
Journal of VLSI Signal Processing 2007

* 2007 Springer Science + Business Media, LLC. Manufactured in The United States.

DOI: 10.1007/s11265-007-0141-y

Interconnect Driver Design for Long Wires in Field-Programmable

Gate Arrays

EDMUND LEE, GUY LEMIEUX AND SHAHRIAR MIRABBASI

University of British Columbia, Vancouver, Canada

Received: 15 April 2007; Revised: 31 July 2007; Accepted: 16 August 2007

Abstract. Each new semiconductor technology node brings smaller, faster transistors and smaller, slower

wires. In particular, long interconnect wires in modern FPGAs now require rebuffering at interior points in the

wire. This paper presents a framework for designing and evaluating long, buffered interconnect wires in FPGAs

with near-optimal delay performance using HSPICE-derived delays. Given a target physical wire length, width,

and spacing, the method determines the number, size, and position of buffers required to obtain the fastest signal

velocity for programmable interconnect. While traditional hand-calculations used for ideal repeater placement

can be used, they are not very accurate and ignore practical constraints such as the overhead effects of front-end

multiplexing and driving logic, Bfinite^ wire length, and a discrete number of repeaters. A metric introduced

during the design is the Bpath delay profile^, or the arrival time of a signal at different points of a long wire. This

method is used to design buffering strategies for interconnect based on 0.5, 2, and 3 mm wire lengths in 180 nm

technology. These interconnect designs are coded into VPR along with an improved timing analyzer which

accurately determines the Bpath delay profile^ arrival times. Using VPR, average critical-path delay is reduced

by 19% for 0.5 mm wires and by up to 46% for 3mm wires over previous designs.

Keywords: FPGA, FPGA interconnect, interconnect design, routing design, computer-aided design

1. Introduction

In early FPGA architectures, an interconnect wire was

Bshared^ and could be driven by many possible sources

distributed along the length of the wire. Although this

made wires general-purpose and Bbidirectional^, it

required several large, tristate buffers per wire, only

one of which could be turned Bon^ for a given

programming configuration. As a result, numerous

buffers were left unused, which added needlessly to

area, capacitance, power, and delay.

In comparison, modern FPGAs typically have a

single driver at the starting point of each wire.

Instead of tristates, each driver input has a multi-

plexer to select from many possible sources, creating

the flexibility of a switching network. This new

organization, dubbed single-driver interconnect [1],

results in unidirectional wires. One of the biggest

benefits of unidirectional wires is the elimination of

bidirectional buffering and tristates.

FPGAs are also among the earliest adopters of

deep-submicron semiconductor technologies. Each

new technology node brings smaller transistors and

wires. Although transistors become faster, wires get

slower. This makes it increasingly important for

FPGA architects and device designers to take an

interconnect-focused viewpoint on design. In partic-

ular, long interconnect wires behave like an RC

transmission line where delay grows quadratically

with length. To improve delay, long wires need

rebuffering after a certain distance. Each buffer also

imposes its own additional delay, so the number of

buffers and their positions must be chosen carefully.

Traditional hand calculations based on Elmore

delays can be used to determine the number of

repeaters, their size and separation distance, but they

are only approximations based on certain assump-

tions: the wire length is infinite and every repeater

must be identical and evenly spaced, including the

first driver. As a result, these hand calculations

ignore the practical need to include the effects of

any front-end logic, and the requirement for an

integral number of repeaters. Since real, finite-length

wires typically need only one to ten repeaters, these

effects can be very prominent. Also, the front-end

logic must present a minimal load on preceding

logic, so the assumption of using a very wide

inverter at the beginning is impractical; the effect

of any multiplexing and the initial inverter chain

must be included. Finally, the Elmore hand calcu-

lations usually do not include any area constraints, so

the calculated delay-optimal buffer sizes are usually

far too large to be practical (100 to 200 times the

minimum buffer size instead of 10 to 50 times).

For ASIC and custom designs, this problem of

rebuffering a signal is often called repeater insertion.

For very critical nets, particularly clock trees, this is

often done in conjunction with wire sizing. In this

environment, the problem of repeater insertion and

wire sizing is very complex because there are

numerous signals which must be considered, each

with different constraints such as large fan-outs to

several locations across the chip. To reduce com-

plexity, ASIC tools often rely on fast but low-

accuracy Elmore delay estimates.

The problem of repeater insertion for long FPGA

interconnect wires has not been widely published. One

work, [2], employs the traditional hand calculations

but doesn_t improve upon the assumptions. In

comparison to the ASIC problem, the FPGA device

environment is highly structured. This imposes

several simplifying design constraints upon the

problem, making it possible to model and solve much

more accurately. However, the nature of the problem

is also different. In an FPGA device, the location of

critical nets (source and sink locations) are not known

a priori by the designer. An ASIC solution can

optimize delay on paths to known critical sinks, and

optimize area on the other paths. However, an FPGA

solution requires delay to be optimized to all possible
sinks located along the wire or across the device, yet

area cannot be completely forsaken either.

This paper presents a fast, accurate, HSPICE-based

framework for designing long, buffered interconnect

wires in FPGAs with near-optimal delay performance.

Given a target physical wire length, width, and spacing,

the method determines the number, size, and position
of drivers required to obtain the fastest end-to-end

signal speed. A metric called the Bpath delay profile^
(PDP), shown in Fig. 1, is also used. The figure

highlights why distributed design can be considered

faster than lumping buffers at one end when end-to-

end performance is similar—the signal arrives earlier

at wire positions before the halfway point. This new

method is used to design interconnect for 0.5, 2.0, and

3.0 mm wire lengths in 180 nm technology and

demonstrate the efficacy of the approach. Even in an

Bolder^ technology node such as 180 nm, which was

selected due to the availability of previously pub-

lished FPGA delay results and previously character-

ized FPGA architectural delays, it is worth noting that

this approach has considerable influence on results. Its

significance grows as we scale further.

These interconnect designs are coded into VPR

along with a new, more accurate timing analyzer

which can determine the Bpath delay profile^ arrival

times. The routing algorithm is also modified to

make routing decisions based upon improved timing

when an early turn is made before the end of a wire.

Using VPR in this mode, we find that early turns

become more common, and that normal turns made

at the far end of a wire become far less common.

The remainder of this paper is organized as

follows. Section 2 provides additional background

material. Section 3 describes the interconnect design

framework and gives several interconnect design

solutions. Section 4 describes the improvements

made to VPR in delay modeling and CAD and

presents the place-and-route CAD results. Finally,

Section 5 presents conclusions.

2. Background and Problem Formulation

The FPGA architecture considered in this paper is

shown in Fig. 2. Configurable logic blocks (CLBs)

containing basic logic elements (BLEs) are sur-

rounded by routing resources interconnected by

switch blocks (S) and connection blocks (C). Four

horizontal logical length 2 (L2) wires are shown in

the figure; these span two CLBs and terminate at S

blocks. Total physical wire length also depends upon

the physical size of the CLB layout tile.

