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ABSTRACT
PERG is a pattern matching engine designed for locating pre-
defined byte string patterns (rules) from the ClamAV virus 
signature database in a data stream. This paper presents PERG-
Rx, an extension of PERG that adds limited regular expression 
support for wildcard patterns used by rules that represent 
polymorphic viruses. To reduce the amount of state needed to 
track so many regular expressions, PERG-Rx employs a lossy 
scheme which increases the rate of false positives detected as the 
required state grows. The scalability and dynamic updatability of 
the PERG-Rx architecture to database updates are also evaluated.   

Categories and Subject Descriptors
B.6.0 [Logic Design]: General – FPGA, pattern-matching engine 

General Terms: Algorithms, Performance, Design, Security 

Keywords
FPGA, Pattern Matching, Antivirus, Regular Expression 

1. Introduction 
Our previous work, PERG [1], is a hardware accelerator for 
pattern matching with the ClamAV virus database [3]. In this 
paper we present an extension to the original PERG architecture 
to handle patterns containing wildcards. Wildcard support is 
necessary for the detection of polymorphic viruses in ClamAV. 
To add such critical support, the extended architecture PERG-Rx, 
shown in Figure 1, features a new Wildcard Table unit. By trading 
off a slight increase in false-positive probability, the wildcard 
table is able to handle all types of wildcards found in the ClamAV 
database with low hardware overhead. 

In addition to limited regular expression support, this paper 
also analyzes on scalability and dynamic updatability of PERG. 
Although a PERG instance of the ClamAV main database already 
has very high memory density per rule character (0.354 bit/char), 
it still has a theoretical capacity of 13.3% unused space for future 
rules. That is, up to 12,935 more rules might be added without 
changing the FPGA bitstream. Using the latest incremental (daily-
update) database from ClamAV, we demonstrate that most new 
rules can be perfectly-hashed to fit directly into an existing 
instance without further hardware changes. To handle the cases 
where a perfect-hash cannot be achieved, we add to PERG-Rx the 
ability to alter the hash circuits with minimal hardware overhead 
and without the need to regenerate a new FPGA bitstream. 

The rest of the paper is organized as follows. Background is 

in Section 2. Details of ClamAV's signature database are in 
Section 3. The pattern compiler and the PERG-Rx hardware 
architecture are discussed in Sections 4 and 5, respectively. 
Wildcard table and limited regular expression support are 
explained in Section 6. Scalability and dynamic updatability are 
analyzed in Section 7. Simulation results are presented in Section 
8. Finally, conclusions and future work are given in Section 9.  

2. Background and Related Work 
Most modern pattern matching engines are FPGA-based and fall 
into two categories: finite state machine (FSM) [8] and Bloom 
filter [6]. While each solution has its own advantages, Bloom 
filters offer much higher density than FSMs, making Bloom filters 
superior for large-scale databases like ClamAV. 

A Bloom filter [6] uses a hash table with m 1-bit entries to 
store a match/no-match result. By using hash functions, Bloom 
filter memory consumption is independent of the pattern length, 
giving a Bloom filter a much higher density than the FSM 
approach. However, Bloom filter approaches also have several 
disadvantages. First, each pattern length uses its own hash table. 
This leads to a large number of filter units as both Snort and 
ClamAV have a wide range of pattern lengths. Second, because of 
false positives due to hash aliasing, verification is required upon a 
hit, forcing additional computation. To make matters worse, 
Bloom filters can only determine match/no-match; they do not 
indicate which particular rule is the potential match. Hence, the 
process of exact matching is fairly computationally intensive. 

PERG [1] uses Bloomier filter [5], an extension of the 
Bloom filter. Instead of providing a simple match/no-match 
answer, the Bloomier filter indicates which pattern resulted in a 
match, speeding up exact matching to verify against false 
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Figure 1. Top-level architectural diagram of PERG-Rx. 



positives. Due to limited space, please refer to [5] for construction 
and proof of Bloomier filters. 

