IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 11, NOVEMBER 2008

1521

GlitchLess: Dynamic Power Minimization in FPGAs
Through Edge Alignment and Glitch Filtering

Julien Lamoureux, Guy G. F. Lemieux, and Steven J. E. Wilton

Abstract—This paper describes GlitchLess, a circuit-level tech-
nique for reducing power in field-programmable gate arrays
(FPGAs) by eliminating unnecessary logic transitions called
glitches. This is done by adding programmable delay elements
to the logic blocks of the FPGA. After routing a circuit and
performing static timing analysis, these delay elements are pro-
grammed to align the arrival times of the inputs of each lookup
table (LUT), thereby preventing new glitches from being gen-
erated. Moreover, the delay elements also behave as filters that
eliminate other glitches generated by upstream logic or off-chip
circuitry. On average, the proposed implementation eliminates
87% of the glitching, which reduces overall FPGA power by
17%. The added circuitry increases the overall FPGA area by
6% and critical-path delay by less than 1%. Furthermore, since
it is applied after routing, the proposed technique requires little
or no modifications to the routing architecture or computer-aided
design (CAD) flow.

Index Terms—Field-programmable gate arrays (FPGAs), low-
power, switching activity minimization.

I. INTRODUCTION

ITH POWER dissipation of field-programmable gate
W arrays (FPGAs) increasing each generation, power
reduction is quickly becoming the main challenge for imple-
menting large applications. FPGAs dissipate significantly more
power than application-specific integrated circuits (ASICs)
because of the added circuitry needed to make them pro-
grammable. Although static power dissipation has received
significant attention recently due to its sharp increase, dynamic
power still accounts for 62% of total power [1].

There are a number of ways to reduce dynamic power in
FPGAs. Techniques that can be used at the physical level in-
clude lowering the supply voltage [2] or increasing the threshold
voltage [3]. At the circuit level, device features can be sized less
aggressively for speed to reduce capacitive loading and there-
fore dynamic power [4]. At the architecture level, power man-
agement [5] and clock network design are also helpful [6]. At the
computer-aided design (CAD) level, grouping together high-ac-
tivity logic reduces dynamic power [7]. A summary of tech-
niques to reduce power is described in [8].

This paper introduces GlitchLess, a circuit-level technique
that reduces dynamic power in FPGAs by actively preventing

Manuscript received January 23, 2007; revised August 20, 2007. Current ver-
sion published October 22, 2008. This research was supported in part by Altera
and the Natural Sciences and Engineering Research Council of Canada.

The authors are with the Department of Electrical and Computer Engi-
neering, University of British Columbia, Vancouver, BC V6T 174, Canada
(e-mail: lemieux @ece.ubc.ca; julienl @ece.ubc.ca; stevew @ece.ubc.ca).

Digital Object Identifier 10.1109/TVLSI.2008.2001237

each logic output from toggling until all of its inputs have fully
resolved. Although there are a few possible implementations,
the one explored in this paper adds programmable delay ele-
ments to the configurable logic blocks (CLBs). These delay
elements programmably align the arrival times of early-arriving
signals to the inputs of the lookup tables (LUTSs) to prevent
the generation of glitches. Additionally, the delay elements
also behave as filters that eliminate other glitches generated by
upstream logic or off-chip circuitry. Since it is applied after
routing, GlitchLess requires little or no modifications to the
FPGA routing architecture or CAD flow. Furthermore, it can
be combined with other low-power techniques.

In theory, GlitchLess offers the potential to eliminate all
glitching in FPGAs, thereby saving significant amounts of
power. In practice, however, we must tradeoff the power saved
with the area and speed overhead incurred by the additional
circuitry required to implement it. Fortunately, the impact on
circuit speed is not significant (other than increased parasitic
capacitance) because only the early-arriving signals need to
be delayed. However, the programmable delay elements do
consume chip area, so we should expect a modest increase in
the area of the device. The tradeoff between glitch reduction
(hence, power), area, and speed will be quantified in this paper.
Specifically, this paper examines the following questions.

1) How should the programmable delay elements be con-
nected to the logic? The programmable delay elements
could conceivably be connected to the inputs or outputs of
each CLB or they could be connected to the inputs of the
LUTs within the CLBs.

2) How many programmable delay elements are needed
within each CLB? Intuitively, adding more programmable
delay elements to the CLBs eliminates more glitches since
more signals can be aligned; however, it also increases the
area overhead.

3) How flexible should the programmable delay elements be?
The more flexible each delay element is, the better it will
be able to align the arrival times of signals. However, there
is a tradeoff between this flexibility and the area overhead
of the added circuits.

4) Does the delay insertion technique work when there is
process, voltage, and/or temperature (PVT) variation?
PVT affects both the delay of the existing FPGA logic and
the delay of the programmable delay elements. Special
measures must be taken to ensure that the delay insertion
technique can tolerate variation well enough to eliminate
glitches without introducing timing violations.

A preliminary version of this work appeared in [9]. This

paper introduces a new delay insertion scheme which reduces

1063-8210/$25.00 © 2008 IEEE

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 26, 2008 at 22:07 from |IEEE Xplore. Restrictions apply.

1522

the area overhead and proposes new techniques and a new
programmable delay element that tolerates PVT variation more
effectively than the previous work.

This paper is organized as follows. Section II presents termi-
nology used in this paper to describe glitching and PVT varia-
tion and then summarizes existing techniques that can be used
to minimize glitching. Section III examines how much glitching
occurs within FPGAs. Section IV presents the proposed delay
insertion schemes. Section V describes the experimental frame-
work used to estimate power savings and area and delay over-
head. Section VI describes how each scheme is calibrated and
Section VII presents the overall power savings and overhead.
Finally, Section VIII summarizes the results and presents our
conclusions.

II. BACKGROUND

A. Switching Activity Terminology

There are two types of transitions that can occur on a signal.
The first type is a functional transition, which is necessary in
order to perform a computation. A functional transition causes
the value of the signal to be different at the end of the clock
cycle than at the beginning of the clock cycle. In each cycle,
a functional transition occurs either once or the signal remains
unchanged. The second type of transition is called a glitch (or a
hazard) and is not necessary in order to perform a computation.
These transitions can occur multiple times during a clock cycle.

B. PVT Variation

Process variation refers to manufacturing imprecision,
leading to variability in characteristics like device geometry or
even placement and concentration of dopant atoms. Similarly,
voltage variation refers to the variability of the power supply
and temperature variation refers to variability of the tem-
perature of the surrounding environment. Collectively, these
are called PVT variation. Variations can either be die-to-die
(different dies have different properties) or within-die (similar
circuit elements within the same chip have different properties).
In either case, variations can affect both the timing and power
dissipation of the devices.

C. Existing Glitch Minimization Techniques

Several techniques to reduce power have been proposed, in-
cluding logic decomposition [10], loop folding [11], high-level
compiler optimization [12], technology mapping [13], and
clustering [7]. These techniques reduce switching activity,
which eliminates some glitching, but they typically incur area
and delay penalties as they reorganize the structure of the
circuit. Another approach to reduce glitches adds flip-flops
(pipelining) [14] to reduce the combinational path length.
However, this increases the latency of the circuit. To pre-
serve latency, alternatives include adding flip-flops that use
the opposite (e.g., negative) clock edge [15] or relocating the
flip-flops by retiming [16]. The gate freezing technique [17]
suppresses 1-0 transitions on selected gate outputs using an
nMOS footer controlled by a fixed-delay circuit. Similarly, a
delay insertion technique described in [18] reduces glitching by

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 11, NOVEMBER 2008

aligning the input arrival times of gates using delay elements
with a fixed delay. These last two techniques are applied to
ASIC-style circuits where the location and amount of delay
to insert can be tailored for each circuit by analyzing which
nodes have high activity and large capacitance. However, these
techniques are not suitable for FPGAs since the applications
are not known until after fabrication, making it is impossible to
determine, at fabrication time, where the extra delay circuitry
should be located or how much delay to add. In this paper, we
target FPGAs by adding programmable delay elements to the
architecture. The design and location of these elements must be
considered carefully, since their overhead can overwhelm any
power savings obtained from glitch removal.

III. GLITCHING IN FPGAS

This section begins with a breakdown of functional versus
glitching activity to determine how much glitching occurs
within FPGAs. It then examines the width of typical glitches
and determines how much power is dissipated by a single
glitch. Finally, it indicates how much power could be saved
if glitching could be completely eliminated. These statistics
are important, not only because they help motivate our work,
but also because they provide key numbers (such as typical
pulse widths) that will be needed in Section VI when the delay
insertion schemes are calibrated.

