
GlitchLess: An Active Glitch Minimization
Technique for FPGAs

Julien Lamoureux, Guy G. Lemieux, Steven J.E. Wilton
Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, B.C., Canada

{julienl, lemieux, stevew}@ece.ubc.ca

ABSTRACT
This paper describes a technique that reduces dynamic power in
FPGAs by reducing the number of glitches in the global routing
resources. The technique involves adding programmable delay
elements within the logic blocks of an FPGA to programmably
align the arrival times of early-arriving signals to the inputs of the
lookup tables and to filter out glitches generated by earlier
circuitry. On average, the proposed technique eliminates 91% of
the glitching, which reduces overall FPGA power by 18%. The
added circuitry increases overall area by 5% and critical-path
delay by less than 1%. Furthermore, since it is applied after
routing, the proposed technique requires no modifications to the
existing FPGA routing architecture or CAD flow.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles – Gate
Arrays

General Terms: Design.

Keywords
Field-Programmable Gate Arrays, Power Minimization.

1. INTRODUCTION
Advancements in process technologies, programmable logic
architectures, and CAD tools are allowing increasingly larger and
faster systems to be implemented on Field-Programmable Gate
Arrays (FPGAs). These large systems, however, consume
increasing amounts of power. Reducing the power of FPGA
implementations is important, not only to reduce packaging costs,
but to open FPGAs to many more applications.
There are two types of power dissipation in integrated circuits:
static and dynamic. Static power is dissipated when current leaks
between the various terminals of a transistor, while dynamic
power is dissipated when individual circuit nodes toggle.
Although static power is increasing relative to dynamic power for
newer process technologies, dynamic power remains the dominant
source of power dissipation in FPGAs. A study that examined
power dissipation in a commercial 90nm FPGA found that
dynamic power accounted for 62% of total power [1].

This paper introduces a technique that reduces dynamic power in
FPGAs by actively minimizing the number of unnecessary
transitions called glitches or hazards. The technique involves
adding programmable delay elements within the logic blocks of
an FPGA to programmably align the arrival times of early-
arriving signals to the inputs of the lookup tables (LUTs) and to
filter out glitches generated by earlier circuitry.
Theoretically, the proposed technique can be used to eliminate all
the glitching within FPGAs and therefore significantly reduce
power. In practice, however, we must trade-off the amount of
glitch reduction with area and speed overhead. Since we only
delay the early-arriving signals, there is no significant impact on
circuit speed (other than increased parasitic capacitances).
However, the programmable delay elements consume chip area,
so we should expect a modest increase in the area of a
configurable logic block. This tradeoff between glitch reduction
(and hence power), area, and delay will be quantified in this
paper. Specifically, this paper examines the following questions:
1. How should the programmable delay elements be connected

within the logic blocks? The programmable delay elements
could conceivably be connected to the logic block inputs,
LUT inputs, logic block outputs, or combinations of these.

2. How many programmable delay elements are needed within
each logic block? Intuitively, adding more programmable
delay elements to the logic blocks eliminates more glitches
since more signals can be aligned; however, it also increases
the area overhead.

3. How flexible should the programmable delay elements be?
The more flexible each delay element is, the better it will be
able to align the arrival times of signals. However, there is a
tradeoff between this flexibility and the area overhead of the
added circuits.

This paper is organized as follows. Section 2 defines glitching
and summarizes existing techniques that can be used to minimize
glitching. Section 3 then examines glitching for circuits that are
implemented on FPGAs. Section 4 presents the delay insertion
schemes that are proposed in this paper. Section 5 then describes
the experimental framework used in Section 6, which compares
each scheme. Finally, Section 7 summarizes the results and
presents our conclusions.

2. BACKGROUND
2.1 Terminology
There are two types of transitions that can occur on a signal. The
first type is a functional transition, which is necessary in order to
perform a computation. A functional transition causes the value
of the signal to be different at the end of the clock cycle than at

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’07, February 18–20, 2007, Monterey, California, USA.
Copyright 2007 ACM 978-1-59593-600-4/07/0002...$5.00.

156

the beginning of the clock cycle. In each cycle, a functional
transition occurs either once or the signal remains unchanged.
The second type of transition is called a glitch or a hazard, which
is not necessary in order to perform a computation. These
transitions can occur multiple times during a clock cycle.

2.2 Glitch Minimization
Several techniques have been proposed to minimize glitching.
CAD techniques including logic decomposition [2], loop folding
[3], high-level compiler optimization [4], technology mapping
[5,6], and clustering [5] have been proposed to minimize
switching activity. These techniques can eliminate some of the
glitching, but typically incur area and delay penalties as they
reorganize the structure of the circuit. Other approaches involve
relocating flip-flops [7] or inserting additional flip-flops
(pipelining) [8] to reduce the combinational path length. These
techniques can also eliminate some of the glitching, however,
significant power savings require additional flip-flops which
increases the latency of the circuit. The gate freezing technique
described in [9] eliminates glitching by suppressing transitions
until the freeze gate is enabled. This technique is suitable for
fixed implementations since it can be applied to selected gates
with high glitch counts. However, the technique is less suitable
for FPGAs since the applications implemented on FPGAs are not
known until after fabrication, meaning it is difficult to determine,
at fabrication time, where the extra circuitry should be added.
Finally, the delay insertion technique described in [10] minimizes
glitching in fixed logic implementations by aligning the input
arrival times of gates using fixed delay elements. In this paper,
we propose a similar technique that targets FPGAs. Aligning
edges in an FPGA is considerably more complex than doing so in
an ASIC, since in an FPGA, the required delay times are not
known when the chip is fabricated. This means the delays must
be programmable; if not managed carefully, the overhead in these
programmable delay elements can overwhelm any power savings
obtained by removing glitches.