3. ClamAV Database 
Virus signatures in ClamAV, shown in Table 1, can be divided to 
three types: MD5 checksums, basic patterns, and regular 
expression patterns. MD5 checksums are ignored in this work 
because this accounts for only 0.64% of runtime [2]. A basic 
pattern is a continuous byte string. A regular expression pattern is 
an extension of the basic pattern with OR operators, displacement 
gaps, and wildcards. Table 2 summarizes the various regular 
expression operators in ClamAV. Regular expression support is 
necessary for detection of polymorphic viruses in ClamAV. Note 
that PERG supports only the single-byte and displacement 
wildcards ? and {n}, which insert fixed-length gaps between 
string fragments. PERG-Rx adds support for the others which 
require arbitrary-length gaps. 

4. PERG-Rx Compiler 
The PERG-Rx system is divided to two sections: the pattern 
compiler, which acts as a preprocessor, and the hardware 
architecture. The compiler flow examines the pattern database and 
decides on several hardware parameters including the precise hash 
functions, number and size of Bloomier filter units, and the 
mappings of patterns to Bloomier filter table entries. A precise 
hardware instance is then generated from these parameters. In 
comparison with the compiler flow in PERG [1], the only 
difference is the addition of OR-expansion stage, added right after 
the filter-mapping stage. To handle Byte-Or regular expressions in 
ClamAV, each rule containing one or more Byte-Or operators is 
expanded to all the possible string combinations. A string with 
one Byte-Or operator would be expanded to two strings, a string 
with two Byte-Or operators would be expanded to four strings, 
and so on.

5. PERG-Rx Hardware 
The PERG-Rx hardware architecture, shown in Figure 1, is 
divided into Inspection, Metadata, and Fragment Reassembly 
Units. Inspection Unit filters the input data stream through 
parallel Bloomier filter units (BFUs) and verifies primary (8-bit) 
checksums. At each cycle, a new input byte is scanned in parallel 
by a set of BFUs to match different string lengths. A 32-bit Byte 

Counter counts the number of bytes in the current file stream. 
When Inspection Unit detects a match, it determines which 

pattern caused the match and sends the information to Metadata 
Unit along with the current Byte Count and a 32-bit secondary 
checksum computed on the input data. The Metadata Unit 
retrieves pattern information, such as the expected checksum 
value, from an off-chip memory. Finally, the Fragment 
Reassembly Unit compares the secondary checksum and tracks 
the progress of searching for the overall rule/pattern. For details 
about operations of these units as well as circular speculative 
buffer (CSB), please refer to [1]. The main change since PERG is 
the addition of the Wildcard Table.  

The Wildcard Table (WT) is accessed whenever a pattern 
fragment matches and the metadata indicates it is preceded and/or 
followed by a wildcard. Details about the internal operation of the 
WT will be discussed in Section 6; for now, we will treat WT as a 
black box that can somehow track the state a wildcard trace 
through the datastream. When the Reassembly Controller sends 
out new metadata, the same metadata is presented to the CSB and 
the WT in parallel. The metadata process, in concept, can be 
divided to two phases: a verification phase for determining if the 
incoming string fragment is currently expected, and a speculation 
phase for recording the next expected segment of the rule trace. As 
a result, it is possible that both WT and CSB are involved in the 
same metadata process. For instance, metadata expected by an 
ongoing trace in the CSB may indicate it is followed by a within 
wildcard. In such a scenario, the CSB is used to verify that the 
incoming fragment is expected by an ongoing trace. Upon 
verification, the CSB will send a control signal to the WT so the 
WT will record the expectation for the next segment.  

6. Limited Regular Expressions 
Before getting to the internal mechanism of the WT, it is 
appropriate to describe how we treat the various types of wildcard 
regular expressions in Table 2. We begin by converting the single-
byte (?) and any-number-of-byte (*) wildcards. A single-byte 
wildcard is a displacement of fixed (1 byte) distance, and 
therefore can be handled by CSB alone. On the other hand, the 
any-number-of-byte wildcard is converted by the pattern compiler 
to an at-least wildcard, {n-}. As a hash-based solution, a true hit 
of any segment in PERG-Rx is only detected after the last byte of 
the pattern appears in the data stream. Take the pattern ABC*DEF 
as an example. First, the pattern would be split into two segments 
ABC and DEF. Once a hit of ABC is detected, the appearance of 
DEF is only possible after at least 3 more bytes have passed. 
Therefore the pattern ABC*DEF is converted to ABC{3-}DEF. 
After conversion, three types of wildcard remain: at-least {n-}, 
within {-N} and range {n-N}. 

