
Design and Implementation of Detailed Router Software for

Segmented-Architecture Field-Programmable Gate Arrays

by

G. G. Lemieux

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF APPLIED SCIENCE

DIVISION OF ENGINEERING SCIENCE

FACULTY OF APPLIED SCIENCE AND ENGINEERING

UNIVERSITY OF TORONTO

Supervisor: S.D. Brown

April 1993

Abstract

Segmentation is a modification to the Field-Programmable Gate
Array (FPGA) routing architecture that reduces the propagation
delay of interconnect signals by using longer wire segments to
decrease series resistance and parasitic capacitance. Detailed
routers are used to assign segments and routing switches to
specific connections in way which limits resource wastage and
decreases propagation delay. This thesis describes a software
organization which separates the FPGA routing architecture from
the routing algorithm. Two key results arise from this
organization: an easily configurable FPGA routing architecture
which enables further research into the issues of segmentation and
switch placement, and a modifiable code base for implementing
and exploring different routing algorithms.

To demonstrate use of the code and provide a first-generation
detailed router for future comparisons, a new routing algorithm,
SEGA, is implemented. SEGA yields excellent routing results in
terms of minimum track usage and its effective use of segments,
as measured by the number and length of segments allocated for
each connection.

ii

Acknowledgments

I would like to thank my supervisor, Professor Stephen Brown,
for his patience and constant encouragement throughout the
development of this thesis.

iii

Contents
Abstract ii

Acknowledgments iii

Abbreviations vi

Figures vii

Tables viii

Chapter 1 Introduction 1
1.1 FPGA Software...2
1.2 Motivation...2
1.3 Organization..3

Chapter 2 SEGA Algorithm and Results 4
2.1 The FPGA Model..4

2.1.1 Wire Segments...5
2.1.2 The S Block...6
2.1.3 The C Block...6

2.2 Problem Definition..7
2.3 The SEGA Algorithm..8

2.3.1 Phase 1: Enumerating the Detailed Routes...8
2.3.2 Phase 2: Connection Formation..10
2.3.3 The Cost Function..10

2.4 Results..12
2.4.1 Routing Completion Results...12
2.4.2 Wire Segment Allocation Results..13
2.4.3 Segment Allocation Impact on Routing Completion...14

2.5 Conclusions...15

Chapter 3 Software Design 16
3.1 Organizational Overview...16

3.1.1 General Implementation Details..17
3.2 FPGA Module...18

3.2.1 Creating and Initializing an FPGA Instance...18
3.2.2 Defining the FPGA Routing Architecture..19
3.2.3 Routing Architecture Data Structures...21
3.2.4 Using the FPGA...25

3.3 Path Module..27
3.3.1 Creating and Initializing a Netlist Instance..27
3.3.2 Enumerating Graphs and Paths...29

 iv

3.3.3 Cost Function...30
3.3.4 Data Structures..31
3.3.5 Operations on Graphs and Paths...33
3.3.6 Correctness..33

3.4 Route Module..34
3.5 Main Module...35
3.6 Plot Module...36

Chapter 4 Conclusions and Future Work 37

References 38

Appendix A Route Module Code 39

v

Abbreviations
SEGA Segment Allocator, a Detailed Routing Algorithm

CGE Coarse Graph Expansion, another Detailed Routing Algorithm

FPGA Field-Programmable Gate Array

CAD Computer Aided Design

 vi

Figures
Figure

2.1. An M x N FPGA...5
2.2. Examples of S and C blocks...6
2.3. An example of an FPGA routing problem...8
2.4. Expansion of a coarse graph...9
2.5. Pseudo code for Phase 2 of SEGA..10
2.6. Segment allocation results..14
3.1. Code to create a simple 10 x 12 FPGA with 8 tracks per channel..................................18
3.2. FPGA instance data structure...21
3.3. FPGA routing channel data structures..22
3.4. Wire segment data structure...23
3.5. Wire segment connectivity in a small FPGA...25
3.6. A portion of the netlist structure...28
3.7. (a) A coarse graph and (b) the coarse graph with express edges.....................................29
3.8. Example elements in the cross referencing arrays..32
3.9. Pseudo code used to prove correctness of the detailed route...34
3.10. Route Module pseudo-code implementing the SEGA algorithm....................................35

vii

Tables
Table

2.1. Benchmark circuit characteristics..13
2.2. Impact of Cα and Cβ on routing completion..15

viii

Chapter 1

Introduction

An important objective of a digital system developer is to minimize cost while maximizing

performance. Although high performance would be realized by producing customized integrated

circuits, such systems can be prohibitively expensive for low volume units due to the high setup

cost associated with the fabrication process. Cost-sensitive developers must seek alternative ways

to implement their digital system, compromising performance for the sake of cost.

One viable alternative to customized IC design has been the use of Field-Programmable Gate

Arrays (FPGAs). FPGAs are capable of implementing digital circuits with fairly high logic

densities, yet they can be programmed by the user. Additionally, rather than sending a design to a

fabrication facility where custom silicon would be formed in a few weeks to months, it can be

programmed into an FPGA in minutes. Should a design error be found, the fault can be fixed and

changes tested almost immediately.

The flexibility offered by the FPGA makes it invaluable for prototyping or small-scale

production, for example. At the same time, however, it also hinders speed performance. While

custom gate array connections benefit from using metal wires tailored to the length of the

connection, the programmability of the FPGA requires many short wire segments to be connected

together through routing switches. These routing switches add a distributed resistive-capacitive

load to the connection, increasing the propagation delay of signal transitions. This ultimately limits

the speed of the FPGA circuit and makes FPGAs unattractive for high-speed applications.

To improve the speed performance of FPGAs, and thus increase their usefulness, the

architecture of FPGAs has evolved to include wire segments of varied lengths and fewer routing

switches. This typically improves the speed of connections between possibly distant circuit

elements by decreasing the number of routing switches through which the signal must propagate,

and by decreasing the number of unused routing switches forming an unnecessary load. It is

possible, however, to decrease performance by using long wire segments for short connections,

because the long segment could probably be better utilized by a long connection and it represents

an larger capacitive load than what a shorter wire segment would incur. Thus, the assignment of

1

Chapter 1

wire segments to connections can influence the speed performance of a circuit realized in an

FPGA.

1.1 FPGA Software

The use of good Computer-Aided Design (CAD) tools for programming FPGAs is essential for

effective use of the FPGA resources because the vast possibilities can quickly overwhelm any

human designer. FPGA CAD tools must do to digital circuits what a compiler does to source code

in a high-level programming language; it must translate the source specification into a binary code

which utilizes the device resources in an efficient way.

Like a compiler, the process of converting the source specification into a binary code is broken

into a number of sequential stages to make the problem more tractable. FPGA programming with

CAD tools typically involves the following steps: initial design entry, logic optimization,

technology mapping, placement, and routing [1]. While the first two steps perform obvious

functions, technology mapping partitions the logic functions of the circuit into blocks which can be

implemented by logic elements of the FPGA, placement finds ideal locations for the blocks in the

organization of the FPGA and routing connects the appropriate FPGA logic blocks together so the

desired circuit can be rendered.

The routing stage can be broken into two sequential processes. The first, called global

routing, must assign each to connection an imprecise pathway, a coarse graph, through the FPGA

interconnect. These coarse graphs are used by the second stage, detailed routing, as a basis for

determining a precise path. The set of these detailed paths form the detailed route which can be

used to program the interconnect medium of the FPGA. Quite obviously, the detailed graphs are

dependent upon the organization of the interconnect — the placement of wire segments and routing

switches.

1.2 Motivation

Although FPGAs are capable of high logic capacities, speed performance has become a critical

issue for expanding their role in digital design. The generalized interconnect structure of the FPGA

forms the largest speed bottleneck. To improve performance, current research focuses on

determining the best organization and layout of an FPGA, known as its architecture.

Many approaches are being used to improve upon the speed of FPGAs. One such approach

attempts to keep signals out of the routing interconnect as much as possible by improving upon the

2

Chapter 1

logic functionality present at a local level. Inevitably, however, signals must travel through the

interconnect to form a large circuit. Thus, speeding up the interconnect itself is an important goal.

This is done by modifying the routing architecture so that minimal delay is imposed upon each

connection formed therein.

To aid current research in the development of good FPGA architectures, it is important to have

CAD tools which can effectively utilize the FPGA’s resources. In particular, routing architecture

research needs good routing software to fairly evaluate the capabilities of each FPGA design. This

thesis describes a software organization which facilitates research of routing architectures and their

algorithms. To aid both research areas, clear distinction is made between code dependent upon the

FPGA architecture and architecturally-independent code. The abilities of the software are

demonstrated with the implementation of a new detailed routing algorithm, called SEGA, which

considers wire segmentation as part of the routing problem.

1.3 Organization

This thesis is organized as follows. Chapter 2 provides information about the algorithm of the

detailed router implemented, SEGA, and associated results. Chapter 3 describes the design and

organization of the software used to separate the architecture and the algorithm. The last chapter

draws conclusions from the work, and outlines future work that can be done with the design.