3. GLITCHING IN FPGAS
This section presents statistics regarding glitching for circuits
implemented on FPGAs. This section begins with a breakdown
of functional vs. glitching activity to determine how much
glitching is common in FPGA implementations. It then examines
the width of typical glitches and determines how much power is
dissipated by a single glitch. Finally, it indicates how much power
could be saved if glitching could be completely eliminated.
These statistics are important, not only because they help
motivate our work, but also because they provide key numbers
(such as typical pulse widths) that will be needed to calibrate the
architectures proposed in Section 4.

3.1 Switching Activity Breakdown
Table 1 reports the switching activities for a suite benchmark
circuits implemented on FPGAs. These activities are gathered
using gate-level simulation of a post-place and route
implementation for a set of benchmark circuits (see Section 5 for
more details). Gate-level simulations provide the functional and
total activity; the glitching activity is computed as the difference
between these two quantities. In general, the amount glitching is
greater in circuits with many levels of logic, circuits with uneven
routing delays, and circuits with exclusive-or logic. As an
example, an unpipelined 16-bit array multiplier (C6288)

implemented on an FPGA has five times more glitch transitions than
functional transitions.

3.2 Pulse Width Distribution
In FPGAs, glitches are generated at the output of a LUT when the
input signals transition at different times. The pulse width of these
glitches depends on how uneven the input arrival times are.
Intuitively, we would expect FPGA glitches to be wider than ASIC
glitches, since signals are often routed using non-direct paths due to
the limited connectivity of FPGA routing resources. Figure 1 plots
the pulse width distribution of the C6288 benchmark circuit. The
distribution was obtained using event-driven simulation and delays
from VPR as described in Section 5. The graph shows that the
majority of glitches have a pulse width between 0 and
approximately 10 ns. Although this range varies across our
benchmark circuits, we have found that the shape of the distribution
is similar for every circuit.

3.3 Power Dissipation of Glitches
The parasitic resistance and capacitances of the routing resources
filter out very short glitches. To measure the impact of this,
HSPICE was used to build a profile of power with respect to pulse
width. Figure 2 illustrated the relative power dissipated when pulses
with widths ranging from 0 to 1ns are applied to an FPGA routing
track that spans four logic blocks. A 180nm process was assumed.
The graph illustrates that pulses less than or equal to 200 ps in
duration are mostly filtered out the routing resources. Pulses that
are longer than 300 ps in duration dissipate approximately the same
amount of power as longer pulses. Thus, if the input signals of a
gate arrive within a 200 ps window, the glitching of that gate is
effectively eliminated.

Table 1. Breakdown of Switching Activity

Circuit Logic
Depth Activity Func.

Activity
Glitch

Activity
%

Glitch
C1355 4 0.32 0.23 0.09 27.5
C1908 10 0.26 0.17 0.09 34.6
C2670 7 0.27 0.21 0.06 22.2
C3540 12 0.42 0.23 0.19 45.2
C432 11 0.26 0.18 0.08 29.3
C499 4 0.34 0.23 0.11 31.9
C5315 10 0.40 0.25 0.15 36.7
C6288 28 1.56 0.29 1.27 81.1
C7552 9 0.39 0.23 0.16 42.0
C880 9 0.23 0.19 0.05 19.8
alu4 7 0.08 0.07 0.01 13.1

apex2 8 0.05 0.04 0.01 13.7
apex4 6 0.04 0.03 0.01 32.3

des 6 0.27 0.17 0.10 36.8
ex1010 8 0.03 0.01 0.02 52.9
ex5p 7 0.17 0.08 0.09 51.0

misex3 7 0.06 0.05 0.01 20.9
pdc 9 0.03 0.02 0.01 31.8
seq 7 0.05 0.04 0.01 16.0
spla 8 0.05 0.03 0.02 42.7

Geomean 8.1 0.024 0.019 0.047 30.8

157

Figure 1. Pulse width distribution of glitches.

Figure 2. Normalized power vs. pulse width.

3.4 Potential Power Savings
Table 2 reports the average total power dissipated by circuits when
implemented on an FPGA. The first column reports the power of
the circuits in the normal case, when glitching is allowed to occur.
The third column reports the power in the ideal case, when glitching
is eliminated with no overhead. The fourth column shows the
percent difference between the two power estimates; this number
indicates how much power could be saved if glitching was
completely eliminated without any overhead. Depending on the
circuit, the potential power saving ranges between 4% and 73%,
with average savings of 22.6%. These numbers motivate a
technique for reducing glitching in FPGAs.

Table 2. FPGA power with and without glitching

Power (mW)
(glitching)

Power (mW)
(no glitching)

%
Difference

24.3 18.8 22.6

4. PROPOSED TECHNIQUE
Our proposed technique involves adding programmable delay
elements within the logic blocks of the FPGA. Within each logic
block, we delay early-arriving signals so as to align the edges on
each LUT input, thereby reducing the number of glitches on the
output of each LUT. The technique is shown in Figure 3; by
delaying input c, the output glitch can be eliminated. Since only the
early-arriving input(s) are delayed, the overall critical path of the
circuit is not increased.