Unlike the others, the range wildcard contains two pieces of 
data: the lower and upper bound values. To minimize storage in 
both metadata and the WT, only the upper bound N is kept. As a 
result, range wildcards are converted to within wildcards ({-N}). 
This step of the conversion is lossy, meaning there will be some 
new false positives resulted from discarding the lower bound. 

It is important to emphasize that we are not handling the 
entire set of regular expressions, but only those found in ClamAV. 
Most importantly, the WT is not a precise regular-expression 
handler but a lossy approximation that provides limited regular 
expression support using minimal hardware resources. While 
fundamentally very different in structure, the WT is similar in 
properties to a Bloomier filter as they both offer high storage 
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Table 2. Regular Expression Operators in ClamAV  

Symbol Definition 

(X|X) Byte-Or 

? Single-Byte Wildcard 

* (Any-Number-of-Byte) Wildcard 

{n} n Byte Displacement 

{n-} At-Least (n-Byte) Wildcard 

{-N} Within (n-Byte) Wildcard 

{n-N} Range wildcard 

Table 1. Different signatures in ClamAV 0.93.1 main database 

MD5 Checksums Basic Patterns Regular Expression 
Patterns 

146,214 (63.1%) 80,262 (34.6%) 5,363 (2.3%) 



density, zero false-negative probability, and a small false positive 
probability. Any regular expression in ClamAV can be mapped 
into the PERG-Rx WT and remain detectable. 

WT is essentially a one-dimensional table. Each entry is 
directly indexed by the rule ID of the incoming metadata and 
contains four attributes: Valid, WildcardType, ByteRange, and 
LinkNumber. With the exception of the valid bit, all the attributes 
are stored on-chip in BRAM. WildcardType is a flag that 
indicates whether the next expected segment is preceded by an at-
least or within wildcard. ByteRange is the displacement value, n
or N. Finally, LinkNumber is used to track the arrival sequence 
order among multiple segments in the rule. 

Each rule may contain multiple wildcards. While searching 
the datastream, this can lead to tracking the progress of multiple 
states or traces for each rule. Since there is only one entry per 
rule, the WT can only keep one trace per rule. To do this, the trace 
only progresses forward (i.e., advances in link number); each 
entry remains static until only the next expected segment arrives, 
thus any arrival of current and previous segments of the same rule 
are ignored. The link numbers provide the information needed to 
only make forward progress. The Valid bit, stored in a flip-flop, is 
used to indicate the relevance of the entry information and reset 
upon the arrival of a new file stream. 

Clearly, the above method works for at-least wildcards 
without any increase in false positive probability. Take the 
example of the pattern ABC{3-}DEF{3-}EFG and assume the 
WT entry has already detected up to the second fragment DEF. 
Regardless of when and how many instances of ABC and DEF 
appear later, our only concern is the appearance of EFG, which 
can appear any time after three bytes have passed after the first 
DEF is detected. In fact, which fragments and combinations of 
wildcards precede the fragment EFG is irrelevant at this point as 
the trace only progresses forward. In the case where a fragment is 
preceded by a wildcard and followed by a regular fragment (as the 
DEF in the pattern ABC{-3}DEF{3}EFG), its corresponding WT 
entry is left unchanged as the speculation phase is performed in 
the CSB not in the WT. As a result, the WT will still expect the 
fragment DEF while the CSB expects the next fragment EFG. 
Hence, the concurrent use of CSB and WT follows two traces. 

For within wildcard, everything works the same as at-least 
wildcard with one exception: an update to the byte range. Unlike 
the at-least condition, the within condition expires after the given 
number of bytes has passed since detection of the last fragment. 
One way to get around such complexity is to simply remove the 
upper limit by converting the within wildcard back to an at-least 
wildcard by using the byte length of the second fragment as lower 
bound for n. This approach works at the cost of increased false 
positive probability due to loss of the upper bound. 