Lee et al.

Figure 3 provides additional details of a length 2

wire with surrounding circuitry. Unlike the general

ASIC repeater insertion problem, the FPGA intercon-

nect design utilizes a long, straight wire with taps that

fan-out along the interior points of the wire. These taps

or turns, dubbed Bearly turns,^ are always present but

may not always be used. FPGA interconnect also has

the requirement of being Bprogrammable^. This is

 S BLOCK

 CLB CLB CLB CLBCLB

S C S C S C S C C

 C C C C

CLB CLB CLB CLB CLB

 S C S C S C S C C

 C C C C

 CLB CLB CLB CLB CLB

 S C S C S C S C C

 C C C C

 CLB CLB CLB CLB CLB

 S C S C S C S C C

 C C C C

 Vertical
 Channel

 Horizontal
Channel

 Horizontal
 Track Driver

M
U

X

 Track Drivers

Length 2
 Tracks/Wires

 Driver

M
U

X

Figure 2. FPGA architecture and switch block detail.

D
el

ay

 Distance Travelled Along Wire

 PDP for
Lumped

driver design

 PDP for
Distibuted

driver design

 Lumped
Driver

 Distibuted
Driver

 0% 50% 100%

Improved midpoint delays

Figure 1. These path delay profiles suggest distributed buffering is faster because several interior points along the wire receive the signal earlier.

Interconnect Driver Design for Long Wires in FPGA

achieved with the front-end multiplexer located just

before the signal driver.

The fan-in of the programmable front-end multi-

plexers depends upon the precise FPGA architecture

definition, but it can be anywhere between 2:1 and

64:1. There are several ways to implement multi-

plexers, as shown in Fig. 4. The relative merits of

each style are given in Table 1. We adopted the two-

level hybrid multiplexer, used in the Stratix II

architecture to improve delay [3]. We also added

the Stratix II fast input path, as shown in Fig. 5, to

optimize our driver designs for the fastest possible

performance through these paths. Unlike the Stratix

work, our multiplexers are all built using full CMOS

pass gates with minimum-sized NMOS and PMOS

transistors. This maintained full signal swing and

improved delay.

Interconnect optimization design using buffers is

well studied in the ASIC domain. Studies on wire

sizing, power optimization, and area reduction

performed in [4–11] are achieved using closed form

expressions to model buffers. Most work uses

Elmore-based delay models which uses effective

resistances. This approach is known to have model-

ing errors and does not accurately model the effects

of slew rates [12] or signals with reduced swing.

Rather than cope with Elmore modeling inaccura-

cies, we chose to exploit the structured FPGA

S BLOCK

CLB CLB CLB CLB

S BLOCK

 turn

S BLOCK

 turn

 Length 2 Wire

 Driver

tu
rn

 Vertical
 Channel

 Vertical
 Channel

 Horizontal
 Channel

 Vertical
 Channel

 Horizontal
 Channel

 Early
 Turn

Driver

M
U

X

 Interconnect Driver

M
U

X

Signal Driver Programmable
 Component

Figure 3. FPGA interconnect and a simplified model.

a b c

 = SRAM

Figure 4. Multiplexer design styles. a Tree (encoded), b flat (decoded), c two-level hybrid.

Lee et al.

environment to reduce the problem space associated

with FPGA interconnect design, and instead focus on

more accurate HSPICE-based delay models. This

also enables relatively simple future extensions of

this work, such as accurate power-optimized design,

which would not be possible with the Elmore

approach.

Prior work in FPGA circuit design also uses

HSPICE to model the circuits [1, 13–16], but much

of this was based on the use of tristate buffers. Past

work [2] develops an Elmore interconnect delay

model into automated FPGA interconnect design. In

this paper, we develop much more accurate delay

models using HSPICE. This gives us greater confi-

dence in the results, and allows one to explore more

general circuit design techniques such as low-swing

interconnect by simply replacing the templates used

within the HSPICE decks.

The FPGA interconnect buffer spacing and sizing
problem can be stated as follows. Given metal wire

RC properties and a target total physical wirelength

L, find the optimum number of inverters N, sizes of

each inverter B0...BNj1, and amount of wire between

each inverter L0...LNj1 to result in minimal signal

propagation delay from the start of the interconnect

wire to its end. A diagram and description of these

parameters appear in Fig. 6 and Table 2. To make

this problem FPGA-specific, the delay influence of a

front-end multiplexer must be included in this circuit

to provide programmability. If the inverter B0

requires rather large transistors, then additional

tapered inverters will be needed between the multi-

plexer and B0. However, we do not need to model

this explicitly, since allowing L0 to be 0 will produce

the same effect. Also, the signal arrival time at

interior points of the wire do matter in an FPGA, but

we do not explicitly optimize for that version of the

problem here.

3. Interconnect Design Framework

This section presents three different approaches for

determining the number and size of inverters used to

get low delay results from an FPGA interconnect wire.

The methods all assume that wire RC has been

predetermined by choosing a predominant metal

layer, and wire width and spacing for a given

technology node. In all cases when HSPICE was

used to determine delay, an identical circuit was

placed before and after the measured circuit for input

shaping and loading, as shown in Fig. 7.

3.1. Width and Spacing: Wire RC Characterization

Interconnect wire RC characteristics depend upon

two values: fixed process parameters and variable

design features. The fixed parameters consist of

things like material dielectrics between wires and

Table 1. Comparison of multiplexer design styles (N is the fan-in of the multiplexer).

Property

Style

Tree Flat 2-level

Delay levels [log2 N] 1 2

Internal load (capacitance) [log2 N] (distributed) Nj1 (lumped) 2
ffiffiffiffi

N
p

Configuration bits [log2 N] N 2
ffiffiffiffi

N
p

Pass gates 2Nj2 N N þ
ffiffiffiffi

N
p

a b

M
U

X

 To
 Driver

2-Level
 MUX

 Fast
Path

M
U

X
 To

 Driver

2-Level
 MUX

 Fast
Path

Figure 5. BFast Path^ input is added to the two-level multiplexer design. a NMOS pass transistor, b CMOS pass gate.

Interconnect Driver Design for Long Wires in FPGA

metal resistivity, which are defined by the technol-

ogy process. Since the 180 nm technology node, the

most significant improvements have been the shift

from aluminum to copper (lower resistance) and

development of low-k dielectric materials (lower

capacitive coupling). These technology changes are

limited in the amount of improvements available

(e.g., it is difficult to improve upon copper as a

conductor).

Fortunately, designers can influence interconnect

RC by controlling design features such as wire

spacing, wire width, and metal layer level. The

effect of these features on capacitance can be seen in

Fig. 8. Increasing the space between wires lowers the

capacitive coupling between them. Widening the

wire lowers resistance, which is the dominant effect,

and increases plate capacitance between layers,

which is a milder secondary effect due to the

dominance of coupling capacitance. The choice of

metal layer also has an effect: for manufacturability

reasons, higher levels of metal are often thicker

(larger coupling capacitance), have a larger mini-

mum width and spacing than the lower layers, and

may have different dielectric materials between the

wires and between the layers above and below.