Figure 3. Removing glitches by delaying early-arriving signals.

We consider four alternative schemes for implementing this
technique; the schemes differ in the location of the delay elements
within the configurable logic block. In this section, we first describe
the programmable delay element that is common to all four
schemes. Then we describe each scheme, showing how the delay
elements are used to align edges. Finally, we describe the CAD
algorithms that are used to determine the configuration of each
programmable delay element after place and route.

4.1 Programmable Delay Element
Figure 4 illustrates the programmable delay elements used in each
of the schemes. The circuit is composed of two inverters. The first
inverter has programmable pull-up and pull-down resistors to
control the delay of the circuit. The second inverter has large
channel lengths to minimize short-circuit power.
The pull-up and pull-down resistors each have n stages with a
resistor and a bypass transistor controlled by an SRAM bit. The
first stage has a resistance of R and the resistance of the subsequent
stages is doubled for each stage. Using the control bits, this circuit
can be programmed to produce any delay Δ ∈ {k, τ + k, 2τ + k, 3τ +
k, …, (2n-1)τ + k}, where τ is the delay produced by a resistance R to
charge or discharge the capacitor C and k is the delay produced by
the bypass resistances and the inverters.

Figure 4. Programmable delay element.

Figure 5 illustrates the pull-up and pull-down resistor circuits. The
pull-up circuit is a PMOS pass-transistor and the pull-down circuit
is a NMOS pass-transistor. Bias circuits are used to control the gate
voltage of the pass-transistors to produce a large resistance. One
pull-up and one pull-down bias circuit are shared by all the pass-
transistors in a programmable delay element. The different
resistances needed by the different stages are obtained by changing
the length of the pass-transistors.

158

Figure 5. Resistor circuits.

The delay of the programmable delay element is affected by
temperature, supply noise, and process variation. Although not
addressed in this paper, these factors are important since adding
more delay than necessary may affect the critical-path delay of the
implementation and not adding enough delay will reduces the
amount of glitching that can be eliminated. Ideally, the delay
variation of the programmable delay element will scale with the
delay variation of the FPGA routing resources.

4.2 Architectural Alternatives
Figure 6(a) illustrates the baseline configurable logic block (CLB).
A CLB consists of LUTs, flip-flops, and local interconnect. The
LUTs and FFs are paired together into Basic Logic Elements
(BLEs). Three parameters are used to describe a CLB: I specifies
the number of input pins, N specifies the number of BLEs and
output pins, and K specifies the size of the LUTs. The local
interconnect allows each BLE input to choose from any of the I
CLB inputs and N BLE outputs. Each BLE output drives a CLB
output. The four schemes we consider for adding delay elements to

a configurable logic block are illustrated in Figure 6(b) to 6(e). Each
of are described below.
In Scheme 1, the programmable delay elements are added at the
input of each LUT, as shown in Figure 6(b). This architecture
allows each LUT input to be delayed independently. We describe
the architecture using three parameters: min_in, max_in, and
num_in. The min_in parameter specifies the precision of the delay
element connected to each LUT input. Intuitively, more glitching
can be eliminated when min_in is small since the arrival times can
be aligned more precisely. On the other hand, there is more
overhead when min_in is small since each programmable delay
element requires more stages to provide the extra precision. The
max_in parameter specifies the maximum delay that can be added to
each LUT input. Intuitively, more glitching can be eliminated when
max_in is large since wider glitches can be eliminated. However,
there is more overhead when max_in is large. Finally, the num_in
parameter specifies how many LUT inputs have a programmable
delay element, between 1 and K (the number of inputs in each
LUT). Increasing num_in reduces glitching but increases the
overhead. In Section 6, we quantify the impact of these parameters
on the power, area, and delay of this scheme.
The disadvantage of Scheme 1 is that, since some inputs need very
long delays for alignment, large programmable delay elements area
required. Since num_in delay elements are needed for every LUT,
this technique has a high area overhead if num_in is large. In
Scheme 2, shown in Figure 6(b), additional programmable delay
elements are added to the outputs of LUTs (we refer to these new
delay elements as LUT output delay elements).

Figure 6. Delay insertion schemes

159

With this architecture, a single LUT output delay element could be
used to delay a signal that fans out to several sinks, potentially
reducing the size and the number of delay elements required at each
LUT input. We describe the LUT output delay elements using two
parameters, min_out and max_out, which specify the minimum and
maximum delay of the output delay elements. The LUT input delay
elements are described using the same parameters as Scheme 1.
Scheme 3, shown in Figure 6(c), is another way to reduce the area
required for the LUT input delay elements. In this scheme,
additional delay elements, which we call CLB input delay elements,
are added to each of the I CLB inputs. Since there are typically
fewer CLB inputs than there are LUT inputs in a CLB, this could
potentially result in an overall area savings. The parameters min_c
and max_c specify the minimum and maximum delay of the CLB
input delay elements. We assume every CLB input has a delay
element, in order to maintain the equivalence of each CLB input.
Finally, Scheme 4, shown in Figure 6(d), reduces the size of the
LUT input delay elements by adding a bank of delay elements
which can programmably be used by all LUTs in a CLB. We refer
to these delay elements as bank delay elements. Signals that need
large delays can be delayed by the bank delay elements, while
signals that need only small delays can be delayed by the LUT input
delay elements. In this way, the LUT input delay elements can be
smaller than they are in Scheme 1. These bank delay elements can
be described using two additional parameters: max_b and num_b.
The max_b parameters specify the maximum delay of the bank
delay elements and the num_b parameter specifies the number of
programmable delay elements in the bank. Note that we assume
that the minimum delay of the bank delay element is equal to the
maximum delay of the LUT input delay element since only one of
delay elements needs to add precision.
The parameters used to describe each scheme are summarized in
Table 3 below. The area and delay overhead for each scheme, as
well as their ability to reduce glitches, will be quantified in Section
6.

