differentcostfunctionshavebeendefinedcorrespondingo the four costsused
by SEGA. They canbe usedindividually by fixing all but oneweightto zero,or collectively by
providing more than one non-zeroweight. The message-passirgganizationmadeit difficult to
passfloating point numbersas a parameterso weights are currently assignedpositive integer
values. This does not impose any serious limitations siegghtsare purelyrelativeto eachother
and equivalentintegerscan usually be found by multiplying all weightsby one sufficiently large
integer. For example,rather than using the weights {1.1, 0.05,0, 0}, the equivalentinteger
weights of {110,5, 0, 0} can be used.

It is importantthateachindividual costfunctiononly returna valuein the rangeof [0,1]. If it
returnsa value outsideof that range,then that cost function may have an unfair advantageor
disadvantagedelativeto the othercostfunctions. The C¢ costusedby SEGA doesnot naturally
fall within the [0,1] range,soit is necessaryo continuouslyrescaleall C¢ costs. The rescalingis
doneby linearly mappingall C¢ costssuchthat the smallestmapsto zeroandthe largestmapsto
one. By observingthis fairnesspolicy, the importanceof weight relativity is maintainedfor the
user.
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3.3.4 Data Structures

3.3.4.1 Graph Structure

The origin of all of the coarsegraphsis containedn the netlistby ppGraphArray , anarray of

graphpointers. A graphpointerdereferencea structurecontaininga numberof propertiessuch
asthe nameand numberof the netit belongsto, a linked list of channelsegmentgwith express
edges), and an array pathstructurepointers. This lastfield lists all valid pathsremainingwhich

can be used to form the required connection.

3.3.4.2 Path Structure

A path structureidentifiesa NULL-terminatedlist of wire segmeniDs which can be connected
togetherto routeits parentgraph. Additionally, it containsall of the computedcosts,a pointerto
its parentgraph,andresultsfrom the costfunctions. Although storing resultsfrom eachof the
costs separatelyconsumesmore memory, it is necessaryso that the costs can be considered
separately as needed.

3.3.4.3 Wire Segment Lengths

To assistthe computationof costs, the netlist contains an array of wire segmentlengths,
pucWSLength . Ratherthanqueryfor a segment’'dengtheachtime it is referencedn a path,all
segmentsare queriedonceandthe length is storedin an array. This array, indexedby a wire
segmentD, formsatype of cachefor the segmentengthinformationalreadyobtainablefrom the
FPGA Module.

3.3.4.4 Path Interdependencies

A singlewire segmentanbe consideredor useby many paths,but it canonly carry onesignal.
TheppGraph_WS andpppPath_WS fields of the netliststructurecross-referencthe numerous
paths which compete for wire segments. Both of the fields are arraysronghto be indexedby

a wire segment ID. By doing so, all paths dependent upon a single wire segment can be found.

31



Chapter3

Although both fields are first indexedby a wire segmentiD, their secondindex is slightly

different. The secondndex of pppPath_WS cyclesthrougha list of pointersto path structures
which dependuponthe currentwire segment. To allow for dynamicsizing, the zerothelementof
the second dimension indicates the length of the rest of the array (ex¢hetregothone)because
some of the array elementsthemselvesmay be nil. Like the secondarray dimension of
pppPath_WS, the zerothelementof ppGraph_WS storesthelengthof therestof thearraysoit
may beresizedasneede8. The differenceis thatthe secondndexto ppGraph_WS references
small structureratherthan a path pointer. The structurestoresa graphstructurepointeranda
count indicating how many dlfie graph’spathsdependuponthe currentwire segment.The useof
this information will become apparent with the following example.