For this work, we assume interconnect is located in

the metal 3 or metal 4 layers, since lower levels are

usually occupied with local routing and higher levels

are needed for power and clock distribution. A series

of characterization experiments were conducted to

determine suitable spacing and width of wires.

The effects of spacing on delay for a 4mm length of

wire driven by a 20-times-minimum-size buffer are

shown in Fig. 9. Delay results are expressed as

multiples of a fanout-of-4 inverter delay (FO4) for

both 90 and 180 nm technologies. As shown in the

figure, a roughly 40% reduction in delay is possible

by spreading wires out to four times the minimum

spacing. The most significant drop occurs during the

initial spreading, from 1� to 2� minimum spacing.

To limit area inflation, we chose to use 2� spacing for

all wires.

Starting from the 2� spacing result, the effect of

width on delay is shown in Fig. 10 for the same

4 mm wire and 20� buffer. The figure shows that a

compounded 35–40% delay reduction is possible

through widening the wire. Again, most of this

improvement comes from the initial doubling of the

wire width, so we chose to use 2� widths for all

wires.

Overall, wire RC delay is reduced by roughly 50%

by the use of 2� spacing and 2� width. Unless

otherwise stated, these are the spacing and width

results that will be assumed throughout this work.

 L 0 L 1

 Number of stages N

 L

 B 0 B 1 B 2 B (N-1)

 L(N-1)

M
U

X

Figure 6. FPGA interconnect buffer spacing and sizing problem.

Table 2. Design parameters for buffer sizing and spacing problem.

Parameter Symbol Description

Total wirelength L Length of interconnect. This is the physical distance between multiplexers in an architecture (typically in

millimeters)

Number of driver

stages

N Number of inverter-wire fragments which make up the total interconnect wire, including the programmable

component as the first stage

Buffer sizing Bi Size of the buffer i, normalized to a minimum sized buffer

Buffer spacing Li Length of wire following buffer i. A length of 0 is allowed. (Typically in mm, but may also be expressed as a

percentage of L)

Lee et al.

3.2. Method A: Lumped Design (HSPICE based)

We start with a simple transistor-level design

method. The circuit being designed consists of a fast

two-input multiplexer, followed by a chain of

tapered inverters, ending with the full length of the

interconnect wire. This method determines the

number and size of each inverter in the taper for

best delay. Since all of the inverters are located at the

beginning of the wire, this is called a lumped design.

The design method consists of the following

nested loops:

HSPICE is used within the innermost loop to

accurately determine the delay of each design. After

this procedure, the circuit design with the best delay

is found, normalized (per mm) to report the inverse

of signal velocity [17], and the results are reported in

Table 3 for several physical wirelengths.

3.3. Method B: Distributed Design Using Nested
Sweeps (Elmore based)

In this section, we provide another simple transistor-

level design method based on the Elmore delay model.

The circuit being designed consists of the following

elements connected in series: a minimum size inverter,

a percentage L0 of the total wirelength, an inverter of

size B1, a percentage L1 of the total wirelength, an

inverter of size B2, and the remaining wire. The

approach determines the size of inverters B1 and B2

and their position along the wire for best delay.

The design method consists of the following

nested loops:

 Driver Wirelength

 Driver design under test

 Driver Driver Wirelength
 Input

 Waveform
Input Shaping Output loading

 Delay Measurements

Wirelength

Figure 7. Testbench used for measuring delay of one stage.

Fringe

 Fringe

 Coupling

 Plate

 Metal 3

 Coupling

 Plate

 Ground Plane

 Fringe

Fringe

 Metal 4

Figure 8. Metal capacitance depends upon physical wire spacing, width and metal layer.

for N = 1 to 4 // number of inverters (over a reasonable range)

for B = 1 to 32 // final inverter size (can be fractional step size)
calculate tapering factor from B and N

// assuming geom. increasing sizes and a min. size of 1x
determine circuit delay to endpoint using HSPICE

endfor
endfor

B0 = 1.0 // fix the size of first inverter

for L0 = 0 to 100% // percent of total wirelength

for L1 = 0 to 100%-L0

L2 = 100% – L0 – L1 // the remaining wirelength

for B1 = 1 to 64 // second inverter size (can be fractional)

for B2 = 1 to 64 // third inverter size (can be fractional)
determine circuit delay to endpoint using Elmore model

endfor
endfor

endfor
endfor

Interconnect Driver Design for Long Wires in FPGA

Due to the extensive nesting of loops, Elmore

delay is used to quickly evaluate delay at each design

point and find the best design in terms of delay-per-

millimeter. The best circuit design found for several

physical wirelengths is reported in Table 4. Final

delay results are calculated for these designs using

HSPICE. Also reported are the best circuit designs

found according to the area-delay product. (Area is

calculated according to the VPR area model, which

computes the area of wide transistors in units of B#

of minimum-size transistor areas^.)

For comparison, the best lumped delay results

were also obtained by repeating the same approach

but fixing L0 and L1 in steps 2 and 3 to 0%. The

distributed delays are better than lumped only after

the physical interconnect length exceeds 2.5 mm.

It is noteworthy that, for all interconnect lengths,

the optimum delay was found with no wire located

between the first and second inverters. As the lengths

get longer, the approach tends to place the third

buffer towards the middle of the wire.

Compared to Table 3, the delays in Table 4 are

smaller because the front-end multiplexer was

excluded throughout method B. This was done

because it was difficult to explore the many possible

front-end circuit options (e.g., NMOS pass transistor

with optional level-restorer, CMOS pass gate, etc.)

using the Elmore approach (each would require a

new manually tuned model, making this more

labour-intensive than automated). This limitation

was the first factor motivating the development of

method C.

The results in Table 4 suggest that interconnect

lengths greater than 4 mm should have more than

three inverters. Method B is limited to three inverters

because it is meant to be relatively quick to compute

with only four nested loops. Each additional inverter

adds two more nested loops, one for buffer size and

0

5

10

15

20

25

30

35

0 1 2 3 4 5

x minimum spacing

de
la

y
(F

O
4)

90nm

180nm

Figure 9. Effect of wire spacing on delay (at minimum width).

0

5

10

15

20

25

30

35

0 1 2 3 4 5

x minimum sizing

de
la

y
(F

O
4)

90nm

180nm

Figure 10. Effect of wire width on delay (at 2� minimum spacing).

Lee et al.

one for wire position, leading to much slower

searches. Hence, the practical need to add more

inverters motivated us to find a faster way to

determine buffer positions. This was the second factor

motivating the development of method C, which is

described in the next subsection.

3.4. Method C: Distributed Design Using
Concatenation (HSPICE based)

This subsection presents a fast, accurate, HSPICE-

based method for determining the best repeater

design for a given target interconnect wirelength.