3

Chapter 2

 SEGA Algorithm and Results

The detailed routing algorithm called SEGA is first described in [2]. Here, the FPGA model used

by SEGA is introduced and the SEGA algorithm is explained. It is pertinent to describe the SEGA

algorithm to give necessary background information and insight into the operation of a detailed

router. In this way, the software underlying SEGA can be better understood. The chapter

concludes by presenting routing results produced by SEGA, showing it to be an effective routing

algorithm.

2.1 The FPGA Model

SEGA is designed as a successor to the Coarse Graph Expansion (CGE) algorithm originally

presented in [3][4]. Both of these tools are designed to route FPGAs which fit the symmetrical

model, described below.

The model represents an FPGA as a rectangular array of Logic (L) blocks, depicted in Figure

2.1. Often, logic blocks contain programmable elements of random and sequential logic, but no

assumption about that organization is made in this software. More importantly, the space between

the logic blocks forms an interconnection medium composed of horizontal and vertical routing

channels. Each channel is broken up into alternating Connection (C) blocks and Switch (S)

blocks as well as metal wire segments and logic block pins. The C blocks and S blocks contain

programmable switches which can connect wire segments to pins and to other wire segments,

respectively. The channel width, W , denotes the number of tracks, or rows (columns), of wire

segments contained within. Wire segments can span one or more C blocks, passing through zero or

more S blocks in the process. Figure 2.1 shows an FPGA with channel width of three, and each

wire segment spans a single C block.

4

Chapter 2

Pin
Block
Logic

10 2 N-2 N-1

C

C

C

L

L

L

L

L

LL

L

L

S

S S

S

C

C

C

C

CC

CC

C

2

1

0

Channel
Vertical

Channel
Horizontal

M-1

M-2

Figure 2.1. An M x N FPGA.

2.1.1 Wire Segments

Wire segments form the backbone of the routing network. They can be thought of as bus wires

which can be connected together via S block routing switches to form a longer bus wire.

The length of a wire segment is defined as the number of C blocks through which it passes.

When a long wire segment is used for part of a long connection, speed performance can be greater.

This is because the signal does not have to pass through as many routing switches at the S blocks,

each of which can cause significant delay. However, longer wire segments have inherently greater

parasitic capacitance, potentially increasing delay for short connections. Additionally, using a long

wire segment for a short connection wastes resources, preventing other connections from being

formed. This can cause a circuit to be unroutable, meaning not all of the desired connections can

be formed. Thus, only segments appropriate for the connection length should be chosen.

5

Chapter 2

2.1.2 The S Block

Frequently, wire segments must be connected together to form longer connections. The S block

holds routing switches that enable a wire segment to connect to other wire segments. An S block is

represented as a general four-sided switch box where horizontal and vertical wire segments meet.

The maximum number of other wire segments any segment can connect to within an S block is

determined by the flexibility of the S block, Fs. In Figure 2.1a, switches attached to long wire

segments passing through the S block are represented with an X, and switches which connect the

ends of segments are represented with a dashed line. Research has shown that a good value for Fs
is three [5][6]—this is reflected in Figure 2.1a. This value of Fs is an important assumption used

throughout most of the thesis, since it clearly limits the fanout which can occur at an S block to

one.

2.1.3 The C Block

When a signal enters or leaves the interconnect, it must do so through a C block connection switch.

The switch, when set, connects a pin to a wire segment. The flexibility of a C block, parameter Fc,

is defined as the number of wire segments to which a particular pin may connect. Figure 2.2b

shows an example C block where Fc is two, i.e. each pin can connect to two of the three wire

segments illustrated. For example, pin two of the left logic block can connect to wire segments in

tracks two and three.

b) The C block.

321

321

2

1

23

1
1

3

1

321

321

22

a) The S block.

Block

L L

Block

Figure 2.2. Examples of S and C blocks.

6

Chapter 2

2.2 Problem Definition

As described above, routing is divided into global routing and detailed routing. Global routing is

done separately as preparation for detailed routing. The global router used divides connections into

two-point connections and routes each separately. While routing, it attempts to distribute the

density of connections evenly throughout the channels as well as minimize the number of turns a

connection makes. These are important concepts because the routing resources present in each

channel segment are limited, and straight connections can better utilize long segments if they do not

turn corners.

The global router assigns a coarse graph to each two-point connection. The coarse graph

defines a route through the channels of the FPGA, specified by a sequence of coordinates

representing channel segments, which connects logic block pins together. This information forms

the input netlist, used by the detailed router as a template for allocating wire segments to

connections.

Since multi-point connections are divided into a number of two-point ones, some connections

that are part of the same net will overlap within a routing channel. Special consideration should be

made to allow these connections to be recombined and reduce possible wastage of routing

resources.

For each coarse graph, the detailed router must analyze the numerous paths allowed by the

routing architecture and choose the “best” one. The best path is defined as one which would

present minimal delay to the signal and have the least impact upon the routability of other coarse

graphs. These ideals are not always simultaneously satisfiable, so tradeoffs must occur.

In order to illustrate the possible problems involved, consider the routing example in Figure

2.3. As indicated by thicker wire segments, the figure shows the possibilities for three different

connections. Connection A has two possible detailed paths, one on track two and another on track

three. Should the router use track two as the detailed path, both Connection B and Connection C

are left to rely upon only one possible path (track one). Since Connection B and Connection C

carry different signals, they cannot both be routed on track one.

The above example does have a solution if Connection A is formed using track three. Then,

Connection B and Connection C can be formed by choosing track one for one of them, and track

two for the other. If segment lengths are matched to the connection lengths, the best choice for

Connection B is track two and the best choice for connection C is track three. Unfortunately, the

7

Chapter 2

best choices are not always so obvious, so a detailed router must sometimes make guesses for

difficult decisions.

One final note should be made about optimizing the speed of each connection. It is well known

that the greatest amount of effort to improve performance should be spent upon those connections

which lie in the critical path of the circuit. Unfortunately, it is very difficult to automatically

determine where the critical path lies so that it can be optimized. Thus, it is assumed that all

connections should be optimized in order to have the greatest chance of speed improvement.

1
2

�
3

�

1
2

�
3

�

1
2

�
3

�

L L L L

LLLL

L L L L

L L L L

L L L L

L L L L

Routing
Options for

�
Connection A

�

Routing
Options for

�

Routing
Options for

�

Connection B
�

Connection C
�

Figure 2.3. An example of an FPGA routing problem.

2.3 The SEGA Algorithm

After inputting the coarse graphs from the global router, the SEGA algorithm proceeds in two

phases. In the first phase, each coarse graph is assigned a number of alternative detailed paths.

The second phase follows by selecting which detailed path is to be used for each coarse graph. By

enumerating the alternatives in the first phase, SEGA can consider the side effect of choosing one

alternative over another in the second phase. This enables SEGA to match connection lengths to

segment lengths without unnecessarily compromising the desired result of forming all connections.

2.3.1 Phase 1: Enumerating the Detailed Routes

In the first phase, SEGA expands each coarse graph into all detailed paths permitted by the routing

architecture. By limiting Fs to three, no fanout can occur at an S block and each coarse graph will

8

Chapter 2

expand into a maximum of Fc detailed paths. Figure 2.4 illustrates a coarse graph being expanded

into its detailed paths.

0,4

0,3

3,3
�

3,0

4,0
�

L

C
�

S
�

0,4

0,3

3,3
�

3,0

4,0
�

L

C
�

S
�

C
�

L

C
�

L

L

L0

1

2

3

4

0 1 2 3 4

COORDINATES
�

COORDINATES
�

Figure 2.4. Expansion of a coarse graph.

9

Chapter 2

2.3.2 Phase 2: Connection Formation

Once the coarse graphs have been fully expanded, the second phase proceeds to select one detailed

path for each coarse graph. The selection decision is made by choosing the lowest cost path (the

cost of a path will be described below), however, any connections which are deemed essential are

always considered first. An essential connection is defined as a coarse graph which has only one

possible path remaining; other alternatives (if any) have been exhausted by the formation of other

connections. Pseudo code representing this part of the algorithm is presented in Figure 2.5.

place al l det ai l ed pat hs i nt o t he pat h l i st

while t he pat h l i st i s not empt y

 if any essent i al pat hs exi st i n t he pat h l i st
 sel ect t he essent i al pat h wi t h t he l owest cost
 else
 sel ect pat h wi t h t he l owest cost
 end if

 mark t he gr aph cor r espondi ng t o t he sel ect ed pat h as r out ed,
 and r emove al l pat hs i n t hi s gr aph f r om t he pat h l i st .

 find al l pat hs t hat woul d conf l i ct wi t h t he sel ect ed pat h
 (i . e. al l pat hs t hat ar e par t of different net s, but
 r el y upon a wi r e segment j ust al l ocat ed t o t he sel ect ed
 pat h) and r emove t hem f r om t he pat h l i st . I f a gr aph
 l oses i t s l ast r emai ni ng pat h, i t i s deemed unr out abl e.

 update t he cost of al l af f ect ed pat hs

end while

Figure 2.5. Pseudo code for Phase 2 of SEGA.

