
vanDisk: An Exploration in Peer-To-Peer
Collaborative Back-up Storage

Amir Javidan, Tony Angerilli, Armin Barhashary, Guy Lemieux, Roman Lisagor, Matei Ripeanu
Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, BC

Contact Authors: amir.javidan@gmail.com, or {lemieux | ripeanu}@ece.ubc.ca

Abstract—As personal computers become an integral part of our
daily lives, huge volumes of data need to be reliably managed and
archived. Uncorrelated failures within a set of independent
personal computers offer the promise of low-cost, reliable data
storage. The vanDisk project attempts to realize this promise.

The main assumption of our project is that users are willing
to donate raw storage space to their peers to increase the
reliability of their own data. In our system, users offer a portion
of their disks to be used as backup space for other users in
exchange for space to store backup copies of their own data, thus
decreasing the possibility of catastrophic data loss.

A number of characteristics differentiate vanDisk from
existing projects that explore this space. First, unlike existing
projects that that increase redundancy at the data-block or file
level, vanDisk operates at the disk level. This substantially
simplifies data management and reduces management overhead
at the cost of marginally higher recovery costs from partial
failure. Second, all data-related operations are transparently
replicated at the data source. Third, our design includes an
orthogonal component to manage space and bandwidth.

Our system is integrated with Microsoft Windows and offers
users a virtual drive that transparently replicates data across
multiple machines. As well, a complete, original copy of the data
is always available on the user’s own system. We have modified
TrueCrypt, an open source virtual disk package that offers data
confidentiality through encryption, and we have added a new
driver layer that redirects and replicates all IO requests to a set
of Network Block Device servers offered by the peers to store
replicated data. Additionally, we use simple data encoding to
offer user-tunable tradeoffs between space overheads, compute
overheads, and data reliability.

Keyword: peer-to-peer data backup, virtual drive, collaborative data
backup.

I. INTRODUCTION
Computer usage has become an integral part of our daily lives.
As pervasive computing increasingly leads to ‘everyware’
technology, reliable safe-keeping of data has become a
significant issue. Part of the problem stems from neglect to
proactively backup valuable data, often a result of lack of a
transparent, automated backup technology. Another aspect of
the problem is that popular storage media such as CDs, DVDs,
or additional hard drives often fail to provide an adequate level
of durability.

Our project aims to alleviate these long-term data backup
problems by introducing the notion of a virtual array of
network disks, or vanDisk, which transparently replicates user
data over disks on multiple remote machines to increase data
reliability. In doing so, the system eliminates the need for
proactive action from the user to backup data, while drastically
improving the reliability of stored data by continuously
monitoring the availability of the machines on which data is
replicated. We have prototyped vanDisk thus far as a sequence
of 4th year undergraduate projects to investigate the main
tradeoffs, its feasibility and its practicality.

The main assumption underlying vanDisk is that users are
willing to donate raw storage space to increase the reliability of
their data. Thus, users offer a portion of their disks to be used
as backup for other users’ data, in exchange for space to
backup their own data. Characterizations of desktop disk space
usage in both corporate [1] and academic [2] environments
show that this assumption is realistic: most desktops have at
least half of their disk space unused.

Three characteristics differentiate vanDisk from other
projects that explore the peer-to-peer data storage space [1-6].
First, unlike existing projects that provide increased data
availability or durability through increased redundancy at the
data-block or file level, vanDisk operates at the (virtual) disk
level. In brief, this choice offers reduced management
overhead at the cost of slightly larger recovery times from
partial failures. Usually, management overhead is proportional
to the number of objects the system has to provide durability
for by tracking their replication levels. vanDisk works at coarse
granularity, the virtual disk, and thus has lower management
overheads than systems that use block-level replication. The
coarse granularity has an impact on failure recovery
characteristics: if virtual disks need to be locked for writes
during the recovery process, the impact of a failure on a single
client is difficult to mask. However, as the main goal of
vanDisk is to provide data durability rather than availability
[7], rapid recovery from failures is a secondary concern.