Table 3. Solutions found for method A lumped design approach.

Wirelength (mm) Number of stages (N) Inverter sizes (�min. size) HSPICE delay (ps/mm)

Lumped design results (180 nm, 1� spacing, 1� width)

0.5 2 3.7, 14 408

1.0 3 4.0, 10, 30 260

2.0 3 4.0, 9.0, 35 192

3.0 3 3.3, 11, 37 184

4.0 4 2.7, 7.1, 19, 50 191

Lumped design results (90 nm, 2� spacing, 2� width)

2.0 3 4.0, 16, 65 115

3.0 5 2.6, 6.6, 17, 43, 110 115

4.0 5 2.6, 6.8, 18, 46, 120 125

The reported HSPICE delay includes a 2:1 front-end multiplexer.

Table 4. Method B distributed buffer designs with N=3 inverters using Elmore delay model.

Wirelength (mm)

Best distributed inverter

positions (%)

Best distributed

inverter sizes

Distributed HSPICE

delay (ps/mm)

Lumped HSPICE delay

(ps/mm)

Performance

difference (%)

Delay-driven results (180 nm, 1� spacing, 1� width)

1.0 0.00, 0.00, 1.00 1, 4, 21 185 185 0

2.0 0.00, 0.00, 1.00 1, 5, 36 153 153 0

2.5 0.00, 0.15, 0.85 1, 7, 38 152 153 1

3.0 0.00, 0.25, 0.75 1, 8, 39 151 157 4

4.0 0.00, 0.35, 0.65 1, 10, 39 153 172 11

8.0 0.00, 0.45, 0.55 1, 14, 36 187 262 29

16 0.00, 0.50, 0.50 1, 22, 36 284 475 40

Area*Delay-driven results (180 nm, 1� spacing, 1� width)

1.0 0.00, 0.00, 1.00 1, 3, 13 195 195 0

2.0 0.00, 0.00, 1.00 1, 3, 16 167 167 0

2.5 0.00, 0.00, 1.00 1, 3, 17 169 169 0

3.0 0.00, 0.40, 0.60 1, 7, 14 168 176 5

4.0 0.00, 0.45, 0.55 1, 8, 14 169 201 16

8.0 0.00, 0.50, 0.50 1, 9, 12 211 307 31

16 0.00, 0.50, 0.50 1, 8, 10 325 553 41

Delay of front-end multiplexer is excluded.

Interconnect Driver Design for Long Wires in FPGA

The method works by first precharacterizing two

types of circuits using HSPICE, the multiplexer stage

and the distributed drive stage shown in Fig. 11 into

lookup tables. The lookup tables are indexed by the

length of wire located after an inverter to provide

delay and optimal buffersize. Next, total interconnect

delay is quickly determined by adding values from the

lookup tables and the lowest-delay solution is chosen.

Based on results from method B, previous work [9],

and to simplify the design space, it is reasonable to

assume that all of the distributed drive stages contain

the same buffer size B1 and the same physical

wirelength L1 to achieve near-minimum delay.

Several different full-swing circuit designs were

tested with HSPICE for both the multiplexer stage and

the distributed stage. Details of several transistor-

level designs considered are provided in [18] but

omitted here for brevity. The fastest results were

obtained with the circuits shown in Fig. 12. The two

adjacent inverters in the multiplexed stage were

consistent with method B results. The 2:1 multiplex-

er is built with minimum size transistors for both

PMOS and NMOS.

The first step in method C consists of the following

nested loops to perform design precharacterization:

The results of the precharacterization step can be

summarized by two two-dimensional (2D) arrays,

mux_stage_delay[] and distrib_stage_delay[], which

are indexed by physical wire length and buffersize.

The second step in method C consists of the following

nested loops which do circuit construction:

An example lookup table is shown in Fig. 13, where

the 2D indices are x-axis (buffer size) and each curve

(wirelength). The result of the lookup table is the y-

axis (delay). In this figure, the delay is computed for

the distributed drive stage with a 180 nm technology

using wires of 1� spacing and 1� width.

For fast runtimes, the precharacterization step is

limited to two nested loops. This step produces a

lookup table which can be indexed by [wirelength]

[buffersize] to accurately determine delay. This data

can actually be compressed into a one-dimensional

array, indexed only by [wirelength], by finding the

buffer size that obtains minimum delay and storing

both delay and corresponding buffer size at the

corresponding wirelength index. These minimum

delays and corresponding buffer sizes are shown in

Fig. 13 as the vertical (slightly jagged) line near a

buffer size of 50�.

 B 0

M
U

X

 L0 L1

 Number of stages N

MUX stage Distibuted Stages

 B 1

 L 1

B 1 B 1

Figure 11. Distributed buffer sizing and spacing problem, simplified.

a b

B B

Figure 12. Transistor-level design of mux and distributed drive stages. a Multiplexed stage (creates a fast input), b distributed drive stage.

for stage_delay = { mux_stage_delay, distrib_stage_delay }

for W = 0 to 2mm // the physical wirelength following a circuit

for B = 1 to 64 // the buffer size of final drive stage

stage_delay[W,B] = circuit delay using HSPICE
endfor

endfor
endfor

for N = 1 to 4 // the number of stages

for L0 = 0 to 100% // percent of total wirelength

L1 = (1.0 – L0) / N // amount of wire per distrib. stage

delay = mux_stage_delay[L0] + (N-1)×distrib_stage_delay[L1]

endfor
endfor

Lee et al.

Since the optimal buffer sizes in the distributed stage

are rather large, we relaxed the delay target to 10%

above minimum delay and found the corresponding

buffer size. This reduces buffer sizes by almost half,

from roughly 50� to 30� for 180 nm, but increases

delay of the wire itself by less than 10%. The effect of

backing off by 10% from minimum delay on buffer

size can be seen in Fig. 14. Note especially the much

smaller buffer sizes that can be used for very short

sections of wire (<1 mm).

Figure 14 also shows the minimum-delay buffer

sizes used for the multiplexed stage. Since these

sizes are already small enough, and there is only one

multiplexer stage per wire, the 10% relaxation

technique is not applied there.

Once computed, this lookup-table data can be

embedded into an architecture file for VPR, and VPR

can run the circuit construction step internally to

very quickly determine delay and best buffer sizes

and positions for each interconnect wirelength.

The best delay-per-millimeter data obtained from

the precharacterization step are summarized in Table 5.

Although this data is not directly needed by method

C, it provides two useful reference points. First, the

distributed drive stage data provides the best ASIC

repeater delay for the assumed metal layer, wire

width, and wire spacing. Second, the multiplexed

stage data indicates the best FPGA interconnect delay

obtained by cascading only these mux stages. Table 5

also shows multiplexed signal delays are õ2� ASIC

delays. The use of distributed stages after a mux stage

can help improve FPGA delay, but not beyond the

lower bound formed by the ASIC repeater delay.