2.3.3 The Cost Function

The selection mechanism in Phase 2 of SEGA is driven by a multi-part cost function defined for

each path, p, as:

Cost p w C p w C p w C p w C pc c f f() () () () ()= + + +α α β β . 2.1

10

Chapter 2

The first two terms in the cost function reflect an effort to efficiently assign segments of

appropriate lengths to a connection, and the last two are concerned with successfully routing all

connections. Each cost term is further described below:

C pα() = −total length of all segmentsminimum possible segment length
total length of all segments

2.2

C pβ() = number of segments - minimum possible number of segments
number of segments

2.3

C p
F

c
c

() = number of remaining paths
2.4

Cf : /* pseudo code to compute Cf */
for each pat h p
 Cf (p) = 0. 0
 for each wi r e segment w i n p
 for each pat h q whi ch al so cont ai ns w

 / * f i nd t he number of al t er nat i ves * /
 al t = # pat hs i n expanded gr aph of q
 whi ch don’ t conf l i ct wi t h p

 Cf (p) += 1. 0 / al t

 end for
 end for

 if Cf (p) < mi ni mum then mi ni mum = Cf (p)
 if Cf (p) > maxi mum then maxi mum = Cf (p)

end for

/ * r escal e * /
for each pat h p
 Cf (p) = (Cf (p) - mi ni mum) / (maxi mum - mi ni mum)
end for

The Cα cost is similar to the one described in [7]. Its purpose is to encourage using paths

which do not use overly long wire segments for a connection. The Cβ cost, similar to the one used

in [7] and [8], encourages the use of paths using as few wire segments as possible. The third cost,

Cc , gives priority to paths of graphs which are running out of remaining choices. Finally, Cf

defers the use of paths containing wire segments in high demand. Cf is the same cost function as

11

Chapter 2

used in [3][4], except the result is linearly rescaled so that the minimum Cf found maps to zero and

the maximum Cf found maps to one. This way, all of the cost terms are in the range [0,1] and no

single term can dominate by becoming very large. If the user wishes to emphasize a certain routing

objective, the w coefficients can be chosen to form an appropriate weighting scheme. For circuits

which need to run faster, wα and wβ can be increased, while circuits which are difficult to route

can have wc and wf increased.

When choosing the path with the minimum cost results in a tie, the cost comparator favours the

path with the lowest Cf cost in order to minimize the negative impact on others.

2.4 Results

To test the effectiveness of the SEGA routing algorithm, the program was run on a set of circuits,

most of which are derived from the MCNC benchmark suite. For all experiments, Fs is three and

Fc is equal to W . Additionally, the Cf term is not added to the cost function (i.e. its weight is

zero), but it is used to break ties. The results are divided into three sections: the first shows that

the algorithm obtains excellent results in terms of routing completion, the second shows how wire

segment allocation is improved using Cα and Cβ , and the third illustrates the impact of segment

allocation upon routing completion.

2.4.1 Routing Completion Results

To demonstrate SEGA’s routing ability, the FPGA was configured to consist of only unit length

wire segments. This allows SEGA to be directly compared with CGE, a detailed router

specifically designed for this configuration. Also included are results from a “maze” router,

obtained by disabling CGE’s cost function. This turns it into a sequential router, similar to a

classical maze router.

Routing ability is measured by the number of tracks required to route 100% of all connections.

The results in Table 2.1 indicate the minimum channel width required by each router to route

100% of all connections. These results are bounded by a minimum value, the channel density,

since that indicates the maximum number of connections placed in a single channel segment by the

global router. As shown, the SEGA results are consistently very close to the minimum

possible—in total, it requires only seven extra tracks. Also, the table indicates that SEGA

performs slightly better than CGE by using six fewer tracks, and much better than the maze router.

12

Chapter 2

The maze results show how important it is to consider side effects when forming connections.

Obviously, SEGA addresses this issue well.

 Circuit

Name

Channel

Density

Minimum W for

SEGA

Minimum W for

CGE

Minimum W for

Maze

9symml 10 10 10 12

alu2 10 11 12 17

alu4 13 15 15 20

apex7 13 13 13 15

example2 17 17 18 21

k2 15 17 19 27

term1 9 10 10 13

too_large 11 12 13 17

vda 13 13 14 19

z03 14 14 14 21

Total 125 132 138 182
Table 2.1. Benchmark circuit characteristics.

2.4.2 Wire Segment Allocation Results

The ability to effectively allocate wire segments is shown by configuring the FPGA with segments

of various lengths. The FPGA used for these experiments has a channel width of 20 and its

segment lengths determined by a Poisson distribution with mean 0.5. This resulted in a wire

segment length distribution with approximately 60% of length one, 30% length two, 8% length

three, and 2% longer than three.

Of the benchmark suite, only those circuits which could be 100% routed in the segmented

FPGA are included. The length and number of segments used in the routing of all the circuits was

summed and normalized against the minimum possible. The minimum total length is equal to the

number of single length segments routing all the connections would require, and the minimum

number of segments is equal to the total number of straight sections present in the coarse graph.

After normalization, the minimum value possible for either metric is one.

The effect Cα and Cβ have upon segment allocation is shown in Figure 2.6. When both costs

are disabled by setting their weights to zero, no concern is given to segment allocation. Enabling

either cost shows a marked improvement in the segment allocation quality: the number of segments

13

Chapter 2

used drops from 49% in excess to 28% in excess of the minimum, and the length of segments used

drops from 21% in excess to 6%. When both costs are enabled, both aspects of segment allocation

deteriorate only slightly compared to their individual minima, to 29% and 8% in excess. This

shows that the two costs do not unduly compete with each other when used together, and the

overall result is better segment allocation.

0

0.25

0.5

0.75

1

1.25

1.5

Alpha
Weight=0,

Beta Weight=0

Alpha
Weight=0,

Beta Weight=1

Alpha
Weight=1,

Beta Weight=0

Alpha
Weight=1,

Beta Weight=1

Minimum Segment Length Used Number of Segments Used

Figure 2.6. Segment allocation results.

2.4.3 Segment Allocation Impact on Routing Completion

For this experiment, the FPGA was configured with a Poisson distribution of segments as before,

but rather than fixing the channel width to 20 the minimum channel width required to route 100%

of the connections was measured.

The effect of wisely allocating segments upon minimum channel width is shown in Table 2.2.

When either of the segment allocation costs are enabled, the number of tracks required generally

increases as expected. Of particular interest, however, is the fact that Cβ causes a marked increase

of 22% in channel width requirements but Cα only causes a mild increase of 7%. This can be

explained by understanding that Cα reduces the distance which a signal can depart from its global

route at each turn, thereby helping to reduce the inflated channel density inherit in segmented

channels. Additionally, when both costs are used 28% more tracks are needed to route the circuits.

14

Chapter 2

This indicates that effective segment allocation with SEGA does not come without incurring a

penalty on routability.

Circuit Name wαα=0, wββ=0 wαα=1, wββ=0 wαα=0, wββ=1 wαα=1, wββ=1

9symml 11 12 12 13
alu2 14 13 15 16
alu4 15 16 20 21

apex7 13 13 15 17
bus_cntlD4 11 11 14 14

C880 15 14 17 18
cht 17 17 20 19

dmaD4 12 13 15 15
dram_fsmD4 12 14 14 15

EbnrD4 13 17 16 18
example2 17 18 22 23

k2 18 20 24 26
term1 11 12 12 13

too_large 12 15 16 16
vda 15 16 19 20
z03 15 16 19 19

TOTAL 221 237 270 283
Table 2.2. Impact of Cα and Cβ on routing completion.

2.5 Conclusions

The evolution of FPGA routing architectures to include wire segments of various lengths presents a

new and challenging issue to the detailed routing problem. The SEGA algorithm presented in this

chapter is a simple yet proficient method capable of achieving excellent routing completion and

intelligent segment allocation. Additionally, the tradeoff between good segment allocation and

routability is shown to be roughly 20% better segment allocation at the expense of 30% more

routing tracks. It would be prudent to explore SEGA’s capabilities with these issues at a more in-

depth level in the future by varying the channel segmentation and routing switch placement.

15

Chapter 3

Software Design

The software supporting the implementation of SEGA is a flexible, modular design intended to

assist the development of routing architectures and algorithms. Code involving the FPGA

architecture is kept distinctly separate from code implementing the routing algorithm.

The various modules will be described in detail below. The lowest level, the FPGA Module,

will be described first, followed in layer order by the Path Module, the Route Module, and the

Main Module. An additional Plotting Module, which aids visualization and debugging by

displaying a graphical representation of the FPGA and its routing, is also briefly discussed.

3.1 Organizational Overview

The software system is organized into numerous layers, similar to a multi-layered operating

system. The layered concept permits outer layers to access procedures of inner layers, either

directly or indirectly, but it does not allow inner layers to access outer ones. This model allows the

layers to run simultaneously in a concurrent environment without fear of internal deadlock; the

resource allocation graph is guaranteed to be cycle-free because although a higher level can be

waiting for a lower level, a lower level can never be waiting upon a higher level.

To further support concurrency, no global variables are permitted within a layer. Thus, all

data structures must be instantiated. An instance of a structure is requested by a higher software

layer, and successive references to the structure require an instance pointer. Since the lower layer

does not contain any state information, it can act as a server for multiple higher level clients. The

motivation for providing this level distinction is twofold: it clearly separates data structures to

reduce module interdependencies and it enables the software layers to run in a distributed

environment, on multiple networked workstations with separate memory spaces for example.