A second characteristic that differentiates vanDisk is that
all data-related operations are transparently replicated at the
data source: all disk operations are captured by a vanDisk
device driver. While read operations can be served by any

U.S. Government work not protected by U.S. Copyright

219

available replica, write operations are spread over the entire set
of replicas. Optimistic consistency protocols ensure that writes
complete in spite of storage node failures. Finally, our design
includes an orthogonal component that manages storage space
and bandwidth contributions of a system to discourage
freeloading.

The rest of this paper is organized as follows. The next
section offers a vanDisk overview and a discussion of the main
design choices. Section III discusses the data coding
technologies used to control the tradeoff between space
overheads, compute overheads, and data reliability. Section IV
presents vanDisk prototype implementation and Section V
summarizes our experience.

II. SYSTEM OVERVIEW
VanDisk facilitates the seamless, durable storage for a client
node by providing a means to mount a logical volume, a
virtual drive, which appears to function like a local hard disk.
Data operations on the virtual drive are actually delegated to
the remote storage nodes. Note that each node that
participates in the system concurrently plays both roles of
client and storage node: as a client the node backs its data up
on other nodes, while as a storage node it accepts to store data
on behalf of remote nodes.

In our target environment, desktop nodes connected by a
local area network, individual nodes are intermittently
available and existing nodes might fail and leave the system
for good. As a result, the important tradeoff to consider is
between the availability and durability of the data and the
redundancy involved in storing it [7, 8]. We use erasure
encoding [9] to offer tunable tradeoffs between space
overheads, compute overheads, and data availability and
durability.

A. Design Considerations
The peer-to-peer nature of the system implies that it must be
capable to tolerate the following events:

 Graceful departure: a storage node may announce its
intention to go ‘offline’ and be temporarily unavailable
for storage.
 Unanounced temporary failure: a storage node may
suddenly fail, due to a network interruption or a crash.
The departure is not announced to the system.
 Permanent failure/departure: a node may permanently
leave the system, possibly as a result of a failed hard disk
or of discarding of the computer. This scenario is
equivalent to either of the above two, except that the
node does not return to an available state.
 Node arrival: a node may come back ‘online’, once again
make its stored data and free disk space available.
 Node join: a new node may join the current set of nodes.

When a storage node P is detected as unavailable, the
reliability of the data stored in the system is reduced and the

system must attempt to restore it. This is done by using
available nodes to reconstruct the data P was storing, and then
making that data available for client operations. However,
attention must be paid to consistency issues with regards to
write operations during restoration process. Furthermore, the
system must decide where to store P’s reconstructed data.

In the opposite scenario, when a storage node P is detected
as once again available after being down for a period of time,
the system can either update P with the newest copy of the data
it is responsible for storing, or consider P as an unused node,
and continue using the existing substitute node

B. Design Choices
To detect node status the system uses a Discovery Service.
The Discovery Service expects all storage nodes to send a
regular keepalive message. If the Discovery Service detects
that a node failed to send keepalive messages for a predefined
number of rounds it infers that the node has left the system.
The Discovery Service continues to store the state of the node.
If the node does not come back online within a predefined
period of time the Discovery Service considers the node
permanently failed and deletes all state related to that node.

This design has the advantage that nodes can naturally join
the system just by starting to send their keepalive messages.
Additionally, the Discovery Service does not initiate any
communication but merely waits for keepalive messages.

Once the Discovery Service detects a change in a storage
node status, it sends this information to the node that has
mounted the virtual disk, the ‘client’ node in our terminology.
This way, the client is able to depend strictly on the Discovery
Service to make policy decisions as to how long to wait before
declaring a storage node unavailable or permanently failed.