Using method C, we designed several transistor-level

circuits with excellent delay performance for several

different interconnect wirelengths. These designs are

reported in Table 6. For each design in this table, we

generated a full HSPICE deck and verified that the

delay estimate calculated by the circuit construction

step is within 4% error of actual HSPICE delay [18].

Recall that short wirelengths (e2 mm) obtained best

performance from a lumped driver. Method A_s
thorough HSPICE sweeps of lumped designs is not

much better than the distributed designs of method C.

Yet, distributed designs deliver signals earlier to wire

midpoints. For lengths >2 mm, method C is superior

to method A due to the strong need for distributed

buffering.

From Table 6, one might notice that 90 nm has twice

the performance of 180 nm. Notice that the 90 nm

10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

0.1mm
0.5mm

1.0mm

1.5mm

2.0mm

2.5mm

3.0mm

3.5mm

4.0mm

Delay vs. Buffersize for Wirelengths (mm):

Buffersize

D
el

ay
 (

ps
)

Figure 13. Precharacterization delay lookup table for distributed stage delay in 180 nm using 1� spacing and 1� width.

Interconnect Driver Design for Long Wires in FPGA

design is using twice the minimum metal width and

spacing but 180 nm is using minimum, i.e., the wires in

the two technologies are the same physical width and

distance apart, hence they have similar RC time

constants per unit length. The key difference is

improved transistor performance, which leads to more
drive stages and relatively wider transistors (but

similar physical width) for the same total interconnect

length. However, one must question whether a 4 mm

wire in a 180 nm FPGA must remain 4 mm when the

architecture is redesigned for 90 nm. Intuitively, since

transistor dimensions are cut in half, a comparable

wire only needs to be 2 mm in 90 nm. (This assumes

no extra Bstuff^ is added to a CLB layout tile—no

extra logic and no additional routing tracks—which

may not be true!) The next subsection will examine

the delay of interconnect from a top–down approach

by planning the overall physical length needed for

high-performance interconnect wires.

3.5. Putting It Together: Multiplexing Interval

We applied method C to a variety of interconnect

lengths from 1 to 10 mm and plotted the delay-per-

Table 5. Best delay-per-millimeter for different stages and wire models extracted from precharacterization data of method C.

Process FPGA interconnect stage Delay (ps/mm) 1� spacing, 1� width Delay (ps/mm) 2� spacing, 2� width

180 nm Multiplexed 207 138

Distributed drivea 108 69

90nm Multiplexed 199 131

Distributed drivea 91 58

aAlso corresponds to best possible ASIC repeater delay (full-swing).

0 2 4 6 8 10
0

10

20

30

40

50

60

Wirelengths (mm)

B
uf

fe
rs

iz
es

 (
x

m
in

im
um

)

Best Buffersize Data

dmux Mindelay buffersizes

ddistrib 10%–buffersizes

ddistrib Mindelay buffersizes

Distributed Stage Multiplexer Stage

Figure 14. Buffer size lookup table used for different wire lengths.

Lee et al.

millimeter results in Fig. 15. Since the x-axis

represents the planned total physical length of the

interconnect wire, we call it the multiplexing interval.
This can also be viewed as the distance between

Bprogrammable^ points in the wire. For reference, we

also plotted the best ASIC signal velocity (which is

independent of total wirelength). Data for both 1�/1�
and 2�/2� wire width/spacing is provided.

Referring to Fig. 15, we see the delay performance

of a 4 mm wire in 1�/1�/180 nm is õ155 ps/mm. If

the device is rescaled to 90 nm, the wire becomes 2 mm

long and delay improves by only 10% to õ140 ps/mm.

Increasing width/spacing of the 90 nm wire improves

delay to õ105 ps/mm. Alternatively, one might plan

to include longer architectural wires in the FPGA

device at 90 nm. At minimum width/spacing, delay

improves to õ115 ps/mm at 4 mm or õ110 ps/mm at

10 mm. Thus, it is possible to improve signal speed

by planning to lengthen the architectural wirelength.

However, a lower bound is still formed by the ASIC

delay.

3.6. Putting It Together: Path Delay Profile

Method C optimization is driven by HSPICE-

calculated delay to the final endpoint. However, in

0

50

100

150

200

250

300

0 2 4 6 8 10
Multiplexing Interval (mm)

B
es

t D
el

ay
 (

ps
 /

m
m

)

1x/1x/90nm
2x/2x/90nm
1x/1x/180nm
2x/2x/180nm

ASIC
delay

Figure 15. Determining a multiplexing interval for FPGA interconnect.

Table 6. Method C distributed buffer designs with one mux stage and Nj1 identical driver stages using HSPICE precharacterization data.

Wire-length

(mm)

Number of

stages (N)

1 Multiplexed stage Nj1 Distributed stages

HSPICE delay

(ps/mm)

Driver size B0

(�min.)

Length L0

(mm)

Driver size B1

(�min.)

Length L1

(mm)

Distributed design results (180 nm, 1� spacing, 1� width)

0.5 2 3.0 0.05 14 0.45 414

1.0 2 6.0 0.15 22 0.85 266

2.0 3 6.0 0.15 22 0.93 196

3.0 4 11 0.36 26 0.88 170

4.0 4 14 0.60 27 1.13 157

Distributed design results (90 nm, 2� spacing, 2� width)

2.0 4 12 0.15 43 0.62 103

3.0 5 17 0.26 47 0.69 90

4.0 6 19 0.30 48 0.74 84

The front-end mux is included in the overall delay.

Interconnect Driver Design for Long Wires in FPGA

the introduction of this paper it was argued that we

must also consider signal arrival time at all possible

interior points along the wire since it is not known in

advance whether the critical path will use the entire

physical length of the wire.

Path delay profiles for 2 and 3 mm interconnect are

plotted in Fig. 16 for the best lumped designs and for

several different distributed designs (with N=2, 3, or

4 total stages). From this metric, we see that several

interior points within the first 1 mm of a 2 mm

interconnect arrive earlier than the lumped design,

but the points past 1 mm arrive slightly later. At a

distance of 0.7 mm, distributed is 50 ps (15%) faster

and at 2.0 mm it is 40 ps (10%) slower. Overall, it is

not clear whether a distributed or lumped buffer

design would be faster for 2 mm interconnect after a

circuit is placed and routed. This will be investigated

in the next section, which shows that distributed

buffer design is better.

For 3 mm interconnect, we notice that distributed

buffering is always faster than lumped. Hence, at

some point, distributed design is always a better

choice. Furthermore, the PDP demonstrates that

significant delay savings can be obtained by more

accurately modeling delay to the interior points of a

wire. At 1.5 mm, the difference is 115 ps (465j

350 ps, or 25%), which is quite large.

VPR assumes that all points along the wire receive

the signal at the same time. However, for long

interconnect wires, it becomes very important to

model delay quite accurately during place and route.

This provides motivation for increased modeling

accuracy in VPR, which is also pursued in the next

section.