Supposehereare two graphsto be routed, G andGy. The first graphhasthree possible
paths,Pq 1, P1 2 andPq 3, while the secondgraphhastwo paths,Pp 1 andPp ». Furthermore,
assumehefirst two pathsin G1 andthe secondpathin G, requireuseof the samewire segment.
For this configuration,the entriesin pppPath_WS andppGraph_WS at that wire segmeniD
mayappearasin Figure3.8. If therouterwasconsideringassigningP, o to G, it could observe
from ppGraph_WS thattwo of G1’s pathsrely uponthe samewire segmentjmplying Gq would
be left with only 3 -2 =1 remainingalternative. If it proceededo assignPp > to Gp, it could
deletePq 1 andPq 2 from G1's possiblepathsby checkingpppPath_WS. Of course,deleting
also requires keeping these cross reference arrays current by clearing the appropriate entries.

Path
0 7
Graph Count
1 NULL
0 4 4
2 P(2.2)
1 G(1) 2
3 P(1,1)
2 G(2) 1
4 NULL
3 NULL 0
5 NULL
4 NULL 0
6 P(1.2)
7 NULL ppGraph_WS array element

pppPath_WS array element

Figure 3.8. Example elements in the cross referencing arrays.

SBecauseslementf the arrayare structuresand not just an integer, both elementsof the structurehold
this length value.
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The examplecanbe slightly morecomplicatedf G andG, cansharesegmentbecausghey
belong to the same net. In this caS¢’s alternatives would still be threadthe two pathsshould
not be removed from thgppPath_WS array wherP, 5 is allocatedto G». This specialscenario
is automatically handled by the cross-referencing code.

While the primary purposeof the crossreferencingarraysis to identify pathswhich canno
longer be considereddue to conflicts, the above exampleshowshow the numberof alternative
pathsfor a graphcanbe found and one potentialdifficulty. Anotherpitfall to avoidis that paths
listed togetherin the samepppPath_WS array elementis a necessarybut not sufficient,
conditionfor conflict. Thatis, if two pathsare not listed togetherin one element,they may still
conflict at anotherwire segment. This is importantwhen computingthe numberof alternatives,
becausdhe methodshownabove (and usedin the code)always makesoptimistic assumptions,
namely that fewer conflicts occur and more alternatives exist.

3.3.5 Operationson Graphsand Paths

Any path or graph obtainedvia an enumerationcan have an operatorappliedto it. Current
operatorsallow for a graphto be expandednto its detailedpaths,a path costto be recomputed,
anda pathto be marked. Theseoperationsenableuppersoftwarelayersto havecontrol over the
algorithm used for routing, while the gory details are embedded within the Path Module.

While the expanding a graph and computing a cagttasght-forwardmarkinga pathis much
moredifficult. It involvestwo major steps:removingsibling pathsof the samegraph,sincethey
areredundantand removingany otherconflicting pathswhich dependupona wire segmenjust
allocated to the path being markeslibling pathsare easilyobtainedandremoved sinceeachpath
knows its parentgraph,andthe parentgraphknows all of its children. However, conflicting
pathsare moredifficult to detect. Fortunately the datastructureusedto computethe C¢ costis
exactlywhatis neededo find conflicting paths. Whenevera pathwhich is removed the costsof
its siblingsis recomputedsinceboth the C¢ and C., costshavechanged. Thus, the marking of a
path requires updating a number of data structures and related costs.

3.3.6 Correctness

After all pathshavebeenassignedouteto a graphor discardedijt is importantto assertthat the
assignedroutes are all credible and different electrical nets are disjoint. A routine called
PathSanity  is written for this purpose. This providesa certainlevel of confidencethat the
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choserdetailedroutescanbe programmednto a real FPGA andwork correctly. The PathSanity
proceduras alsousedto collect somerouting statistics suchastotal wire segmentengthused,to
provide a summary of the routers segment allocation performance.