Table 3: Architectural parameters

Scheme Parameter Meaning
min_in Min delay of LUT input delay element

max_in Max delay of LUT input delay
element

All

num_in # of LUT input delay elements / LUT

min_out Min delay of LUT output delay
element 2

max_out Max delay of LUT output delay
element

min_c Min delay of CLB input delay element
3

max_c Max delay of CLB input delay
element

max_b Max delay of bank delay element 4
num_b # of bank delay elements / CLB

4.3 CAD Algorithms
This section describes the algorithms used to determine the
configuration of each programmable delay element. This
configuration occurs after placement and routing, when accurate
delay information is available.

Regardless of the architecture scheme used, a quantity
Needed_Delay is first calculated for each LUT input. This quantity,
which indicates how much delay should be added to the LUT input
so that all LUT inputs transition at the same time, is calculated using
the algorithm in Figure 7.
calc_needed_delays (circuit) {

 calc_arrival_times (circuit);
 foreach node n ∈ circuit {
 foreach fanin f ∈ n
 Needed_Delay(n, f) = Arrival_Time(n) - Arrival_Time(f) -
 Fanin_Delay(n, f);
 }
}

Figure 7. Pseudo-code for calculating the delay needed to align
the inputs

The next step is to implement a delay as close to Needed_Delay as
possible for each LUT input. Since, in all but the first scheme,
signals can be delayed in more than one way, there is more than one
way to implement the needed delay. The technique used is different
for each scheme.
The algorithm used to calculate the configuration of each LUT input
delay element in Scheme 1 is shown in Figure 8. In this case, there
is only one way to insert delays, so the algorithm is straightforward.
Note that the granularity of the delay elements (min_in) and the
number of delay elements attached to each LUT (num_in) will
affect how closely the inserted delays match the desired values
(found in the algorithm of Figure 7).
The algorithm for Scheme 2 is shown in Figure 9. This algorithm
first visits each LUT in topological order from the inputs to the
outputs and determines the minimum delay needed by all the
fanouts of that LUT. It then configures the output delay element to
match this delay and then updates the needed delay value of each
fanout. It then configures the input delays as in Scheme 1.
The third scheme, which incorporates programmable delay elements
at the CLB inputs and LUT inputs, uses the algorithm described in
Figure 10 to the configure the CLB input delay elements and then
uses the algorithm described in 8 to configure the LUT input delays.
The algorithm visits each CLB input and determines the minimum
delay needed by the LUT inputs that are driven by that input. It
then configures the CLB input delay element to match the minimum
delay and updates the needed delay of the affected LUT inputs to
reflect the change
Finally, the fourth scheme, which incorporates a bank of
programmable delay elements in addition to those at the LUT
inputs, uses the algorithm described in Figure 11 to configure the
bank of delay elements. The algorithm visits each CLB in the
circuit and configures the bank circuits to delay signals that need to
be delayed by more than max_in and smaller or equal to max_b.
When the algorithm finds a signal that needs a delay that is greater
than max_in, it calculates the amount of delay that it can add to a
signal (by a delay element in the bank) and then updates the needed
delay to reflect the change for the subsequent LUT input algorithm.
The count variable is used to limit the number bank delay elements
that are used for each CLB. After the configuration for each bank
delay element is found, the algorithm from Figure 8 is used to
calculate the configuration for each LUT input delay element.

160

scheme1 (circuit, min_in, max_in, num_inl)
{
 config_LUT_input_delays (circuit, min_in, max_in, num_in);
}
config_LUT_input_delays (circuit, min_in, max_in,
 num_in) {
 foreach LUT n ∈ circuit {
 count = 0;
 foreach fanin f ∈ n {
 if (Needed_Delay(n, f) > min_in &&
 Needed_Delay(n, f) ≤ max_in &&
 count < num_in)
 {
 Added_Delay(n, f) = min_in *
 floor(Needed_Delay(n, f) / min_in);
 Needed_Delay(n, f) =
 Needed_Delay(n, f) - Added_Delay(n, f);
 count++;
 }
 }
 }
}

Figure 8. Pseudo-code for assigning delays in Scheme 1.

scheme2 (circuit, min_in, max_in, num_in, min_out, max_outl)
{
 config_output_delays (circuit, min_out, max_out);
 config_LUT_input_delays (circuit, min_in, max_in, num_in);
}
config_output_delays (circuit, min_out, max_out)
{
 foreach LUT n ∈ circuit {
 min = max_out;
 foreach fanout f ∈ n {
 if (Needed_Delay(f, n) < min) {
 min = Needed_Delay(f, n);
 }
 }
 if (min ≥ min_out) {
 foreach fanout f ∈ n {
 Added_Delay(f, n) = min_out * floor(min / min_out);
 Needed_Delay(f, n) =
 Needed_Delay(f, n) - Added_Delay(f, n);
 }
 }
 }
}

Figure 9. Pseudo-code for assigning additional delays in Scheme
2.

