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Abstract—Custom instruction set extensions can substantially
boost performance of reconfigurable softcore CPUs. While this
approach is commonly tailored to one specific FPGA system,
we are presenting a fine-grained FPGA-like overlay architecture
which can be implemented in the user logic of various FPGA
families from different vendors. This allows the execution of
a portable application consisting of a program binary and an
overlay configuration in a completely heterogeneous environment.

Furthermore, we are presenting different optimizations for
dramatically reducing the implementation cost of the proposed
overlay architecture. In particular, this includes the mapping
of the overlay interconnection network directly into the switch
fabric of the hosting FPGA. Our case study demonstrates an
overhead reduction of an order of magnitude as compared to
related approaches.

I. INTRODUCTION

While portability of software binaries is essential in many
systems, there is a lack to transfer the same approach to re-
configuration bitstreams running on an FPGA. In the software
world, portability is often achieved by using binary-compatible
CPUs inside the different systems. Unfortunately for FPGAs,
there is no direct path to use identical configuration bitstreams
on FPGAs from different vendors. However, some related
work proposed the implementation of an overlay (which is
sometimes called virtual FPGA or intermediate fabric) that
basically implements a reconfigurable architecture within the
user logic of an FPGA. This can be compared with the
Java virtual machine concept, where bytecode is shipped to
users that can run on completely different CPUs. This is
possible by providing a virtual machine implementation for
each different CPU that can execute the same Java bytecode.
With respect to FPGAs, this can be seen as an FPGA-on-
FPGA implementation. And while the host FPGA bitstream is
device specific, the configuration data for the overlay can be
portable among different physical overlay implementations.

In [1], this concept was presented under the term Vir-
tual FPGA. The proposed island-style architecture provides
configurable logic blocks consisting of four 3-input LUTs
and an interconnection network. While that architecture can
be compiled for different targets, the implementation cost
for a configurable logic block was reported to be 354 4-
input LUTs on a Spartan-II FPGA which results in a phys-
ical LUT : virtual LUT ratio (PV-ratio) of more than 100x in
practice. By implementing virtual LUTs directly into physical
LUTs and by replacing routing multiplexers with LUTs in
route through mode (see also Section III-B), a PV-ratio of 40x
was achieved in [2]. As another way to reduce implementation

cost, the authors of [3] restricted the routing freedom of the
overlay interconnection network. For a prototype implementa-
tion of a linear systolic fine-grained overlay architecture, a PV-
ratio of 16:1 was reported. While this seems better than the two
other approaches, this architecture is much more restricted,
which in turn, limits the target applications to very simple
streaming operations.

As in particular the interconnection network of fine-grained
overlays is very costly to implement, coarse grained overlay al-
ternatives have been proposed. Here, the ratio of logic spent in
the functional blocks as compared to the interconnection net-
work is much larger. While many coarse grained architectures
have been prototyped on FPGAs, only little work is targeting
portability among different FPGA platforms. In [4], a domain-
specific but portable course-grained overlay architecture was
presented where the overhead for the interconnection network
was 1/3 of the used FPGA.

A. Towards Portable Custom Instruction Set Extensions

In this paper, we investigate how custom instruction set
extensions (CI extensions) of softcore CPUs can be made
portable for various target FPGA families with the help of
a fine-grained overlay approach. CI extensions have been
presented several times before in related publications, like
for example, in [5], [6], [7], [8]. It is common for CIs that
little extra logic can save tens or even a hundred of machine
instructions, hence, potentially resulting in substantial speed-
ups. For example, adding a permute instruction that bit-swaps
an input operand (such that the MSB becomes the LSB and
so forth) needs only very little extra logic in the instruction
decoder; while the instruction itself results basically in wiring,
when implemented on an FPGA. However, even considering
loop unrolling and inlining, this permute instruction would
save about a hundred machine instructions on a typical RISC
CPU. In addition, code will become more compact which can
be another source of performance improvement.

While custom instructions were implemented as reconfig-
urable instructions before for dynamically adapting the ISA
architecture of a CPU at run-time, no work was done so far
to utilize portable reconfigurable CI extensions.