The PathSanity  procedurefollows the pseudocode presentedn Figure 3.9. The sanity
checkis partitionedinto threesmallercheckswhich collectivelyimply that the routerachievedts
purpose. Thefirst checkensuresveryroutedgraphis assignednly one path,sincemorewould
be wasteful. The second check guaranteesam@glectricalnetis presenbn everyallocatedwire
segment. Lastly, and mostimportantly, the pathsare double-checkedo assertthat the relevant
wire segments and logic block pins can be connected together via routing switches.

Oncethe sanity checkis complete thereis a high degreeof confidencethat a interconnecof
the FPGA would be programmed correctly to meet the input specification.

for each graph
if the graph could not be routed
assert no valid paths remain
el se
assert only one routed path exists
end if
end for

for each wire segnent in the FPGA
if the wire segnent is allocated
assert wire segment is used only by graphs of same net
end if
end for

for each routed path

assert that the path is valid
end for

Figure 3.9. Pseudo code used to prove correctness of the detailed route.

3.4 Route Module

The purposeof the RouteModuleis to drive the PathandFPGA Modulesto routea circuit with a
routing algorithm. It is a goodexampleof how to usethe lower softwarelayersat an application
level. The actual code shouldread like pseudocode, placing the onus on the lower levels to
implement the functionality required for each pseudo code statement.

Because the Route Module is designed to be a fully user-progralayeedhereareno actual
requirements. Rather,the Route Module representsan intendedlevel of organizationfor the
programmer to follow.
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Currently,the RouteModule implementshe SEGA routing algorithmdescribedn Chapter2.
The pseudocodewhich implementsSEGA is shownin Figure 3.10. In the pseudocode,the [

symbol is used to denote the use of an enumeration prdvydie PathModule. For comparative
purposes, the actual source code for the main Route Module routine is listed in Appendix A.

/* Phase 1 */
F O set of all coarse graphs

for each graph in F
expand the graph into its detail ed paths, adding
the paths to the path |ist
end for

/* Phase 2 */
while path list is not enpty

if essential paths exist

F O all essential paths
el se

F O all other paths
end if

sort F
PO first path fromF (i.e. |owest cost path)

mark P as detailed route, renoving conflicting and
redundant paths frompath |ist
draw P on screen

end while

Figure 3.10. Route Module pseudo-code implementing the SEGA algorithm.

3.5 Main Module

Like the Route Module, the Main Module is only a suggestedevel of organizationfor a router
programmer to follow. This layer performs all of the initialization and setup required for routing.
For the SEGA implementationthe Main Module interpretscommandine switchesgiven by
the user andendsmessagewith their intendedmeaningo the lower modules. Theinput netlistis
openedPathand FPGA instancesare initialized and created,and control is passedo the Route
Module. This modul@lsoprintserrormessagesorrespondindgo badreturncodesfrom the lower

layers.
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3.6 Plot Module

The Plot Module servesas an invaluable debuggingtool for this software. By providing an
interactive X windows display of the FPGA, it gives instant visualization to the FPGA
architecture, detailed paths, and even the routing process.

Unfortunately, the Plot Module does not conform to the same philosophy with whieR @
and PathModuleswere written; it is not yet a formal part of the software. Futurework could
involve rewriting parts of the plotting codeto separatdt from its current FPGA Module data
structure dependenciesand expandingupon the interactive capabilitiesof the interface. For
example highlighting an entire netwould immediatelyshowthe amountof segmensharingtaking
place, indicating the effectiveness of an algorithm to recombine two-point connections.
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Conclusions and Future Work

RecentFPGA researctasfocuseduponmaking FPGAsfasterandcapableof holdingmorelogic.
However,the explorationof good routing architecturess being donewith outdatedCAD tools
which are incapableof fully utilizing the routing resources. The needfor new, flexible routing
softwareto supportFPGA architecturakesearchs apparentaswell asthe needfor new routing
algorithms to take advantage of new features.