After a node P has been declared unavailable for a certain
amount of time, the Discovery Service asks the Reconstruction
Service to reconstruct P’s data and make it available for the
client to utilize. The Reconstruction Service will then read the
dataset stored at a sufficient number of nodes, in order to
reconstruct the full data stored at P. During this process, it also
synchronizes with the client, to ensure that write operations are
queued until the reconstruction process completes. Once the
reconstruction process completes, the Reconstruction Service
asks the Space Management Service to make available storage
space to store node P’s data. Ideally, the Space Management
Service is able to select from a pool of unused storage nodes to
store node P’s data. The Space Management Service then
notifies the Reconstruction Service about the details of how to
access the newly available storage space. The Reconstruction
Service then stores node P’s reconstructed data at the newly
available storage space, and notifies the Discovery Service as
to how to access the reconstructed data. The Discovery Service
then notifies the client of the new replica information, and
allows the client to resume any pending write operations. Since
the reconstruction process is an expensive operation, this
scheme attempts to make it transparent to the user while
minimizing its performance impact.

220

Since nodes may experience brief network interruptions,
the client node, attempts to perform read/write operations at
each of the storage nodes, even when facing failures (failed
reads are retried at different replicas while failed writes are
buffered for delayed retries). It is only when the Discovery
Service notifies the client node of a change in the replication
set that the client node considers a storage node to be
unavailable. This design provides a clear separation of
concerns between the Discovery Service in charge with
detecting node failures and client nodes in charge with
individual read/write operations.

C. Discussion
The design used to control replication is simple and our
experience has proven it effective. While, the current vanDisk
implementation uses centralized implementations for the
services mentioned above, our design does not preclude a
decentralized implementation. In a decentralized scheme, the
storage nodes cooperate with each other to detect changes in
availability of all storage nodes, reconstruct a failed nodes data,
find new storage space for the newly reconstructed data, and
communicate replica location changes to the client.

In order to provide these services, each group of storage
nodes responsible for a certain virtual disk uses a
leader-election algorithm to identify a particular node as
responsible for group membership management, detecting
membership changes, and failure recovery. Ideally, leader
selection takes into account each node availability patterns and
proximity to the client. If the leader fails, the remaining storage
nodes elect a new leader, and ensure that the management
responsibilities are seamlessly ported to the new leader. The
drawback of a distributed management scheme is the increased
overhead involved with the storage nodes having to
communicate and agree with one another. Additionally storage
nodes maintain the metadata to track and maintain the systems’
state.

III. ERASURE CODES FOR DATA DISTRIBUTION
Erasure codes provide a means to transform a set of k data
blocks into a set of n > k blocks, such that the original set of k
data-blocks can be recovered from a subset of the encoded n
blocks [10, 11]. The advantage of using erasure codes is that
the system can provide high availability while using less disk
space than pure replication. However, erasure codes also
introduce computational overheads for encoding and decoding.
This section compares various coding techniques [11].

Reed-Solomon (RS) codes [12] are a key component of CD
and DVD technology and have been used extensively in data
communications. RS codes can detect any m=n-k errors in a set
of n total encoded blocks, and can correct up to m/2 failures. In
most cases, RS codes perform well when the value of n is
small, but have been recently superseded by more
computationally-efficient encoding methods such as Tornado
Codes [13].

Low-Density Parity-Check (LDPC) codes are more
computationally-efficient than RS codes and among the most
effective known codes. LDPC codes are systematic: the n
resulting blocks include the k source blocks verbatim and an
additional m=n-k new parity blocks [12]. This property allows
for faster encoding and decoding times.

Fountain codes [14] encode a block of data into an infinite
sequence of parity blocks. As a result, there is no requirement
for a predefined value for n. In our system, this is a valuable
property since it allows adding new replicas without having to
re-encode the full dataset. However, fountain codes are patent-
protected and no open source implementation is available [15].

