
PERG-Rx: A Hardware Pattern-Matching Engine
Supporting Limited Regular Expressions

Johnny Tsung Lin Ho
University of British Columbia
johnnyho@ece.ubc.ca

Guy G. F. Lemieux
University of British Columbia

lemieux@ece.ubc.ca

ABSTRACT
PERG is a pattern matching engine designed for locating pre-
defined byte string patterns (rules) from the ClamAV virus
signature database in a data stream. This paper presents PERG-
Rx, an extension of PERG that adds limited regular expression
support for wildcard patterns used by rules that represent
polymorphic viruses. To reduce the amount of state needed to
track so many regular expressions, PERG-Rx employs a lossy
scheme which increases the rate of false positives detected as the
required state grows. The scalability and dynamic updatability of
the PERG-Rx architecture to database updates are also evaluated.

Categories and Subject Descriptors
B.6.0 [Logic Design]: General – FPGA, pattern-matching engine

General Terms: Algorithms, Performance, Design, Security

Keywords
FPGA, Pattern Matching, Antivirus, Regular Expression

1. Introduction
Our previous work, PERG [1], is a hardware accelerator for
pattern matching with the ClamAV virus database [3]. In this
paper we present an extension to the original PERG architecture
to handle patterns containing wildcards. Wildcard support is
necessary for the detection of polymorphic viruses in ClamAV.
To add such critical support, the extended architecture PERG-Rx,
shown in Figure 1, features a new Wildcard Table unit. By trading
off a slight increase in false-positive probability, the wildcard
table is able to handle all types of wildcards found in the ClamAV
database with low hardware overhead.

In addition to limited regular expression support, this paper
also analyzes on scalability and dynamic updatability of PERG.
Although a PERG instance of the ClamAV main database already
has very high memory density per rule character (0.354 bit/char),
it still has a theoretical capacity of 13.3% unused space for future
rules. That is, up to 12,935 more rules might be added without
changing the FPGA bitstream. Using the latest incremental (daily-
update) database from ClamAV, we demonstrate that most new
rules can be perfectly-hashed to fit directly into an existing
instance without further hardware changes. To handle the cases
where a perfect-hash cannot be achieved, we add to PERG-Rx the
ability to alter the hash circuits with minimal hardware overhead
and without the need to regenerate a new FPGA bitstream.

The rest of the paper is organized as follows. Background is

in Section 2. Details of ClamAV's signature database are in
Section 3. The pattern compiler and the PERG-Rx hardware
architecture are discussed in Sections 4 and 5, respectively.
Wildcard table and limited regular expression support are
explained in Section 6. Scalability and dynamic updatability are
analyzed in Section 7. Simulation results are presented in Section
8. Finally, conclusions and future work are given in Section 9.

2. Background and Related Work
Most modern pattern matching engines are FPGA-based and fall
into two categories: finite state machine (FSM) [8] and Bloom
filter [6]. While each solution has its own advantages, Bloom
filters offer much higher density than FSMs, making Bloom filters
superior for large-scale databases like ClamAV.

A Bloom filter [6] uses a hash table with m 1-bit entries to
store a match/no-match result. By using hash functions, Bloom
filter memory consumption is independent of the pattern length,
giving a Bloom filter a much higher density than the FSM
approach. However, Bloom filter approaches also have several
disadvantages. First, each pattern length uses its own hash table.
This leads to a large number of filter units as both Snort and
ClamAV have a wide range of pattern lengths. Second, because of
false positives due to hash aliasing, verification is required upon a
hit, forcing additional computation. To make matters worse,
Bloom filters can only determine match/no-match; they do not
indicate which particular rule is the potential match. Hence, the
process of exact matching is fairly computationally intensive.

PERG [1] uses Bloomier filter [5], an extension of the
Bloom filter. Instead of providing a simple match/no-match
answer, the Bloomier filter indicates which pattern resulted in a
match, speeding up exact matching to verify against false

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’09, February 22–24, 2009, Monterey, California, USA.
Copyright 2009 ACM 978-1-60558-410-2/09/02...$5.00.

C
O

M
P

M
et

ad
at

a
Un

it

Figure 1. Top-level architectural diagram of PERG-Rx.

positives. Due to limited space, please refer to [5] for construction
and proof of Bloomier filters.

3. ClamAV Database
Virus signatures in ClamAV, shown in Table 1, can be divided to
three types: MD5 checksums, basic patterns, and regular
expression patterns. MD5 checksums are ignored in this work
because this accounts for only 0.64% of runtime [2]. A basic
pattern is a continuous byte string. A regular expression pattern is
an extension of the basic pattern with OR operators, displacement
gaps, and wildcards. Table 2 summarizes the various regular
expression operators in ClamAV. Regular expression support is
necessary for detection of polymorphic viruses in ClamAV. Note
that PERG supports only the single-byte and displacement
wildcards ? and {n}, which insert fixed-length gaps between
string fragments. PERG-Rx adds support for the others which
require arbitrary-length gaps.

4. PERG-Rx Compiler
The PERG-Rx system is divided to two sections: the pattern
compiler, which acts as a preprocessor, and the hardware
architecture. The compiler flow examines the pattern database and
decides on several hardware parameters including the precise hash
functions, number and size of Bloomier filter units, and the
mappings of patterns to Bloomier filter table entries. A precise
hardware instance is then generated from these parameters. In
comparison with the compiler flow in PERG [1], the only
difference is the addition of OR-expansion stage, added right after
the filter-mapping stage. To handle Byte-Or regular expressions in
ClamAV, each rule containing one or more Byte-Or operators is
expanded to all the possible string combinations. A string with
one Byte-Or operator would be expanded to two strings, a string
with two Byte-Or operators would be expanded to four strings,
and so on.