B. Paper Contribution

The main contributions of this paper are multilateral and
separated in the following Sections. In Section II, we propose
concepts for portable CI extensions. This is achieved by an
overlay architecture that will be discussed in Section III. Next,



Fig. 1. a) FPGA specific overlay implementations allow porting of custom
instruction bitstreams. b) Attaching a custom instruction overlay to a CPU

in Section IV, we present how such an overlay architecture
can be implemented an order of magnitude more efficient
than previous fine-grained approaches. We achieve this by
mapping the interconnection network directly into the switch
matrices of the target FPGA. After this, in Section V, we
present a case study where we extend a MIPS softcore CPU
with CI extensions that can be easily ported to different target
platforms. Finally, we conclude this paper in Section VI.

II. CONCEPTS FOR PORTABLE CI EXTENSIONS

As described in the introduction, we achieve portability
of custom instruction bitstreams by introducing an overlay
architecture that will be implemented for each target FPGA
as shown in Figure 1a). While portability of software binaries
is achieved by implementing the same softcore instruction set
architecture (ISA), our FPGA overlay specification is similarly
acting as kind of an API for the CI extensions.

In this scenario, an application vendor can generate and dis-
tribute software and configuration bitstreams that can directly
run on different target FPGAs. Note that this approach does
not need any further target-specific synthesis or place & route
steps. However, we assume a wide spectrum of possible
implementation and optimization techniques. This starts from
an easy portable (but more costly) RTL description of the
overlay and ends with an implementation where overlay
primitives are mapped directly to the entire target FPGA
and where the overlay interconnection network is directly
implemented inside the switch fabric of the target FPGA,
as described in Section IV. Depending on the optimization
level, bitstreams have to be translated separately for individual
systems. Luckily, this bitstream generation is simple enough
to be performed by the target FPGA itself (e.g., once when
a new application is installed). For instance, if we map a
virtual 4-input LUT directly to a physical 6-input LUT on the
target FPGA, it is sufficient to place the 16 LUT configuration
bits from the overlay configuration to the right 64 positions
inside the target FPGA configuration. By allowing this process
with the help of partial reconfiguration, custom instructions
can be dynamically changed with the software application.
The required bitstream remapping information can be derived
during the implementation of the overlay architecture and this
mapping is completely transparent to the application vendor.
The mapping information can then be used to implement
a driver which generates the configuration bitstreams for a
specific target FPGA.

Fig. 2. a) Logic cell consisting of a pair of 4-input LUTs b) Logic cluster
consisting of 8 LUT pairs, c) Overlay architecture consisting of four clusters.

As fine-grained overlay implementations introduce a logic
overhead and a performance penalty, we propose to design
the overlay as small as possible. In the case of instruction set
extensions for softcore CPUs, this means that we synthesize an
RTL specification of a CPU individually for each target FPGA.
This permits high quality implementations of the CPU. To this
CPU, we attach the actual overlay architecture that is intended
to host relatively small CI extensions. As shown in Figure 1b),
we couple this overlay directly to the CPU without additional
I/O cells.

A custom instruction is executed by sending a special
(not otherwise used) instruction to the CPU. Such unencoded
instructions are available in most 32-bit softcore CPUs, like for
example, in the MIPS instruction set that we use for the case
study. There, we are actually using two unused instructions,
one for accessing two registers and one for accessing a register
and an immediate value which is stored in the instruction
word. The instruction decoder of the softcore CPU can be
configured by the CPU itself by writing to a memory mapped
register. This allows us to set an extra wait state in the case that
the currently configured custom instruction is too slow. This
basically implements a controllable multi-cycle operation and
permits to run the CPU always at its maximum speed.

III. AN OVERLAY ARCHITECTURE FOR CUSTOM
INSTRUCTION SET EXTENSIONS

The primary design objectives of an overlay architecture is
to deliver good performance at low implementation cost for
many different target FPGAs. However, the implementation
cost depends on the implementation effort required to optimize
the overlay for a specific target which in turn is limited to the
tool capabilities and device documentation (e.g. the availability
of a device architecture graph). Moreover, the overlay should
be generic for allowing the implementation of a wide range
of custom instructions.



a) casca- b) single c) route- d) routing
ded LUT-4 LUT-6 through fabric

Logic cost high high medium low
Latency high medium medium low

Config. time low low medium high
Impl. effort low low medium high

Conf. storage extra extra bitstream bitstream

Fig. 3. Pros and cons of different overlay multiplexer implementations.