16

Chapter 3

3.1.1 General Implementation Details

Layers communicate using a message passing interface which funnels all procedures through a

single function with a large switch{} statement. By concentrating the interface to one location,

it is easier to change the method of communication. Currently, the software runs as a single

process and communication is done with a function call, but it could be easily modified to use

multiple processes and remote procedure calls, pipes, or some other form of interprocess

communication. To help simplify notation, macros have been defined which make the code more

functional. For example, a normal message would be passed by:

r c = Fpga(pFpga, FPGA_SET_X, 42, NULL) ;

This has been simplified with a macro to just:

r c = FPGA_SET_X(pFpga, 42) ;

Layers are encouraged to have its data types internalized so they cannot be seen by any other

layer. This is implemented using two types of header files: a .h file and a _i.h file. The regular .h

file is exported to other layers, so it contains message definitions and such. The _i.h file is

considered an “internal” header file which defines local data structures not seen externally.

As often as possible, variable names follow the Hungarian notation style standard. This is a

form of prefix notation which encodes the data type within the variable name. It is useful for

keeping mental notes about the range of a value which can be stored, how many times a pointer can

be dereferenced, and so forth. For example, some of the more common prefixes are “a” for array,

“p” for pointer, and “i” for integer.

The lowest layer, the FPGA Module, manages all data structures dependent upon the FPGA

architecture. Above that is the Path Module which houses cost functions, the coarse graphs, and

detailed paths. Driving the Path Module is the Route Module where high-level routing decisions

are made. Finally, at the highest level, is the Main Module. The Main Module acts an interface

routine which translates user requirements from the UNIX command line into appropriate

messages to the underlying software. Each of these modules and its related data structures is

explained in detail below.

17

Chapter 3

3.2 FPGA Module

The FPGA Module forms the kernel of this software. This module builds a data structure

representation of the FPGA model depicted in Chapter 2, and provides access to that information

through a programming interface. Conceptually, it is important to encapsulate all FPGA

architecturally-dependent features within this module so that other modules need only consider the

task of routing.

3.2.1 Creating and Initializing an FPGA Instance

To use the FPGA Module, an instance of an FPGA must first be created. Higher layers always

refer to the instance using an instance pointer declared with the PFPGA data type. To create a

usable FPGA, the following steps are required:

1. Call FPGA_CREATE to allocate memory for an instance structure.

2. Prepare the FPGA by sending relevant architectural information (more on this below).

3. Call FPGA_INIT to construct a representation of the FPGA.

An example of these steps can be found in Figure 3.1. After initialization, it is important that the

architectural parameters never change; a more robust implementation should lock these parameters

as read-only at this point.

#i ncl ude “ f pga. h”
#i ncl ude “ f pgamacr os. h”

PFPGA pFpga = NULL; / * i nst ance poi nt er * /
RC r c; / * r et ur n code * /

pFpga = FPGA_CREATE(pFpga) ; / * cr eat e t he i nst ance * /

/ * ar chi t ect ur al f eat ur es * /
r c = FPGA_SET_X(pFpga, 12) ; / * set l ar gest FPGA coor di nat es * /
r c = FPGA_SET_Y(pFpga, 10) ;
r c = FPGA_SET_W(pFpga, 8) ; / * set number of t r acks per channel * /

r c = FPGA_I NI T(pFpga) ; / * i ni t i al i ze t he i nst ance * /

/ * The i nst ance i s r eady f or use * /

Figure 3.1. Code to create a simple 10 x 12 FPGA with 8 tracks per channel.

18

Chapter 3

3.2.2 Defining the FPGA Routing Architecture

To analyze different routing architectures, control over the placement of switches and wire

segments is important. The architecture can be summarized by three major features:

1. S block topology,

2. C block topology, and

3. Length and placement of wire segments.

Previous research has focused on determining good S and C block topologies [5][6], while wire

segmentation is largely unexplored. This software allows customization of each these features by

placing them in independent procedures. The current implementation constructs simple S and C

blocks, yet provides a large degree of flexibility for wire segment length and placement. Each of

these features will be discussed in detail below.

3.2.2.1 S Block Topology

The S block is implemented with a flexibility parameter of three. This means that each wire

segment touching the S block can connect to a maximum of three other wire segments. Since the S

block is four-sided, it is natural for a wire segment ending at one edge to connect to a wire segment

at each of the other three edges. This allows a connection to pass through the S block or turn up or

down.

A long wire segment which passes through the S block is only permitted to connect to one

(long) or two other wire segments at the top and bottom edges. This limits fanout of the expanded

graph near the root of the graph only (where the logic block pin connects to a C block), and is

important to maintain control over the number of detailed paths examined by SEGA. Although this

is a limitation of SEGA, the FPGA Module is written to support fanout at the S block. One must

exercise extreme caution when allowing fanout, however, lest the large number of possibilities

overwhelm the practical limitations of the hardware (growth is exponential!).

Exploration into S block topologies is a simple matter of modifying one routine,

FpgaConnectSegments in s_block.c . The procedure loops through all S blocks in the

FPGA and connects the appropriate wire segments together in each block. The data structures

representing this are discussed further below.

Currently, the only option available to modify the S block is the ability to depopulate segments.

This option prevents S block switches from being placed in the middle of the wire segment, i.e.

19

Chapter 3

only the two S blocks at the ends of a wire segment contain switches. This option is hazardous

because it can result in very few available turns at each S block.

3.2.2.2 C Block Topology

The design of an efficient C block is a difficult problem beyond the scope of this thesis. If a logic

block pin is to have less than full connectivity to the channel (i.e. Fc < W), care must be taken to

ensure that all logic block pins it might connect with have connectivity switches on as many of the

same tracks as possible. Furthermore, the notion of pin equivalence1 increases the complexity of

this problem.

To eliminate problems which may occur due to inefficient C blocks, Fc is assumed to equal the

channel width. Future work should implement a more practical alternative, possibly using this

software to help determine a good topology.

The C blocks are built in a similar way S blocks are: FpgaConnectLogicBlocks in

c_block.c loops through all C blocks and connects the pins available at each logic block to the

C block. Also like the S block, switch depopulation is supported. This means after all the C

blocks are connected, another routine can be used to disconnect all logic block pins which connect

to the middle of a wire segment.

3.2.2.3 Wire Segmentation

The primary concern of the FPGA module is with the construction of the wire segment layout. An

exact description of the segment layout is very difficult to achieve, so an approximate method is

used.

FPGA wire segments are placed using a segment length generator to determine the next

segment length. Each segment is placed end-over-end in a track until the track is full, then the next

track is begun. When the current channel is filled, the next channel is started just like the first.

This means that the segmentation is ultimately determined by the segment length generator.

The segment length generator is capable of generating lengths from a variety of probability

distributions, including but not limited to Poisson, geometric, and binomial. Additionally, a

channel can be divided into a number of groups of tracks, and each group can have its own

1When two pins are inputs to the same look-up table in a logic block, they are said to be equivalent
because either pin may be selected for use provided the contents of the look-up table reflect the desired
logic function.

20

Chapter 3

distribution parameters. This degree of flexibility makes it possible to define a wide range of

segmentation types.

3.2.3 Routing Architecture Data Structures

The S blocks, C blocks, and wire segments are all represented by a complex data construct, rooted

by the instance structure given in Figure 3.2. The instance structure, _fpga , also stores all the

architectural parameters used to build the FPGA, such as Fc and Fs. The data structures

representing the FPGA are presented below.

st r uct _f pga {
 BOOL bI ni t ; / * f l ag i ndi cat i ng an i ni t i al i zed FPGA * /
 COORD coor dMax; / * maxi mum si ze of t he cel l ar r ay * /
 u_i nt ui Wh, ui Wv; / * t r acks per [hv] channel (channel wi dt h) * /
 u_i nt ui Fc, ui Fs; / * connect i vi t y char act er i st i cs * /
 u_i nt ui Pi nsPer L; / * pi ns per L bl ock * /

 u_i nt ui Cur r Tr ackGr p; / * st at e i nf o f or segment gener at or * /
 u_i nt ui NumTr ackGr ps; / * number of t r ack gr oups bel ow * /
 TRACKGRP * aTr ackGr ps; / * ar r ay of t r ack gr oups, one el em per gr p * /
 POPI NFO PopI nf o; / * popul at i on i nf o * /

 CHANNELS hChannel s; / * t he channel l ayout s t hemsel ves * /
 CHANNELS vChannel s;

 WI RESEGI D wsI DNext ; / * t he next avai l abl e wi r e segment I D * /
 PWI RESEG pwsAr r ay; / * ar r ay hol di ng * al l * WI RESEG st r uct ur es * /
 i nt i WSAr r aySi ze;

 BOOL bConser veMemor y;
} ;
t ypedef st r uct _f pga FPGA;

Figure 3.2. FPGA instance data structure.

3.2.3.1 FPGA Channels

The data structure representation of the FPGA is hierarchical, like the model. The FPGA is

divided into channels, blocks (S or C), and tracks by a three-dimensional array. This is illustrated

in Figure 3.3, where pointers are displayed as solid lines and array indices as dashed lines. To

understand how the data structure is used, consider the following example.

