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Abstract—As personal computers become an integral part of our 
daily lives, huge volumes of data need to be reliably managed and 
archived. Uncorrelated failures within a set of independent 
personal computers offer the promise of low-cost, reliable data 
storage.  The vanDisk project attempts to realize this promise. 

The main assumption of our project is that users are willing 
to donate raw storage space to their peers to increase the 
reliability of their own data. In our system, users offer a portion 
of their disks to be used as backup space for other users in 
exchange for space to store backup copies of their own data, thus 
decreasing the possibility of catastrophic data loss. 

A number of characteristics differentiate vanDisk from 
existing projects that explore this space.  First, unlike existing 
projects that that increase redundancy at the data-block or file 
level, vanDisk operates at the disk level.  This substantially 
simplifies data management and reduces management overhead 
at the cost of marginally higher recovery costs from partial 
failure.  Second, all data-related operations are transparently 
replicated at the data source.  Third, our design includes an 
orthogonal component to manage space and bandwidth.  

Our system is integrated with Microsoft Windows and offers 
users a virtual drive that transparently replicates data across 
multiple machines. As well, a complete, original copy of the data 
is always available on the user’s own system. We have modified 
TrueCrypt, an open source virtual disk package that offers data 
confidentiality through encryption, and we have added a new 
driver layer that redirects and replicates all IO requests to a set 
of Network Block Device servers offered by the peers to store 
replicated data.  Additionally, we use simple data encoding to 
offer user-tunable tradeoffs between space overheads, compute 
overheads, and data reliability.   

 

Keyword: peer-to-peer data backup, virtual drive, collaborative data 
backup.  

I. INTRODUCTION 
Computer usage has become an integral part of our daily lives. 
As pervasive computing increasingly leads to ‘everyware’ 
technology, reliable safe-keeping of data has become a 
significant issue. Part of the problem stems from neglect to 
proactively backup valuable data, often a result of lack of a 
transparent, automated backup technology. Another aspect of 
the problem is that popular storage media such as CDs, DVDs, 
or additional hard drives often fail to provide an adequate level 
of durability. 

Our project aims to alleviate these long-term data backup 
problems by introducing the notion of a virtual array of 
network disks, or vanDisk, which transparently replicates user 
data over disks on multiple remote machines to increase data 
reliability. In doing so, the system eliminates the need for 
proactive action from the user to backup data, while drastically 
improving the reliability of stored data by continuously 
monitoring the availability of the machines on which data is 
replicated.  We have prototyped vanDisk thus far as a sequence 
of 4th year undergraduate projects to investigate the main 
tradeoffs, its feasibility and its practicality. 

The main assumption underlying vanDisk is that users are 
willing to donate raw storage space to increase the reliability of 
their data. Thus, users offer a portion of their disks to be used 
as backup for other users’ data, in exchange for space to 
backup their own data. Characterizations of desktop disk space 
usage in both corporate [1] and academic [2] environments 
show that this assumption is realistic: most desktops have at 
least half of their disk space unused. 

Three characteristics differentiate vanDisk from other 
projects that explore the peer-to-peer data storage space [1-6]. 
First, unlike existing projects that provide increased data 
availability or durability through increased redundancy at the 
data-block or file level, vanDisk operates at the (virtual) disk 
level. In brief, this choice offers reduced management 
overhead at the cost of slightly larger recovery times from 
partial failures. Usually, management overhead is proportional 
to the number of objects the system has to provide durability 
for by tracking their replication levels. vanDisk works at coarse 
granularity, the virtual disk, and thus has lower management 
overheads than systems that use block-level replication. The 
coarse granularity has an impact on failure recovery 
characteristics: if virtual disks need to be locked for writes 
during the recovery process, the impact of a failure on a single 
client is difficult to mask. However, as the main goal of 
vanDisk is to provide data durability rather than availability 
[7], rapid recovery from failures is a secondary concern. 

A second characteristic that differentiates vanDisk is that 
all data-related operations are transparently replicated at the 
data source: all disk operations are captured by a vanDisk 
device driver. While read operations can be served by any 
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available replica, write operations are spread over the entire set 
of replicas. Optimistic consistency protocols ensure that writes 
complete in spite of storage node failures. Finally, our design 
includes an orthogonal component that manages storage space 
and bandwidth contributions of a system to discourage 
freeloading. 