5. EXPERIMENTAL FRAMEWORK
This section describes the experimental framework that is used to
obtain the switching activity information and the FPGA area, delay,
and power estimates that are presented in this paper.

5.1 Switching Activity Estimation
The switching activities are obtained by simulating circuits at the
gate level and counting the toggles of each wire. The simulations
are driven by pseudo-random input vectors and circuit delay
information from the VPR place and route tool [11]. To capture the
filtering effect of the routing FPGA routing resources and of the
programmable delay elements, the simulator uses the inertial delay
model. Furthermore, to replicate an FPGA routing architecture
consisting of length 4 routing segments, the VPR delays are divided
into chains of 300ps delay.

scheme3 (circuit, min_in, max_in, num_in, min_clb, max_clb)
{
 config_CLB_input_delays (circuit, min_clb, max_clb);
 config_LUT_input_delays (circuit, min_in, max_in, num_in);
}
config_CLB_input_delays (circuit, min_clb, max_clb) {
 foreach CLB c ∈ circuit {
 foreach input i ∈ c {
 min = max_clb;
 foreach fanout f ∈ i {
 if (f ∈ c && Needed_Delay(f, i) < min) {
 min = Needed_Delay(f, i);
 }
 }
 if (min ≥ min_clb) {
 foreach fanout f ∈ i {
 Added_Delay(f, i) = min_clb * floor(min / min_clb);
 Needed_Delay(f, i) =
 Needed_Delay(f, i) - Added_Delay(f, i);
 }
 }
 }
 }
}

Figure 10. Pseudo-code for assigning additional delays in
Scheme 3.

scheme4 (circuit, min_in, max_in, num_in, max_b, num_b)
{
 config_bank_delays (circuit, max_in, max_b, num_b);
 config_LUT_input_delays (circuit, min_in, max_in, num_in);
}
config_bank_delays (circuit, max_in, max_b, num_b) {
 foreach CLB c ∈ circuit {
 count = 0;
 foreach LUT n ∈ c {
 foreach fanin f ∈ n {
 /* Note: min_b == max_in */
 if (Needed_Delay(n, f) > max_in &&
 Needed_Delay(n, f) ≤ max_in + max_b &&
 count < num_b)
 {
 Added_Delay(n, f) = max_in *
 floor(Needed_Delay(n, f) / max_in);
 Needed_Delay(n, f) =
 Needed_Delay(n, f) - Added_Delay(n, f);
 count++;
 }
 }
 }

 }
Figure 11. Pseudo-code for assigning additional delays in

Scheme 4.

5.2 Area, Delay, and Power Estimation
Area, delay, and power estimates are obtained from the Versatile
Place and Route (VPR) tool [11]. VPR models an FPGA at a low-
level, taking into account specific switch patterns, wire lengths, and
transistor sizes. After generating a specified FPGA architecture,
VPR places and routes a circuit on the FPGA and then models the
area, delay, and power of that circuit.
VPR models area by summing the area of every transistor in the
FPGA, including the routing, logic blocks, clock network, and
configuration memory. The area of each transistor is approximated
using the Minimum Transistor Equivalents (MTE), as described in
[11]. Delay and power are modeled after routing, when detailed

161

resistance and capacitance information can be extracted for each net
in the circuit. The Elmore delay model is used to produce delay
estimates and the FPGA power model described in [12] is used to
produce power estimates. The FPGA power uses the VPR
capacitance information and externally generated switching
activities to estimate dynamic, short-circuit, and leakage power.

5.3 Architecture Assumptions and Benchmark
Circuits
We gathered results for three LUT sizes: 4 inputs, 5 inputs, and 6
inputs. In call cases, we assumed each CLB contains 10 LUTs. To
maintain routability, we assume that the architecture with 4-input
LUTs has CLBs with 22 inputs, the architecture with 5-input LUTs
has CLBs with 27 inputs, and the architecture with 6-input LUTs
has CLBs with 33 inputs. We further assume a routing fabric
containing buffered length-4 routing tracks. In each experiment, we
used 20 combinational benchmark including the 10 largest
combinational circuits from the MCNC and ISCAS89 benchmark
suites. Before placement and routing, each circuit is mapped to
lookup-tables using the Emap technology mapper [5] and packed
into clusters using the T-VPack clusterer [11].

6. RESULTS
This section begins by calibrating the parameters of the four delay
insertion schemes described in Section 4. Each scheme is calibrated
to eliminate most of the glitching while minimizing the area and
delay overhead. After finding suitable values for each parameter,
the four schemes are compared to determine which scheme
produces the best results.