RS and LDPC codes are the most promising for our
software implementation. The most important characteristics
are their encoding/decoding time and the number of blocks
required to reconstruct a valid data set, commonly referred to
as the Maximum Distance Separable (MDS). When the MDS is
equal to k, the code is considered optimal. RS codes are
optimal for arbitrary values of n and m, and thus can guarantee
that any m erasures are always tolerated. However, this
flexibility and reliability is provided at the cost of
computational overhead. In addition, RS decoding requires k
blocks before decoding can begin, whereas LDPC decoding
can take place on-the-fly. This limitation can make RS codes
prohibitively expensive for large values of n. In contrast,
LDPC codes are sub-optimal, however their space overheads
are low and they provide much faster encoding and decoding
times. We use LDPC codes for vanDisk.

IV. PROTOTYPE IMPLEMENTATION

A. The Client Node
To implement the virtual disk abstraction, we started with
TrueCrypt [16], an open-source software that allows mounting
an encrypted virtual drive from a either file or raw disk volume
(aka partition). All I/O requests received by the virtual file
system are captured by the TrueCrypt driver, which then
performs encryption/decryption to the data to be written to
(respectively read from) the disk. Then, the driver either
applies I/O operations to the file, or forwards the request to the
volume driver if it is backed by a raw volume. To divert these
calls, we inserted a kernel-mode driver into this chain which
forwards requests from the TrueCrypt driver to our user-level
process called RAIDClient.

The RAIDClient performs all reliability-related erasure
encoding or decoding and contacts the data storage nodes to
retrieve or store the cyphertext data. By delegating kernel-level
IO requests to a user-level process, the amount of kernel-level
code is reduced. This reduces the I/O performance, particularly
due to context switching, but it is easier to code and debug.

Using a disk-level abstraction, as opposed to a file system
abstraction, drastically reduces the accounting and metadata
management overhead and offers better transparency.
However, we must sacrifice some performance involved with
recovering from a node failure as outlined in section II.

221

B. The Storage Node
To implement the storage nodes we use the Network Block
Device (NBD) [17] open source library. NBD allows the use of
a file as a block device, and provides its own protocol for data
transfer between a client and a server. By using files as the
storage mechanism on the data storage nodes rather than
separate partitions or physical disks, storage nodes can easily
export space for consumption by one or more clients without
the complications of re-partitioning disk drives.

When a read operation from a particular storage node fails,
the client can reconstruct the requested data as long as roughly
k of the n storage nodes are available (this depends in part on
the additional constraints the symmetric LDPC codes bring).
Write operations generate several further complications
compared to reads. If a write to a particular storage node fails,
then the client buffers the write operation. The next time it
attempts to read or write to that node, assuming the node
becomes available once again, it will first apply the queued
writes before any other operation to ensure consistency.
However, once the Discover Service declares a storage node
failed and notifies the client, this will begin reconstructing the
missing data on a new storage node. The client can then
discard all queued operations related to the failed storage
node.

C. Feasibility Experiment
To test the functionality of our prototype we have deployed
and tested vanDisk in a minimal setting. We have used seven
desktop computers as follows: one client node, five storage
nodes, and one Discovery Service node.

The system was configured to tolerate up to two out of the
four of the storage nodes failures. An additional storage node
was left unused (spare) to store reconstructed data and replace
failed nodes on the fly. The server nodes were relatively old
machines (500MHz Intel Pentium III, 128MB). A virtual drive
was mounted on the client machine, and a 30 MB video file
was stored on the drive. Node reconstruction and fail-over
behavior was observed as the video file was viewed on the
client machine. The video file played smoothly without any
interruption through both one and two storage node failures,
and experienced no significant performance losses during the
reconstruction process. The encoding and decoding overheads
were negligible as compared to the communication overheads.
The client CPU consumption remained below 10% during
intense read and write operations, and CPU usage was
negligible for the storage nodes. While the system was
implemented as a proof-of-concept rather than optimized for
performance, the system demonstrated reasonable behavior
under stress-test conditions.

