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ABSTRACT 
This paper describes a technique that reduces dynamic power in 
FPGAs by reducing the number of glitches in the global routing 
resources.  The technique involves adding programmable delay 
elements within the logic blocks of an FPGA to programmably 
align the arrival times of early-arriving signals to the inputs of the 
lookup tables and to filter out glitches generated by earlier 
circuitry.  On average, the proposed technique eliminates 91% of 
the glitching, which reduces overall FPGA power by 18%.  The 
added circuitry increases overall area by 5% and critical-path 
delay by less than 1%.  Furthermore, since it is applied after 
routing, the proposed technique requires no modifications to the 
existing FPGA routing architecture or CAD flow. 

Categories and Subject Descriptors 
B.7.1 [Integrated Circuits]: Types and Design Styles – Gate 
Arrays 

General Terms: Design. 

Keywords 
Field-Programmable Gate Arrays, Power Minimization. 

1. INTRODUCTION 
Advancements in process technologies, programmable logic 
architectures, and CAD tools are allowing increasingly larger and 
faster systems to be implemented on Field-Programmable Gate 
Arrays (FPGAs).  These large systems, however, consume 
increasing amounts of power.  Reducing the power of FPGA 
implementations is important, not only to reduce packaging costs, 
but to open FPGAs to many more applications. 
There are two types of power dissipation in integrated circuits: 
static and dynamic.  Static power is dissipated when current leaks 
between the various terminals of a transistor, while dynamic 
power is dissipated when individual circuit nodes toggle.  
Although static power is increasing relative to dynamic power for 
newer process technologies, dynamic power remains the dominant 
source of power dissipation in FPGAs.  A study that examined 
power dissipation in a commercial 90nm FPGA found that 
dynamic power accounted for 62% of total power [1]. 

This paper introduces a technique that reduces dynamic power in 
FPGAs by actively minimizing the number of unnecessary 
transitions called glitches or hazards.  The technique involves 
adding programmable delay elements within the logic blocks of 
an FPGA to programmably align the arrival times of early-
arriving signals to the inputs of the lookup tables (LUTs) and to 
filter out glitches generated by earlier circuitry.   
Theoretically, the proposed technique can be used to eliminate all 
the glitching within FPGAs and therefore significantly reduce 
power.  In practice, however, we must trade-off the amount of 
glitch reduction with area and speed overhead.  Since we only 
delay the early-arriving signals, there is no significant impact on 
circuit speed (other than increased parasitic capacitances).  
However, the programmable delay elements consume chip area, 
so we should expect a modest increase in the area of a 
configurable logic block.  This tradeoff between glitch reduction 
(and hence power), area, and delay will be quantified in this 
paper.  Specifically, this paper examines the following questions: 
1. How should the programmable delay elements be connected 

within the logic blocks?  The programmable delay elements 
could conceivably be connected to the logic block inputs, 
LUT inputs, logic block outputs, or combinations of these.   

2. How many programmable delay elements are needed within 
each logic block? Intuitively, adding more programmable 
delay elements to the logic blocks eliminates more glitches 
since more signals can be aligned; however, it also increases 
the area overhead. 

3. How flexible should the programmable delay elements be?  
The more flexible each delay element is, the better it will be 
able to align the arrival times of signals.  However, there is a 
tradeoff between this flexibility and the area overhead of the 
added circuits. 

This paper is organized as follows.  Section 2 defines glitching 
and summarizes existing techniques that can be used to minimize 
glitching.  Section 3 then examines glitching for circuits that are 
implemented on FPGAs.  Section 4 presents the delay insertion 
schemes that are proposed in this paper.  Section 5 then describes 
the experimental framework used in Section 6, which compares 
each scheme.  Finally, Section 7 summarizes the results and 
presents our conclusions. 

2. BACKGROUND 
2.1 Terminology 
There are two types of transitions that can occur on a signal.  The 
first type is a functional transition, which is necessary in order to 
perform a computation.  A functional transition causes the value 
of the signal to be different at the end of the clock cycle than at 
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the beginning of the clock cycle.  In each cycle, a functional 
transition occurs either once or the signal remains unchanged.  
The second type of transition is called a glitch or a hazard, which 
is not necessary in order to perform a computation.  These 
transitions can occur multiple times during a clock cycle.  

2.2 Glitch Minimization 
Several techniques have been proposed to minimize glitching.  
CAD techniques including logic decomposition [2], loop folding 
[3], high-level compiler optimization [4], technology mapping 
[5,6], and clustering [5] have been proposed to minimize 
switching activity.  These techniques can eliminate some of the 
glitching, but typically incur area and delay penalties as they 
reorganize the structure of the circuit.  Other approaches involve 
relocating flip-flops [7] or inserting additional flip-flops 
(pipelining) [8] to reduce the combinational path length.  These 
techniques can also eliminate some of the glitching, however, 
significant power savings require additional flip-flops which 
increases the latency of the circuit.  The gate freezing technique 
described in [9] eliminates glitching by suppressing transitions 
until the freeze gate is enabled.  This technique is suitable for 
fixed implementations since it can be applied to selected gates 
with high glitch counts.   However, the technique is less suitable 
for FPGAs since the applications implemented on FPGAs are not 
known until after fabrication, meaning it is difficult to determine, 
at fabrication time, where the extra circuitry should be added.  
Finally, the delay insertion technique described in [10] minimizes 
glitching in fixed logic implementations by aligning the input 
arrival times of gates using fixed delay elements.  In this paper, 
we propose a similar technique that targets FPGAs.  Aligning 
edges in an FPGA is considerably more complex than doing so in 
an ASIC, since in an FPGA, the required delay times are not 
known when the chip is fabricated.  This means the delays must 
be programmable; if not managed carefully, the overhead in these 
programmable delay elements can overwhelm any power savings 
obtained by removing glitches.    