Our fine-grained overlay architecture is consisting of a pair
of 4-input LUTs, as shown in Figure 2a). We grouped 8 LUTs
to a cluster with direct LUT-to-LUT routing within a cluster
(Figure 2a)). We connected one byte of each CPU operand and
one byte of the result vector with each cluster. Clusters can be
grouped together as exemplarily shown in Figure 2c). We will
discuss our design decisions in more detail in the following
sections.

A. Overlay Logic Resources

When implementing an overlay LUT completely in logic,
it takes for an n-input LUT 2n flip-flops for storing the LUT
table and one 2n input multiplexer. To keep logic overhead
low, we decided for 4-input LUTs, as they provide good
mapping efficiency and as this allows the connection of two
input bits from each operand input. Furthermore, many smaller
FPGA vendors still use smaller LUTs, which is relevant, when
mapping virtual LUTs directly to physical LUTs.

For implementing arithmetic functions, we decided to pro-
vide two LUTs that share the same inputs (as input multiplex-
ers are costly). With this architecture, we can generate a sum
and a carry bit or we can count the number of bits in a 4-input
vector in a single logic cell. Alternatively, if one of the LUTs
remains unused as a logic function generator the other LUT
can still be used for routing. Note that we are not considering
carry logic that is available in most FPGA architectures. This
decision was made to favor portability.

We added one user flip-flop to our logic cell which can
be used as an accumulator register, for pipelining, or for
implementing instructions with more than two input operands.

B. Overlay Routing Network

It is ironic that despite that the basic logic building blocks of
FPGAs are actually multiplexers, FPGAs are relatively weak
in implementing multiplexers as the user logic. This holds in
particular for multiplexers with many inputs that are common
for switch matrices in commercial FPGAs. Consequently, an
efficient overlay should focus on a highly efficient intercon-
nection network while the logic utilization of the overlay is
a minor concern. This is known from plain FPGA design [9]
and holds even more for fine-grained overlays.

TABLE I
CLUSTER SWITCH BOX BREAKDOWN. THE VALUES IN BRACKETS []

DENOTE THE NUMBER OF PROGRAMMABLE INPUTS.

switch box inputs switch box outputs Mux size
operands A and B 2 × 8 result outputs 8 4 [32]
logic cell outputs 2 × 8 logic cell inputs 4 × 8 7 [224]
from other clusters 3 × 8 to other clusters 3 × 8 4 [96]
sum 56 sum 64 [352]

As multiplexers can be logic costly, we discuss pros and
cons of different implementation alternatives in Figure 3. As
can be seen, four input multiplexers are a good choice to
be implemented efficiently for many different target FPGAs,
regardless if they are based on 4-input LUTs or 6-input LUTs.
For building larger multiplexers, multiple 4-inputs LUTs can
be cascaded. For example, two 4-input multiplexers can im-
plement one 7-input one. When targeting any newer Xilinx
FPGA, which are all based on fracturable 6-input LUTs, it is
possible to implement either one 7-input multiplexer or two 4
input multiplexers (whereof two inputs are shared) in a single
6-input LUT, when using the available extra input to the carry
chain logic together with route through mode.

C. Switchbox Design

As switch matrix multiplexers for implementing the overlay
routing can be costly, we chose a relatively sparsely connected
crossbar inside each logic cluster. Figure 2b) illustrates the
crossbar and a breakdown of the inputs and outputs of a cluster
switch matrix is presented in Table I. Our cluster switch box
consists of in total 56 inputs and 64 outputs. From these 56×
64 = 3584 possible connections, 352 (9.8%) connections can
be programmed. As a reference, in a Xilinx Virtex-II (Virtex-
5) CLB switch matrix there exist 332 (305) inputs and 160
(172) outputs whereof 6.3% (7.5%) of the connections can be
programmed [10].

The Xilinx switch matrices are significantly larger, prelim-
inary because there is more cluster-to-cluster routing to be
implemented than in our small custom instruction example.
However, for scaling the custom instruction set example up
to larger FPGA overlays (with many more clusters), using an
extra switching layer [11], LUT input swapping, and LUT
route-through routing can be used to keep implementation cost
reasonable low.

IV. MAPPING OVERLAY INTERCONNECTION NETWORKS
INTO FPGA FABRICS

Figure 3 points out that implementing a reconfigurable
overlay routing architecture directly within the switch matrices
of the target FPGA will substantially reduce the overhead for
the reconfigurable overlay interconnection network. Moreover,
this approach can potentially result in better timing perfor-
mance because routing does not need to pass extra look-up
tables and because the saved logic allows for placing the
overlay logic closer together which in turn results in faster
communication. However, these advantages come at the cost of
a longer reconfiguration time needed to load a new instruction
to the device. Consequently, direct switch matrix mapping is
more suitable for applications that infrequently change custom
instructions.