The rest of this paper is organized as follows. The next 
section offers a vanDisk overview and a discussion of the main 
design choices. Section III discusses the data coding 
technologies used to control the tradeoff between space 
overheads, compute overheads, and data reliability.  Section IV 
presents vanDisk prototype implementation and Section V 
summarizes our experience. 

II. SYSTEM OVERVIEW 
VanDisk facilitates the seamless, durable storage for a client 
node by providing a means to mount a logical volume, a 
virtual drive, which appears to function like a local hard disk. 
Data operations on the virtual drive are actually delegated to 
the remote storage nodes.  Note that each node that 
participates in the system concurrently plays both roles of 
client and storage node: as a client the node backs its data up 
on other nodes, while as a storage node it accepts to store data 
on behalf of remote nodes. 

In our target environment, desktop nodes connected by a 
local area network, individual nodes are intermittently 
available and existing nodes might fail and leave the system 
for good. As a result, the important tradeoff to consider is 
between the availability and durability of the data and the 
redundancy involved in storing it [7, 8]. We use erasure 
encoding [9] to offer tunable tradeoffs between space 
overheads, compute overheads, and data availability and 
durability. 

A. Design Considerations 
The peer-to-peer nature of the system implies that it must be 
capable to tolerate the following events: 

 Graceful departure: a storage node may announce its 
intention to go ‘offline’ and be temporarily unavailable 
for storage.  
 Unanounced temporary failure: a storage node may 
suddenly fail, due to a network interruption or a crash. 
The departure is not announced to the system. 
 Permanent failure/departure: a node may permanently 
leave the system, possibly as a result of a failed hard disk 
or of discarding of the computer. This scenario is 
equivalent to either of the above two, except that the 
node does not return to an available state. 
 Node arrival: a node may come back ‘online’, once again 
make its stored data and free disk space available. 
 Node join: a new node may join the current set of nodes. 

When a storage node P is detected as unavailable, the 
reliability of the data stored in the system is reduced and the 

system must attempt to restore it. This is done by using 
available nodes to reconstruct the data P was storing, and then 
making that data available for client operations. However, 
attention must be paid to consistency issues with regards to 
write operations during restoration process. Furthermore, the 
system must decide where to store P’s reconstructed data.  

In the opposite scenario, when a storage node P is detected 
as once again available after being down for a period of time, 
the system can either update P with the newest copy of the data 
it is responsible for storing, or consider P as an unused node, 
and continue using the existing substitute node 

B. Design Choices 
To detect node status the system uses a Discovery Service.  
The Discovery Service expects all storage nodes to send a 
regular keepalive message. If the Discovery Service detects 
that a node failed to send keepalive messages for a predefined 
number of rounds it infers that the node has left the system. 
The Discovery Service continues to store the state of the node. 
If the node does not come back online within a predefined 
period of time the Discovery Service considers the node 
permanently failed and deletes all state related to that node.  

This design has the advantage that nodes can naturally join 
the system just by starting to send their keepalive messages. 
Additionally, the Discovery Service does not initiate any 
communication but merely waits for keepalive messages. 

Once the Discovery Service detects a change in a storage 
node status, it sends this information to the node that has 
mounted the virtual disk, the ‘client’ node in our terminology. 
This way, the client is able to depend strictly on the Discovery 
Service to make policy decisions as to how long to wait before 
declaring a storage node unavailable or permanently failed. 