A. Switching Activity Breakdown

Table I reports the switching activities for a suite of bench-
mark circuits implemented on FPGAs. These activities are gath-
ered using gate-level simulation of a post-place and route im-
plementation for a set of benchmark circuits (see Section V for
more details). Gate-level simulations provide the functional and
total activity; the glitching activity is computed as the difference
between these two quantities. In general, the amount of glitching
is greater in circuits with many levels of logic, uneven routing
delays, and exclusive-or logic. As an example, C6288 is an un-
pipelined 16-bit array multiplier that has four times more glitch
transitions than functional transitions.

B. Pulse Width Distribution

In FPGAs, glitches are generated at the output of a LUT when
the input signals transition at different times. The pulse width of
these glitches depends on how uneven the input arrival times
are. Intuitively, we would expect FPGA glitches to be wider
than ASIC glitches since FPGA interconnect introduces larger
delays. Fig. 1 plots the pulse width distribution of the C6288
circuit. The distribution was obtained using event-driven simu-
lation and delays from the versatile place and route (VPR) tool
[19], as described in Section V. The graph shows that the ma-
jority of glitches have a pulse width between 0 and approxi-
mately 10 ns. Although this range varies across the benchmark
circuits, we have found that the shape of the distribution is sim-
ilar for every circuit.

C. Power Dissipation of Glitches

The parasitic resistance and capacitance of the routing re-
sources filters out very short glitches. To measure the impact of

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 26, 2008 at 22:07 from |IEEE Xplore. Restrictions apply.

LAMOUREUX et al.: GLITCHLESS: DYNAMIC POWER MINIMIZATION IN FPGAS THROUGH EDGE ALIGNMENT AND GLITCH FILTERING

1523

TABLE I TABLE II
BREAKDOWN OF SWITCHING ACTIVITY FPGA POWER WITH AND WITHOUT GLITCHING
A Logic L Func. Glitch % o Power (mW) %
Circuit | pepth | ACUVIY | activity | Activity | Glitch Circuit With Without Difference
C1355 4 0.32 0.23 0.09 27.5 Glitching Glitching
C1908 10 0.26 0.17 0.09 34.6 C1355 9.5 6.7 28.8
C2670 7 0.27 0.21 0.06 222 C1908 6.2 4.9 21.1
C3540 12 0.42 0.23 0.19 452 C2670 21.5 18.6 13.4
C432 11 0.26 0.18 0.08 29.3 C3540 21.3 14.6 31.7
C499 4 0.34 0.23 0.11 31.9 C432 46 3.8 171
C5315 10 0.40 0.25 0.15 36.7 C499 8.7 57 346
C6288 28 1.56 0.29 1.27 81.1 C5315 347 26.8 228
C7552 9 0.39 0.23 0.16 42.0 C6288 216 112 73.1
€880 9 0.23 0.19 0.05 19.8 C7552 39.9 29.8 255
alud 7 0.08 0.07 0.01 13.1
€880 5.8 5.3 9.6
apex2 8 0.05 0.04 0.01 13.7
alud 39.2 37.8 3.6
apex4 6 0.04 0.03 0.01 32.3 > 412 394 a3
des 6 0.27 0.17 0.10 36.8 apex : ' '
ex1010 8 0.03 0.01 002 | 529 apex4 24.5 22.0 10.1
ex5p 7 0.17 0.08 009 | 51.0 des 88.2 724 17.9
misex3 7 0.06 0.05 0.01 20.9 ex1010 514 41.9 18.4
pdc 9 0.03 0.02 0.01 31.8 ex5p 29.7 21.4 28.1
seq 7 0.05 0.04 0.01 16.0 misex3 416 38.3 8.1
spla 8 0.05 0.03 0.02 42.7 pdc 35.8 31.0 13.3
Geomean| 8.1 0.024 0.019 0.047 30.8 seq 38.3 36.0 6.1
spla 45.5 35.8 214
Pulse Width Distribution (C6288) Geomean 243 18.8 226
f
[}
Q
@
o
o (@)
o]
2
f R
012 3456 7 8 91011121314 1516 17 18 19

Pulse Width (ns)

Fig. 1. Pulse width distribution of glitches.

1.0 R LR R R L CEET LD .

0.9 frrveeeneereeceencensefiiuiiiiiiitiitettiiciiiiiitiittiiiititctitttoteiitens
[0 - T Ry R T T L)
Q.7 frrvveveecreesnecacfeneitneeneetectoceencceecaecctcastocsoaccncnccnacancns
[0 - T R B R L L LE LRI
0_5 B T LR R R T P LR T TRy
[0 1 B R L T R TR R T TR
0.3 B A R L L L L LR L LR LR R TR
0_2 P LR T <R R R L LR R L LR
[T B RS 2 R P TR R T T

0.0 T
(o] 200

Normalized Power

400 600
Pulse Width (ps)

Fig. 2. Normalized power versus pulse width.

this, HSPICE was used to determine power with respect to pulse
width. Fig. 2 illustrates the relative power dissipated when pulse

Fig. 3. Delaying early-arriving signal removes glitch.

widths ranging from O to 1 ns are applied to an FPGA routing
track that spans four CLBs. A 180-nm process was assumed.

The graph illustrates that pulses less than or equal to 200 ps
in duration are mostly filtered out by the routing resources. All
pulses that are 300 ps or longer in duration dissipate approxi-
mately the same amount of power. Thus, if the input signals of
a gate arrive within a 200-ps window, the glitching of that gate
is effectively eliminated.

D. Potential Power Savings

Table II reports the average total power dissipated by circuits
when implemented in an FPGA. The second column reports
the power of the circuits in the normal case, when glitching
is allowed to occur. The third column reports the power in
the ideal case, when glitching is eliminated with no overhead.
The fourth column shows the percent difference between the
two; this number indicates how much power could be saved
if glitching was completely eliminated without any overhead.

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 26, 2008 at 22:07 from |IEEE Xplore. Restrictions apply.

1524

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 11, NOVEMBER 2008

—D—;
- ik | BLE — BLE : BLE
ol _D_ QI o
—=D>—
K | BLE =] BLE =] BLE o]
=)
+iin N 1 N N
—D>——
*K | BLE BLE BLE
> |
(a) (b) ()
—Df= g —D>f= —
= +K§l BLE G +K3$l BLE " <k | BLE
54 H—H ol H—H oI D.‘i,‘
_D--i;}- g ,_D--i;)— =
*K§l BLE p +K{l BLE +k§| BLE
) 9 Y Y 14w N 1 14n+5 N
*K§l BLE = +K}§l BLE EK BLE
=N =N =3
_Di 5
(d) (e)

®

Fig. 4. Delay insertion schemes. Original VPR logic block. (b) Scheme 1: LUT inputs. (c) Scheme 2: Gradual LUT inputs. (d) Scheme 3: LUT inputs + outputs.

(e) Scheme 4: CLB and LUT inputs. (f) Scheme 5 LUT inputs 4 bank.

Depending on the circuit, the potential power saving ranges
between 4% and 73%, with average savings of 22.6%. These
numbers motivate a technique for reducing glitching in FPGAs.

IV. GLITCH ELIMINATION

This section describes the techniques used in this paper to
eliminate glitching. It begins by describing our proposed tech-
nique and discusses other possible techniques as well. It then
presents five variations (or schemes) of the proposed technique,
which employ delay elements in different locations within the
FPGA logic blocks. It then describes the programmable delay
element that is used to align the arrival times and the CAD algo-
rithms that are used to configure these programmable delay ele-
ments. Finally, it describes techniques that can be used to make
programmable delay insertion more tolerant to PVT variation.

A. Glitch Elimination Techniques

Our proposed technique involves adding programmable
delay elements to the CLBs of the FPGA. Within each CLB,
the programmable delay elements are configured to delay
early-arriving signals so as to align the arrival times on each
LUT input to eliminate glitching. The technique is shown in
Fig. 3; by delaying input c, the output glitch can be eliminated.
Note that the overall critical-path of the circuit is not increased
since only the early-arriving inputs are delayed.

Another technique that we considered involved modifying the
placement and routing algorithms to be glitch-aware. By placing
CLBs at even distances from common sources and/or routing
connections to balance arrival-times, the amount of glitching

could likely be reduced. The inherent problem with this ap-
proach is that it is difficult to balance arrival-times by making
the late-arriving fan-ins faster since the CAD algorithms have al-
ready been optimized to minimize critical-path delay. The other
alternative is to balance arrival-times by making the early-ar-
riving signals slower. This approach; however, would not min-
imize power as efficiently as the proposed technique since the
routing resources, which would effectively be used to add delay
to early arriving signals, dissipate more dynamic power than the
proposed programmable delay element, which uses a large re-
sistance (as opposed to capacitance) to delay signals.