A. Problem Definition

In general, the problems to be solved for implementing
overlay interconnection networks directly into FPGA routing
fabrics are 1) to place the mapped overlay logic on the target
FPGA fabric; and 2) to bind overlay routing resources to
physical routing wires of the host FPGA fabric. As compared
to a traditional netlist implemented on an FPGA, the mapping
graph of the overlay interconnection network has not one, but
multiple sources for each input connection. In this work, the
first problem is accomplished by the vendor tools including the
placer which might be guided with additional area constraints.
In addition, we can add temporarily connections between the
primitives to force the placer to locate physical primitives
closely together as given by the architecture graph of the
overlay.

The second problem is to reserve the fabric wires which
implement the architecture graph of the overlay. In the physical
mapping phase, the outputs of overlay primitives result in
outputs of the target FPGA primitives (here LUT outputs).
Regardless if an overlay LUT is implemented using several
physical LUTs, only one output of these physical LUTs will
represent the corresponding overlay LUT output. Opposed
to this, a single overlay LUT input might be connected to
multiple physical LUTs of the target FPGA. For example,
when implementing the logic cell from Figure 2a) in two
separate LUTs. However, if multiple physical inputs represent
an identical virtual input depends on the mapping tool and the
target FPGA architecture. For example, when targeting recent
FPGAs from the vendor Xilinx, fracturable input LUTs (as
shown in Figure 2a) can be directly implemented in a single
physical 6-input LUT.

We can express the mapped overlay architecture graph by a
bipartite graph with two set of nodes representing 1) the phys-
ical primitive output pins and 2) the physical input pins of the
mapped overlay architecture. The edges of the graph denote
programmable connections available in the overlay network.
This is illustrated in Figure 4. Here, an overlay – shown in
Figure 4a) – is represented by its bipartite mapping graph as
depicted in Figure 4b). The node names in Figure 4b) denote
a combination of the coordinate and port of the respective
mapped physical primitive on the target FPGA.

Again, as compared to a traditional netlist implemented
on an FPGA, the mapping graph has not one, but multiple
sources for a single input connection. Each edge to an input
node represents a multiplexer input of the overlay intercon-
nection network that we want to implement directly into
the host FPGA fabric. Figure 4c) shows a possible routing
wire reservation for the example overlay network. Note that
this is not a valid configuration because some switch matrix
inputs are connected to multiple drivers. As FPGA switch
matrix multiplexers are commonly implemented using pass
transistors rather than using logic gates, at maximum only one
input is allowed to be selected at a point in time. Otherwise,
short circuit situations may occur. Note that the bitstream
encoding of many FPGAs, including Xilinx devices do allow
the selection of multiple inputs simultaneously [12]. This

Fig. 4. a) simplified overlay architecture with six LUTs and some pro-
grammable connections; b) Bipartite mapping graph. Nodes on the left (right)
hand side represent physical LUT outputs (inputs) of the mapped overlay on
the target FPGA, which is shown together with the reserved routing in c).

might cause unwanted side effects or even device degradation
or damages. While this situation is prevented when using the
FPGA vendor tools, precautions are necessary to ensure save
operation when mapping overlay interconnection networks
directly onto an FPGA fabric.

Unlike traditional FPGA routing, the routing problem is not
to build up individual spanning trees for each used primitive
output to a set of connected primitive inputs. When reserving
routing resources for the overlay routing architecture, multiple
trees have to be considered together, because multiple primi-
tive outputs have to be connected to a single input over time
(by using partial reconfiguration).1

1This problem is related to [13], where the authors generate a reservation
to connect circuit signals to trace buffers for debug purpose. When changing
the set of signals to be traced, a new path is chosen from the reserved wires.
However, our problem is more difficult as we have not to route to any primitive
(trace buffer) but to a specific primitive which is selected during the placement
of the overlay logic.