Suppose it is necessary to determine which wire segments pass through the C block located at

coordinates (2,1). Since the abscissa is even and the ordinate is odd, it can easily be seen that the

C block lies within a horizontal channel. The horizontal channel number is then derived from the Y

21

Chapter 3

component2, and the X component can be used directly as a block offset into the channel. These

values form the first two indices into the hChannels array; by forming a third index with a track

number, a specific wire segment pointer can be obtained. The wire segment pointer, described in

the next section, uniquely identifies a wire segment.

Although the above example references a C block, referencing an S block is similar. The key

difference is that a single S block is accessible from both the horizontal and vertical routing

channels, but only horizontal wire segments are present in the horizontal channels (the situation is

similar for vertical segments and channels). Also, note that a track which has wire segments

ending in the adjacent C blocks does not reference either wire segment, so the entry is denoted with

a nil pointer. This implies that only long wire segments can be referenced at S blocks, and only at

those S blocks which it passes directly through.

hChannels�

pwsArray	 .
.
.

+

channel #

.

.

.

+

X coordinate

.

.

.

+

track #�

+

wire segment ID�

.

.

.

FPGA Instance

array of CHANNELs

array of BLOCKs

array of
WIRESEG

pointers

array of wire

segment

structures

channel 0

channel 1

channel 2

last channel

block 0�
block 1�
block 2�

block N-1

track 0�
track 1�
track 2�

track W-1
wire segment 0

(unused)

wire segment 1

wire segment 2

last wire
segment

Figure 3.3. FPGA routing channel data structures.

2The macro COORDtoCHAN is provided for this purpose.

22

Chapter 3

3.2.3.2 Wire Segments

As seen so far, the S and C blocks are merely represented as groups of wire segments without

routing switches. This is because routing switches are associated with each wire segment, rather

than the S or C block in which it lies. In so doing, the wire segment becomes an object that knows

about which other objects it can connect to. Therefore, the S or C block topology is only needed to

build the interrelationships between wire segments and pins (and not for routing).

Details about a wire segment are stored in a _wireseg structure, shown in Figure 3.4. The

first field, wsID , stores an identifying integer unique to the wire segment. This number is

important because other layers refer to wire segments by their wire segment ID3. To avoid the

possible confusion of associating a wire segment ID of zero with a NULL pointer or a FALSE

Boolean value, wire segment IDs are assigned starting at one. Also, increments of one are used so

that a wire segment ID can be used directly as an array index. In particular, the wire segment

structures themselves are stored in an array which can be indexed by a wire segment ID.

st r uct _wi r eseg {

 WI RESEGI D wsI D; / * wi r e segment I D number * /

 BOOL bHor i z; / * ver t . or hor i z. r unni ng segment * /
 COORD coor dOr i gi n; / * smal l est possi bl e coor ds * /
 u_char ucLengt h; / * l engt h of segment , i n C bl ocks * /
 u_i nt ui Tr ack; / * t r ack # of segment * /

 / * a 2- d ar r ay of connect i ons
 * f i r st i ndex i s bl ock (S or C bl ock)
 * second i ndex cycl es t hr ough al l possi bl e
 * connect i ons at t hat bl ock
 * /
 CONNECTI ON * * ppConnect i on;

} ;
t ypedef st r uct _wi r eseg WI RESEG;

Figure 3.4. Wire segment data structure.

The next few fields of the _wireseg structure are fairly self-explanatory. If the wire

segment lies in a horizontal channel, bHoriz is true. The coordinates of the leftmost/lowermost

end of the wire segment (always a C block) are stored in coordOrigin , and its length (in units

3In particular, the Path Module uses the wire segment ID to index an array.

23

Chapter 3

of C blocks) is in ucLength . Finally, the track number in which the wire segment lies can be

found in uiTrack .

3.2.3.3 Wire Segment Connections

The most important field of the wire segment structure is ppConnection . This purpose of this

field is to describe which pins and wire segments can be connected to this wire segment. It consists

of a ragged two-dimensional array of CONNECTION constructs, where the data type

CONNECTION identifies either a pin or a wire segment using a C language union.

The first dimension of ppConnection refers to which C or S block the wire segment

connects in, and the second dimension forms the array of connections that can be made within that

block. The size of the first dimension is always equal to 2 1× +ucLength , since a wire segment

goes through ucLength C blocks and touches upon ucLength + 1 S blocks (including those at the

segment’s endpoints). The blocks are ordered consecutively in the array such that the smallest

coordinate is at the zeroth index, and S blocks are always at an even index. For example, the bold

wire segment in Figure 3.5 can have connections in the S blocks at (1,1) and (3,1) as well as the C

block at (2,1). Here, ppConnection[0] would refer to connections possible in the S block at

(1,1), ppConnection[1] would refer to connections at (2,1), and ppConnection[2]

would refer to connections at (3,1). If no connection is possible at a block, or if the block does not

exist, the ppConnection[i] value may be NULL. This always occurs for wire segments

which reach the edge of the FPGA, since the end of such a wire segment does not have an S block

to connect in. For example, the horizontal wire segment immediately left of the bold one in Figure

3.5 reaches the left edge of the FPGA, so its ppConnection[0] is NULL and its

ppConnection[1] refers to connections in the C block at (0,1). Because of this, it is prudent

to check the result of the first index for a non-NULL value before forming the second index.

The second ppConnection array dimension indexes each connection which can be made

within the block. It can be of arbitrary size — thus, the ppConnection array is ragged — so

the last element is indicated by a NULL entry. Furthermore, there is no particular order given to

the entries in this part of the array.

When a particular connection result is obtained via ppConnection[i][j] , it can be

either a wire segment pointer or a terminal. A wire segment pointer is returned when i is even

(i.e. at an S block), and it points directly to the _wireseg structure of a connectable wire

segment. Otherwise, when i is odd, a terminal is returned.

24

Chapter 3

Terminals are specially computed integers which uniquely identify logic block pins. While two

different logic blocks may both have a pin zero, the terminal numbers of each pin is different.

Thus, a single terminal number can indicate a particular logic block and pin. For ease of

debugging only, all terminal numbers are negative. This helps differentiate them from wire

segment pointers, which are most often located at lower memory addresses and so appear as

positive integers to most computers.

Rather than using terminal numbers to indicate a logic block pin, a pointer to some data type

could be used. This would allow pins to be treated as objects, like wire segments, and permit

greater flexibility in their use. This may be useful if a router is programmed to take advantage of

pin equivalence, where alternative pins would be useful information stored in such a structure.

L L
�

L
�

L
�

L
�

L
�

0� 1� 2 3� 4

0�

1

2�

Figure 3.5. Wire segment connectivity in a small FPGA.

3.2.4 Using the FPGA

The FPGA data structures described above are not visible to other software layers, so a

programming interface for routing is required.

25

Chapter 3

3.2.4.1 FPGA Channel Expansion Using Lines

The FPGA is modeled as a number of horizontal and vertical channels through which a signal may

travel. Upper software layers attempts to create detailed routes through the FPGA from a coarse

graph, i.e. a sequence of channel segments. These ideas are merged here by the intermediary

concept of lines. A line is defined to be a partial detailed route, consisting of a list of wire

segments within a single channel. Therefore, a detailed route would consist of one or more lines

which are connectable at S blocks.

Lines are created by breaking down a coarse graph into a number of straight sections and

having the FPGA Module consider each straight section independently. For each section, the

FPGA Module enumerates all possible paths through the channel and assigns each to a line. If

there is no S block fanout, there are always W lines in each straight section. Note that S block

fanout can cause a great number of lines to be created for any section consisting of more than 2

S blocks, so caution should be used under these circumstances. Normally, however, the problem is

not present because fanout is not used.

3.2.4.2 Connecting Lines Together With Reductions

Once a coarse graph is subdivided into straight sections and each section is expanded into its

respective lines, lines from different sections must be connected together to form each detailed

route. While the process of actually connecting the lines is primarily the responsibility of the Path

Module, the FPGA Module must determine whether two lines can be connected together. This is

done by reducing the set of lines created during expansion into a subset; a line becomes a member

of the subset if it is capable of connecting to a user-specified wire segment or terminal.

For efficiency, upper layers are permitted to “peek” into the reduced line set. The message

FPGA_GET_LINE_ARRAY returns a null-terminated array. Each element of this array is a

reduced line set consisting of a null-terminated array of wire segment IDs. The wire segment IDs

at the ends of a line can be used to reduce another set of lines. This process continues until a

sequence of lines has been found which connects to the logic block pins, and a path can be formed.

26

Chapter 3

3.3 Path Module

The Path Module makes only a few basic assumptions about the FPGA architecture. It assumes

the FPGA conforms to the symmetrical model, and that straight wire segments of various lengths

fill the channels.

The purpose of the Path Module is to manage all details pertaining to the coarse graphs and

detailed paths. The objective is to provide a flexible and clean programming interface which

enables different detailed routing algorithms to be implemented by changing the upper software

layers. It is recognized that the first implementation of this module cannot anticipate every

possible feature desired for different algorithms, but it is hoped that over time this module will

develop a full-featured interface capable of serving a variety of algorithms. Therefore, this

implementation focuses upon the features necessary to implement the SEGA algorithm, but with

general routing algorithms in mind.