6.1 Scheme 1 Calibration
We first consider the min_in parameter, which defines the minimum
delay increment of the programmable delay element at the inputs of
the LUTs. Intuitively, a smaller delay increment reduces glitching
but increases area. Figure 12 shows how much glitching is
eliminated for minimum delay increments ranging between 0.1 and
3.2ns. To isolate the impact of the min_in parameter, the graph
assumes that every LUT input has a programmable delay element
with an infinite maximum delay (max_in is ∞ and num_in is K).

Figure 12. Glitch elimination vs. minimum LUT input delay for

Scheme 1
The graph illustrates that most of the glitching can still be
eliminated when the minimum delay increment is 0.25ns. This
corresponds to the fact that narrow glitches are filtered away by the
routing resources and that the majority of glitches have a width

greater than 0.2ns, as described in Section 3. The same conclusion
holds for FPGAs that use 4-input, 5-input, or 6-input LUTs.
The second parameter, denoted max_in, defines the maximum delay
of the programmable delay element at the inputs of the LUTs.
Intuitively, increasing the maximum delay reduces glitching but
increases area. Figure 13 shows how much glitching is eliminated
as a function of the maximum delay. The graph illustrates that over
90% of the glitching can be eliminated when the maximum delay of
the programmable delay element is 8.0ns. This corresponds with
Figure 1, which illustrates that the majority of glitches have a width
that is less than 10.0ns.

Figure 13. Glitch elimination vs maximum LUT input delay for

Scheme 1
Finally, num_in defines the number of LUT inputs that have a
programmable delay elements. Intuitively, increasing the number of
inputs with delay elements reduces glitching since the arrival times
of more inputs can be aligned. Figure 14 shows how much glitching
is eliminated when the number of inputs with programmable delays
is varied. The graph assumes that the minimum delay increment is
1/∞ and the maximum delay is ∞.

Figure 14. Glitch elimination vs. number of input delay

elements per LUT for Scheme 1
The graph illustrates that each LUT should have a programmable
delay element on every input minus one (K-1). Intuitively, adding
delay circuitry to every input is not necessary since each LUT has at
least one input that does not need to be delayed (the slowest input).
However, adding fewer than K-1 delay elements significantly
reduces the amount of glitching that can be eliminated.

162

6.2 Scheme 2 Calibration
The second delay insertion scheme has five parameters, namely:
min_in, max_in, num_in, min_out, and max_out. The first three
parameters control the delay elements and the inputs of the LUTs;
the last two parameters control the delay elements at the output of
the LUTs. Although the min_in, max_in, and num_in parameters
where already calibrated for Scheme 1, they must be recalibrated for
Scheme 2 since the output delay elements change how much delay
is needed by LUT input delay elements. Intuitively, however, the
value of the min_in parameter can be reused since the LUT input
delays are still used to perform the final alignment of each signal.
The max_in and num_in are both recalibrated assuming min_out is
infinitely precise (1/∞) and max_out is ∞. Figure 15 shows then
glitch elimination for max_in from 0 to 12ns assuming again that
min_in is 1/∞ and num_in is K. The results are similar to those in
Scheme 1 except that some glitching is eliminated when max_in is 0
since the output delay elements are aligning some of the inputs.
Again, most of the glitching can be eliminated when max_in is set to
8.0ns.
shows glitch elimination with respect to num_in. As before, the
graph assumes that min_in is 1/∞ and max_in is ∞. The graph
shows that more glitching is eliminated using fewer LUT input
delay elements when the output delays are used. In Scheme 2, most
of the glitching can be eliminated when num_in is K-2.
The remaining output delay element parameters are calibrated
assuming min_in is 0.25, max_in is 8.0, and num_in is K-2. Figure
17 shows the glitch elimination for min_out from 0 to 3.2ns
assuming that max_out is ∞ and Figure 18 shows the glitch
elimination for max_out from 0 to 12ns assuming that min_out is
1/∞. The graphs illustrate that a 0.25 and 8.0 are also suitable for
min_out and max_out, respectively.

0

20

40

60

80

100

0 2 4 6 8 10 12

Maximum LUT Input Delay (ns)

%
 G

lit
ch

 E
lim

in
at

io
n

K=4
K=5
k=6

Figure 15. Glitch elimination vs. maximum LUT input delay

for Scheme 2

0

20

40

60

80

100

0 1 2 3 4 5 6
Inputs with Delay Circuitry

%
 G

lit
ch

 E
lim

in
at

io
n 4-LUT

5-LUT

6-LUT

Figure 16. Glitch elimination vs. number of input delay
elements per LUT for Scheme 2

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3
Minimum Output Delay (ns)

%
 G

lit
ch

 E
lim

in
at

io
n

4-LUT

5-LUT

6-LUT

Figure 17: Glitch elimination vs. minimum LUT output delay

for Scheme 2

0

20

40

60

80

100

0 2 4 6 8 10 12
Max Output Delay (ns)

%
 G

lit
ch

 E
lim

in
at

io
n

4-LUT

5-LUT

6-LUT

Figure 18: Glitch elimination vs. maximum LUT output delay

for Scheme 2

6.3 Scheme 3 Calibration
The third delay insertion scheme has five parameters, namely:
min_in, max_in, num_in, min_c, and max_c. The first three
parameters control the delay elements at the inputs of the LUTs;
the last two parameters control the delay elements at the input of
the CLBs. The min_in, max_in, and num_in parameters were
again recalibrate to account for the affect of the CLB input delay
elements. The same procedure used in Scheme 2 was used. The

163

results for min_in and max_in were similar to the previous cases,
which indicated that 0.25ns and 8.0ns were suitable, respectively.
The results for num_in, which are plotted in Figure 19, were
different than in the previous cases. To isolate the impact of
num_in, the graph assumes that min_in is 1/∞, max_in is ∞, min_c
is 1/∞, and max_c is ∞. The results indicate that num_in should
be 1, 2, and 2, for 4, 5, and 6-LUTs, respectively. Intuitively,
fewer LUT input delay elements are needed since the CLB input
delay elements account for most of the delay. Only in cases
where the CLB inputs fanout to multiple LUTs within that CLB
and those fanouts need different delays are the LUT input delay
elements required.