After a node P has been declared unavailable for a certain 
amount of time, the Discovery Service asks the Reconstruction 
Service to reconstruct P’s data and make it available for the 
client to utilize. The Reconstruction Service will then read the 
dataset stored at a sufficient number of nodes, in order to 
reconstruct the full data stored at P. During this process, it also 
synchronizes with the client, to ensure that write operations are 
queued until the reconstruction process completes. Once the 
reconstruction process completes, the Reconstruction Service 
asks the Space Management Service to make available storage 
space to store node P’s data. Ideally, the Space Management 
Service is able to select from a pool of unused storage nodes to 
store node P’s data. The Space Management Service then 
notifies the Reconstruction Service about the details of how to 
access the newly available storage space. The Reconstruction 
Service then stores node P’s reconstructed data at the newly 
available storage space, and notifies the Discovery Service as 
to how to access the reconstructed data. The Discovery Service 
then notifies the client of the new replica information, and 
allows the client to resume any pending write operations. Since 
the reconstruction process is an expensive operation, this 
scheme attempts to make it transparent to the user while 
minimizing its performance impact. 
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Since nodes may experience brief network interruptions, 
the client node, attempts to perform read/write operations at 
each of the storage nodes, even when facing failures (failed 
reads are retried at different replicas while failed writes are 
buffered for delayed retries). It is only when the Discovery 
Service notifies the client node of a change in the replication 
set that the client node considers a storage node to be 
unavailable. This design provides a clear separation of 
concerns between the Discovery Service in charge with 
detecting node failures and client nodes in charge with 
individual read/write operations.  

C. Discussion 
The design used to control replication is simple and our 
experience has proven it effective.  While, the current vanDisk 
implementation uses centralized implementations for the 
services mentioned above, our design does not preclude a 
decentralized implementation. In a decentralized scheme, the 
storage nodes cooperate with each other to detect changes in 
availability of all storage nodes, reconstruct a failed nodes data, 
find new storage space for the newly reconstructed data, and 
communicate replica location changes to the client. 

In order to provide these services, each group of storage 
nodes responsible for a certain virtual disk uses a 
leader-election algorithm to identify a particular node as 
responsible for group membership management, detecting 
membership changes, and failure recovery. Ideally, leader 
selection takes into account each node availability patterns and 
proximity to the client. If the leader fails, the remaining storage 
nodes elect a new leader, and ensure that the management 
responsibilities are seamlessly ported to the new leader. The 
drawback of a distributed management scheme is the increased 
overhead involved with the storage nodes having to 
communicate and agree with one another. Additionally storage 
nodes maintain the metadata to track and maintain the systems’ 
state.  

III. ERASURE CODES FOR DATA DISTRIBUTION 
Erasure codes provide a means to transform a set of k data 
blocks into a set of n > k blocks, such that the original set of k 
data-blocks can be recovered from a subset of the encoded n 
blocks [10, 11]. The advantage of using erasure codes is that 
the system can provide high availability while using less disk 
space than pure replication. However, erasure codes also 
introduce computational overheads for encoding and decoding. 
This section compares various coding techniques [11]. 

Reed-Solomon (RS) codes [12] are a key component of CD 
and DVD technology and have been used extensively in data 
communications. RS codes can detect any m=n-k errors in a set 
of n total encoded blocks, and can correct up to m/2 failures. In 
most cases, RS codes perform well when the value of n is 
small, but have been recently superseded by more 
computationally-efficient encoding  methods such as Tornado 
Codes [13]. 

Low-Density Parity-Check (LDPC) codes are more 
computationally-efficient than RS codes and among the most 
effective known codes. LDPC codes are systematic: the n 
resulting blocks include the k source blocks verbatim and an 
additional m=n-k new parity blocks [12]. This property allows 
for faster encoding and decoding times. 

Fountain codes [14] encode a block of data into an infinite 
sequence of parity blocks. As a result, there is no requirement 
for a predefined value for n. In our system, this is a valuable 
property since it allows adding new replicas without having to 
re-encode the full dataset. However, fountain codes are patent-
protected and no open source implementation is available [15]. 

RS and LDPC codes are the most promising for our 
software implementation. The most important characteristics 
are their encoding/decoding time and the number of blocks 
required to reconstruct a valid data set, commonly referred to 
as the Maximum Distance Separable (MDS). When the MDS is 
equal to k, the code is considered optimal. RS codes are 
optimal for arbitrary values of n and m, and thus can guarantee 
that any m erasures are always tolerated. However, this 
flexibility and reliability is provided at the cost of 
computational overhead. In addition, RS decoding requires k 
blocks before decoding can begin, whereas LDPC decoding 
can take place on-the-fly. This limitation can make RS codes 
prohibitively expensive for large values of n. In contrast, 
LDPC codes are sub-optimal, however their space overheads 
are low and they provide much faster encoding and decoding 
times. We use LDPC codes for vanDisk. 