3. GLITCHING IN FPGAS 
This section presents statistics regarding glitching for circuits 
implemented on FPGAs.  This section begins with a breakdown 
of functional vs. glitching activity to determine how much 
glitching is common in FPGA implementations.  It then examines 
the width of typical glitches and determines how much power is 
dissipated by a single glitch. Finally, it indicates how much power 
could be saved if glitching could be completely eliminated.  
These statistics are important, not only because they help 
motivate our work, but also because they provide key numbers 
(such as typical pulse widths) that will be needed to calibrate the 
architectures proposed in Section 4. 

3.1 Switching Activity Breakdown 
Table 1 reports the switching activities for a suite benchmark 
circuits implemented on FPGAs.  These activities are gathered 
using gate-level simulation of a post-place and route 
implementation for a set of benchmark circuits (see Section 5 for 
more details).  Gate-level simulations provide the functional and 
total activity; the glitching activity is computed as the difference 
between these two quantities.  In general, the amount glitching is 
greater in circuits with many levels of logic, circuits with uneven 
routing delays, and circuits with exclusive-or logic.  As an 
example, an unpipelined 16-bit array multiplier (C6288) 

implemented on an FPGA has five times more glitch transitions than 
functional transitions. 

3.2 Pulse Width Distribution 
In FPGAs, glitches are generated at the output of a LUT when the 
input signals transition at different times.  The pulse width of these 
glitches depends on how uneven the input arrival times are. 
Intuitively, we would expect FPGA glitches to be wider than ASIC 
glitches, since signals are often routed using non-direct paths due to 
the limited connectivity of FPGA routing resources.  Figure 1 plots 
the pulse width distribution of the C6288 benchmark circuit.  The 
distribution was obtained using event-driven simulation and delays 
from VPR as described in Section 5.  The graph shows that the 
majority of glitches have a pulse width between 0 and 
approximately 10 ns.  Although this range varies across our 
benchmark circuits, we have found that the shape of the distribution 
is similar for every circuit. 

3.3 Power Dissipation of Glitches 
The parasitic resistance and capacitances of the routing resources 
filter out very short glitches.  To measure the impact of this, 
HSPICE was used to build a profile of power with respect to pulse 
width.  Figure 2 illustrated the relative power dissipated when pulses 
with widths ranging from 0 to 1ns are applied to an FPGA routing 
track that spans four logic blocks.  A 180nm process was assumed. 
The graph illustrates that pulses less than or equal to 200 ps in 
duration are mostly filtered out the routing resources.  Pulses that 
are longer than 300 ps in duration dissipate approximately the same 
amount of power as longer pulses.  Thus, if the input signals of a 
gate arrive within a 200 ps window, the glitching of that gate is 
effectively eliminated. 

Table 1. Breakdown of Switching Activity 

Circuit Logic 
Depth Activity Func. 

Activity 
Glitch 

Activity 
% 

Glitch 
C1355 4 0.32 0.23 0.09 27.5 
C1908 10 0.26 0.17 0.09 34.6 
C2670 7 0.27 0.21 0.06 22.2 
C3540 12 0.42 0.23 0.19 45.2 
C432 11 0.26 0.18 0.08 29.3 
C499 4 0.34 0.23 0.11 31.9 
C5315 10 0.40 0.25 0.15 36.7 
C6288 28 1.56 0.29 1.27 81.1 
C7552 9 0.39 0.23 0.16 42.0 
C880 9 0.23 0.19 0.05 19.8 
alu4 7 0.08 0.07 0.01 13.1 

apex2 8 0.05 0.04 0.01 13.7 
apex4 6 0.04 0.03 0.01 32.3 

des 6 0.27 0.17 0.10 36.8 
ex1010 8 0.03 0.01 0.02 52.9 
ex5p 7 0.17 0.08 0.09 51.0 

misex3 7 0.06 0.05 0.01 20.9 
pdc 9 0.03 0.02 0.01 31.8 
seq 7 0.05 0.04 0.01 16.0 
spla 8 0.05 0.03 0.02 42.7 

Geomean 8.1 0.024 0.019 0.047 30.8 
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Figure 1. Pulse width distribution of glitches. 

 
Figure 2. Normalized power vs. pulse width. 