4. Delay Modeling in Place and Route

The previous section demonstrated the need to

distribute buffers along the length of long intercon-

nect wires. It also suggested that more accurate delay

modeling is needed for long interconnect wires

because early signal arrival can result in significant

delay improvements. Clearly, proper modeling is not

just needed for accurate timing analysis, but it is also

essential for the router to make the best possible

choices. In this section, we present the results of

adding this more accurate delay modeling to VPR,

which we call the ETM or early-turn model, and use

it to explore changes in router preferences. We also

consider the performance impact of adding fast input
paths to multiplexers to assist in accelerating

straight-through connections.

4.1. VPR Changes

Originally, VPR estimates delay to all points on a

wire as delay to the halfway point using the formula

1/2(RwireCwire/2). With ETM, interconnect wires are

broken into wire fragments, where each fragment

spans one CLB. This allows VPR to use its Elmore

delay calculator to more accurately calculate interior

point delays.

0 0.5 1 1.5 2
50

100

150

200

250

300

350

400

450

500

550

Location along wire (mm)

D
el

ay
 (

ps
)

N=2
N=3
N=4
Lumped

2mm Wire

0 0.5 1 1.5 2 2.5 3
50

100

150

200

250

300

350

400

450

500

550

Location along wire (mm)

D
el

ay
 (

ps
)

N=2
N=3
N=4
Lumped

3mm Wire

Figure 16. Path delay profiles show advantages of distributed buffering.

Lee et al.

The circuit construction step of method C was not

directly embedded into VPR due to concerns about

correct delay calibration of the internal Elmore

calculations. In a research architectural exploration

tool, such calibration is not overly important and

could probably be omitted for most non-circuit-design

research. However, for this paper, we considered the

accuracy of modeling a different number of stages to

be very important for capturing the true performance

benefit of ETM and distributed buffering.

To calibrate, we created a test netlist of a long,

straight connection and extracted delays in VPR

from the start to every CLB along the way. We

plotted this VPR-extracted PDP and compared it to

the HSPICE-computed PDP. The VPR architecture

file models buffers with an equivalent Rout for

Elmore delay calculations: we initialized Rout

according to the size of the buffer, but then made

minor manual adjustments (up to 20%) so the VPR-

PDP matched the HSPICE-PDP as closely as

possible. There is some mismatch because VPR

must snap buffer positions to the array grid (placing

it in either one CLB or the next, not halfway in

between). Also, VPR adds a small additional

capacitive load according to the number of signal

taps along the wire.

VPR must also include the full delay of large

multiplexers in the interconnect. We model straight

connections using a Bfast path^, or one input of the

2:1 multiplexer. All other turns must utilize a wide

fan-in mux, or Bslow path^. We built several

multiplexer sizes of two-level hybrid multiplexers

in HSPICE, extracted delays, and created a param-

eterized delay model [18]. Wherever a wide fan-in

multiplexer is used, the additional delay is calculated

according to this model and added into the VPR

routing graph.

Finally, the VPR router and timing analyzer were

checked to ensure that incremental delays were being

calculated correctly, and that the router was taking

advantage of early turn delay data to make improved

routing decisions.

0

10

20

30

40

50

60

70

80

90

alu
4

ap
ex

2

ap
ex

4

big
ke

y
clm

a
des

diff
eq

dsip

ell
ip

tic

ex
10

10
ex

5p
fri

sc

m
ise

x3 pdc
s2

98

s3
84

17

s3
85

84
.1

se
q

sp
la
ts

en
g

C
ri

tic
al

 P
at

h
(n

s)

FPT04
Lumped
ETM
Distrib4
Distrib4 +Fast

Figure 17. Delay breakdown for a 3.0 mm wire.

Table 7. Normalized critical path delay results.

Design
Lumped Distributed

Wirelengtha FPT04 design Lumped Lumped+Fast Lumped+ETM Lumped+ETM+Fast Distributed+ETM Distributed+ETM+Fast

0.5 mm (L4) 1.0 (20 ns) 0.90 0.82 0.88 0.81 (16.2 ns) – –

2.0 mm (L16) 1.0 (31 ns) 0.73 0.70 0.69 0.65 0.67 0.63 (19.5 ns)

3.0 mm (L16) 1.0 (38 ns) 0.70 0.67 0.63 0.60 0.56 0.54 (20.5 ns)

aL4 packs CLBs until full, L16 packs only one LUT per CLB to spread out the circuit over a larger array (creates a need for long

connections).

Interconnect Driver Design for Long Wires in FPGA

4.2. Results

The traditional 20 MCNC benchmark circuits were

mapped into four-input LUTs, packed into CLBs

containing eight BLEs, and placed once. Then, each

placed benchmark was routed several times, each using

different interconnect designs. The same channel width

is used to route a benchmark across interconnect

designs of the same logical wirelength. This was

determined by first doing a binary search to find the

minimum, then adding a fixed amount of additional

wires (8 or 32 for L4 or L16, respectively) to relax the

router and improve critical path results. For a particular

logical wirelength, the maximum channel width

needed across different buffering designs was then

used for all final routings of that benchmark.

The normalized geometric average critical path

delay is reported in Table 7 for several different

interconnect lengths. The critical path delays are

normalized according to the results obtained using

the circuit design published in [1] and labeled FPT04
Design in the table. The FPT04 circuit was designed

only for 0.46 mm physical wire lengths, so it is

expected to be slower on longer wires.

The performance of several different target inter-

connect lengths are provided. The 0.5 mm wirelength

is assumed to correspond well to a logical wirelength

of four CLBs (L4). For the 2 mm and 3 mm

wirelengths, a logical wirelength of 16 CLBs (L16)

is chosen. Since the MCNC circuits are quite small,

they do not fully Bexercise^ or properly exploit very

long wires. To compensate, the benchmark circuits

were packed to utilize only one LUT per CLB for L16

logical wirelengths; which spreads out the circuit onto

a much larger array size. Although this does not truly

represent a real FPGA architecture (which would have

mixed wire lengths) or a large circuit (which would

have long paths), it highlights the benefits of the

circuit design which is the focus of this work.

Naturally, determining the best mixture of logical

 Driver

 M
U

X Driver

CLB
 1

 CLB
2

 CLB
 N-1

CLB
N

Early Turns Normal Turns

 M
U

X

 Straight
 Thru

Figure 18. Early turns and normal turns.

Table 8. Effect of adding Fast Paths on turn counts.

Designs Average total number of turns Average early turns (%) Average normal turns (%) Average straight thrus (%)

Lumped 0.5 mm 7,587 57.3 25.7 16.0

+Fast 7,591 57.3 24.2 17.5

+ETM+Fast 7,698 59.2 20.8 18.9

Lumped 2.0 mm 10,978 87.6 6.9 4.9

+Fast 10,908 88.4 6.4 4.5

+ETM+Fast 11,057 88.4 5.1 5.3

Lumped 3.0 mm 10,983 87.5 6.9 5.0

+Fast 10,913 88.3 6.5 4.5

+ETM+Fast 11,073 88.2 5.2 5.5

Lee et al.

wire lengths is of great interest, but that effort is best

done by FPGA vendors themselves since they have

access to several real, large benchmark circuits and

complete, detailed modeling information about their

own architectures. The focus on this work is to

determine the best buffer sizes and positions for wide

range of possible scenarios.