3.3.1 Creating and Initializing a Netlist Instance

Because this module maintains both paths and graphs forming a type of netlist, a Path Module

instance is also called a netlist instance. A portion of the netlist structure is shown in Figure 3.6;

trivial fields have been deleted for clarity. Preparing the instance is similar to that for an FPGA:

an instance is created, parameters are set, and then an initialization message is sent.

Before the initialization message, two parameters must be set. First, a file pointer to the input

netlist must be set. Second, the FPGA instance pointer being used must be sent to the path

instance before the FPGA instance is initialized. This is because the Path Module must be able set

the FPGA dimensions required by the input netlist. Once these parameters are fixed, the netlist

instance can be initialized.

Initializing the netlist instance inputs a coarse graph, G, from the file pointer previously set.

The format of the input file consists of one or more nets outlining a coarse graph. A single net

looks like:

<net _name> <net _number >
<x1> <y1> 1 <pi n1>
<x2> <y2> 1
. . .
<xn- 1> <yn- 1> 1
<xn> <yn> 0 <pi n2>

27

Chapter 3

where <net_name> is a whitespace-free text string describing the net, <net_number> is an

integer identifying the electrically equivalent nets, the <x i > and <y i > values are integers

indicating FPGA coordinates4, and <pin> gives the logic block pin number. The 1 or 0 in the

third column indicates whether this is the last <xn> <yn> pair and the last value, <pin2> ,

should be read.

t ypedef st r uct _net l i st {

 PFPGA pFpga; / * t he ar chi t ect ur e f or t hi s net l i st * /
 FI LE * f p_net l i st ;

 u_i nt ui Si zeOf Gr aphAr r ay; / * si ze of gr aphs ar r ay * /
 GRAPH * * ppGr aphAr r ay; / * t he gr aphs i n t he net l i st * /

 u_i nt ui Si zeOf Pat hAr r ay; / * si ze of pat hs ar r ay * /
 PATH * * ppPat hAr r ay; / * t he pat hs i n t he net l i st * /

 PPATH * * pppPat h_WS; / * Speci al ar r ays: zer ot h el ement i s si ze
* /
 GRAPH_WS * * ppGr aph_WS; / * of ar r ay, ot her el ement s ar e dat a * /

 u_i nt ui NumWS; / * number of wi r e segment s i n f pga * /
 u_char * pucWSLengt h; / * ar r ay, zer ot h el em gar bage * /

 STACK l i neSt ack; / * st ack of l i nes al ong a pat h * /
 STACK pat hSt ack; / * st ack of l i nes al ong a pat h * /

} NETLI ST;

Figure 3.6. A portion of the netlist structure.

As mentioned in section 3.2.4.1, the G must be divided into a sequence of straight sections to

expand into lines. These straight sections are computed at initialization time while the netlist is

being read from the input file. The result is called a coarse graph with express edges, Gx,

illustrated in Figure 3.7. Express edges refer to the long straight sections which quickly jump from

turn to turn in the coarse route. Obviously, express edges allow quick identification of sections

which can be given to the FPGA Module for expansion.

4The sequence of coordinates must describe a valid path of adjacent blocks. Minimally, it will be an
L-C-L block sequence. It will always be of the form L-C-(S-C)-L, where (S-C) is repeated 0 or more
times.

28

Chapter 3

Edge
Express

pin #

pin #pin #

pin #

coordinates

0,4

0,3

3,3

3,0

4,04,0

3,0

3,2

3,1

3,3

2,3

1,3

0,3

0,4

C

S

C

L

Block

C

S

C

L

S S

L

C

S

C

Block

L

C

S

C

Grid
coordinates

Grid

Figure 3.7. (a) A coarse graph and (b) the coarse graph with express edges.

3.3.2 Enumerating Graphs and Paths

Once all of the graphs have been built, access to them is provided through the use of enumerations.

An enumeration forms an ordered set of unique items, such as graphs, which can be cycled through

item by item. Each item can have a number of operations performed upon it, but these will be

described in a later section. For now, the use of enumerations is described.

An enumeration is started with the message PATH_ENUM_BEGIN and a parameter

indicating the types of objects to be enumerated. Currently, the objects which can be enumerated

include graphs, paths, essential paths, and non-essential paths. When an enumeration is no longer

needed, the PATH_ENUM_END message is used to free up allocated memory.

The next (possibly first) item in an enumeration can be obtained with the

PATH_ENUM_GET_NEXT message. If there are no more items left, a NULL is returned.

29

Chapter 3

When a enumeration of paths is begun, an additional message can be sent to it. This message,

PATH_ENUM_REORDER, finds the lowest cost path (costs are discussed in the next section) and

places it first in the enumeration. The search for the lowest cost path is necessary to implement

most types of routing algorithms, where the lowest cost path is chosen in preference to others.

Enumerations form a consistent method of hiding the Path Module data structures from other

modules, but it is an inefficient method for practical use in a commercial router. Optimizations,

such as the use of a heap structures, can be implemented if execution time of the algorithm gets too

large. However, such optimizations can complicate the organization of the Path Module

significantly, since the dynamic nature of the cost functions and weights force many heap updates.

3.3.3 Cost Function

The reordering of enumerated paths is based upon a cost function. Ideally, the cost function would

be completely specifiable by a routing algorithm developer at the Route Module level.

Unfortunately, this is not feasible because most cost functions require information only present in

the Path Module. To compromise, multiple cost functions are summed in the Path Module using

an assignable weighting scheme.

Currently, four different cost functions have been defined corresponding to the four costs used

by SEGA. They can be used individually by fixing all but one weight to zero, or collectively by

providing more than one non-zero weight. The message-passing organization made it difficult to

pass floating point numbers as a parameter, so weights are currently assigned positive integer

values. This does not impose any serious limitations since weights are purely relative to each other

and equivalent integers can usually be found by multiplying all weights by one sufficiently large

integer. For example, rather than using the weights {1.1, 0.05, 0, 0}, the equivalent integer

weights of {110, 5, 0, 0} can be used.

It is important that each individual cost function only return a value in the range of [0,1]. If it

returns a value outside of that range, then that cost function may have an unfair advantage (or

disadvantage) relative to the other cost functions. The Cf cost used by SEGA does not naturally

fall within the [0,1] range, so it is necessary to continuously rescale all Cf costs. The rescaling is

done by linearly mapping all Cf costs such that the smallest maps to zero and the largest maps to

one. By observing this fairness policy, the importance of weight relativity is maintained for the

user.

30

Chapter 3

3.3.4 Data Structures

3.3.4.1 Graph Structure

The origin of all of the coarse graphs is contained in the netlist by ppGraphArray , an array of

graph pointers. A graph pointer dereferences a structure containing a number of properties, such

as the name and number of the net it belongs to, a linked list of channel segments (with express

edges), and an array of path structure pointers. This last field lists all valid paths remaining which

can be used to form the required connection.

3.3.4.2 Path Structure

A path structure identifies a NULL-terminated list of wire segment IDs which can be connected

together to route its parent graph. Additionally, it contains all of the computed costs, a pointer to

its parent graph, and results from the cost functions. Although storing results from each of the

costs separately consumes more memory, it is necessary so that the costs can be considered

separately as needed.

3.3.4.3 Wire Segment Lengths

To assist the computation of costs, the netlist contains an array of wire segment lengths,

pucWSLength . Rather than query for a segment’s length each time it is referenced in a path, all

segments are queried once and the length is stored in an array. This array, indexed by a wire

segment ID, forms a type of cache for the segment length information already obtainable from the

FPGA Module.

3.3.4.4 Path Interdependencies

A single wire segment can be considered for use by many paths, but it can only carry one signal.

The ppGraph_WS and pppPath_WS fields of the netlist structure cross-reference the numerous

paths which compete for wire segments. Both of the fields are arrays long enough to be indexed by

a wire segment ID. By doing so, all paths dependent upon a single wire segment can be found.

31

Chapter 3

Although both fields are first indexed by a wire segment ID, their second index is slightly

different. The second index of pppPath_WS cycles through a list of pointers to path structures

which depend upon the current wire segment. To allow for dynamic sizing, the zeroth element of

the second dimension indicates the length of the rest of the array (excluding the zeroth one) because

some of the array elements themselves may be nil. Like the second array dimension of

pppPath_WS , the zeroth element of ppGraph_WS stores the length of the rest of the array so it

may be resized as needed5. The difference is that the second index to ppGraph_WS references a

small structure rather than a path pointer. The structure stores a graph structure pointer and a

count indicating how many of the graph’s paths depend upon the current wire segment. The use of

this information will become apparent with the following example.

Suppose there are two graphs to be routed, G1 and G2. The first graph has three possible

paths, P1,1, P1,2 and P1,3, while the second graph has two paths, P2,1 and P2,2. Furthermore,

assume the first two paths in G1 and the second path in G2 require use of the same wire segment.

For this configuration, the entries in pppPath_WS and ppGraph_WS at that wire segment ID

may appear as in Figure 3.8. If the router was considering assigning P2,2 to G2, it could observe

from ppGraph_WS that two of G1’s paths rely upon the same wire segment, implying G1 would

be left with only 3 − 2 = 1 remaining alternative. If it proceeded to assign P2,2 to G2, it could

delete P1,1 and P1,2 from G1’s possible paths by checking pppPath_WS . Of course, deleting

also requires keeping these cross reference arrays current by clearing the appropriate entries.