B. Architectural Alternatives

We consider five alternative schemes for implementing the
delay insertion technique; the schemes differ in the location of
the delay elements within the CLB. Fig. 4(a) illustrates the base-
line CLB. A CLB consists of LUTs, flip-flops, and local inter-
connect. The LUTs and FFs are paired together into basic logic
elements (BLEs). Three parameters are used to describe a CLB:
I specifies the number of input pins, N specifies the number of
BLEs and output pins, and K specifies the size of the LUTs.
The local interconnect allows each BLE input to choose from
any of the I CLB inputs and N BLE outputs. Each BLE output
drives a CLB output. The five schemes we consider for adding
delay elements to a CLB are illustrated in Fig. 4(b)—(f), each of
which are described in the following.

In Scheme 1, the programmable delay elements are added
at the input of each LUT, as shown in Fig. 4(b). This archi-
tecture allows each LUT input to be delayed independently.

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 26, 2008 at 22:07 from |IEEE Xplore. Restrictions apply.

LAMOUREUX et al.: GLITCHLESS: DYNAMIC POWER MINIMIZATION IN FPGAS THROUGH EDGE ALIGNMENT AND GLITCH FILTERING

We describe the architecture using three parameters: min_in,
max_in, and num_in. The min_in parameter specifies the preci-
sion of the delay element connected to the LUT inputs. Intu-
itively, more glitching can be eliminated when min_in is small
since the arrival times can be aligned more precisely. On the
other hand, there is more overhead when min_in is small since
each programmable delay element requires more stages to pro-
vide the extra precision. The max_in parameter specifies the
maximum delay that can be added to each LUT input. Intu-
itively, more glitching can be eliminated when max_in is large
since wider glitches can be eliminated. However, there is more
overhead when max_in is large. Finally, the num_in parameter
specifies how many LUT inputs have a programmable delay el-
ement, between 1 and K (the number of inputs in each LUT).
Increasing num_in reduces glitching but increases the overhead.
In Section VI, we quantify the impact of these parameters on
the power, area, and delay of this scheme.

The disadvantage of Scheme 1 is that, since some inputs need
very long delays for alignment, large programmable delay ele-
ments are required. Since num_in delay elements are needed for
every LUT, this technique has a high area overhead if num_in
is large. In Scheme 2, shown in Fig. 4(c), the programmable
delay elements are in the same location as Scheme 1; however,
the maximum delay of the elements is gradually decreased for
each LUT input (by a factor of 0.5). Intuitively, the arrival times
of the inputs most likely vary with one another; therefore the
area overhead can be reduced by reducing the maximum delay
of some of the delay elements without a significant penalty on
glitch reduction. The same parameters used to describe Scheme
1 are used to describe Scheme 2, with max_in specifying the
maximum delay of the largest delay element.

In Scheme 3, shown in Fig. 4(d), additional programmable
delay elements are added to the outputs of LUTs (we refer to
these new delay elements as LUT output delay elements). With
this architecture, a single LUT output delay element could be
used to delay a signal that fans out to several sinks, potentially
reducing the size and the number of delay elements required at
each LUT input. We describe the LUT output delay elements
using two parameters min_out and max_out, which specify the
minimum and maximum delay of the output delay elements.
The LUT input delay elements are described using the same
parameters as Scheme 1.

Scheme 4, shown in Fig. 4(e), is another way to reduce the
area required for the LUT input delay elements. Here, addi-
tional delay elements, which we call CLB input delay elements,
are added to each of the I CLB inputs. Since there are typi-
cally fewer CLB inputs than there are LUT inputs in a CLB,
this could potentially result in an overall area savings. The pa-
rameters min_c and max_c specify the minimum and maximum
delay of the CLB input delay elements. We assume every CLB
input has a delay element, in order to maintain the equivalence
of each CLB input.

Finally, Scheme 5, shown in Fig. 4(f), reduces the size of the
LUT input delay elements by adding a bank of delay elements
which can programmably be used by all LUTs in a CLB. We
refer to these delay elements as bank delay elements. Signals
that need large delays can be delayed by the bank delay ele-
ments, while signals that need only small delays can be delayed

1525

TABLE III
DELAY INSERTION PARAMETERS
Scheme | Parameter Meaning
min_in Min delay of LUT input delay element
1-5 max in Max delay of LUT input delay
— element
num_in # of LUT input delay elements / LUT
. |Max delay of LUT input delay
2 max_in element (gradually decreases by
50% for each input)
min out Min delay of LUT output delay
3 — element
max_out Max delay of LUT output delay
element
min_c Min delay of CLB input delay element
4 Max delay of CLB input delay
max_c element
5 max_b Max delay of bank delay element
num_b # of bank delay elements / CLB

Low Resistance Configuration SRAM Bits

Output

Input —|—

Y Y LY Y
;I;‘WI e e

High Resistance

Bypass

Fig. 5. New programmable delay element.

by the LUT input delay elements. In this way, the LUT input
delay elements can be smaller than they are in Scheme 1. These
bank delay elements are described using two additional parame-
ters: max_b and num_b. The max_b parameters specify the max-
imum delay of the bank delay elements and the num_b param-
eter specifies the number of programmable delay elements in
the bank. Note that we assume that the minimum delay of the
bank delay element is equal to the maximum delay of the LUT
input delay element since only one of delay elements needs to
add precision.

Table III summarizes the parameters used to describe each
scheme. The area and delay overhead for each scheme, as well as
their ability to reduce glitches, will be quantified in Sections VI
and VIL

C. Programmable Delay Element

Fig. 5 illustrates an example of the programmable delay el-
ement used in each of the delay insertion schemes. The circuit
has multiple delay stages (five in this example), each consisting
of two transmission gates and an SRAM cell. Each stage has a
fast and a slow mode, which is controlled by the value stored in
that SRAM cell. In the slow mode, the signal must pass through
the slow transmission gate, consisting of pass-transistors with
long channel lengths. In the fast mode, the signal is allowed
to pass through fast a transmission gate consisting of a min-
imum sized transistor. By approximately doubling the resistance

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 26, 2008 at 22:07 from |IEEE Xplore. Restrictions apply.

1526

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 11, NOVEMBER 2008

icalc_needed_delays (circuit) {
/I 'in topological order beginning from the primary inputs
foreach node n € circuit {
Arrival_Time(n) = 0.0;
foreach faninfe n
if (Arrival_Time(f) + Delay(n, f) > Arrival_Time(n))
Arrival_Time(n) = Arrival_Time(f) + Fanin_Delay(n, f);
}

foreach node n e circuit {
foreach faninf e n
Needed_Delay(n, f) = Arrival_Time(n) -
Arrival Time(f) - Fanin_Delay(n, f);

133}

Fig. 6. Calculating the delay needed to align the inputs.

of each successive stage, the circuit can be configured using n
bits to produce one of 2" different delay values with even incre-
ments. Specifically, the circuit can be configured to produce any
delay A. € {k,7+k,27+k,37+k, ..., (2"—1)7+k}, where T
is the minimum delay increment and k is the delay produced by
the (nonzero) bypass resistances and the inverters. Note that this
binary approach is more efficient than a straightforward linear
arrangement of equal-delay elements since it requires signifi-
cantly less multiplexing to select the needed delay.

In addition to n delay stages, the programmable delay ele-
ment has a 2-to-1 multiplexer and a buffer. The multiplexer is
required to bypass the first n — 1 stages when a very small delay
is needed. Without this, the minimum delay of the circuit (k)
would be too large. The buffer consists of two inverters with
long channel lengths to minimize short-circuit power.

This is the circuit we use to obtain the area, power, and delay
overhead for the proposed delay insertion technique. The pro-
grammable circuit produces the required delays and careful con-
sideration was taken to minimize the area and power dissipa-
tion of the circuit. This being said, there are likely other cir-
cuit-level techniques that can be used to align input edges and
filter glitches that may be even more efficient. Our main goal is
to validate the overall technique and to give a reasonable account
of the tradeoffs between power savings and area/delay overhead.

D. CAD Algorithms

This section describes the algorithms used to determine the
configuration of each programmable delay element. This con-
figuration occurs after placement and routing, when accurate
delay information is available.

For all architecture schemes, the quantity Needed_Delay is
first calculated for each LUT input using the algorithm in Fig. 6.
This quantity indicates how much delay should be added to the
LUT input so that all LUT inputs transition at the same time.
Since the LUT inputs can have different speeds, the delay differ-
ence accounted for when the arrival times are calculated. Specif-
ically, the Fanin_Delay(n, f) value represents the propagation
delay from f to n, including both the interconnect delay and the
precise logic delay determined from a detailed timing analysis.

The next step is to implement a delay as close to
Needed Delay as possible for each LUT input. In all but
the first scheme, signals can be delayed in more than one way.
Hence, the technique used to determine and to implement the
needed delay for each scheme is different.