3.4 Potential Power Savings 
Table 2 reports the average total power dissipated by circuits when 
implemented on an FPGA.  The first column reports the power of 
the circuits in the normal case, when glitching is allowed to occur.  
The third column reports the power in the ideal case, when glitching 
is eliminated with no overhead.  The fourth column shows the 
percent difference between the two power estimates; this number 
indicates how much power could be saved if glitching was 
completely eliminated without any overhead.  Depending on the 
circuit, the potential power saving ranges between 4% and 73%, 
with average savings of 22.6%.  These numbers motivate a 
technique for reducing glitching in FPGAs. 

Table 2. FPGA power with and without glitching 

Power (mW) 
(glitching) 

Power (mW) 
(no glitching) 

% 
Difference 

24.3 18.8 22.6 

4. PROPOSED TECHNIQUE 
Our proposed technique involves adding programmable delay 
elements within the logic blocks of the FPGA.  Within each logic 
block, we delay early-arriving signals so as to align the edges on 
each LUT input, thereby reducing the number of glitches on the 
output of each LUT.  The technique is shown in Figure 3; by 
delaying input c, the output glitch can be eliminated.  Since only the 
early-arriving input(s) are delayed, the overall critical path of the 
circuit is not increased. 

 
Figure 3. Removing glitches by delaying early-arriving signals. 

We consider four alternative schemes for implementing this 
technique; the schemes differ in the location of the delay elements 
within the configurable logic block.  In this section, we first describe 
the programmable delay element that is common to all four 
schemes.  Then we describe each scheme, showing how the delay 
elements are used to align edges.  Finally, we describe the CAD 
algorithms that are used to determine the configuration of each 
programmable delay element after place and route. 

4.1 Programmable Delay Element 
Figure 4 illustrates the programmable delay elements used in each 
of the schemes.  The circuit is composed of two inverters.  The first 
inverter has programmable pull-up and pull-down resistors to 
control the delay of the circuit.  The second inverter has large 
channel lengths to minimize short-circuit power. 
The pull-up and pull-down resistors each have n stages with a 
resistor and a bypass transistor controlled by an SRAM bit.  The 
first stage has a resistance of R and the resistance of the subsequent 
stages is doubled for each stage.  Using the control bits, this circuit 
can be programmed to produce any delay Δ ∈ {k, τ + k, 2τ + k, 3τ + 
k, …, (2n-1)τ + k}, where τ is the delay produced by a resistance R to 
charge or discharge the capacitor C and k is the delay produced by 
the bypass resistances and the inverters. 

 
Figure 4. Programmable delay element. 

Figure 5 illustrates the pull-up and pull-down resistor circuits.  The 
pull-up circuit is a PMOS pass-transistor and the pull-down circuit 
is a NMOS pass-transistor.  Bias circuits are used to control the gate 
voltage of the pass-transistors to produce a large resistance.  One 
pull-up and one pull-down bias circuit are shared by all the pass-
transistors in a programmable delay element.  The different 
resistances needed by the different stages are obtained by changing 
the length of the pass-transistors.   
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Figure 5. Resistor circuits. 

The delay of the programmable delay element is affected by 
temperature, supply noise, and process variation.  Although not 
addressed in this paper, these factors are important since adding 
more delay than necessary may affect the critical-path delay of the 
implementation and not adding enough delay will reduces the 
amount of glitching that can be eliminated.  Ideally, the delay 
variation of the programmable delay element will scale with the 
delay variation of the FPGA routing resources.   

4.2 Architectural Alternatives 
Figure 6(a) illustrates the baseline configurable logic block (CLB).  
A CLB consists of LUTs, flip-flops, and local interconnect.  The 
LUTs and FFs are paired together into Basic Logic Elements 
(BLEs).  Three parameters are used to describe a CLB: I specifies 
the number of input pins, N specifies the number of BLEs and 
output pins, and K specifies the size of the LUTs.  The local 
interconnect allows each BLE input to choose from any of the I 
CLB inputs and N BLE outputs.  Each BLE output drives a CLB 
output.  The four schemes we consider for adding delay elements to 

a configurable logic block are illustrated in Figure 6(b) to 6(e). Each 
of are described below.   
In Scheme 1, the programmable delay elements are added at the 
input of each LUT, as shown in Figure 6(b).  This architecture 
allows each LUT input to be delayed independently.  We describe 
the architecture using three parameters: min_in, max_in, and 
num_in.  The min_in parameter specifies the precision of the delay 
element connected to each LUT input.  Intuitively, more glitching 
can be eliminated when min_in is small since the arrival times can 
be aligned more precisely.  On the other hand, there is more 
overhead when min_in is small since each programmable delay 
element requires more stages to provide the extra precision.  The 
max_in parameter specifies the maximum delay that can be added to 
each LUT input.  Intuitively, more glitching can be eliminated when 
max_in is large since wider glitches can be eliminated.  However, 
there is more overhead when max_in is large.  Finally, the num_in 
parameter specifies how many LUT inputs have a programmable 
delay element, between 1 and K (the number of inputs in each 
LUT). Increasing num_in reduces glitching but increases the 
overhead.  In Section 6, we quantify the impact of these parameters 
on the power, area, and delay of this scheme. 
The disadvantage of Scheme 1 is that, since some inputs need very 
long delays for alignment, large programmable delay elements area 
required.  Since num_in delay elements are needed for every LUT, 
this technique has a high area overhead if num_in is large. In 
Scheme 2, shown in Figure 6(b), additional programmable delay 
elements are added to the outputs of LUTs (we refer to these new 
delay elements as LUT output delay elements).  