From the results in Table 7, the lumped design

approach described here improves the FPT04 design

of 0.5 mm wires by 10%. Better delay modeling

 CLB CLB CLB CLB

 CLB CLB CLB CLB

 CLB CLB CLB CLB

 CLB CLB CLB CLB

 CLB

 CLB

 CLB

Fast Path

 CLB

 Sink
CLB

 CLB

 CLB
Source

 CLB

R
ou

te
 A

R
ou

te
 B

R
ou

te
 C

ET
 N
T

ET

 ET
 ET

ET

ET

ET

Routing No ETM
No Fast

No ETM
+ Fast

+ ETM
+ Fast

Route A - “Normal Turn” 1 2 3
Route B - “Straight Thru” 1 1 1

Route C - “All Early Turns” 1 2 2
Figure 19. Early turns alters the ranking of routing preferences.

Table 9. Summary of interconnect computational methods introduced.

Method Computational complexity Optimization metric Limitations

Lumped O(NIB) HSPICE Real interconnect is not lumped

Distributed (Elmore) O(LNIBN) Elmore No front end (multiplexing)

Distributed (HSPICE) O(BIL+NIL) HSPICE All distributed stages must be same length

N Number of drive stages, B number of steps in buffer size, L number of steps in wirelength.

Interconnect Driver Design for Long Wires in FPGA

(ETM) and better routing decisions account for an

additional 2% delay improvement. Addition of the

Bfast path^ to straight L4 connections improves

delay by another 7%, resulting in a total of 19%

improvement to the FPT04 design.

The 2 and 3 mm wirelengths achieve even more

significant performance improvements using the

design approach described in this paper. First, the

lumped design improves by 27–30%, the use of

better delay modeling and routing decisions

improves another 4–7%, and use of the Bfast path^
improves another 3–4%. Second, switching to dis-

tributed design helps both the 2 and 3 mm delays.

Even though the raw end-to-end delay performance
of 2 mm distributed interconnect is worse than
lumped as seen in the PDP, there is a small 2% net
improvement in delay due to the importance of early
turns and using ETM. The importance of distributed

design and ETM are both magnified in the 3 mm

design. Overall, the 3 mm wirelength is only 1 ns

slower (5%) than the 2 mm wirelength! Also, the

3 mm wirelength achieves an impressive 46%

reduction in critical path delay compared to the

FPT04 design. A breakdown of delay performance

on a circuit-by-circuit basis for the 3 mm wirelength

is provided in Fig. 17.

The addition of distributed buffering and improved

delay modeling affects decisions made by the router on

when/where to turn. Therefore, we decided to investi-

gate the impact of this by analyzing the frequency of

turns in the routing solution. Figure 18 defines what we

mean by Bearly turn^ and Bnormal turn^. Early turns

occur at any switch block (except the last one) or to

any CLB (except the last one). Normal turns occur at

the last CLB, or in the last switch block when the

signal changes direction. If the signal continues

straight, that is a Bstraight thru^.

Table 8 gives average turn data across the

benchmark circuits. The addition of the multiplexer

Bfast path^ and ETM does not significantly change

the total number of turns. However, it does affect the

distribution: early turns and straight thrus both

increase slightly at the expense of normal turns. In

the 2 mm case, normal turns are reduced by 26%

(from 6.9% of all turns to just 5.1%). This is a

significant reduction in turns at the end of a wire. We

suggest further study into this, but it appears that

making turns at the end of a wire is becoming less

important. This is a significant architectural result

because it suggests less switching flexibility is

needed in S blocks.

To help understand why turns at the end of a wire are

less important with fast paths and ETM, we constructed

a hypothetical case shown in Fig. 19. Originally, VPR

was unable to distinguish the performance of routes A,

B, and C: all paths use three wires and have the same

delay, making them equally preferable. With the fast

path, route B becomes preferred because it has lower

delay along one turn. With ETM also enabled, route A

becomes less attractive than route C because C initially

appears to have lower delay during lowest-delay

wavefront expansion. Although this helps explain the

demotion of normal turns to early turns and straight

thrus, it does not account for all cases. We think this

will also mildly impact the frequency and type of

hardwired turns suggested in [19].

5. Conclusions

This paper has demonstrated three methods for

solving the FPGA interconnect buffer spacing and

sizing problem: the original lumped method, which

uses HSPICE delays and extensively nested loops, a

distributed method which also extensively nests

loops but uses Elmore delay for faster evaluation at

the cost of lower accuracy, and a second distributed

method which is both fast and accurate by separating

the slow HSPICE-based precharacterization step

from the fast computational step used when solving

the problem. The three methods are qualitatively

compared in Table 9. Method A produces lumped

designs with all inverters at one end, while the other

two methods provide distributed design solutions.

Method C is quite fast and accurate, achieving delay

errors within 4% of HSPICE, because it is based

upon precharacterizing a circuit with HSPICE. It is

also fast enough to be embedded in an FPGA

architectural exploration tool.

Using the best interconnect designs found with

method C, we demonstrated an average critical path

delay reduction of 19% using 0.5 mm wires (logical

architectural length 4) compared to previous work.

With longer 2 and 3 mm wires, the improvement was

even more dramatic at 37 and 46%, respectively. For

these longer wires, most of the benefit came from

optimizing the buffers for the specified wirelength,

Lee et al.

demonstrating the importance of being aware of the

physical design constraints. Even so, significant

benefits can be attributed to improved delay modeling

and early turn use in VPR, as well as improvements

due to the superiority of distributed buffer design.

With all of these changes, we witnessed a õ25%

reduction in the fraction of Bnormal turns^ that occur

at the end of a wire. This may have impact on

architectural decisions and should be studied in future

work.

This work has focused on obtaining the best end-

to-end circuit delay performance. Future work could

modify this to optimize for early turn performance as

well—we briefly investigated this by integrating the

area under the PDP curve and found it to be a useful

optimization metric. As well, we noticed that the

design space is tolerant to small changes in buffer

spacing and sizing. This means there is significant

room to also address additional optimization goals

such as minimum-power switching as well.

Acknowledgments

An earlier version of this work appeared as [20].

Further details can be found in [18]. This research

was partially supported by Micronet R&D and

NSERC Discovery Grants. Process data and CAD

tools were obtained through CMC Microsystems.

This research has also been enabled by the use of

WestGrid computing resources, which are funded in

part by the Canada Foundation for Innovation,

Alberta Innovation and Science, BC Advanced

Education, and the participating research institutions.

WestGrid equipment is provided by IBM, Hewlett

Packard and SGI.