Instead, PERG-Rx keeps the upper bound by refreshing the 
ByteRange condition every time the current fragment is matched 
again. Whenever the current fragment (whose next link number is 
the same as the link number in the WT entry) re-appears in the 
datastream, the upper bound condition ByteRange is increased 
accordingly. To do this, WT is essentially monitoring two traces: 
both the current and next link numbers of the incoming metadata. 

In any true (non-lossy) trace of a within wildcard, the current 
fragment must always arrive before the appearance of the next 
fragment at a byte position satisfying the ByteRange. In our lossy 
WT trace, the range attribute will always be refreshed just in time 

in a true trace. However, additional false positives are introduced 
when the ByteRange is refreshed by a current fragment that 
appears but does not satisfy all of the proper preceding fragments 
in the overall rule. The number false positives introduced by this 
scheme should be much lower than the alternative discussed 
earlier of removing the upper limit; we have not investigated the 
difference, but expect it is significant. 

One issue with WT is that forward-only lossy progress may 
lead to a large number of verifications. For example, for the rule 
ABC{-3}DEF{-3}EFG, consider that once progress is made to 
the last fragment EFG, a verification must be done whenever 
another EFG segment is matched in the datastream. The only time 
this history state is cleared is when a new file begins. However, 
our experiments show that with a Bloomier filter and two levels of 
checksum, it is very unlikely a trace would progress that far in the 
first place unless such a pattern truly does appear in the data 
stream. Alternatively, host software may be able to roll back the 
WT state for a rule if verification by the host fails. 

7. Scalability and Dynamic Updateability 
Given the rapid growth and frequent updates to virus databases, it 
is important to verify PERG/PERG-Rx scalability and 
updateability. By scalability, we mean the architecture can achieve 
high density/utilization of patterns in each BFU without reporting 
a large number of false positives. By a dynamic update, we mean 
the ability to add new rules to previously generated hardware 
without the need to recompile the RTL. Because recompiling and 
verifying RTL can take days, this feature allows immediate virus 
protection during that time period. 

After compiling the main database, the utilization and 
configuration of each BFU is analyzed. Recall from [1] that the 
filter consolidation algorithm attempts to pack each BFU above 
90%. The exceptions to this are: the utilization bar is lowered 
greatly for short lengths, and a new BFU length is forced 
whenever the current length is equal to half of the last-assigned 
BFU length (32/16 split) or if the current length has an excess 
number of fragments that is much greater than the BFU_TABLE 
size. There is still room available in each BFU to map new rules. 

The maximum number of patterns that can be mapped onto a 
Bloomier hash table of m entries with two hash functions is m/2. 
Consider a specific PERG hardware instance holding the main 
ClamAV database. Theoretically, in this instance with 1.7 
fragments per rule on average and 86.7% utilization in filter table 
entries, the system is still capable of accepting 12,935 more rules 
with the exact same hardware resource usage. This estimation 
does not account for new rules that contain common fragments – 
these utilize the on-chip cache, which has 87% utilization in this 
instance. 

One possible counter argument to the scalability claim is that 
as a derivative of a Bloom Filter, the false positive probability in 
each Bloomier filter will increase with higher levels of utilization; 
as a result, performance will degrade due to more frequent off-
chip Metadata Unit accesses. In reality, however, the hit rate for 
each BFU is relatively evenly distributed with bursts at a couple 
of filter lengths. While due to these bursts we cannot conclude the 
hits in BFUs are evenly distributed, it does indicate that there is 
no obvious correlation between the hit rate and utilization. PERG-
Rx relies mostly on CRC8 checksum for false positive hits.  



Another possible argument against our scalability claim is 
that the probability of perfect-hashing a new pattern into the 
BFUs would be low. To determine this behavior, we evaluated the 
dynamic updatability of PERG-Rx experimentally using the daily 
signature update (29-Sept-2008) as a test subject. After 
preprocessing through the compiler flow, 1033 rules were 
identified and broken down into 2040 unique fragments. 