 
Figure 6. Delay insertion schemes 
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With this architecture, a single LUT output delay element could be 
used to delay a signal that fans out to several sinks, potentially 
reducing the size and the number of delay elements required at each 
LUT input.  We describe the LUT output delay elements using two 
parameters, min_out and max_out, which specify the minimum and 
maximum delay of the output delay elements.  The LUT input delay 
elements are described using the same parameters as Scheme 1.   
Scheme 3, shown in Figure 6(c), is another way to reduce the area 
required for the LUT input delay elements.  In this scheme, 
additional delay elements, which we call CLB input delay elements, 
are added to each of the I CLB inputs.  Since there are typically 
fewer CLB inputs than there are LUT inputs in a CLB, this could 
potentially result in an overall area savings.  The parameters min_c 
and max_c specify the minimum and maximum delay of the CLB 
input delay elements.  We assume every CLB input has a delay 
element, in order to maintain the equivalence of each CLB input. 
Finally, Scheme 4, shown in Figure 6(d), reduces the size of the 
LUT input delay elements by adding a bank of delay elements 
which can programmably be used by all LUTs in a CLB.  We refer 
to these delay elements as bank delay elements.  Signals that need 
large delays can be delayed by the bank delay elements, while 
signals that need only small delays can be delayed by the LUT input 
delay elements.  In this way, the LUT input delay elements can be 
smaller than they are in Scheme 1.  These bank delay elements can 
be described using two additional parameters: max_b and num_b.  
The max_b parameters specify the maximum delay of the bank 
delay elements and the num_b parameter specifies the number of 
programmable delay elements in the bank.  Note that we assume 
that the minimum delay of the bank delay element is equal to the 
maximum delay of the LUT input delay element since only one of 
delay elements needs to add precision. 
The parameters used to describe each scheme are summarized in 
Table 3 below.  The area and delay overhead for each scheme, as 
well as their ability to reduce glitches, will be quantified in Section 
6.   

Table 3: Architectural parameters 

Scheme Parameter Meaning 
min_in Min delay of LUT input delay element

max_in Max delay of LUT input delay 
element 

All 

num_in # of LUT input delay elements / LUT 

min_out Min delay of LUT output delay 
element 2 

max_out Max delay of LUT output delay 
element 

min_c Min delay of CLB input delay element
3 

max_c Max delay of CLB input delay 
element 

max_b Max delay of bank delay element 4 
num_b # of bank delay elements / CLB 

4.3 CAD Algorithms  
This section describes the algorithms used to determine the 
configuration of each programmable delay element.  This 
configuration occurs after placement and routing, when accurate 
delay information is available.   

Regardless of the architecture scheme used, a quantity 
Needed_Delay is first calculated for each LUT input.  This quantity, 
which indicates how much delay should be added to the LUT input 
so that all LUT inputs transition at the same time, is calculated using 
the algorithm in Figure 7. 
calc_needed_delays (circuit)  { 

    calc_arrival_times (circuit); 
    foreach node n ∈ circuit { 
        foreach fanin f ∈ n 
            Needed_Delay(n, f) = Arrival_Time(n) - Arrival_Time(f) - 
                                               Fanin_Delay(n, f); 
    } 
} 

Figure 7. Pseudo-code for calculating the delay needed to align 
the inputs 

The next step is to implement a delay as close to Needed_Delay as 
possible for each LUT input.  Since, in all but the first scheme, 
signals can be delayed in more than one way, there is more than one 
way to implement the needed delay.  The technique used is different 
for each scheme. 
The algorithm used to calculate the configuration of each LUT input 
delay element in Scheme 1 is shown in Figure 8.  In this case, there 
is only one way to insert delays, so the algorithm is straightforward.  
Note that the granularity of the delay elements (min_in) and the 
number of delay elements attached to each LUT (num_in) will 
affect how closely the inserted delays match the desired values 
(found in the algorithm of Figure 7). 
The algorithm for Scheme 2 is shown in Figure 9.  This algorithm 
first visits each LUT in topological order from the inputs to the 
outputs and determines the minimum delay needed by all the 
fanouts of that LUT.  It then configures the output delay element to 
match this delay and then updates the needed delay value of each 
fanout.  It then configures the input delays as in Scheme 1. 
The third scheme, which incorporates programmable delay elements 
at the CLB inputs and LUT inputs, uses the algorithm described in 
Figure 10 to the configure the CLB input delay elements and then 
uses the algorithm described in 8 to configure the LUT input delays.  
The algorithm visits each CLB input and determines the minimum 
delay needed by the LUT inputs that are driven by that input.  It 
then configures the CLB input delay element to match the minimum 
delay and updates the needed delay of the affected LUT inputs to 
reflect the change 
Finally, the fourth scheme, which incorporates a bank of 
programmable delay elements in addition to those at the LUT 
inputs, uses the algorithm described in Figure 11 to configure the 
bank of delay elements.  The algorithm visits each CLB in the 
circuit and configures the bank circuits to delay signals that need to 
be delayed by more than max_in and smaller or equal to max_b.  
When the algorithm finds a signal that needs a delay that is greater 
than max_in, it calculates the amount of delay that it can add to a 
signal (by a delay element in the bank) and then updates the needed 
delay to reflect the change for the subsequent LUT input algorithm.  
The count variable is used to limit the number bank delay elements 
that are used for each CLB. After the configuration for each bank 
delay element is found, the algorithm from Figure 8 is used to 
calculate the configuration for each LUT input delay element. 
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scheme1 (circuit, min_in, max_in, num_inl)  
{ 
    config_LUT_input_delays (circuit, min_in, max_in, num_in); 
} 
config_LUT_input_delays (circuit, min_in, max_in,  
                                              num_in) { 
    foreach LUT n ∈ circuit  { 
        count = 0; 
        foreach fanin f ∈ n  { 
            if (Needed_Delay(n, f) > min_in && 
                Needed_Delay(n, f) ≤ max_in && 
                count < num_in)  
            { 
                Added_Delay(n, f) = min_in * 
                    floor(Needed_Delay(n, f) / min_in); 
                Needed_Delay(n, f) = 
                    Needed_Delay(n, f) - Added_Delay(n, f); 
                count++; 
            } 
        } 
    } 
} 