7

P(1,1)

P(2,2)

P(1,2)

NULL

NULL

NULL

44

NULL 0

0

1

2

NULL

G(1)

G(2)

NULL

0

1

2

3

4

5

6

7

0

1

2

3

4

CountGraph

Path

pppPath_WS array element

ppGraph_WS array element

Figure 3.8. Example elements in the cross referencing arrays.

5Because elements of the array are structures and not just an integer, both elements of the structure hold
this length value.

32

Chapter 3

The example can be slightly more complicated if G1 and G2 can share segments because they

belong to the same net. In this case, G1’s alternatives would still be three and the two paths should

not be removed from the pppPath_WS array when P2,2 is allocated to G2. This special scenario

is automatically handled by the cross-referencing code.

While the primary purpose of the cross referencing arrays is to identify paths which can no

longer be considered due to conflicts, the above example shows how the number of alternative

paths for a graph can be found and one potential difficulty. Another pitfall to avoid is that paths

listed together in the same pppPath_WS array element is a necessary, but not sufficient,

condition for conflict. That is, if two paths are not listed together in one element, they may still

conflict at another wire segment. This is important when computing the number of alternatives,

because the method shown above (and used in the code) always makes optimistic assumptions,

namely that fewer conflicts occur and more alternatives exist.

3.3.5 Operations on Graphs and Paths

Any path or graph obtained via an enumeration can have an operator applied to it. Current

operators allow for a graph to be expanded into its detailed paths, a path cost to be recomputed,

and a path to be marked. These operations enable upper software layers to have control over the

algorithm used for routing, while the gory details are embedded within the Path Module.

While the expanding a graph and computing a cost is straight-forward, marking a path is much

more difficult. It involves two major steps: removing sibling paths of the same graph, since they

are redundant, and removing any other conflicting paths which depend upon a wire segment just

allocated to the path being marked. Sibling paths are easily obtained and removed, since each path

knows its parent graph, and the parent graph knows all of its children. However, conflicting

paths are more difficult to detect. Fortunately, the data structure used to compute the Cf cost is

exactly what is needed to find conflicting paths. Whenever a path which is removed, the costs of

its siblings is recomputed since both the Cf and Cc costs have changed. Thus, the marking of a

path requires updating a number of data structures and related costs.

3.3.6 Correctness

After all paths have been assigned route to a graph or discarded, it is important to assert that the

assigned routes are all credible and different electrical nets are disjoint. A routine called

PathSanity is written for this purpose. This provides a certain level of confidence that the

33

Chapter 3

chosen detailed routes can be programmed into a real FPGA and work correctly. The PathSanity

procedure is also used to collect some routing statistics, such as total wire segment length used, to

provide a summary of the routers segment allocation performance.

The PathSanity procedure follows the pseudo code presented in Figure 3.9. The sanity

check is partitioned into three smaller checks, which collectively imply that the router achieved its

purpose. The first check ensures every routed graph is assigned only one path, since more would

be wasteful. The second check guarantees only one electrical net is present on every allocated wire

segment. Lastly, and most importantly, the paths are double-checked to assert that the relevant

wire segments and logic block pins can be connected together via routing switches.

Once the sanity check is complete, there is a high degree of confidence that a interconnect of

the FPGA would be programmed correctly to meet the input specification.

for each gr aph
 if t he gr aph coul d not be r out ed
 assert no val i d pat hs r emai n
 else
 assert onl y one r out ed pat h exi st s
 end if
end for

for each wi r e segment i n t he FPGA
 if t he wi r e segment i s al l ocat ed
 assert wi r e segment i s used onl y by gr aphs of same net
 end if
end for

for each r out ed pat h
 assert t hat t he pat h i s val i d
end for

Figure 3.9. Pseudo code used to prove correctness of the detailed route.

3.4 Route Module

The purpose of the Route Module is to drive the Path and FPGA Modules to route a circuit with a

routing algorithm. It is a good example of how to use the lower software layers at an application

level. The actual code should read like pseudo code, placing the onus on the lower levels to

implement the functionality required for each pseudo code statement.

Because the Route Module is designed to be a fully user-programmed layer, there are no actual

requirements. Rather, the Route Module represents an intended level of organization for the

programmer to follow.

34

Chapter 3

Currently, the Route Module implements the SEGA routing algorithm described in Chapter 2.

The pseudo code which implements SEGA is shown in Figure 3.10. In the pseudo code, the ⇐⇐

symbol is used to denote the use of an enumeration provided by the Path Module. For comparative

purposes, the actual source code for the main Route Module routine is listed in Appendix A.

/* Phase 1 */
F ⇐⇐ set of al l coar se gr aphs

for each gr aph i n F
 expand t he gr aph i nt o i t s det ai l ed pat hs, addi ng
 t he pat hs t o t he pat h l i st
end for

/* Phase 2 */
while pat h l i st i s not empt y

 if essent i al pat hs exi st
 F ⇐⇐ al l essent i al pat hs
 else
 F ⇐⇐ al l ot her pat hs
 end if

 sort F
 P ⇐⇐ f i r st pat h f r om F (i . e. l owest cost pat h)

 mark P as det ai l ed r out e, r emovi ng conf l i ct i ng and
 r edundant pat hs f r om pat h l i st
 draw P on scr een

end while

Figure 3.10. Route Module pseudo-code implementing the SEGA algorithm.

3.5 Main Module

Like the Route Module, the Main Module is only a suggested level of organization for a router

programmer to follow. This layer performs all of the initialization and setup required for routing.

For the SEGA implementation, the Main Module interprets command line switches given by

the user and sends messages with their intended meaning to the lower modules. The input netlist is

opened, Path and FPGA instances are initialized and created, and control is passed to the Route

Module. This module also prints error messages corresponding to bad return codes from the lower

layers.

35

Chapter 3

3.6 Plot Module

The Plot Module serves as an invaluable debugging tool for this software. By providing an

interactive X windows display of the FPGA, it gives instant visualization to the FPGA

architecture, detailed paths, and even the routing process.

Unfortunately, the Plot Module does not conform to the same philosophy with which the FPGA

and Path Modules were written; it is not yet a formal part of the software. Future work could

involve rewriting parts of the plotting code to separate it from its current FPGA Module data

structure dependencies and expanding upon the interactive capabilities of the interface. For

example, highlighting an entire net would immediately show the amount of segment sharing taking

place, indicating the effectiveness of an algorithm to recombine two-point connections.

36

Chapter 4

Conclusions and Future Work

Recent FPGA research has focused upon making FPGAs faster and capable of holding more logic.

However, the exploration of good routing architectures is being done with outdated CAD tools

which are incapable of fully utilizing the routing resources. The need for new, flexible routing

software to support FPGA architectural research is apparent, as well as the need for new routing

algorithms to take advantage of new features.

In support of these needs, the SEGA algorithm was developed and a modular, adaptable

software base was designed. Experimental results reveal that SEGA is an algorithm proficient at

both routing completion and segment allocation. The implementation of SEGA is designed to be

generic so the routing algorithm can be modified and the FPGA architecture enhanced. Moreover,

the modular design of the software clearly differentiates FPGA architecture-dependent code from

architecture-independent code.

The possibilities for future work are nearly endless. The Cα and Cβ costs could be unified

into a single cost which more accurately represents the delay imposed upon a connection. As well,

two-point nets should be recombined into complete multi-point nets so delays can be better

modeled. FPGA architectural research can relentlessly improve upon the S and C block

topologies, and algorithm development will no doubt expand upon the abilities of the Path Module.

The speed of the Path Module needs to be improved; this can be done by providing better

enumeration data structures and algorithms, such as heaps and up-trees. The Plot Module should

be adapted to conform with the ideology present in the rest of the software, and the capabilities of

the user interface could be improved to further aid diagnostics. Global routing may even be added

to the list of responsibilities. The software described in this thesis forms a basis for a whole realm

of new FPGA research.

37

References

[1] Stephen D. Brown, Robert J. Francis, Jonathan Rose and Zvonko G. Vranesic, “Field-
Programmable Gate Arrays,” Kluwer Academic Publishers, 222 pages, 1992.

[2] G. Lemieux and S. Brown, “A Detailed Routing Algorithm for Allocating Wire Segments in
Field-Programmable Gate Arrays,” Proc. 1993 ACM Physical Design Workshop, April
1993.

[3] S. Brown, J. Rose and Z. Vranesic, “A Detailed Router for Field-Programmable Gate
Arrays,” Proc. IEEE International Conference on Computer Aided Design, pp. 382-385,
Nov. 1990.

[4] S. Brown, J. Rose and Z. Vranesic, “A Detailed Router for Field-Programmable Gate
Arrays,” IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems, Vol. 11, No. 5, pp. 620-628, May 1992.

[5] J. Rose and S. Brown, “The Effect of Switch Box Flexibility on Routability of Field-
Programmable Gate Arrays,” Proc. 1990 Custom Integrated Circuits Conference, pp.
27.5.1-27.5.4, May 1990.