B. Customizing an Overlay Interconnection Network

As shown in the mapping graph in Figure 4b), we can
identify source graphs (or source trees) with one output
primitive pin connected to multiple sinks and sink graphs (or
sink trees) which run in opposite direction and that have one
input primitive pin driven by multiple sources. For example,
there is a source tree from node X1Y3:ON (LUT A) to the
nodes X3Y3:IW, X3Y2:IN, and X3Y1:IW (LUT U, V, and
W). An example for a sink tree is node X3Y2:IN (LUT V)
connected to nodes X1Y3:ON and X1Y1:ON (LUT A and
LUT C).

If we study the reserved routing example in Figure 4c), we
see that implemented source and sink graphs hit in the routing
fabric of the host FPGA, when paths branch. For instance, in
the switch matrix X1Y3, we have a branch of the source graph,
from LUT A which hits the sink graph from LUT U. Here,
the shown edge eA,C→U belongs to both graphs.

A branch of a source graph is identical to a branch occurring
in traditional FPGA routing when connecting to multiple prim-
itive inputs. However, branches of sink graphs denote switch
matrix multiplexer settings required to be modified for routing
overlay network connections. In other words, for deriving an
initial configuration from the reserved routing in Figure 4c),
we remove all edges, where a sink graph branches. Then,
for setting connections in the overlay network, we selectively
add the missing edges back to the initial configuration that
implement the chosen edge of the mapping graph. By selecting
only one wire exclusively at a branch, no short circuit situation
can occur. In the figure, we assigned names to exactly all sink
tree branches that are set or removed to configure connections
from the LUTs A, B, C to the LUTs U, V, W. Note that in some
cases more than one switch matrix connection has to be set
for implementing a specific overlay routing path. For instance,
for configuring a connection from LUT B to LUT U, we have
to add the edge eB→U, while for setting the connection LUT
A to LUT U, we have to add edge eA→U and edge eA,C→U.

C. Creating an Overlay Interconnection Network

A straightforward method to create the overlay interconnec-
tion network is sketched in Algorithm 1. In this algorithm, we
compute one link of the overlay architecture after the other.
The links are given by the bipartite mapping graph which also
includes the exact position of the corresponding begin and end
ports on the target FPGA. Each computed path is added to the
interconnection reservation graph on the target FPGA and the
used wire resources are then removed from the target architec-
ture graph for the next iteration. Consequently, individual paths
will be implemented for each edge in the mapping graph on
the target FPGA without sharing routing wires among multiple
paths. This algorithm is easy to implement, but it allocates
an unlikely large number of wires, which in turn results
in a very congested or even uncomplete implementation. It
should be understood that the implementation of an overlay
interconnection network puts high pressure on the router as we
have to consider all reconfigurable alternatives provided in the
overlay architecture. In cases with high congestion, it could

consequently be beneficial to combine look-up table route-
through routing with the here presented direct implementation
into the FPGA interconnection fabric.

Algorithm 1: Compute Overlay Network Baseline

1 Input : mapping graph M , target architecture graph T
2 Output: interconnection reservation graph I

3 I = ∅
4 while M 6= ∅ do
5 {
6 m = FetchNextEdgeFromMappingGraph(M)
7 i = FindPathOnTargetFPGA(T,m)
8 I = I ∪ i
9 RemoveFromArchitectureGraph(T, i)

10 }

For finding better reservation graphs with less routing con-
gestion, we developed Algorithm 2. At start, we implement a
spanning tree for the first source tree of the mapping graph M
(line 6). We then annotate to each used wire in the target FPGA
architecture graph its usage for routing to a specific destination
(line 8). Let us consider Figure 4 for an example. If the first
source tree is the one starting from LUT A, then we annotate
to the wire between the switch matrices X1Y3 and X2Y3 the
usage {A→U}. For the wire between the matrices X1Y3 and
X1Y2, we annotate the usage {A→V, A→W} because this
wire implements a path to two destinations from LUT A.

After this, we run for all remaining edges a breadth-first
search one after the other. In each search step, we check if we
reached the destination or another path. If another paths has the
present destination annotated (→destination), we incorporate
the remaining other path and update the usage to all wires
used for the present path (line 19 and line 20). This allows us
to share wires on the path towards an input port.