[scheme1 (circ, min_in, max_in, num_inl)

config_LUT_input_delays (circ, min_in, max_in,
num_in);

iconfig_LUT_input_delays (circ, min_in, max_in, num_in) {
foreach LUT n e circ {
count = 0;
foreach faninfe n {
if (Needed_Delay(n, f) > min_in &&
Needed_Delay(n, f) < max_in && count < num_in)

Needed_Delay(n, f) = Needed_Delay(n, f) —
min_in * floor(Needed_Delay(n, f) / min_in);
count++;

1

Fig. 7. Assigning delays for Scheme 1.

The algorithm used to calculate the configuration of each
LUT input delay element in Scheme 1 is shown in Fig. 7. In
this case, there is only one way to insert delays, so the algo-
rithm is straightforward. Note that the granularity of the delay
elements (min_in) and the number of delay elements attached to
each LUT (num_in) will affect how closely the inserted delays
match the desired values (determined by the algorithm described
in Fig. 6).

The algorithm for Scheme 2 is similar to the algorithm for first
scheme except that it begins by sorting the delay elements and
the fan-ins based on delay. Both are sorted to ensure that the
fan-ins that need small delays use the smaller delay elements,
which leaves the larger delay elements to the fan-ins that need
larger delays.

The algorithm for Scheme 3 first visits each LUT in topolog-
ical order from inputs to outputs and determines the minimum
delay needed by all the fan-outs of that LUT. It then configures
the output delay element to match this delay and then updates
the needed delay value of each fan-out. It then configures the
LUT input delays as in Scheme 1. Similarly, the algorithm for
Scheme 4 first visits each CLB input to determine the minimum
delay needed by the LUT inputs that are driven by that input.
After configuring each CLB input delay element, it then updates
the needed delay of the affected LUT inputs to reflect the change
and then configures the LUT input delays as in Scheme 1.

Finally, the algorithm for Scheme 5, which incorporates a
bank of programmable delay elements in addition to those at the
LUT inputs, first visits each CLB in the circuit and configures
the bank circuits to delay signals that need to be delayed by more
than max_in and smaller or equal to max_b. When the algorithm
finds a signal that requires a delay that is greater than max_in,
it calculates the amount of delay that it can add to a signal (by
a delay element in the bank) and then updates the needed delay
for the subsequent LUT input algorithm.

E. PVT Variation Techniques

PVT variations can have a significant impact on circuit
delays, which is problematic for the proposed delay insertion
technique. Our technique requires accurate estimates of path
delays in order to calibrate the programmable delay elements.
If the estimates are not accurate, and the delay elements are
not configured properly, they may be ineffective at reducing

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 26, 2008 at 22:07 from |IEEE Xplore. Restrictions apply.

LAMOUREUX et al.: GLITCHLESS: DYNAMIC POWER MINIMIZATION IN FPGAS THROUGH EDGE ALIGNMENT AND GLITCH FILTERING

Inserted Delay

3ns 1ns 1.5n5 0-5n8
- D> I
4ns 2ns

@) (b)

Fig. 8. Inserted delays must scale with remaining delays.

glitches. Techniques for minimizing the effect of both die-to-die
and within-die PVT variation on the proposed delay insertion
technique are described in the following.

1) Die-to-Die Variation: Die-to-die variation occurs when
circuits on different chips have different delay properties. A
common practice used by FPGA vendors to deal with variation
is speed binning, which involves grouping a product based on
the maximum speed of that product. Because of PVT variation,
some FPGAs are faster than other FPGAs. Grouping the FPGAs
into different speed bins allows the vendors to sell FPGAs with
different speed grades. This practice tends to reduce die-to-die
variation for FPGAs within each speed bin which improves the
feasibility of the proposed technique.

Although speed-binning can help reduce the die-to-die varia-
tions, this may not be sufficient to provide the accuracy required
to obtain significant power savings. Within a speed grade, we
can tolerate variations if the programmable delay element is de-
signed to react the same way as the existing FPGA logic and
routing resources. As an example, consider an input signal that
arrives 1 ns before the slowest input under normal conditions, as
illustrated in Fig. 8(a). In order to eliminate glitches, the corre-
sponding programmable delay element would be configured to
add 1 ns to that input. Now, consider some variation that causes
that same input to arrive only 0.5 ns before the slowest input [see
Fig. 8(b)]. In this case, adding 1 ns would be too much and pos-
sibly cause a timing violation. However, if the programmable
delay element is affected the same way as the remaining cir-
cuitry, the added delay would actually be 0.5 ns, producing the
desired effect.

For this to be effective, PVT variation must affect the delay of
the programmable delay element in the same way as the existing
FPGA routing and logic circuitry. In the remainder of this sec-
tion, we show that this is not true in the delay element presented
in prior work, however, it is partially true in the delay element
presented in Section IV-A.

First, consider the delay element proposed in [9]. The circuit,
which is illustrated in Fig. 9, is composed of two inverters. The
first inverter has programmable pull-up and pull-down resistors
to control the delay of the circuit. The second inverter has large
channel lengths to minimize short-circuit power. The pull-up
and pull-down resistors of the first inverter have n stages. Each
stage has a resistor and a bypass transistor controlled by an
SRAM bit. The resistor in each stage consists of a pass-tran-
sistor that is only partially turned on (though biasing) to produce
a large resistance.

The circuit has two major drawbacks related to variation. The
first drawback is that is uses gate biasing to produce the large re-
sistances. As we will show in the following, this tends to react
differently to variation compared to the existing FPGA circuitry.

1527

Voo Voo Voo

4 4

Lm".
n
M

T ¢
”;[_I:]{E].‘.’.

\%

C
jus

bn Vbn Vbn

Fig. 9. Schematic of programmable delay element [9].

The second drawback is that, since the nMOS and pMOS tran-
sistors can react differently to variation, the rise and fall times of
the delay element become unbalanced when there is variation.
This is less of a concern in conventional buffers and logic gates
which also use pMOS pull-up networks and nMOS pull-down
networks, since the effect is reduced when gates are cascaded.

To illustrate these effects, Fig. 10 shows the rise and fall
times of the programmable delay element for every possible
delay configuration. For the black, white, and grey bars, the
X -axis represents intended delay and the Y -axis represents ac-
tual delay. Results from three experiments are shown. The white
bars are the delays of the programmable delay element sim-
ulated in HSPICE assuming typical-typical (TT) process pa-
rameters. Similarly, the grey and black bars are the delays as-
suming slow-slow (SS) and fast-fast (FF) process parameters,
respectively.

In addition to the programmable circuit delays, the graphs
also include lines that show the effect of process variation on
the delay of the existing FPGA routing resources, which were
obtained by simulating a chain of buffered routing resources as
described in [19] in HSPICE. For the black and white lines, the
x-axis represents the delay of the FPGA routing resources when
typical-typical (TT) process parameters are assumed and the
y-axis represents the delay of the same resources when other
process parameters are assumed. Specifically, the black line
(SS-Routing) indicates the delay of the FPGA routing assuming
SS process parameters and the white line (FF-Routing) indi-
cates the delay of the FPGA routing assuming FF parameters.

The two graphs in Fig. 10 highlight the drawbacks described
previously. In the first graph, the rise times are less affected
by process variations than are the FPGA routing circuitry. In
the second graph, however, the fall times are more affected by
process variations. On average, the fall times assuming the FF
process corner is 47% faster than TT values, while the fall times
assuming the SS process corner are 137% slower. The process
variation has a greater impact on the fall times than the rise times
of this delay element because it changes the effective on-resis-
tance of the biased nMOS transistors in the pull-down network
more than the biased pMOS transistors in the power-up network.

Now consider the new programmable delay element de-
scribed in this paper (in Section IV-C). In this circuit, nMOS
and pMOS transistors were used in parallel in order to average
out their response to variation. The rise times of the new delay
circuit are shown in Fig. 11. Similar results were obtained for
the fall time. On average, the actual delays are 19% faster and

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 26, 2008 at 22:07 from |IEEE Xplore. Restrictions apply.

1528
Rise Times
10 grevccccveescocrcctsscrsrerssrsreressessrvrssrsesrrercererersrrersserserreres
oTT-PDC
8 deeend SS-PDC ievererrrenesesnssnesnesnecnsssesnsnesys®ueecesh .
mFF-PDC Jh
- SS - Routing
6 4eeeed SFF-Routing |**wwessserreeneeeees,

...............................

Actual Delay (ns)
S

N
[N)
w
ES
< E
o
~
o

Intended Delay (ns)

(a)
Fall Times
K R R R R R R R P D P PP PP PP PP T
oTT-PDC
25 . SS.PDC [TTTrrrrreeressseseesssssessesiieneniit e
mFF-PDC
20 1+ SS-Routing [77T e g e

= FF - Routing

Actual Delay (ns)

Intended Delay (ns)
(b)

Fig. 10. Rise and fall times of delay element from [9] considering process vari-
ation. (a) Rise times. (b) Fall times.