We test the probability of successful insertion to the BFUs as 
follows. BFUs were generated with the original main database. 
Two tests were then run. In Test 1, each fragment is inserted one 
by one and removed before insertion of the next fragment so they 
do not interfere each other. In Test 2, the fragments are inserted 
cumulatively and never removed unless it fails to map; the order 
they are inserted is arbitrary without any optimization. In both 
tests, only one fragment from one rule cannot be perfectly-hashed 
by the hard-coded hash functions. Mapping this requires new hash 
functions which can be altered without a new bitstream. 

8. Simulation Results 
PERG-Rx has been implemented in both C as a cycle accurate 
simulator and synthesizable Verilog. According to Xilinx ISE, the 
design can operate at 180MHz on a Virtex-II Pro VP100 FPGA. 
For the Metadata Unit, we use 4 MB SRAM with 64 bit data 
width operating at one-quarter of the core frequency. While the 
Verilog source code is functional under Modelsim, we do not 
have a complete platform to evaluate PERG-Rx in hardware yet. 
Hence, results regarding false-positive probability, BFU hit rates, 
etc. are determined from the C simulator. 

Our test starts with ClamAV 0.93.1, containing 85,625 basic 
and regular expression rules in total. Patterns containing regular 
expressions, segments less than 4 bytes long, or displacement 
gaps larger than 512 bytes are ignored, resulting in removal of 
1,246 patterns. We end up with a total of 84,380 rules containing 
a total of 164,864 fragments and 12,049,565 bytes (characters). A 
total of 1,230 segments/fragments are identified to be shared by 
two or more rules.  During matching, file extensions are ignored 
and left to the host system for consideration. 

Table 3 shows the resource utilization as well as comparison 
with other pattern matching designs. The resource usage in 
PERG-Rx includes the SRAM memory controller used. Note with 
PERG-Rx as the first hardware engine for anti-virus pattern 
matching, so we cannot compare to similar work. Instead, Table 3 
roughly compares PERG-Rx to NIDS systems using Snort. 
Performance Efficiency Metric (PEM) is a common metric used 
by pattern-matching engine designs and defined as the ratio of 
throughput (Gbps) to logics cells per character. 

9. Conclusion and Future Work 
PERG-Rx is an extension of the PERG pattern matching engine 
designed to support limited regular expressions, namely the 

various types of wildcards found in the ClamAV database. The 
support is added at a very small hardware cost. Despite the lossy 
state tracking mechanism which maps multiple traces for each rule 
with wildcard operators to a single trace, experimental results 
show that the false positive rate remains as low as the original 
PERG design. 
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Table 3. Resource Utilization and Comparison 
System Device 

(Xilinx) 
Freq.
(MHz)

# of Chars  
# of LCs 

Mem*1

(kb) 
LCs per 

Char 
Mem.per 

Char 
(bits/char) 

Throughput 
(Gbps) 

PEM 

PERG-Rx XC2VP100 180 8,645,488 42,809 3,024 0.00495 0.354 1.3*2 262.62 
Cuckoo Hashing [4] XC4VLX25 285 68,266 2,982 1,116 0.043 16.7 2.28 53.02 

HashMem [9] XC2V1000 338 18,636 2,570 630 0.140 34.6 2.70 19.60 
ROM+Coproc [7] XC4VLX15 260 32,384 8,480 276 0.260 8.73 2.08 8.00 

*1: Derived from BRAM usage only 

Table 4. Simulation Results 
Single File 

(Ubuntu7_10_x86.iso)
Extracted 
Files (274) 

 # of Bytes Scanned 729,608,192 727,677,929
 # of False Positives 4 4 
 False Positive Prob. 
 for Each Byte Scanned 0.0000005% 0.0000005% 

 # of Off-chip  Mem. Req. 82,499,591 80,500,329
 Prob. of Off-chip Mem. 
Req. for  Each Byte 
Scanned 

11.31% 11.07% 

 Off-chip Mem. Throughput 21.56 MB/s 21.10 MB/s 
 # of Secondary Check Hits 5,931,478 4,005,953
 Prob. of Secondary Check 
Hits for Each  Byte Scanned 0.81 % 0.55 % 