In order to reuse wires from the output port side, we start the
breadth-first search not only from the source output primitive
pin, but in parallel from all routing resources that are already
connected from that output (if existent). However, we have to
restrict this to routing resources that have only one annotated
source usage (source→). If there is more than one annotated
source usage, this expresses that the routing resource is already
shared on a path towards an input port. We identify such wires
by traversing already existing paths from the source primitive
towards all leaves. We include all routing resources into the
overlay path search that have the source usage of the source
port and we stop traversing of the already existing path, if
we find another source usage. Note that this happens when
an implemented sink tree branches. The branches are actually
the edges used for customizing (configuring) the overlay, as
described in Section IV-B.

V. CASE STUDY

We implemented a case study consisting of a baseline
MIPS CPU (no division, no interrupt, no floating point, no
pipelining) attached to an overlay which follows exactly the



Algorithm 2: Compute Overlay Network

1 Input : mapping graph M , target architecture graph T
2 Output: interconnection reservation graph I

3 I = ∅
4 m =FetchFirstSourceTree(M )
5 i =ComputeSpanningTree(T,m)
6 I = I ∪ i
7 AnnotatePathUsageToEachWire(T, i)
8 while M 6= ∅ do
9 {

10 m = FetchNextEdgeFromMappingGraph(M )
11 while state(m) 6= routed do
12 {
13 i = NextBreadthFirstSearchStep(T,m)
14 if ReachedDestination(i,m)
15 state(m) = routed
16 if HitAnotherRoutingPath(i,T)
17 if PathUsage(i, T )=OnlyMyDestination(M )
18 GetRemainingPath(T, i)
19 UpdatePathUsage(T, i)
20 state(m) = routed
21 }
22 I = I ∪ i // add new path to result
23 RemoveFromArchitectureGraph(T, i)
24 }

architecture shown in Figure 2. Each LUT-input consists of
a 7-input multiplexer which allows each 4-input LUT pair to
be connected to a set of 4× 7 = 28 different signals within a
cluster. For the 8 result and the 3×8 interconnection signals of
a cluster, we respectively used 4-input multiplexers. We chose
a relatively sparse interconnection network to keep implemen-
tation cost down. However, applying optimizations including
LUT swapping inside a cluster or LUT input swapping gives
significant extra freedom to implement custom instructions on
this overlay. The total set of sources within a cluster consists
of 2 × 8 operand signal wires, 2 × 8 LUT output wires and
3 × 8 wires from other clusters. This results in 56 cluster
inputs (see also Table I). While this is a relatively tiny overlay,
it allows us already to implement various custom instructions,
for example (fractional) addition, a 64-input XOR gate over all
input operand bits, or a bit permute. More instructions haven’t
been implemented as the place & route is currently performed
manually. In this case study, we will focus on the overlay
implementation itself.

A. Overlay Implementation

We examined three implementation variants: 1) a fully
generic implementation which is entirely running in the user
logic of the target FPGA, 2) an implementation using direct
mapping of overlay LUTs to physical LUTs (and that uses
route-through LUTs for the interconnection network), and 3)
direct LUT mapping combined with directly using the switch
matrices for the overlay network. The first variant follows

TABLE II
IMPLEMENTATION DETAILS.

full generic direct LUT switch matrix MIPS CPU
Xilinx Zynq 1247 LUTs 274 LUTs 96 LUTs 886 LUTs

591 slices 143 slices 24 slices 290 slices
X. Spartan-6 1500 LUTs 273 LUTs 96 LUTs 953 LUTs

498 slices 89 slices 24 slices 301 slices
X. Spartan-3 1440 LUTs 358 LUTs – 1428 LUTs

1644 slices 191 slices – 844 slices
A. Stratix IV 1732 LEs 363 LEs – 899 LEs
A. Cyclone II 1836 LEs 373 LEs – 1282 LEs

the approach presented in [1], the second case [2], while
the third examined variant implements our new method of
mapping overlays directly to FPGA fabrics. Note that all these
implementations have different pros and cons with respect to
area, performance and reconfiguration cost (see also Figure 3).
However, the configuration can be derived from the same
overlay bitstream.

As we target portability, we implemented our case study
for different target FPGAs from different vendors, as listed in
Table II. We selected 6-input LUT devices (Altera Stratix-
IV, Xilinx Spartan-6, and Xilinx Zynq) and 4-input LUT
devices (Altera Cyclone-II and Xilinx Spartan-3). We used
latest vendor tools for the experiments and we kept the default
options. Note that the synthesis results do not allow a statement
about which device is best suitable to implement overlay
architectures as small changes in the overlay architecture can
favor heavily a specific target FPGA. We provide the here
listed synthesis results with the intend to qualitatively show
the trend when using different implementation alternatives.