Actual Delay (ns)

]

Fig. 11. Rise times of new programmable delay element considering process
variation.

~
o |

4 5 6
Intended Delay (ns)

26% slower for the FF and SS process corners, respectively.
The response of the new delay circuit varies more than the
response of the FPGA routing resources since wires do not vary
as much as transistors; however, the new delay circuit responds
significantly better than the previous delay circuit which makes
it more suitable.

2) Within-Die Variation: In the case of within-die variation,
speed binning and proportional scaling may not be sufficient.
Since the inputs of a LUT can come from any part of the chip,

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 11, NOVEMBER 2008

within-die variation can affect the delay of one input differently
from another input. Although most connections are local (since
the FPGA clustering, placement, and routing tools minimize the
routing distance between connections), within-die variation is
still a problem for large nets that span the entire chip.

A naive solution to within-die variation is to reconfigure the
programmable delay elements of each FPGA individually. This
solution, however, is impractical since it is difficult to obtain
PVT variation information for individual FPGAs and it would
be time consuming to reconfigure each FPGA with different
delays.

Another, more practical solution, is to pessimistically reduce
the delay added by each programmable delay element. We first
determine D the inserted delay assuming no PVT variation.
Then, if the nature of the expected variations are known, we can
estimate the approximate worst-case impact of the variation d.
We then configure the programmable logic element to insert the
delay D — d. This ensures that the delay inserted by the delay
element does not lengthen the overall delay of the circuit. How-
ever, it also means that the actual delay that is inserted may be
shorter than the delay that is needed to eliminate the glitch. This
will reduce glitch elimination; however, even in cases where the
glitch is not eliminated, the width of the glitch is reduced. These
shorter pulses are then more likely to be filtered out by other
delay elements that are downstream.

Note that a more complete approach to this technique
would involve using statistical timing analysis to determine the
maximum delays that can safely be added without increasing
the critical path delay. However, statistical timing analysis
is not supported within our current experimental framework.
Nonetheless, the results for this static approach, presented in
Section VII-E, still serve to demonstrate the tradeoff between
the power savings and the uncertainty introduced by PVT
variation.

V. EXPERIMENTAL FRAMEWORK

This section describes the experimental framework that is
used to obtain the switching activity information and the FPGA
area, delay, and power estimates that are presented in Section VI
and VIL

A. Switching Activity Estimation

The switching activities are obtained by simulating circuits at
the gate level and counting the toggles of each wire. The sim-
ulations are driven by pseudorandom input vectors and circuit
delay information from the VPR place and route tool [19]. To
capture the filtering effect of the FPGA routing resources and
of the programmable delay elements, the simulator uses the in-
ertial delay model. Furthermore, to replicate an FPGA routing
architecture consisting of length 4 routing segments, the VPR
delays are divided into chains of 300-ps delay.

B. Area, Delay, and Power Estimation

Area, delay, and power estimates are obtained from the VPR
place and route tool and HSPICE simulations. VPR is used to
model the existing FPGA circuitry and HSPICE is used to model
the added delay element circuitry.

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 26, 2008 at 22:07 from |IEEE Xplore. Restrictions apply.

LAMOUREUX et al.: GLITCHLESS: DYNAMIC POWER MINIMIZATION IN FPGAS THROUGH EDGE ALIGNMENT AND GLITCH FILTERING

L
Area(W)=l+ w 1
2 2-Whn
wii [OJ
| v 7. Area(L) = 4L 2
—I:—’ sé'lgilﬁg 5 5Ly

Fig. 12. Extension of MTE Area model from [19].

The VPR models are detailed, taking into account specific
switch patterns, wire lengths, and transistor sizes. After gener-
ating a specified FPGA architecture, VPR places and routes a
circuit on the FPGA and then models the area, delay, and power
of that circuit. VPR models area by summing the area of every
transistor in the FPGA, including the routing, CLBs, clock net-
work, and configuration memory. The area of each transistor is
approximated using the minimum transistor equivalents (MTE)
metric from [19], which calculates the layout area occupied by
a minimum sized transistor plus the minimum spacing as illus-
trated in Fig. 12.

The model from [19] was augmented slightly in this paper to
consider transistors with longer than minimum channel length.
Expression (1) models the layout area of a transistor with respect
to its channel width (W) and Expression (2) models the area with
respect to its length (L). The models were derived by observing
the relative area increase when either W or L is increased. The
expressions differ slightly since the minimum width of a tran-
sistor accounts for approximately one half of the y-component
of the layout area, whereas the minimum length accounts for
approximately one-fifth of the z-component of the layout area.

The delay and power are modeled after routing occurs, when
detailed resistance and capacitance information can be ex-
tracted for each net in the benchmark circuit. The Elmore delay
model is used to produce delay estimates and the FPGA power
model described in [20] is used to produce power estimates.
The power model uses the VPR capacitance information and
simulated switching activities to estimate dynamic, short-cir-
cuit, and leakage power. Note, however, that the leakage power
estimates for both the existing FPGA circuitry and the pro-
grammable delay elements do not account for PVT variation
(typical process, voltage, and temperature are assumed).

C. Architecture Assumptions and Benchmarks

We gathered results for three LUT sizes: 4, 5, and 6 inputs. In
all cases, we assumed that each CLB contains 10 LUTSs and that
the CLBs have 22, 27, and 33 inputs for architectures with 4,
5, and 6 input LUTs, respectively. In each case, we assume that
the crossbar that programmably connects the CLB inputs and
LUT outputs to the LUT inputs with each CLB is fully populated
as described in [19]. Furthermore, for routing, we assumed two
segmented routing fabrics, one consisting of buffered length 1
and another of length 4 routing segments and a channel width
that is 20% wider than the minimum channel width (a separate
value was found for each benchmark). Since the results were
similar for both segment lengths, only the length 4 results are
presented in Section VI and VII unless stated otherwise.

In each experiment, we used 20 combinational benchmarks
including the 10 largest combinational circuits from the MCNC
and ISCAS’89 benchmark suites. Before placement and routing,

1529

100 ;(.]:(;tt ...
R

X

80 7

60 A

T JE CRCTET LTI TTTTTPPPRNPPRP,

% Glitch Elimination

0 0.5 1 1.5 2 25 3
Minimum Delay Increment (ns)

Fig. 13. Minimum LUT input delay for Scheme 1.

each circuit is mapped to LUTs using the Emap technology
mapper [7] and packed into clusters using the T-VPack clus-
terer [19].

VI. SCHEME CALIBRATION

Before we examine the overall power savings and area and
delay overhead of the delay insertion technique, we need to
find suitable values for the parameters of each scheme (listed
in Table III). In each case, the value is chosen to eliminate as
much of the glitching as possible, while minimizing the area
and delay overhead.

A. Scheme 1 Calibration

We first consider the min_in parameter, which defines the
minimum delay increment of the programmable delay element
at the inputs of the LUTs. Intuitively, a smaller delay incre-
ment reduces glitching but increases area. Fig. 13 shows how
much glitching is eliminated for minimum delay increments
ranging between 0.1 and 3.2 ns. To isolate the impact of the
min_in parameter, the graph assumes that every LUT input has
a programmable delay element with an infinite maximum delay
(max_in is oo and num_in is K).

The graph illustrates that most of the glitching can still be
eliminated when the minimum delay increment is 0.25 ns. This
corresponds to the fact that narrow glitches are filtered away by
the routing resources and that the majority of glitches have a
width greater than 0.2 ns, as described in Section III. The same
conclusion holds for FPGAs that use 4, 5, or 6 input LUTs.

The second parameter, denoted max_in, defines the max-
imum delay of the programmable delay element at the inputs of
the LUTSs. Intuitively, increasing the maximum delay reduces
glitching but increases area. Fig. 14 shows how much glitching
is eliminated as a function of the maximum delay. The graph
illustrates that over 90% of the glitching can be eliminated
when the maximum delay of the programmable delay element
is 8.0 ns. This corresponds with Fig. 1, which illustrates that
the majority of glitches have a width that is less than 10.0 ns.

Finally, num_in defines the number of LUT inputs that have a
programmable delay element. Intuitively, increasing the number
of inputs with delay elements reduces glitching since the arrival
times of more inputs can be aligned. Fig. 15 shows how much

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 26, 2008 at 22:07 from |IEEE Xplore. Restrictions apply.