V. SUMMARY
The vanDisk project aims to alleviate long-term data backup
problems by introducing the notion of a virtual array of
network disks that transparently replicates a user’s data over

multiple remote machines to increase data availability and
durability. vanDisk, eliminates the need for proactive action
from the user to backup data while drastically improving the
durability of stored data by continuously monitoring the remote
machines on which data is replicated.

We have prototyped vanDisk as a sequence of 4th year
undergraduate projects. Even though our vanDisk prototype is
still early stages, e.g., it is not optimized for performance and
uses a number of centralized components, is proves the
feasibility and practicality of our virtual disk based approach.

VI. REFERENCES
[1] W. J. Bolosky, J. R. Douceur, D. Ely, et al., "Title Feasibility of a

Serverless Distributed File System Deployed on an Existing Set of
Desktop PCs," International Conference on Measurement and Modeling
of Computer Systems(SIGMETRICS), 2000.

[2] S. S. Vazhkudai, X. Ma, V. W. Freeh, et al., "Constructing collaborative
desktop storage caches for large scientific datasets," vol. 2, pp. 221 -
254, 2006.

[3] R. Bhagwan, K. Tati, Y. Cheng, et al., "TotalRecall: System Support for
Automated Availability Management," NSDI'04, 2004.

[4] J. Kubiatowicz, D. Bindel, Y. Chen, et al., "OceanStore: An Architecture
for Global-Scale Persistent Storage," 9th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2000), Cambridge, MA, 2000.

[5] M. Lillibridge, S. Elnikety, A. Birrell, et al., "A Cooperative Internet
Backup Scheme," USENIX'03, San Antonio, TX, 2003.

[6] M. Landers, H. Zhang, and K.-L. Tan, "PeerStore: Better Performance
by Relaxing in Peer-to-Peer Backup," 4th IEEE International Conference
on Peer-to-Peer Computing, 2004.

[7] B.-G. Chun, F. Dabek, A. Haeberlen, et al., "Efficient Replica
Maintenance for Distributed Storage Systems," 3rd USENIX
Symposium on Networked Systems Design & Implementation (NSDI),
San Jose, CA, 2006.

[8] C. Gkantsidis and P. R. Rodriguez, "Network coding for large scale
content distribution," 24th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2005), Miami,
FL, 2005.

[9] L. Rizzo, "Effective erasure codes for reliable computer communication
protocols," ACM SIGCOMM Computer Communication Review, vol. 27,
pp. 24-36, 1997.

[10] A. G. Dimakis, P. B. Godfrey, M. Wainwright, et al., "Network Coding
for Peer-to-Peer Storage," Infocom, 2007.

[11] R. L. Collins and J. S. Plank, "Assessing the Performance of Erasure
Codes in the Wide-Area," International Conference on Dependable
Systems and Networks (DSN), Yokohama, Japan, 2005.

[12] T. K. Moon, Error Correction Coding, Mathematical Methods and
Algorithms: Wiley, 2005.

[13] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, et al., "Practical loss-
resilient codes," 29th ACM Symposium on Theory of Computing, El
Paso, TX, 1998.

[14] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, et al., "Improved
Low-Density Parity-Check Codes Using Irregular Graphs and Belief
Propagation," IEEE International Symposium on Information Theory,
1998.

[15] C. Neumann and V. Roca, "Design, Evaluation and Comparison of Four
Large Block FEC Codecs, LDPC, LDGM, LDGM Staircase and LDGM
Triangle, plus a Reed-Solomon Small Block FEC Codec," INRIA
Rhone-Alpres, Planete Research Team, Lyon, France 2004.

[16] TrueCrypt: Free open-source disk encryption software;
http://www.truecrypt.org/, 2007, accessed on: April 2006

[17] P. T. Ares, "The Network Block Device," The Linux Journal, 2000.

222