References

1. G. Lemieux, E. Lee, M. Tom, and A. Yu, BDirectional and

Single-Driver Wiring in FPGA Interconnect,^ in Internation-

al Conference on Field-Programmable Technology, Dec.

2004.

2. M. Lin, A. El Gamal, Y.-C. Lu, and S. Wong,

BPerformance Benefits of Monolithically Stacked 3D-

FPGA,^ in International Symposium on FPGAs, Feb. 2006,

pp. 113–122.

3. D. Lewis et al, BThe Stratix II Logic and Routing

Architecture,^ in International Symposium on FPGAs, Feb.

2005, pp. 14–20.

4. V. Adler and E. G. Friedman, BRepeater Insertion to Reduce

Delay and Power in RC Tree Structures,^ in Conference on

Signals, Systems & Computers, Nov. 1997, pp. 749–752.

5. V. Adler and E. G. Friedman, BUniform Repeater Insertion in

RC Trees,^ IEEE Trans. Circuits Syst. I, vol. 47, no. 10, 2000,

pp. 1515–1524.

6. V. Adler and E. G. Friedman, BRepeater Design to Reduce

Delay and Power in Resistive Interconnect,^ IEEE Trans.

Circuits Syst. II, vol. 45, no. 5, 1998, pp. 607–616.

7. C. J. Alpert, J. Hu, S. S. Sapatnekar, and C. N. Sze, BAccurate

Estimation of Global Buffer Delay Within a Floorplan,^ IEEE

Trans. Comput.-Aided Des., vol. 25, no. 6, 2006, pp. 1140–1146.

8. K. Banerjee and A. Mehrotra, BA Power-Optimal Repeater

Insertion Methodology for Global Interconnects in Nanometer

Designs,^ IEEE Trans. Electron. Devices, vol. 49, no. 11,

2002, pp. 2001–2007.

9. S. Dhar and M. A. Franklin, BOptimum Buffer Circuits for

Driving Long Uniform Lines,^ IEEE J. Solid-State Circuits,

vol. 26, no. 1, 1991, pp. 32–41.

10. R. H. J. M. Otten, BGlobal Wires: Harmful?,^ in International

Symposium on Physical Design, April 1998, pp. 104–109.

11. L. van Ginneken, BBuffer Placement in Distributed RC-tree

Networks for Minimal Elmore Delay,^ IEEE International

Symposium on Circuits and Systems, May 1990, pp. 865–

868.

12. N. Nassif, M. P. Desai, and D. H. Hall, BRobust Elmore Delay

models Suitable for Full Chip Timing Verification of a

600MHz CMOS Microprocessor,^ in Design Automation

Conference, 1998, pp. 230–235.

13. V. Betz and J. Rose, BCircuit Design, Transistor Sizing and

Wire Layout of FPGA Interconnect,^ in IEEE Custom

Integrated Circuits Conference, May 1999, pp. 171–174.

14. V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for

Deep-Submicron FPGAs: Kluwer, 1999.

15. G. Lemieux and D. Lewis, Design of Interconnection Net-

works for Programmable Logic, Kluwer, 2004.

16. G. Lemieux and D. Lewis, BCircuit Design of Routing

Switches,^ in International Symposium on FPGAs, Feb.

2002, pp. 19–28.

17. S. Sood, M. Greenstreet, and R. Saleh, BA Novel Distrib-

uted and Interleaved FIFO for Source-synchronous Inter-

connect,^ VLSI Design and Test Symposium, Goa, India,

Aug. 2006.

18. E. Lee, Interconnect Driver Design for Long Wires in Field-

Programmable Gate Arrays, Masters thesis, Dept. of ECE,

University of British Columbia, June 2006.

19. S. Sivaswamy, G. Wang, C. Ababei, K. Bazargan, R. Kastner,

and E. Bozorgzadeh, BHARP: Hard-wired Routing Pattern

FPGAS,^ in International Symposium on FPGAs, February

2005, pp. 21–29.

20. E. Lee, G. Lemieux, S. Mirabbasi, B:Interconnect Driver

Design for Long Wires in Field-Programmable Gate Arrays,^
IEEE International Conference on Field-Programmable Tech-

nology, Bangkok, December 2006, pp. 89–96.

Interconnect Driver Design for Long Wires in FPGA

Edmund Lee received the B.A.Sc. degree in computer

engineering from University of Toronto, in 2003 and the

M.A.Sc degree in computer engineering from University of

British Columbia in 2006. He worked as a co-op intern at

Actel (2001–2002) for 16 months, and a research intern at

Intel (2004) for 6 months. Mr. Lee co-authored a paper that

won the Best Paper Award at the IEEE International
Conference on Field-Programmable Technology in 2004. He

is presently working at the Altera Toronto Technology Centre.

Guy Lemieux received the B.A.Sc degree from the division of

engineering science at the University of Toronto, and the

M.A.Sc. and Ph.D. degrees in electrical and computer engineer-

ing at the University of Toronto. Dr. Lemieux_s research interests

include computer-aided design algorithms, VLSI and SoC circuit

design, FPGA architectures, and parallel computing. His special-

ization is in interconnection network design and routing

algorithms. In 2003, he joined the Department of Electrical and

Computer Engineering at The University of British Columbia,

Canada, where he is an Assistant Professor. Dr. Lemieux. He is

co-author of the book Design of Interconnection Networks for
Programmable Logic and he co-authored a paper that won the

Best Paper Award at the IEEE International Conference on
Field-Programmable Technology in 2004.

Shahriar Mirabbasi received the B.Sc. degree in electrical

engineering from Sharif University of Technology, Tehran,

Iran in 1990 and the M.A.Sc and Ph.D. degrees in electrical

and computer engineering from University of Toronto, Canada

in 1997 and 2002, respectively. From May to August 1997, he

was with Gennum Corporation, Burlington, ON, Canada

working on the system design of cable equalizers for serial

digital video and HDTV applications. During January 2001 to

June 2002, he worked at Snowbush Microelectronics, Toronto,

Canada, on the design and test of high-speed mixed-signal

CMOS integrated circuits including ADC and serializer/

deserializer blocks. In August 2002, he joined the Department

of Electrical and Computer Engineering of the University of

British Columbia, Vancouver, BC, Canada, where he is

currently an Associate Professor. His current research interests

include analog, mixed-signal, and radio-frequency integrated

circuit and system design for high-speed wireless and wireline

data communication applications, wireless sensor networks,

and biomedical implants.

Lee et al.

	Interconnect Driver Design for Long Wires in Field-Programmable Gate Arrays
	Abstract
	Introduction
	Background and Problem Formulation
	Interconnect Design Framework
	Width and Spacing: Wire RC Characterization
	Method A: Lumped Design (HSPICE based)
	Method B: Distributed Design Using Nested Sweeps (Elmore based)
	Method C: Distributed Design Using Concatenation (HSPICE based)
	Putting It Together: Multiplexing Interval
	Putting It Together: Path Delay Profile

	Delay Modeling in Place and Route
	VPR Changes
	Results

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