1530

10 00 TR L T T T T P P P ST TT TP TPV PPs saaa]T

... P R
—X—K=5

:/ TETKEE e

% Glitch Elimination

4 6 8 10 12
Maximum Delay (ns)

Fig. 14. Maximum LUT input delay for Scheme 1.

% Glitch Elimination

0 1 2 3 4 5
Inputs with Delay Circuitry

Fig. 15. Number of delay elements/LUT for Scheme 1.

glitching is eliminated when the number of inputs with pro-
grammable delays is varied. The graph assumes that the min_in
is 1/00 and max_in is oo.

The graph illustrates that each LUT should have a pro-
grammable delay element on every input minus one (K — 1).
Intuitively, adding delay circuitry to every input is not necessary
since each LUT has at least one input that does not need to be
delayed (the slowest input). However, adding fewer than K — 1
delay elements significantly reduces the amount of glitching
that can be eliminated. Note also that, since LUTSs tend to have
uneven input-to-output propagation delays, the K — 1 delay
elements should be added to the slowest inputs so as not to
impede the slowest (critical-path) input signal.

B. Scheme 2 Calibration

Scheme 2 has the same three parameters as Scheme 1 and the
same values are used for each parameter. Specifically, num_in
is K — 1, min_in is 0.25 ns, and max_in is 8ns. However, to
minimize overhead, the maximum delay of the LUT input
delay elements (max_in) is gradually decreased by half (or by
1 delay stage) per LUT input. As an example, the maximum
delay values for a four-input LUT would be 8, 4, and 2 ns.

C. Scheme 3 Calibration

Scheme 3 has five parameters, namely: min_in, max.in,
num_in, min_out, and max_out. The first three parameters

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 11, NOVEMBER 2008

100 T = === m e mm e m
c
£
©
g 0T 7 4T T
io —X~-5-LUT
E=
§ a0 f--| OeLUT |
)
=2
0 f -
0 . . . ; ; ‘
0 05 1 15 2 25 3

Minimum Output Delay (ns)

Fig. 16. Minimum LUT output delay for Scheme 3.

100 - ———————mm e —— e mmmmm—m——— -~
c
]
R e e
E
w ——4-LUT
§ 404 - —X-5LUT |__ ___ ___
o ——6-LUT
B3
20— —mmmmmm e mmm— e m o
0 T T T T T T
0 2 4 6 8 10 12
Max Output Delay (ns)

Fig. 17. Maximum LUT output delay for Scheme 3.

control the delay elements at the inputs of the LUTSs; the last
two parameters control the delay elements at the output of the
LUTSs. Although the min_in, max_in, and num_in parameters
were already calibrated for Scheme 1, they must be recalibrated
for Scheme 2 since the output delay elements change how
much delay is needed by LUT input delay elements. Intuitively,
however, the value of the min_in parameter can be reused
since the LUT input delays are still used to perform the final
alignment of each signal.

The same technique is used to recalibrate max_in and num_in
but with assumption that min_out is infinitely precise (1/00) and
max_out is co. The results are similar to those in Scheme 1 ex-
cept that some glitching is eliminated even when there are no
delay elements on the LUT inputs since the output delay ele-
ments are able to align some of the inputs and filter out narrow
pulses on their own. For Scheme 3, setting max_in to 8.0 ns and
num_in to K — 2 eliminates most of the glitching.

The remaining output delay element parameters are cali-
brated assuming min_in is 0.25 ns, max_in is 8.0 ns, and num_in
is K — 2. Fig. 16 shows the glitch elimination for min_out from
0 to 3.2 ns assuming that max_out is oo and Fig. 17 shows the
glitch elimination for max_out from 0 to 12 ns assuming that
min_out is 1/0o. The graphs illustrate that a 0.25 ns and 8.0 ns
are also suitable for min_out and max_out, respectively.

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 26, 2008 at 22:07 from |IEEE Xplore. Restrictions apply.

LAMOUREUX et al.: GLITCHLESS: DYNAMIC POWER MINIMIZATION IN FPGAS THROUGH EDGE ALIGNMENT AND GLITCH FILTERING

00—~~~ = m s m e — o
% %//ﬁ/n 77777
c g
2
-] ——4-LUT
(= 4 e e e e e e e e e e - —
£ 60 —X-5LUT
w -0 6-LUT
=
.g 40 e e e —
o
2
20 — -
0 T T T T)
0 1 2 3 4 5

Inputs with Delay Circuitry

Fig. 18. Number of input delay elements per LUT for Scheme 4.

D. Scheme 4 Calibration

Scheme 4 has five parameters, namely: min_in, max_in,
num_in, min_c, and max_c. The first three parameters control the
delay elements at the inputs of the LUTs; the last two param-
eters control the delay elements at the input of the CLBs. The
min_in, max_in, and num_in parameters are again recalibrated
to account for the affect of the CLB input delay elements. The
same procedure used in Scheme 1 was used. The results for
min_in and max_in were similar to the previous cases, which
indicated that 0.25 and 8.0 ns, respectively, were suitable.

The results for num_in, which are plotted in Fig. 18 were dif-
ferent than in the previous cases. To isolate the impact of num_in,
the graph assumes that min_in is 1/00, max.in is oo, min_c is
1/00, and max_c is co. The results indicate that num_in should be
1,2, and 2, for 4, 5, and 6-LUTs, respectively. Intuitively, fewer
LUT input delay elements are needed since the CLB input delay
elements account for most of the delay. Only in cases where the
CLB inputs fan-out to multiple LUTs within that CLB and those
fan-outs need different delays are the LUT input delay elements
required.

E. Scheme 5 Calibration

Finally, Scheme 5 has five parameters, namely: min_in,
max_in, num_in, max_b, and num_b. The first three parameters
control the delay elements and the inputs of the LUTs; the last
two parameters control the bank of delay elements in the CLB.
The bank of programmable delay elements are only used for
signals that need more delay than can be added by the LUT
input delay elements, therefore this scheme uses the same
min_in and num_in values as Scheme 1: 0.25 ns and K — 1,
respectively. Suitable values for max_in and max_b were found
empirically to be 4.0 and 8.0 ns, respectively. Finally, Fig. 19
shows glitch elimination with respect to the number of bank
delay elements per CLB (num_b) assuming min_in is 0.25 ns,
num_in is K — 1, max_in is 4.0 ns, and max_b is 8.0 ns. The
results show that 4 is a suitable value for num_b for CLBs with
10 LUTs.

F. Summary

Table IV summarizes the values that were selected for each of
the five delay insertion schemes. The first two columns specify

1531

100 T~ ————mmmmmmmmmmm—m—m e m—m -
o
o
-
g 60— ———————————————————— p— — =
E —e—4LUT
I-'I:J —X-5-LUT
g 40— —O—-6LUT [——-
o
xR
7 T
0 T T T T T T T]
0 1 2 3 4 5 6 7 8

Inputs with Delay Circuitry

Fig. 19. Number of bank delay elements for Scheme 5.

TABLE IV
SUMMARY OF DELAY ELEMENT VALUES

Delay Max. #

Scheme| Location Incr. (ns) [:zlsa)y Stages # Circuits

1 LUT Inputs 0.25 8 5 K-1

2 |wrimpus| o025 842|543

3 LUT Inputs 0.25 8 5 K-2

CLB Outputs| 0.25 8 5 N

4 LUT Inputs 0.25 8 5 1,2,2

CLB Inputs 0.25 8 5 K(N+1)/2

5 LUT Inputs 0.25 4 4 K-1
Bank 4.0 8 1 4 (N=10)

the scheme number and the programmable delay element loca-
tion. The third and fourth columns specify the minimum delay
increment and the maximum delay of the programmable delay
element at that location. The fifth column specifies the corre-
sponding number of delay stages needed to implement the pro-
grammable delay element. Finally, the sixth column specifies
the number of programmable delay elements needed per LUT
(rows 2, 3, 5, and 7) and per CLB (rows 4, 6, and 8).

VII. RESULTS

This section presents the overall results. It begins by pre-
senting the area, delay, and power overhead of each delay in-
sertion scheme. It then presents the overall power savings as-
suming there is no PVT variation. Finally, it presents the overall
power savings assuming there is PVT variation.

A. Area Overhead

The area overhead is determined by summing the area of
the added delay circuitry in each CLB. This area includes the
area of the delay elements and the added configuration memory.
Table V reports how much area is needed in the CLBs and
Table VI reports the percent area overhead taking the CLB and
routing area into account. More precisely, the percent area over-
head was calculated by dividing the total area occupied by the
added programmable delay circuitry by the total area occupied

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 26, 2008 at 22:07 from |IEEE Xplore. Restrictions apply.