IV. PROTOTYPE IMPLEMENTATION 

A. The Client Node 
To implement the virtual disk abstraction, we started with 
TrueCrypt [16], an open-source software that allows mounting 
an encrypted virtual drive from a either file or raw disk volume 
(aka partition). All I/O requests received by the virtual file 
system are captured by the TrueCrypt driver, which then 
performs encryption/decryption to the data to be written to 
(respectively read from) the disk. Then, the driver either 
applies I/O operations to the file, or forwards the request to the 
volume driver if it is backed by a raw volume. To divert these 
calls, we inserted a kernel-mode driver into this chain which 
forwards requests from the TrueCrypt driver to our user-level 
process called RAIDClient.  

The RAIDClient performs all reliability-related erasure 
encoding or decoding and contacts the data storage nodes to 
retrieve or store the cyphertext data. By delegating kernel-level 
IO requests to a user-level process, the amount of kernel-level 
code is reduced. This reduces the I/O performance, particularly 
due to context switching, but it is easier to code and debug. 

Using a disk-level abstraction, as opposed to a file system 
abstraction, drastically reduces the accounting and metadata 
management overhead and offers better transparency. 
However, we must sacrifice some performance involved with 
recovering from a node failure as outlined in section II. 
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B. The Storage Node 
To implement the storage nodes we use the Network Block 
Device (NBD) [17] open source library. NBD allows the use of 
a file as a block device, and provides its own protocol for data 
transfer between a client and a server. By using files as the 
storage mechanism on the data storage nodes rather than 
separate partitions or physical disks, storage nodes can easily 
export space for consumption by one or more clients without 
the complications of re-partitioning disk drives.  

When a read operation from a particular storage node fails, 
the client can reconstruct the requested data as long as roughly 
k of the n storage nodes are available (this depends in part on 
the additional constraints the symmetric LDPC codes bring). 
Write operations generate several further complications 
compared to reads. If a write to a particular storage node fails, 
then the client buffers the write operation. The next time it 
attempts to read or write to that node, assuming the node 
becomes available once again, it will first apply the queued 
writes before any other operation to ensure consistency. 
However, once the Discover Service declares a storage node 
failed and notifies the client, this will begin reconstructing the 
missing data on a new storage node. The client can then 
discard all queued operations related to the failed storage 
node. 

C. Feasibility Experiment 
To test the functionality of our prototype we have deployed 
and tested vanDisk in a minimal setting. We have used seven 
desktop computers as follows: one client node, five storage 
nodes, and one Discovery Service node.  

The system was configured to tolerate up to two out of the 
four of the storage nodes failures. An additional storage node 
was left unused (spare) to store reconstructed data and replace 
failed nodes on the fly. The server nodes were relatively old 
machines (500MHz Intel Pentium III, 128MB). A virtual drive 
was mounted on the client machine, and a 30 MB video file 
was stored on the drive. Node reconstruction and fail-over 
behavior was observed as the video file was viewed on the 
client machine. The video file played smoothly without any 
interruption through both one and two storage node failures, 
and experienced no significant performance losses during the 
reconstruction process. The encoding and decoding overheads 
were negligible as compared to the communication overheads. 
The client CPU consumption remained below 10% during 
intense read and write operations, and CPU usage was 
negligible for the storage nodes. While the system was 
implemented as a proof-of-concept rather than optimized for 
performance, the system demonstrated reasonable behavior 
under stress-test conditions. 

V. SUMMARY 
The vanDisk project aims to alleviate long-term data backup 
problems by introducing the notion of a virtual array of 
network disks that transparently replicates a user’s data over 

multiple remote machines to increase data availability and 
durability. vanDisk, eliminates the need for proactive action 
from the user to backup data while drastically improving the 
durability of stored data by continuously monitoring the remote 
machines on which data is replicated.   

We have prototyped vanDisk as a sequence of 4th year 
undergraduate projects. Even though our vanDisk prototype is 
still early stages, e.g., it is not optimized for performance and 
uses a number of centralized components, is proves the 
feasibility and practicality of our virtual disk based approach. 
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