Figure 8. Pseudo-code for assigning delays in Scheme 1. 

scheme2 (circuit, min_in, max_in, num_in, min_out, max_outl)  
{ 
    config_output_delays (circuit, min_out, max_out); 
    config_LUT_input_delays (circuit, min_in, max_in, num_in); 
} 
config_output_delays (circuit, min_out, max_out)   
{ 
    foreach LUT n ∈ circuit { 
        min = max_out; 
        foreach fanout f ∈ n { 
            if (Needed_Delay(f, n) < min) { 
                min = Needed_Delay(f, n); 
            } 
        } 
        if (min ≥ min_out) { 
            foreach fanout f ∈ n { 
                Added_Delay(f, n) = min_out * floor(min / min_out); 
                Needed_Delay(f, n) =  
                    Needed_Delay(f, n) - Added_Delay(f, n); 
            } 
        } 
    } 
} 

Figure 9. Pseudo-code for assigning additional delays in Scheme 
2. 

5. EXPERIMENTAL FRAMEWORK 
This section describes the experimental framework that is used to 
obtain the switching activity information and the FPGA area, delay, 
and power estimates that are presented in this paper. 

5.1 Switching Activity Estimation 
The switching activities are obtained by simulating circuits at the 
gate level and counting the toggles of each wire.  The simulations 
are driven by pseudo-random input vectors and circuit delay 
information from the VPR place and route tool [11].  To capture the 
filtering effect of the routing FPGA routing resources and of the 
programmable delay elements, the simulator uses the inertial delay 
model.  Furthermore, to replicate an FPGA routing architecture 
consisting of length 4 routing segments, the VPR delays are divided 
into chains of 300ps delay.   
 

scheme3 (circuit, min_in, max_in, num_in, min_clb, max_clb)  
{ 
    config_CLB_input_delays (circuit, min_clb, max_clb); 
    config_LUT_input_delays (circuit, min_in, max_in, num_in); 
} 
config_CLB_input_delays (circuit, min_clb, max_clb)  { 
    foreach CLB c ∈ circuit { 
        foreach input i ∈ c { 
            min = max_clb; 
            foreach fanout f ∈ i { 
                if (f ∈ c && Needed_Delay(f, i) < min) { 
                    min = Needed_Delay(f, i); 
                } 
            } 
            if (min ≥ min_clb) { 
                foreach fanout f ∈ i { 
                    Added_Delay(f, i) = min_clb * floor(min / min_clb); 
                    Needed_Delay(f, i) = 
                        Needed_Delay(f, i) - Added_Delay(f, i); 
                } 
            } 
        } 
    } 
} 

Figure 10. Pseudo-code for assigning additional delays in 
Scheme 3. 

scheme4 (circuit, min_in, max_in, num_in, max_b, num_b)  
{ 
    config_bank_delays (circuit, max_in, max_b, num_b); 
    config_LUT_input_delays (circuit, min_in, max_in, num_in); 
} 
config_bank_delays (circuit, max_in, max_b, num_b) { 
    foreach CLB c ∈ circuit { 
        count = 0; 
        foreach LUT n ∈ c { 
            foreach fanin f ∈ n { 
                /* Note: min_b == max_in */ 
                if (Needed_Delay(n, f) > max_in && 
                    Needed_Delay(n, f) ≤ max_in + max_b &&  
                    count < num_b) 
                { 
                    Added_Delay(n, f) = max_in * 
                        floor(Needed_Delay(n, f) / max_in); 
                    Needed_Delay(n, f) =  
                        Needed_Delay(n, f) - Added_Delay(n, f); 
                    count++; 
            } 
        } 
    } 

    } 
Figure 11. Pseudo-code for assigning additional delays in 

Scheme 4. 