1532

TABLE V
CLB AREA OVERHEAD (NO GLOBAL INTERCONNECT)
LUT Original || CLB Area Overhead (MTE)
Size |CLB Areal Scheme| Scheme| Scheme| Scheme| Scheme
(MTE) 1 2 3 4 5
4 6938 2460 2020 2460 2568 3184
5 10361 3280 2430 3280 3368 3808
6 15228 4100 2720 4100 4282 4494
TABLE VI
OVERALL AREA OVERHEAD
LUT Overall Area Overhead (%)
Size | Scheme 1 | Scheme 2 | Scheme 3 | Scheme 4 | Scheme 5
4 8.0 6.6 8.0 8.4 10.4
5 7.6 5.3 7.6 7.8 8.8
6 6.7 4.4 6.7 7.0 7.3

by the FPGA logic and routing resources, which we determined
using VPR.

The tables show that Scheme 2 has the lowest area overhead,
followed by Schemes 1, 3, and 4, and finally, Scheme 5 has the
highest overhead. Scheme 5 requires the most area because of
the large multiplexers needed to select which CLB input or LUT
output uses the bank delay elements. Schemes 1, 3, and 4 have
a similar area overhead since they use the same size delay el-
ements and roughly the same number of them. Scheme 2 has
the lowest area overhead since it uses smaller delay elements.
The tables also show the area overhead decreases as the LUT
size increases. This occurs since the area of the LUTs and mul-
tiplexers increases exponentially with K, while the area of the
delay elements only increases linearly.

B. Power Overhead

Evenif all the glitches could be eliminated, the programmable
delay elements still dissipate power. This overhead is modeled
by summing the power dissipated by the added circuitry in each
CLB of the FPGA using the following expression:

Znednodes Etoggle i a(n)
Tcrit

Poyerhead = + Pstatic- 3)
In the expression, dnodes is the set of nodes in the circuit
that can be delayed, Eiogele i the energy dissipated by one
programmable delay element during one transition, a(n) is the
switching activity of the delayed node n, and T, is the crit-
ical path delay of the circuit. The energy and leakage power of
the programmable delay element is determined using HSPICE,
the switching activity is determined using gate-level simulation,
and the critical-path delay is determined using the VPR place
and route tool. Note, however, that the leakage power estimates
assume typical process, voltage, and temperature conditions.
Table VII reports the average overhead power (as a per-
centage) dissipated by the added delay circuitry for each
scheme. The power of the remaining FPGA circuitry is cal-
culated using the power model described in [20]. The table
shows that the power overhead is approximately 1% for all the
schemes and that Scheme 2 has the lowest power overhead.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 11, NOVEMBER 2008

TABLE VII
AVERAGE POWER OVERHEAD (%)

Power Overhead: Povermead/ (Poverhead + Prpca) * 100

LUT Size
Scheme 1|Scheme 2|Scheme 3|Scheme 4|Scheme 5
4 0.94 0.79 1.02 1.16 0.97
5 0.97 0.84 1.12 1.28 0.99
6 1.02 0.94 1.14 1.10 0.93
TABLE VIII
AVERAGE DELAY OVERHEAD
LUT Average Delay Overhead (%)
Size | Scheme 1 | Scheme 2 | Scheme 3 | Scheme 4 | Scheme 5
4 0.21 0.19 2.4 2.3 0.21
5 0.13 0.14 2.2 2.1 0.13
6 0.14 0.15 21 1.9 0.14

C. Delay Overhead

Although the delay elements are programmed to only add
delay to early arriving edges, a small delay penalty may be in-
curred even if the delay element is bypassed because of parasitic
resistance and capacitance. To model delay overhead, HSPICE
was used to determine the parasitic delay incurred by the delay
element. The critical-path delay of each circuit was then re-
calculated, taking these parasitic delays into account. Finally,
the overhead was calculated by comparing the new critical-path
delay to the original critical-path delay.

Table VIII reports the average delay overhead for each
scheme. Schemes 1, 2, and 4 have the smallest overhead since
both have fast-paths with no delay elements (no parasitics) to
slow down the critical-path. Schemes 3 and 4 have a larger
overhead, since neither scheme offer a fast-path for crit-
ical-path connections. Specifically, the parasitic capacitance of
the programmable delay elements at the output of the CLBs for
Scheme 3 and at the inputs of the CLBs for Scheme 4 imposes
a small delay on any signal that bypasses them (see Fig. 4).

D. Overall Power Savings (Without Variation)

Table IX presents the average glitch elimination for each
scheme and Table X presents the corresponding overall power
savings. Both tables indicate that Scheme 1 produces the
best results, with 91.8% glitch elimination and overall power
savings of 18.2%. The power savings are close to the ideal
savings of 22.6%. Note also that the results in both tables are
for FPGAs with 4-input LUTs and length 4 routing segments;
the results for 5 and 6-input LUTs and for FPGAs with length
1 routing segments were similar. As an example, using Scheme
1 for FPGAs the 6-input LUTs and length 1 routing segments
reduced glitching by 92.9% and the overall power by 16.8%.
In general, the power savings for larger LUTs are slightly
smaller because there tends to be less glitching to begin with
since the netlists have fewer levels of logic. Moreover, the
segment length distribution has little affect because the needed
delays tend to be quite dispersed even for buffered routing
architectures with only one segment length. The timing of a
signal is affected not only by the number of LUTs and routing

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 26, 2008 at 22:07 from |IEEE Xplore. Restrictions apply.

LAMOUREUX et al.: GLITCHLESS: DYNAMIC POWER MINIMIZATION IN FPGAS THROUGH EDGE ALIGNMENT AND GLITCH FILTERING

TABLE IX
% GLITCH ELIMINATION OF EACH SCHEME
Scheme 1 | Scheme 2 | Scheme 3 [Scheme 4 | Scheme 5
91.8% 87.3% 83.3% 81.8% 85.4%
TABLE X
OVERALL POWER SAVINGS
Circuit Power Saving (%)
Scheme 1|Scheme 2|Scheme 3|Scheme 4 |Scheme 5
C135 254 254 25.0 25.0 25.8
C1908 18.1 17.5 18.4 16.1 17.0
C2670 11.6 11.4 11.3 10.2 11.7
C3540 275 254 22.9 235 26.3
C432 13.0 11.0 10.7 10.6 10.6
C499 31.8 31.8 30.9 32.3 324
C5315 18.2 16.8 16.2 16.0 17.9
C6288 52.1 41.3 43.2 40.0 46.1
C7552 22.6 21.0 18.9 19.7 22.3
C880 7.2 6.5 6.5 8.0 7.1
alu4 2.5 2.5 2.4 3.3 2.7
apex2 3.6 3.6 3.2 3.8 3.6
apex4 9.5 9.5 9.1 9.4 9.3
des 15.1 14.9 121 14.2 14.4
ex1010 16.8 16.8 16.4 16.5 15.9
ex5p 23.8 23.3 23.4 21.5 25.0
misex3 7.6 7.6 7.3 7.3 7.2
pdc 11.1 10.8 10.1 10.7 11.3
seq 5.3 5.2 5.9 5.7 5.6
spla 20.3 20.1 19.8 20.0 20.2
Average 18.2 16.8 16.3 16.2 174

segments it passes through, but also by where it taps on to and
off of those segments.

E. Overall Power Savings (With Variation)

The results presented in the previous sections assumed
no PVT variation. The following results present the overall
power saving when the technique described in Section IV-E
is applied to cope with the timing uncertainty introduced by
PVT variation. Specifically, we repeated the experiments from
Section VII-D, using the same delay element parameter values
as before, but we reduced the delay inserted by each delay
element by a factor 4. We varied 8 from 0.7 (meaning each
delay element is programmed to provide a delay of 70% of the
value predicted assuming no process variations) to 1.0 (which
is the same as the results in Section VII-D). Fig. 20 shows the
results. In this figure, 3 is shown on the X -axis. The lower
line indicates the amount of glitching removed compared to
the case when programmable delay elements are not used. As
the results show, when is 0.7, the glitch savings are reduced
to 56% (compared to 91% when process variations are not
considered). The upper line shows the resulting decrease in
power; as expected, the power reduction is proportional to the
number of glitches removed. Overall, these results indicate that
the delay insertion technique still works when the added delays
are reduced, but with diminished glitch and power savings as
the timing uncertainty increases.