0

20

40

60

80

100

0 1 2 3 4 5
Inputs with Delay Circuitry

%
 G

lit
ch

 E
lim

in
at

io
n

4-LUT

5-LUT

6-LUT

Figure 19: Glitch elimination vs. number of input delay

elements per LUT for Scheme 3

6.4 Scheme 4 Calibration
The fourth delay insertion scheme has five parameters, namely:
min_in, max_in, num_in, max_b, and num_b. The first three
parameters control the delay elements and the inputs of the LUTs;
the last two parameters control the bank of delay elements in the
CLB. The bank of programmable delay elements are only used
for signals that need more delay than can be added by the LUT
input delay elements, therefore this scheme uses the same min_in
and num_in values as Scheme 1: 0.25ns and K-1, respectively.
Suitable values for max_in and max_b were found empirically to
be 3.2ns and 8.0ns, respectively. Finally, Figure 20 shows glitch
elimination with respect to the number of bank delay elements per
CLB (num_b) assuming min_in is 0.25ns, num_in is K-1, max_in
is 4.0ns, and max_b is 8.0ns.

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8
Inputs with Delay Circuitry

%
 G

lit
ch

 E
lim

in
at

io
n

4-LUT

5-LUT

6-LUT

Figure 20: Glitch elimination vs. number of bank delay

elements for Scheme 4

6.5 Overhead
The circuitry added to the CLBs to minimize glitching has an
area, delay, and power overhead. The overhead for each scheme
is examined below.

Area Overhead
The area overhead is determined by summing the area of the
added delay circuitry in each logic block. This area includes the
area of the delay elements and the added configuration memory.
Table 4 reports how much area is needed in the logic blocks and
Table 5 reports the percent area overhead taking logic block and
routing area into account.
In general, Scheme 4 has a greater area overhead than Schemes 1,
2, and 3, which have similar area overheads. Scheme 4 requires
more area because of the large multiplexers needed to select
which CLB input or LUT output uses the bank delay elements.
Moreover, the area overhead tends to decrease slightly as the LUT
size increases since the area of the LUTs and multiplexers
increases exponentially with K, while the area of the delay
elements only increases linearly.

Table 4: Overhead area per CLB

Overhead Area (MTE) LUT
Size

Original
CLB Area

(MTE) Scheme 1 Scheme 2 Scheme 3 Scheme 4

4 6938 1620 1620 1728 2344
5 10361 2160 2160 2538 2688
6 15228 2700 2700 2862 3256

Table 5: Average area overhead

Average Area Overhead (%) LUT
Size Scheme 1 Scheme 2 Scheme 3 Scheme 4

4 5.3 5.3 5.7 7.7
5 5.0 5.0 5.9 6.3
6 4.4 4.4 4.6 5.3

Power Overhead
Even if all the glitches could be eliminated, the programmable
delay elements still dissipate power. This overhead is modeled by
summing the power dissipated by the added circuitry in each logic
block of the FPGA using the expression below.

crit

dnodesn
toggle

T

nE

)circuit(P
∑

∈
α⋅

=
)(

In the expression, dnodes is the set of nodes in the circuit that can
be delayed, Etoggle is the energy dissipated by one programmable
delay element during one transition, α(n) is the switching activity
of the delayed node n, and Tcrit is the critical path delay of the
circuit. The energy of the programmable delay element is
determined using HSPICE, the switching activity is determined
using gate level simulation, and the critical path delay is
determined using the VPR place and route tool. Table 6 reports
the average power dissipated by the added delay circuitry for each
scheme. The power overhead is approximately 1% for all the
schemes. Scheme 1; however, has the lowest power overhead.

164

Table 6: Average power overhead

Average Power Overhead (%) LUT Size
Scheme 1 Scheme 2 Scheme 3 Scheme 4

4 0.89 0.99 1.15 0.95
5 0.94 1.12 1.25 0.98
6 0.98 1.09 1.07 0.87

Delay Overhead
Although the delay elements are programmed to only add delay to
early arriving edges, a small delay penalty may be incurred even if
the delay element is bypassed because of parasitic resistance and
capacitance. To model delay overhead, HSPICE was used to
determine the parasitic delay incurred by the delay element. The
critical-path delay of each circuit was then recalculated, taking these
parasitic delays into account. Finally, the overhead was calculated
by comparing the new critical-path delay to the original critical-path
delay.
Table 7 reports the average delay overhead for each scheme.
Schemes 1 and 4 have the smallest overhead since both have fast-
paths with no delay elements (no parasitics) to slow down the
critical-path. Schemes 2 and 3 have a larger overhead, since neither
scheme offer a fast-path for critical-path connections.