5.2 Area, Delay, and Power Estimation 
Area, delay, and power estimates are obtained from the Versatile 
Place and Route (VPR) tool [11].  VPR models an FPGA at a low-
level, taking into account specific switch patterns, wire lengths, and 
transistor sizes.  After generating a specified FPGA architecture, 
VPR places and routes a circuit on the FPGA and then models the 
area, delay, and power of that circuit. 
VPR models area by summing the area of every transistor in the 
FPGA, including the routing, logic blocks, clock network, and 
configuration memory. The area of each transistor is approximated 
using the Minimum Transistor Equivalents (MTE), as described in 
[11].  Delay and power are modeled after routing, when detailed 
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resistance and capacitance information can be extracted for each net 
in the circuit.  The Elmore delay model is used to produce delay 
estimates and the FPGA power model described in [12] is used to 
produce power estimates.  The FPGA power uses the VPR 
capacitance information and externally generated switching 
activities to estimate dynamic, short-circuit, and leakage power. 

5.3 Architecture Assumptions and Benchmark 
Circuits 
We gathered results for three LUT sizes: 4 inputs, 5 inputs, and 6 
inputs.  In call cases, we assumed each CLB contains 10 LUTs. To 
maintain routability, we assume that the architecture with 4-input 
LUTs has CLBs with 22 inputs, the architecture with 5-input LUTs 
has CLBs with 27 inputs, and the architecture with 6-input LUTs 
has CLBs with 33 inputs.  We further assume a routing fabric 
containing buffered length-4 routing tracks.  In each experiment, we 
used 20 combinational benchmark including the 10 largest 
combinational circuits from the MCNC and ISCAS89 benchmark 
suites.  Before placement and routing, each circuit is mapped to 
lookup-tables using the Emap technology mapper [5] and packed 
into clusters using the T-VPack clusterer [11]. 

6. RESULTS 
This section begins by calibrating the parameters of the four delay 
insertion schemes described in Section 4.  Each scheme is calibrated 
to eliminate most of the glitching while minimizing the area and 
delay overhead.  After finding suitable values for each parameter, 
the four schemes are compared to determine which scheme 
produces the best results. 

6.1 Scheme 1 Calibration 
We first consider the min_in parameter, which defines the minimum 
delay increment of the programmable delay element at the inputs of 
the LUTs.  Intuitively, a smaller delay increment reduces glitching 
but increases area.  Figure 12 shows how much glitching is 
eliminated for minimum delay increments ranging between 0.1 and 
3.2ns.  To isolate the impact of the min_in parameter, the graph 
assumes that every LUT input has a programmable delay element 
with an infinite maximum delay (max_in is ∞ and num_in is K). 

 
Figure 12.  Glitch elimination vs. minimum LUT input delay for 

Scheme 1 
The graph illustrates that most of the glitching can still be 
eliminated when the minimum delay increment is 0.25ns.  This 
corresponds to the fact that narrow glitches are filtered away by the 
routing resources and that the majority of glitches have a width 

greater than 0.2ns, as described in Section 3.  The same conclusion 
holds for FPGAs that use 4-input, 5-input, or 6-input LUTs.  
The second parameter, denoted max_in, defines the maximum delay 
of the programmable delay element at the inputs of the LUTs.  
Intuitively, increasing the maximum delay reduces glitching but 
increases area.  Figure 13 shows how much glitching is eliminated 
as a function of the maximum delay.  The graph illustrates that over 
90% of the glitching can be eliminated when the maximum delay of 
the programmable delay element is 8.0ns.  This corresponds with 
Figure 1, which illustrates that the majority of glitches have a width 
that is less than 10.0ns. 

 
Figure 13.  Glitch elimination vs maximum LUT input delay for 

Scheme 1 
Finally, num_in defines the number of LUT inputs that have a 
programmable delay elements.  Intuitively, increasing the number of 
inputs with delay elements reduces glitching since the arrival times 
of more inputs can be aligned.  Figure 14 shows how much glitching 
is eliminated when the number of inputs with programmable delays 
is varied.  The graph assumes that the minimum delay increment is 
1/∞ and the maximum delay is ∞. 