While the fully generic test case would be functional on all
target FPGAs, we only listed the synthesis results for the direct
LUT implementation approach without further considering
bitstream generation and configuration aspects. However, this
holds for the last three FPGAs, while we implemented all three
implementation variants for a Xilinx Spartan-6 FPGA (on an
Atlys board) and a Xilinx Zynq FPGA (on the ZedBoard). So
far, we have to generate bitstreams offline but this functionality
could be implemented in a driver which generates partial
bitstreams directly from the virtual overlay configuration data.

Table II points out that our direct switch matrix implementa-
tion has a 21× cost advantage over the full generic and a 3.7×
advantage over implementing the interconnection network with
route-though LUTs (in terms of used slices). Our present im-
plementation has headroom for further optimizations because
only 8 Spartan-6 slices are actually needed for implementing
the overlay logic. The other 16 slices are only used to connect
the overlay with the CPU. In the future, we will change this
by using not only pin-to-pin routing between primitives, but
arbitrary combinations of switch matrix wire and pin routing.
This would give as a 63× and respectively 11× advantage over
the related approaches [1] and [2]. Under ideal conditions, our
overlay implementation approach would have the same logic
cost as compared with a native implementation of a custom
instruction directly to a Spartan-6 FPGA. However, in practice
we estimate a penalty of 2× – 5× for the overlay.



Fig. 5. FPGA editor screen shot of a MIPS CPU with an attached overlay
which is implemented by directly using switch matrix multiplexers. Note that
this is the overlay reservation that needs a preprocessing step to generate the
initial configuration bitstream of the system.

B. Computing Overlay Reservations with GOAHEAD

For implementing our new direct mapping approach, we
added the baseline and the advanced overlay network reser-
vation algorithm to the tool GOAHEAD [14].2 GOAHEAD
is preliminary designed for implementing advanced systems
using partial reconfiguration. The tool provides floorplanning
capabilities, physical constraints generation, and various pow-
erful netlist manipulation commands. GOAHEAD builds up the
architecture graph of any recent Xilinx FPGA by reading in
a device description provided by Xilinx in the XDL format
(Xilinx Design Language) [15]. On an architecture graph, a
path search from and to any wire port or primitive pin can be
performed using the search strategies breadth-first, depth-first,
and A*. XDL was also used to add the reservation graph to
our static system.

The overlay reservation graph (see Figure 4) of our case
study consists of 1408 mapping edges and the baseline algo-
rithm failed to find a full reservation graph for this overlay
on the used Xilinx Spartan-6 and Zynq FPGAs. When us-
ing Algorithm 2, correct implementations were found, hence
demonstrating the benefit of sink and source tree sharing in
the reservation graph. However, after an initial run, not all
paths got reserved due to resource conflicts and we started the
search again with the paths that were left over routed first (to
prioritize them). While this resulted in a full reservation for
Zynq after only one rip-up iteration, it took 20 rip-ups to find
a full reservation for Spartan-6.

Table III lists statistics on the used routing resources and the
CPU time needed to compute the reservation (on a laptop with
an Intel T4200 CPU running at 2GHz). The resource results for
the Spartan-6 overlay are close to the overlay implemented on
a Zynq FPGA. This was expected because both FPGAs share
a similar routing fabric and because the relative placement of
the overlay primitives was identical in both cases. It can be

2Available here: http://www.mn.uio.no/ifi/english/research/projects/cosrecos.

TABLE III
OVERLAY RESERVATION ROUTING RESOURCE STATISTICS AND CPU TIME.
THE PATH DELAY WAS MEASURED USING THE FPGA EDITOR. THE SPEED

GRADE WAS -3 FOR SPARTAN-6 AND -1 FOR THE ZYNQ FPGA.

number average longest longest CPU
of wires wires path path delay time

Xilinx Zynq 4547 3.2 6 (31 times) 1.5 ns 35 m
X. Spartan-6 4129 2.9 7 (3 times) 1.8 ns 6.5 h

Fig. 6. Overlay bitstream encoding. The bitstream is a sequence of fields,
each encoding a specific overlay resource (LUT table or switch matrix
multiplexer). The example shows the encoding for a result multiplexer (the
output back to the CPU). The physical bitstream offsets denote the bits to be
set in the target bitstream for activating a specific multiplexer setting inside
the switch matrices of the target FPGA.

seen that an overlay FPGA wire takes on average about three
physical wires and the longest path delay of a single wire is
about 3 times the path delay of a long physical wire. As we
map overlay LUTs directly to physical LUTs, this will result
in a performance of about one half to one third in clock speed
as compared to a direct implementation on the target FPGA.