VIII. CONCLUSION AND FUTURE WORK

This paper proposed GlitchLess, a glitch elimination tech-
nique to reduce dynamic power in FPGAs. The implementation

1533
20 T T 100
18 T T 90
16 T T 80
o 14 : — T 70 é
£ 12+ —=—Glitch Ellmfnahon 1 60 g
H —e—Power Savings E
f 10 T T 50 &
sy T40 §
o =
s 67T T30 ©
X
4+ T 20
2T +- 10
0 | = | | | | 0

0.7 0.75 0.8 0.85 0.9 0.95 1

Delay Added / Needed Delay

Fig. 20. Glitch elimination and power savings versus 3.

investigated here adds programmable delay elements to the CLB
architecture to align the edges of each LUT input, thereby pre-
venting formation of glitches on the LUT outputs. The delay
elements can also filter some glitches produced by the upstream
logic. Five alternative schemes were considered for delaying the
logic inputs. Scheme 1, which uses delay elements on K — 1
inputs of each LUT, produced the greatest power savings, re-
ducing power by 18.2%. However, Scheme 2, which uses K — 1
delay elements that gradually decrease in size, produced sim-
ilar power savings with less area. On average, Scheme 2 elimi-
nates 87% of all glitching, which reduces overall FPGA power
by 16.8%. The added circuitry increases overall area by 6.6%
and critical-path delay by less than 1%.

There are a number of interesting issues that were not fully
explored in this paper that merit further research. First, a more
complete approach to the proposed delay insertion technique
would involve using statistical timing analysis to determine the
maximum delays that can safely be added without increasing the
critical path delay. Second, investigation using newer process
technologies that tend to dissipate more leakage power is also
needed. Finally, further research of circuit-level implementa-
tions for delaying the inputs or preventing the output from tog-
gling prematurely may yield lower overhead, increased power
savings, and/or improved PVT tolerance. As an example, a self-
calibrating delay element that tunes itself to the latest arriving
transition of a LUT (relative to the clock) would be ideal since
it would be more tolerant to variation. Furthermore, this delay
element could be used to gate all the early arriving inputs or to
suppress output transitions until the last input arrives. Such an
implementation may reduce area since it requires only one delay
element per LUT.

REFERENCES

[1] T.Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger, “A 90 nm low-
power FPGA for battery-powered applications,” in Proc. ACM/SIGDA
Int. Symp. Field-Program. Gate Arrays (FPGA), 2006, pp. 3—11.

[2] C.T.Chow,L.S. M. Tsui, P. H. W. Leong, W. Luk, and S. J. E. Wilton,
“Dynamic voltage scaling for commercial FPGAs,” in Proc. IEEE Int.
Conf. Field-Program. Technol. (FPT), 2005, pp. 173-180.

[3] A. Kumar and M. Anis, “Dual-Vt FPGA design for subthreshold
leakage tolerance,” in Proc. Int. Symp. Quality Electron. Des.
(ISQED), 2006, pp. 735-740.

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 26, 2008 at 22:07 from |IEEE Xplore. Restrictions apply.

1534

[4] R. R. Rao, D. Blauw, D. Sylvester, C. J. Alpert, and S. Nassif, “An
efficient surface-based low-power buffer insertion algorithm,” in Proc.
ACM Int. Symp. Phys. Des., 2005, pp. 86-93.

[5] A. Gayasen, K. Lee, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and
T. Tuan, “A dual-Vdd low power FPGA architecture,” in Proc. Int.
Conf. Field-Program. Logic Appl. (FPL), 2004, pp. 145-157.

[6] J. Lamoureux and S. J. E. Wilton, “FPGA clock network architecture:
flexibility vs. area and power,” in Proc. ACM/SIGDA Int. Symp. Field-
Program. Gate Arrays (FPGA), 2006, pp. 101-108.

[7] J. Lamoureux and S. J. E. Wilton, “On the interaction between power-
aware computer-aided design algorithms for field-programmable gate
arrays,” J. Low Power Electron. (JOLPE), vol. 1, no. 2, pp. 119-132,
2005.

[8] J. H. Anderson, “Power optimization and prediction techniques for
FPGAs,” Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Toronto,
Toronto, ON, Canada, 2005.

[9] J. Lamoureux, G. G. Lemieux, and S. J. E. Wilton, “GlitchLess:
An active glitch minimization technique for FPGAs,” in Proc. ACM/
SIGDA Int. Symp. Field-Program. Gate Arrays (FPGA), 2007, pp.
156-165.

[10] J. C. Monteiro and A. L. Oliveira, “Finite state machine decompo-
sition for low power,” in Proc. Des. Autom. Conf. (DAC), 1998, pp.
758-763.

[11] D.Kim and K. Choi, “Power conscious high-level synthesis using loop
folding,” in Proc. Des. Autom. Conf. (DAC), 1997, pp. 441-445.

[12] M. Kandemir et al., “Influence of compiler optimizations on system
power,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 9, no.
6, pp. 801-804, Dec. 2001.

[13] D. Chen, J. Cong, F. Li, and L. He, “Low-power technology mapping
for FPGA architectures with dual supply voltages,” in Proc. Int. Symp.
Field-Program. Gate Arrays (FPGA), 2004, pp. 109-117.

[14] S. Wilton, S.-S. Ang, and W. Luk, “The impact of pipelining on energy
per operation in field-programmable gate arrays,” in Proc. Int. Conf.
Field-Program. Logic Appl. (FPL), 2004, pp. 719-728.

[15] T. Czajkowski and S. Brown, “Using Negative edge triggered FFs to
reduce glitching power in FPGA circuits,” in Proc. Des. Autom. Conf.
(DAC), 2007, pp. 324-329.

[16] J. C. Monteiro, S. Devadas, and A. Ghosh, “Retiming sequential cir-
cuits for low power,” in Proc. Des. Autom. Conf. (DAC), 1993, pp.
398-402.

[17] L.Benini ez al., “Glitch power minimization by selective gate freezing,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 8, no. 3, pp.
287-298, Jun. 2000.

[18] A. Raghunathan, S. Dey, and N. K. Jia, “Register transfer level power
optimization with emphasis on glitch analysis and reduction,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 18, no. 8, pp.
1114-1131, Aug. 1999.

[19] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron. Norwell, MA: Kluwer, 1999.

[20] K.K.W.Poon, S.J. E. Wilton, and A. Yan, “A detailed power model for
field-programmable gate arrays,” ACM Trans. Des. Autom. Electron.
Syst. (TODAES), vol. 10, no. 2, pp. 279-302, Apr. 2005.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 11, NOVEMBER 2008

Julien Lamoureux received the B.Sc. degree in com-
puter engineering from the University of Alberta, Ed-
monton, AB, Canada, in 2001, and the M.A.Sc. and
Ph.D. degrees in electrical engineering from the Uni-
versity of British Columbia (UBC), Vancouver, BC,
Canada, in 2003 and 2007, respectively.

In between his studies at UBC, he completed an
internship at the Altera Toronto Technology Centre,
where he worked on FPGA power modeling. In 2007,
he started a post doctoral in the Department of Com-
puting, Imperial College, London, U.K., where his re-
search focuses on architecture and CAD for FPGAs.

Guy G. F. Lemieux received the B.A.Sc. degree in
engineering science, and the M.A.Sc., and Ph.D. de-
grees in electrical and computer engineering from the
University of Toronto, Toronto, ON, Canada.

In 2003, he joined the Department of Electrical
and Computer Engineering, the University of
British Columbia, Vancouver, BC, Canada, where
he is an Assistant Professor. He is the coauthor of
the book Design of Interconnection Networks for
Programmable Logic (Kluwer, 2004). His research
interests include computer-aided design algorithms,
VLSI and SoC circuit design, FPGA architectures, and parallel computing. His
specialization is in interconnection network design and routing algorithms.

Dr. Lemieux was a recipient of the Best Paper Award at the IEEE International
Conference on Field-Programmable Technology in 2004.

Steven J. E. Wilton received the M.A.Sc. and Ph.D.
degrees in electrical and computer engineering from
the University of Toronto, Toronto, ON, Canada, in
1992 and 1997, respectively.

In 1997, he joined the Department of Electrical
and Computer Engineering, the University of British
Columbia, Vancouver, BC, Canada, where he is
now an Associate Professor. During 2003 and 2004,
he was a Visiting Professor with the Department
of Computing at Imperial College, London, U.K.,
and at the Interuniversity MicroElectronics Center
(IMEC), Leuven, Belgium. He has also served as a consultant for Cypress
Semiconductor and Altera Corporation. His research focuses on the architecture
of FPGAs and the CAD tools that target these devices. In 2005, he was the
Program Chair for the ACM International Symposium on Field-Programmable
Gate Arrays and the Program Cochair for the International Conference on Field
Programmable Logic and Applications.

Dr. Wilton was a recipient of Best Paper Awards at the International Confer-
ence on Field-Programmable Technology in 2003 and 2005, at the International
Conference on Field-Programmable Logic and Applications in 2001, 2004, and
2007, and the Douglas Colton Medal for Research Excellence for his research
into FPGA memory architectures in 1998.

Authorized licensed use limited to: Provided by the UBC Science & Engineering Library. Downloaded on October 26, 2008 at 22:07 from |IEEE Xplore. Restrictions apply.