[6] J. Rose and S. Brown, “Flexibility of Interconnection Structures in Field-Programmable
Gate Arrays,” IEEE Journal of Solid State Circuits, Vol. 26 No. 3, pp. 277-282, March
1991.

[7] K. Roy and M. Mehendale, “Optimization of Channel Segmentation for Channeled
Architecture FPGAs,” Proc. 1992 Custom Integrated Circuits Conference, pp.4.4.1-4.4.4,
May 1992.

[8] J. Greene, V. Roychowdhury, S. Kaptanoglu, and A. El Gamal, “Segmented Channel
Routing,” Proc. 27th Design Automation Conference, pp. 567-572, June 1990.

38

Appendix A

Route Module Code

#i ncl ude <st di o. h>

#i ncl ude " myt ypes. h"
#i ncl ude " er r or . h"

#i ncl ude " st ack. h"
#i ncl ude " f pga. h"
#i ncl ude " pat h. h"
#i ncl ude " r out e. h"

#i ncl ude " pat h_i . h"

ext er n char Pl ot Fl ag; / * pr ogr am gl obal s * /
ext er n i nt ver bosel evel ;

/ *
 * At t hi s poi nt , we assume t he f ol l owi ng has occur r ed:
 *
 * 1) al l coar se gr aphs ar e def i ned (r ead i n f r om net l i st)
 * 2) an FPGA ar chi t ect ur e of appr opr i at e di ms has been i nst ant i at ed
 *
 * What r emai ns t o be done i s:
 *
 * 1) f or each coar se gr aph Gi :
 * a) expand t he gr aph
 * b) f or each pat h i n Gi :
 * i) f i nd Al pha, Bet a
 *
 * 2) f or each pat h Pi :
 * a) i ni t i al i ze cost Cf
 * b) pl ace Pi i n " t o be r out ed" bucket B
 *
 * 3) whi l e B i s not empt y
 * a) sor t B:
 * i) pat hs i n an essent i al gr aph ar e gi ven pr i or i t y
 * i i) sor t by cost as secondar y key
 *
 * /

RC Rout eCct (PNETLI ST pNet Li st)
{

BOOL bEssent i al ;
PPATH P, Q;
PGRAPH G;
PFOREST F;
i nt numgr aphs, numpat hs, t ot al pat hs, numessent i al ;

RC r c = RC_OK;

numgr aphs = numpat hs = t ot al pat hs = numessent i al = 0;

Pr i nt f (1, " Rout i ng. . . \ n") ;

39

Appendix A

/ * F i s a f or est ; a col l ect i on of gr aphs G
 * Expand t he f or est
 * /
Pr i nt f (1, " Expandi ng gr aphs. . . \ n") ;
F = (PFOREST) Pat h(pNet Li st , PATH_ENUM_BEGI N, ENUM_GRAPHS, NULL) ;
i f (F == NULL) {

r c = RC_ENUM_ERROR;
got o cl eanup;

}

whi l e((G = (PGRAPH) Pat h(pNet Li st , PATH_ENUM_GET_NEXT, (MP) F, NULL)) ! = NULL) {
numgr aphs++;
Pr i nt f (3, " Expandi ng gr aph %8s (0x%x) " , G- >pucNet Name, (MP) G) ; f f l ush(st dout) ;

r c = Pat h(pNet Li st , PATH_EXPAND, (MP) G, (MP) (&numpat hs)) ;
i f (r c ! = RC_OK) got o cl eanup;

Pr i nt f (3, " i nt o %d pat hs. \ n" , numpat hs) ; f f l ush(st dout) ;
t ot al pat hs += numpat hs;

i f (numpat hs == 0) ; / * gr aph has no al t er nat i ves i n ar chi t ect ur e * /
}
Pat h(pNet Li st , PATH_ENUM_END, (MP) F, NULL) ;

Pr i nt f (1, " Expanded %d gr aphs i nt o %d pat hs, aver age %f pat hs per gr aph. \ n" ,
 numgr aphs, t ot al pat hs, (f l oat) t ot al pat hs/ (f l oat) numgr aphs) ;

#i f 0
/ * I nf or m t he pat h modul e of t he wei ght assi gnment s bei ng used * /
Pat h(pNet Li st , PATH_SET_W1, (MP) W1, NULL) ;
Pat h(pNet Li st , PATH_SET_W2, (MP) W2, NULL) ;
Pat h(pNet Li st , PATH_SET_W3, (MP) W3, NULL) ;
Pat h(pNet Li st , PATH_SET_W4, (MP) W4, NULL) ;

#endi f

/ * I nf or m t he pat h modul e of t he met hod t o be used f or scal i ng
 * t he Cf cost t o wi t hi n [0, 1]
 * /

/ * I ni t i al i ze al l of t he cost s cor r ect l y * /
Pr i nt f (1, " I ni t i al i zi ng cost s. . . \ n") ;
Pat h(pNet Li st , PATH_I NI T_COSTS, NULL, NULL) ;

/ * F i s a f or est ; a col l ect i on of pat hs P
 * Rout e t he dar n t hi ngs!
 * /

Pr i nt f (1, " Sel ect i ng pat hs. . . \ n") ;
whi l e(1) {

i f (F = (PFOREST) Pat h(pNet Li st , PATH_ENUM_BEGI N,
 ENUM_PATHS_ESSENTI AL, NULL)) {

bEssent i al = TRUE;
} el se {

F = (PFOREST) Pat h(pNet Li st , PATH_ENUM_BEGI N,
 ENUM_PATHS_OTHER, NULL) ;

bEssent i al = FALSE;
i f (F == NULL) {

Pr i nt f (1, " \ nNo mor e pat hs! \ n") ;
br eak;

}
}

/ * Fi nd and mar k t he l owest cost connect i on.
 * Mar ki ng aut omat i cal l y updat es al l of
 * t he changed cost s, and r emoves unnecessar y
 * pat hs f r om memor y.
 * /
Pat h(pNet Li st , PATH_ENUM_REORDER, (MP) F, NULL) ;

40

Appendix A

P = (PPATH) Pat h(pNet Li st , PATH_ENUM_GET_NEXT, (MP) F, NULL) ;
i f (P == NULL) {

r c = RC_ENUM_ERROR;
got o cl eanup;

}

i f (ver bosel evel > 2) {
whi l e(Q = (PPATH) Pat h(pNet Li st , PATH_ENUM_GET_NEXT, (MP) F, NULL)) {

Pr i nt f (5, " Consi der i ng gr aph %8s wi t h pat h 0x%x, cost %f "
 " (a=%f b=%f c=%f sc=%f) . . . \ n" ,
 Q- >pGr aph- >pucNet Name, Q, Q- >cost . f C, Q- >cost . f Al pha,
 Q- >cost . f Bet a, Q- >cost . f Cf , Q- >cost . f SCf) ;

}
}

i f (bEssent i al) {
Pr i nt f (2, " Mar ki ng essent i al gr aph %s wi t h pat h 0x%x, cost %f "
 " (a=%f b=%f c=%f sc=%f) . . . \ n" ,
 P- >pGr aph- >pucNet Name, P, P- >cost . f C,
 P- >cost . f Al pha, P- >cost . f Bet a, P- >cost . f Cf , P- >cost . f SCf) ;
numessent i al ++;

} el se {
Pr i nt f (3, " Mar ki ng gr aph %s wi t h pat h 0x%x, cost %f "
 " (a=%f b=%f c=%f sc=%f) . . . \ n" ,
 P- >pGr aph- >pucNet Name, P, P- >cost . f C,
 P- >cost . f Al pha, P- >cost . f Bet a, P- >cost . f Cf , P- >cost . f SCf) ;

}

i f (Pl ot Fl ag) {
Dr awPat h(P- >pwsI D, P- >pGr aph- >t er mHead, P- >pGr aph- >t er mTai l) ;

}

Pat h(pNet Li st , PATH_MARK, (MP) P, NULL) ;

Pat h(pNet Li st , PATH_ENUM_END, (MP) F, NULL) ;
}

/ * No mor e pat hs, r out i ng done * /
/ * Pr i nt out some st at i st i cs * /
Pr i nt f (1, " Rout ed %d essent i al gr aphs. \ n" , numessent i al) ;
Pr i nt f (1, " Rout ed %d out of %d gr aphs, %f per cent . \ n" ,
 pNet Li st - >ui Gr aphsRout ed, pNet Li st - >ui Number Of Gr aphs,
 100. 0 * (f l oat) pNet Li st - >ui Gr aphsRout ed /
 (f l oat) pNet Li st - >ui Number Of Gr aphs) ;
i f (pNet Li st - >ui Gr aphsNot Rout ed) {

Pr i nt f (1, " Fai l ed t o r out e %d out of %d gr aphs, %f per cent . \ n" ,
 pNet Li st - >ui Gr aphsNot Rout ed, pNet Li st - >ui Number Of Gr aphs,
 100. 0 * (f l oat) pNet Li st - >ui Gr aphsNot Rout ed /
 (f l oat) pNet Li st - >ui Number Of Gr aphs) ;
r c = RC_FAI LED_TO_ROUTE;

}
Pr i nt f (1, " Done r out i ng. \ n\ n") ;

cl eanup:
r et ur n r c;

}

41