Table 7: Average delay overhead
Average Delay Overhead (%) LUT Size

Scheme 1 Scheme 2 Scheme 3 Scheme 4
4 0.21 2.4 2.3 0.21
5 0.13 2.2 2.1 0.13
6 0.14 2.1 1.9 0.14

Table 8: % Glitch elimination of each scheme
Scheme1 Scheme 2 Scheme 3 Scheme 4

91.8% 83.3% 81.8% 85.4%

Table 9: Overall power savings
Power Saving (%) Circuit Scheme 1 Scheme 2 Scheme 3 Scheme 4

C135 25.4 25.0 25.0 25.8
C1908 18.1 18.4 16.1 17.0
C2670 11.6 11.3 10.2 11.7
C3540 27.5 22.9 23.5 26.3
C432 13.0 10.7 10.6 10.6
C499 31.8 30.9 32.3 32.4
C5315 18.2 16.2 16.0 17.9
C6288 52.1 43.2 40.0 46.1
C7552 22.6 18.9 19.7 22.3
C880 7.2 6.5 8.0 7.1
alu4 2.5 2.4 3.3 2.7

apex2 3.6 3.2 3.8 3.6
apex4 9.5 9.1 9.4 9.3

des 15.1 12.1 14.2 14.4
ex1010 16.8 16.4 16.5 15.9
ex5p 23.8 23.4 21.5 25.0

misex3 7.6 7.3 7.3 7.2
pdc 11.1 10.1 10.7 11.3
seq 5.3 5.9 5.7 5.6
spla 20.3 19.8 20.0 20.2

Average 18.2 16.3 16.2 17.4

6.6 Overall Results
Finally, Table 8 and Table 9 present the overall glitch elimination
and power savings for each scheme, respectively. Both tables report
the results for 4-LUTs only since the results for 5 and 6 input LUTs
were similar. Both tables indicate that Scheme 1 produces the best
results, with 91.8% glitch elimination and overall power savings of
18.2%. The power savings are relatively close to the ideal savings
of 22.6%.

7. CONCLUSIONS
This paper proposed an active glitch elimination technique to
minimize dynamic power in FPGAs. The technique involves
adding programmable delay elements within the logic blocks of the
FPGA to align the edges on each LUT input and filter out existing
glitches, thereby reducing the number of glitches on the output of
each LUT. Four alternative schemes were considered for
implementing this technique. Scheme 1, which involved adding
programmable delay elements to K-1 inputs of each LUT produced
the greatest power savings with the lowest overhead in terms of area
and critical-path delay. On average, the proposed technique
eliminates 91% of the glitching, which reduces overall FPGA power
by 18.2%. The added circuitry increases overall area by 5.3% and
critical-path delay by only 0.2%.

8. ACKNOWLEDGMENTS
This research was funded by Altera and the Natural Sciences and
Engineering Research Council of Canada.

9. REFERENCES
[1] T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger, A 90nm low-

power FPGA for battery-powered applications, Intl. Symp. on Field-
Programmable Gate Arrays (FPGA), pp. 3-11, 2006.

[2] J. C. Monteiro and A. L. Oliveira, Finite state machine decomposition
for low power, Proc. 35th Design Automation Conference (DAC), pp.
758-763, 1998.

[3] D. Kim and K. Choi, Power conscious high-level synthesis using loop
folding, Proc. 34th Design Automation Conference (DAC), pp. 441-
445, 1997.

[4] M. Kandemir et al, Influence of compiler optimizations on system
power, IEEE Trans. VLSI, 9(6):801-804, 2001.

[5] J. Lamoureux and S. Wilton, On the interaction between power-aware
FPGA CAD algorithms, Proc. Intl. Conference on Computer-Aided
Design (ICCAD), pp. 701-708, 2003.

[6] D. Chen, J. Cong, F. Li, and L. He, Low-power technology mapping for
FPGA architectures with dual supply voltages, Intl. Symp. on Field-
Programmable Gate Arrays (FPGA), pp. 109-117, 2004.

[7] J.C. Monteiro, S. Devadas and A. Ghosh, Retiming sequential circuits
for low power, Proc. 35th Design Automation Conference (DAC), pp.
398-402, 1993.

[8] S. Wilton, S.-S. Ang and W. Luk, , The impact of pipelining on Energy
per operation in field-programmable gate arrays, Proc. Intl. Conf. on
Field-Programmable Logic and its Applications, pp. 719-728, 2004.

[9] L. Benini et al, Glitch power minimization by selective gate freezing,
IEEE Trans. VLSI Systems, 8(3): 287-298, 2000.

[10] A. Raghunathan, S. Dey and N. K. Jia, Register transfer level power
optimization with emphasis on glitch analysis and reduction, IEEE
Tras. CAD, 18(8): 114-1131, 1999.

[11] V. Betz., J. Rose, and A. Marquardt, Architecture and CAD For Deep-
Submicron FPGAs, Kluwer Academic Publishers, 1999.

[12] K.K.W. Poon, S.J.E. Wilton, A. Yan, A Detailed Power Model for
Field-Programmable Gate Arrays", in ACM Trans. on Design
Automation of Electronic Systems (TODAES), Vol. 10, No. 2, pp. 279-
302, April 2005.

165

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