 
Figure 14.  Glitch elimination vs. number of input delay 

elements per LUT for Scheme 1 
The graph illustrates that each LUT should have a programmable 
delay element on every input minus one (K-1).  Intuitively, adding 
delay circuitry to every input is not necessary since each LUT has at 
least one input that does not need to be delayed (the slowest input). 
However, adding fewer than K-1 delay elements significantly 
reduces the amount of glitching that can be eliminated. 
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6.2 Scheme 2 Calibration 
The second delay insertion scheme has five parameters, namely: 
min_in, max_in, num_in, min_out, and max_out.  The first three 
parameters control the delay elements and the inputs of the LUTs; 
the last two parameters control the delay elements at the output of 
the LUTs.  Although the min_in, max_in, and num_in parameters 
where already calibrated for Scheme 1, they must be recalibrated for 
Scheme 2 since the output delay elements change how much delay 
is needed by LUT input delay elements.  Intuitively, however, the 
value of the min_in parameter can be reused since the LUT input 
delays are still used to perform the final alignment of each signal. 
The max_in and num_in are both recalibrated assuming min_out is 
infinitely precise (1/∞) and max_out is ∞.  Figure 15 shows then 
glitch elimination for max_in from 0 to 12ns assuming again that 
min_in is 1/∞ and num_in is K.  The results are similar to those in 
Scheme 1 except that some glitching is eliminated when max_in is 0 
since the output delay elements are aligning some of the inputs.  
Again, most of the glitching can be eliminated when max_in is set to 
8.0ns.   
shows glitch elimination with respect to num_in.  As before, the 
graph assumes that min_in is 1/∞ and max_in is ∞.  The graph 
shows that more glitching is eliminated using fewer LUT input 
delay elements when the output delays are used.  In Scheme 2, most 
of the glitching can be eliminated when num_in is K-2. 
The remaining output delay element parameters are calibrated 
assuming min_in is 0.25, max_in is 8.0, and num_in is K-2.  Figure 
17 shows the glitch elimination for min_out from 0 to 3.2ns 
assuming that max_out is ∞ and Figure 18 shows the glitch 
elimination for max_out from 0 to 12ns assuming that min_out is 
1/∞. The graphs illustrate that a 0.25 and 8.0 are also suitable for 
min_out and max_out, respectively. 
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Figure 15. Glitch elimination vs. maximum LUT input delay 

for Scheme 2 
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Figure 16. Glitch elimination vs. number of input delay 
elements per LUT for Scheme 2 
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Figure 17: Glitch elimination vs. minimum LUT output delay 

for Scheme 2 
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Figure 18: Glitch elimination vs. maximum LUT output delay 

for Scheme 2 

6.3 Scheme 3 Calibration 
The third delay insertion scheme has five parameters, namely: 
min_in, max_in, num_in, min_c, and max_c.  The first three 
parameters control the delay elements at the inputs of the LUTs; 
the last two parameters control the delay elements at the input of 
the CLBs.  The min_in, max_in, and num_in parameters were 
again recalibrate to account for the affect of the CLB input delay 
elements.  The same procedure used in Scheme 2 was used.  The 
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results for min_in and max_in were similar to the previous cases, 
which indicated that 0.25ns and 8.0ns were suitable, respectively. 
The results for num_in, which are plotted in Figure 19, were 
different than in the previous cases.  To isolate the impact of 
num_in, the graph assumes that min_in is 1/∞, max_in is ∞, min_c 
is 1/∞, and max_c is ∞.  The results indicate that num_in should 
be 1, 2, and 2, for 4, 5, and 6-LUTs, respectively.  Intuitively, 
fewer LUT input delay elements are needed since the CLB input 
delay elements account for most of the delay.  Only in cases 
where the CLB inputs fanout to multiple LUTs within that CLB 
and those fanouts need different delays are the LUT input delay 
elements required. 
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Figure 19: Glitch elimination vs. number of input delay 

elements per LUT for Scheme 3 

6.4 Scheme 4 Calibration 
The fourth delay insertion scheme has five parameters, namely: 
min_in, max_in, num_in, max_b, and num_b.  The first three 
parameters control the delay elements and the inputs of the LUTs; 
the last two parameters control the bank of delay elements in the 
CLB.  The bank of programmable delay elements are only used 
for signals that need more delay than can be added by the LUT 
input delay elements, therefore this scheme uses the same min_in 
and num_in values as Scheme 1: 0.25ns and K-1, respectively.  
Suitable values for max_in and max_b were found empirically to 
be 3.2ns and 8.0ns, respectively.  Finally, Figure 20 shows glitch 
elimination with respect to the number of bank delay elements per 
CLB (num_b) assuming min_in is 0.25ns, num_in is K-1, max_in 
is 4.0ns, and max_b is 8.0ns. 
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Figure 20: Glitch elimination vs. number of bank delay 

elements for Scheme 4 

6.5 Overhead 
The circuitry added to the CLBs to minimize glitching has an 
area, delay, and power overhead.  The overhead for each scheme 
is examined below.  

Area Overhead 
The area overhead is determined by summing the area of the 
added delay circuitry in each logic block.  This area includes the 
area of the delay elements and the added configuration memory.  
Table 4 reports how much area is needed in the logic blocks and 
Table 5 reports the percent area overhead taking logic block and 
routing area into account.   
In general, Scheme 4 has a greater area overhead than Schemes 1, 
2, and 3, which have similar area overheads.  Scheme 4 requires 
more area because of the large multiplexers needed to select 
which CLB input or LUT output uses the bank delay elements.  
Moreover, the area overhead tends to decrease slightly as the LUT 
size increases since the area of the LUTs and multiplexers 
increases exponentially with K, while the area of the delay 
elements only increases linearly. 