Figure 5 shows a screenshot of a system consisting of a
baseline MIPS CPU system and an attached overlay for custom
instructions implemented on a Xilinx Spartan-6 FPGA. The
system was built by firstly computing the overlay and reserving
all its used resources for a second incremental implementation
step where we added the MIPS CPU system. GOAHEAD was
used to generate all physical constraints for the Xilinx vendor
tools when running the second implementation step.

C. Overlay Configuration

In this paper, we store the configuration as a bitstream of
concatenated fields, each denoting the setting of a specific
resource of the overlay encoded in binary format. This could
be the table of a LUT in an overlay logic cell or an overlay
switch matrix multiplexer. An example of the configuration
of an 4-input overlay switch matrix multiplexer is shown in
Figure 6.

This bitstream can be directly used with the full generic
RTL implementation of the overlay (see Table II) by simply
shifting in the stream into a long shift register storing the
configuration values. This is possible, because the bitstream
and the internal shift register have been designed to match
with respect to the bit fields and the encoding. Table IV, lists
a breakdown of the bits needed to configure the CI overlay.
In our current implementation, we used a single sequential
chain which consequently needs 1696 clock cycles for the full
configuration. By using 8 (or 32) parallel chains, only 212
(or 53) shift cycles are needed to reconfigure a new custom
instruction.

When considering the overlay implementation using LUTs
in route-through mode (called direct LUT in Table II), we have



TABLE IV
CONFIGURATION BITSTREAM BREAKDOWN FOR THE CI OVERLAY.

minimal number of config. bits
LUT table values 32 · 2 · 16 = 1024
logic cell muxes 32 · 1 = 32

LUT input muxes 32 · 4 · dlog2 7e = 384
result muxes 32 · dlog2 4e = 64

inter-cluster muxes 4 · 3 · 8 · dlog2 4e = 192
sum = 1696 (212 bytes)

to change LUT-values only (without touching the routing of
the target FPGA). In the case of the Xilinx Spartan-6 FPGA, it
took 89 slices for the implementation of the whole CI overlay.
When constraining these slices into a rectangular region of the
height of a clock region (16 CLBs in height), d 8916e = 6 CLB
columns have to be written under ideal conditions. To be more
precise, only the LUT table values have to be written which are
stored in 8 130-byte frames. As a consequence, 6×8×130 =
6240 byte, plus the configuration commands have to be written
to the configuration port of the target Spartan-6 FPGA [16]. In
order to use the route-through mode, the overlay bitstream has
to be initially translated into route-through table functions for
the LUT. In addition, LUT table values have to be reordered
according to the target bitstream format. However, we have
not further implemented this approach.

The CI overlay case study using our new implementation
approach of directly utilizing the switch matrix multiplexers of
the target FPGA needs the reconfiguration of 5 CLB columns
(see Figure 5) for loading a new custom instruction. With 31
130-byte frames, this results in 5 × 31 × 130 = 20KB of
data to be send to the configuration port. In our test system,
we configure the FPGA in 16-bit ICAP mode at 50 MHz
with the help of a dedicated DMA controller. This takes a bit
more than 0.2 ms for the CI configuration process. GOAHEAD
allows the generation of netlists from which we derived the
bit position offsets to be set in the target FPGA bitstream in
order to set a specific mapping edge of the overlay network
(see Figure 6 that gives the offsets needed for one overlay
multiplexer example).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated for the first time how to
implement a fine grained overlay on a physical FPGA by map-
ping the overlay interconnect directly into the switch fabric of
a physical FPGA. With this approach, we achieved a 21×
(3.7×) less costly implementation than [1] and ([2]), while
still having headroom for substantial further improvement.
We showed that this approach can be used for implementing
custom instruction set extensions that could be directly ported
to various FPGA platforms.

As the next step, we want to scale our approach to much
larger systems with potentially many thousands of overlay
LUTs. Moreover, we aim to integrate our work into the VTR
tool flow [17]. This would provide academia with a full flow
allowing FPGA architecture exploration all the way down to
an emulated device.
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