In supportof theseneeds,the SEGA algorithm was developedand a modular, adaptable
softwarebasewas designed. Experimentakesultsrevealthat SEGA is an algorithm proficient at
both routing completionand segmentllocation. The implementationof SEGA is designedo be
genericso the routing algorithmcanbe modified andthe FPGA architectureenhanced.Moreover,
the modulardesignof the softwareclearly differentiatesFPGA architecture-dependenbdefrom
architecture-independent code.

The possibilitiesfor future work are nearly endless. The Ca and Cg costscould be unified
into a singlecostwhich moreaccuratelyrepresentshe delayimposedupona connection. As well,
two-point nets should be recombinedinto complete multi-point nets so delays can be better
modeled. FPGA architecturalresearchcan relentlesslyimprove upon the S and C block
topologies andalgorithmdevelopmentill no doubtexpanduponthe abilities of the PathModule.
The speedof the Path Module needsto be improved,; this can be done by providing better
enumeratiordatastructuresandalgorithms suchasheapsandup-trees. The Plot Module should
be adaptedo conformwith the ideologypresenin the restof the software,andthe capabilitiesof
the userinterfacecould beimprovedto furtheraid diagnostics.Global routing may evenbe added
to thelist of responsibilities. The softwaredescribedn this thesisforms a basisfor a whole realm
of new FPGA research.
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Route M odule Code

#i ncl ude <stdio. h>

#i ncl ude "nytypes. h"
#include "error.h"

#i ncl ude "stack. h"
#i ncl ude "f pga. h"
#i ncl ude "path. h"
#include "route. h"

#i

ncl ude "path_i.h"

extern char PlotFl ag; /* program gl obal s */
extern int verbosel evel ;

At this point, we assume the follow ng has occurred:

1) all coarse graphs are defined (read in fromnetlist)
2) an FPGA architecture of appropriate dins has been instantiated

Wiat remains to be done is:

1) for each coarse graph G:
a) expand the graph

b) for each path in Q:

i) find Al pha, Beta

2) for each path Pi:
a) initialize cost O
b) place Pi in "to be routed" bucket B

3) while Bis not enpty
a) sort B
i) paths in an essential graph are given priority
ii) sort by cost as secondary key

* ook ok ok ok ok ok ok bk ok ok b ok ok 3k ok % ok %

*/
RC Rout eCct ( PNETLI ST pNet Li st )
{
BOOL bEssenti al ;
PPATH P, Q
PGRAPH G
PFCREST F;
int nungr aphs, nunpaths, total paths, nunessenti al;
RCrc = RC KX
nungr aphs = nunpaths = total paths = numessential = 0O;

Printf( 1, "Routing...\n" );
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/* Fis a forest; a collection of graphs G
* Expand the forest
*
/
Printf( 1, "Expanding graphs...\n" );
F = (PFOREST) Pat h( pNetList, PATH ENUM BEG N ENUM GRAPHS, NULL );
if( F==NALL) {
rc = RC_ENUM ERRCR
goto cl eanup;

}

while( (G = (PGRAPH) Path( pNetList, PATH ENUM GET_NEXT, (MP)F, NULL )) != NULL ) {
nungr aphs++;
Printf( 3, "Expanding graph 9%s (0x%) ", G >pucNetNane, (MP)G); fflush( stdout );

rc = Path( pNetList, PATH EXPAND, (MP)G (M) (&unpaths) );
if( rc != RCK) goto cleanup;

Printf( 3, "into %l paths.\n", nunpaths ); fflush( stdout );
total pat hs += nunpat hs;

if( nunpaths == 0 ); /* graph has no alternatives in architecture */
}
Pat h( pNetList, PATH ENOM END, (MP)F, NULL );

Printf( 1, "Expanded %l graphs into %l paths, average % paths per graph.\n",
nungr aphs, total paths, (float)total paths/(float)numgraphs );

#if 0
/* Informthe path nodul e of the weight assignnents bei ng used */
Path( pNetList, PATH SET_W, (MP)WL, NUL );
Path( pNetList, PATH SET_W, (MP)W2, NULL );
Path( pNetList, PATH SET_WB8, (MP)VB, NULL );
Path( pNetList, PATH SET_W, (M)W, NULL );
#endi f

/* Informthe path nodul e of the nethod to be used for scaling
* the O cost to within [O0,1]
*/

/* Initialize all of the costs correctly */
Printf( 1, "Initializing costs...\n" );
Path( pNetList, PATH IN T_COSTS, NULL, NULL );

/* Fis a forest; a collection of paths P
* Route the darn things!