Table 4: Overhead area per CLB 

Overhead Area (MTE) LUT 
Size 

Original 
CLB Area 

(MTE) Scheme 1 Scheme 2 Scheme 3 Scheme 4

4 6938 1620 1620 1728 2344 
5 10361 2160 2160 2538 2688 
6 15228 2700 2700 2862 3256 

Table 5: Average area overhead 

Average Area Overhead (%) LUT 
Size Scheme 1 Scheme 2 Scheme 3 Scheme 4 

4 5.3 5.3 5.7 7.7 
5 5.0 5.0 5.9 6.3 
6 4.4 4.4 4.6 5.3 

Power Overhead 
Even if all the glitches could be eliminated, the programmable 
delay elements still dissipate power.  This overhead is modeled by 
summing the power dissipated by the added circuitry in each logic 
block of the FPGA using the expression below. 

crit

dnodesn
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∑

∈
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In the expression, dnodes is the set of nodes in the circuit that can 
be delayed, Etoggle is the energy dissipated by one programmable 
delay element during one transition, α(n) is the switching activity 
of the delayed node n, and Tcrit is the critical path delay of the 
circuit.  The energy of the programmable delay element is 
determined using HSPICE, the switching activity is determined 
using gate level simulation, and the critical path delay is 
determined using the VPR place and route tool.  Table 6 reports 
the average power dissipated by the added delay circuitry for each 
scheme.  The power overhead is approximately 1% for all the 
schemes.  Scheme 1; however, has the lowest power overhead. 
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Table 6: Average power overhead 

Average Power Overhead (%) LUT Size 
Scheme 1 Scheme 2 Scheme 3 Scheme 4 

4 0.89 0.99 1.15 0.95 
5 0.94 1.12 1.25 0.98 
6 0.98 1.09 1.07 0.87 

Delay Overhead 
Although the delay elements are programmed to only add delay to 
early arriving edges, a small delay penalty may be incurred even if 
the delay element is bypassed because of parasitic resistance and 
capacitance.  To model delay overhead, HSPICE was used to 
determine the parasitic delay incurred by the delay element.  The 
critical-path delay of each circuit was then recalculated, taking these 
parasitic delays into account.  Finally, the overhead was calculated 
by comparing the new critical-path delay to the original critical-path 
delay.   
Table 7 reports the average delay overhead for each scheme.  
Schemes 1 and 4 have the smallest overhead since both have fast-
paths with no delay elements (no parasitics) to slow down the 
critical-path.  Schemes 2 and 3 have a larger overhead, since neither 
scheme offer a fast-path for critical-path connections. 

Table 7: Average delay overhead 
Average Delay Overhead (%) LUT Size 

Scheme 1 Scheme 2 Scheme 3 Scheme 4 
4 0.21 2.4 2.3 0.21 
5 0.13 2.2 2.1 0.13 
6 0.14 2.1 1.9 0.14 

Table 8: % Glitch elimination of each scheme 
Scheme1 Scheme 2 Scheme 3 Scheme 4 

91.8% 83.3% 81.8% 85.4% 

Table 9: Overall power savings 
Power Saving (%) Circuit Scheme 1 Scheme 2 Scheme 3 Scheme 4 

C135 25.4 25.0 25.0 25.8 
C1908 18.1 18.4 16.1 17.0 
C2670 11.6 11.3 10.2 11.7 
C3540 27.5 22.9 23.5 26.3 
C432 13.0 10.7 10.6 10.6 
C499 31.8 30.9 32.3 32.4 
C5315 18.2 16.2 16.0 17.9 
C6288 52.1 43.2 40.0 46.1 
C7552 22.6 18.9 19.7 22.3 
C880 7.2 6.5 8.0 7.1 
alu4 2.5 2.4 3.3 2.7 

apex2 3.6 3.2 3.8 3.6 
apex4 9.5 9.1 9.4 9.3 

des 15.1 12.1 14.2 14.4 
ex1010 16.8 16.4 16.5 15.9 
ex5p 23.8 23.4 21.5 25.0 

misex3 7.6 7.3 7.3 7.2 
pdc 11.1 10.1 10.7 11.3 
seq 5.3 5.9 5.7 5.6 
spla 20.3 19.8 20.0 20.2 

Average 18.2 16.3 16.2 17.4 

6.6 Overall Results 
Finally, Table 8 and Table 9 present the overall glitch elimination 
and power savings for each scheme, respectively.  Both tables report 
the results for 4-LUTs only since the results for 5 and 6 input LUTs 
were similar.  Both tables indicate that Scheme 1 produces the best 
results, with 91.8% glitch elimination and overall power savings of 
18.2%.  The power savings are relatively close to the ideal savings 
of 22.6%.  

7. CONCLUSIONS 
This paper proposed an active glitch elimination technique to 
minimize dynamic power in FPGAs.  The technique involves 
adding programmable delay elements within the logic blocks of the 
FPGA to align the edges on each LUT input and filter out existing 
glitches, thereby reducing the number of glitches on the output of 
each LUT.  Four alternative schemes were considered for 
implementing this technique.  Scheme 1, which involved adding 
programmable delay elements to K-1 inputs of each LUT produced 
the greatest power savings with the lowest overhead in terms of area 
and critical-path delay. On average, the proposed technique 
eliminates 91% of the glitching, which reduces overall FPGA power 
by 18.2%.  The added circuitry increases overall area by 5.3% and 
critical-path delay by only 0.2%. 
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