*/

Printf( 1, "Selecting paths...\n" );
while( 1) {

if( F = (PFOREST)Path( pNetList, PATH ENUM BEG N
ENUM PATHS ESSENTI AL, NULL ) ) {
bEssential = TRUE

} else {
F = (PFOREST) Pat h( pNetList, PATH ENUM BEGA N,
ENUM PATHS OTHER, NULL );
bEssential = FALSE;
if( F==NALL) {
Printf( 1, "\nNo nore paths!\n" );
br eak;
}
}

/* Find and mark the |owest cost connecti on.
* Marking automatical ly updates all of

* the changed costs, and renoves unnecessary
* paths from nenory.

/

*

Path( pNetList, PATH ENUM RECRDER (MP)F, NULL );
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P = (PPATH) Pat h( pNetLi st, PATH ENUM GET_NEXT, (MP)F, NULL );
if( P==NALL) {

rc = RC_ENUM ERRCR

goto cl eanup;
}

if( verboselevel >2) {
while( Q= (PPATH) Path( pNetList, PATH ENUM GET_NEXT, (MP)F, NULL ) ) {
Printf( 5, "Considering graph %8s with path Ox%, cost % "
"(a=% b=% c=% sc=9%)...\n",
Q >pQ aph->pucNet Name, Q Q >cost.fC Q >cost.fA pha,
Q >cost.fBeta, Q>cost.fOf, Q>cost.fSO );

}

if( bEssential ) {
Printf( 2, "Marking essential graph % wth path Ox%, cost % "
"(a=% b=% c=% sc=9%)...\n",
P- >p@ aph- >pucNet Nane, P, P->cost.fC
P->cost . f Al pha, P->cost.fBeta, P->cost.fCf, P->cost.fSC );
nunessenti al ++;

} else {
Printf( 3, "Marking graph % with path Ox%, cost % "
"(a=% b=% c=% sc=9%)...\n",
P- >p@ aph- >pucNet Nane, P, P->cost.fC
P->cost . f Al pha, P->cost.fBeta, P->cost.fCf, P->cost.fSCf );
}

if( PMotFlag ) {
DrawPat h( P->pwsl D, P->pQG aph->terntead, P->pQaph->ternTail );
}

Path( pNetList, PATH MARK, (MP)P, NULL );

Path( pNetList, PATH ENUOMEND, (MP)F, NULL );
}

/* No nore paths, routing done */
/* Print out some statistics */
Printf( 1, "Routed %l essential graphs.\n", numessential );
Printf( 1, "Routed %l out of %l graphs, % percent.\n",
pNet Li st - >ui G aphsRout ed, pNet Li st - >ui Nunber & G aphs,
100.0 * (fl oat)pNetLi st->ui G aphsRouted /
(f1 oat) pNet Li st - >ui Nunber & G aphs );
i f( pNetList->ui GaphsNot Routed ) {
Printf( 1, "Failed to route % out of %l graphs, % percent.\n",
pNet Li st - >ui G aphsNot Rout ed, pNet Li st - >ui Nunber & G aphs,
100.0 * (fl oat)pNet Li st->ui G aphsNot Rout ed /
(f1 oat) pNet Li st - >ui Nunber & G aphs );
rc = RC_FA LED TO ROUTE;

}
Printf( 1, "Done routing.\n\n" );

cl eanup:

}

return rc;
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