5. PERG-Rx Hardware
The PERG-Rx hardware architecture, shown in Figure 1, is
divided into Inspection, Metadata, and Fragment Reassembly
Units. Inspection Unit filters the input data stream through
parallel Bloomier filter units (BFUs) and verifies primary (8-bit)
checksums. At each cycle, a new input byte is scanned in parallel
by a set of BFUs to match different string lengths. A 32-bit Byte

Counter counts the number of bytes in the current file stream.
When Inspection Unit detects a match, it determines which

pattern caused the match and sends the information to Metadata
Unit along with the current Byte Count and a 32-bit secondary
checksum computed on the input data. The Metadata Unit
retrieves pattern information, such as the expected checksum
value, from an off-chip memory. Finally, the Fragment
Reassembly Unit compares the secondary checksum and tracks
the progress of searching for the overall rule/pattern. For details
about operations of these units as well as circular speculative
buffer (CSB), please refer to [1]. The main change since PERG is
the addition of the Wildcard Table.

The Wildcard Table (WT) is accessed whenever a pattern
fragment matches and the metadata indicates it is preceded and/or
followed by a wildcard. Details about the internal operation of the
WT will be discussed in Section 6; for now, we will treat WT as a
black box that can somehow track the state a wildcard trace
through the datastream. When the Reassembly Controller sends
out new metadata, the same metadata is presented to the CSB and
the WT in parallel. The metadata process, in concept, can be
divided to two phases: a verification phase for determining if the
incoming string fragment is currently expected, and a speculation
phase for recording the next expected segment of the rule trace. As
a result, it is possible that both WT and CSB are involved in the
same metadata process. For instance, metadata expected by an
ongoing trace in the CSB may indicate it is followed by a within
wildcard. In such a scenario, the CSB is used to verify that the
incoming fragment is expected by an ongoing trace. Upon
verification, the CSB will send a control signal to the WT so the
WT will record the expectation for the next segment.

6. Limited Regular Expressions
Before getting to the internal mechanism of the WT, it is
appropriate to describe how we treat the various types of wildcard
regular expressions in Table 2. We begin by converting the single-
byte (?) and any-number-of-byte (*) wildcards. A single-byte
wildcard is a displacement of fixed (1 byte) distance, and
therefore can be handled by CSB alone. On the other hand, the
any-number-of-byte wildcard is converted by the pattern compiler
to an at-least wildcard, {n-}. As a hash-based solution, a true hit
of any segment in PERG-Rx is only detected after the last byte of
the pattern appears in the data stream. Take the pattern ABC*DEF
as an example. First, the pattern would be split into two segments
ABC and DEF. Once a hit of ABC is detected, the appearance of
DEF is only possible after at least 3 more bytes have passed.
Therefore the pattern ABC*DEF is converted to ABC{3-}DEF.
After conversion, three types of wildcard remain: at-least {n-},
within {-N} and range {n-N}.

Unlike the others, the range wildcard contains two pieces of
data: the lower and upper bound values. To minimize storage in
both metadata and the WT, only the upper bound N is kept. As a
result, range wildcards are converted to within wildcards ({-N}).
This step of the conversion is lossy, meaning there will be some
new false positives resulted from discarding the lower bound.

It is important to emphasize that we are not handling the
entire set of regular expressions, but only those found in ClamAV.
Most importantly, the WT is not a precise regular-expression
handler but a lossy approximation that provides limited regular
expression support using minimal hardware resources. While
fundamentally very different in structure, the WT is similar in
properties to a Bloomier filter as they both offer high storage

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’09, February 22–24, 2009, Monterey, California, USA.
Copyright 2009 ACM 978-1-60558-410-2/09/02...$5.00.

Table 2. Regular Expression Operators in ClamAV

Symbol Definition

(X|X) Byte-Or

? Single-Byte Wildcard

* (Any-Number-of-Byte) Wildcard

{n} n Byte Displacement

{n-} At-Least (n-Byte) Wildcard

{-N} Within (n-Byte) Wildcard

{n-N} Range wildcard

Table 1. Different signatures in ClamAV 0.93.1 main database

MD5 Checksums Basic Patterns Regular Expression
Patterns

146,214 (63.1%) 80,262 (34.6%) 5,363 (2.3%)

density, zero false-negative probability, and a small false positive
probability. Any regular expression in ClamAV can be mapped
into the PERG-Rx WT and remain detectable.

WT is essentially a one-dimensional table. Each entry is
directly indexed by the rule ID of the incoming metadata and
contains four attributes: Valid, WildcardType, ByteRange, and
LinkNumber. With the exception of the valid bit, all the attributes
are stored on-chip in BRAM. WildcardType is a flag that
indicates whether the next expected segment is preceded by an at-
least or within wildcard. ByteRange is the displacement value, n
or N. Finally, LinkNumber is used to track the arrival sequence
order among multiple segments in the rule.

Each rule may contain multiple wildcards. While searching
the datastream, this can lead to tracking the progress of multiple
states or traces for each rule. Since there is only one entry per
rule, the WT can only keep one trace per rule. To do this, the trace
only progresses forward (i.e., advances in link number); each
entry remains static until only the next expected segment arrives,
thus any arrival of current and previous segments of the same rule
are ignored. The link numbers provide the information needed to
only make forward progress. The Valid bit, stored in a flip-flop, is
used to indicate the relevance of the entry information and reset
upon the arrival of a new file stream.

Clearly, the above method works for at-least wildcards
without any increase in false positive probability. Take the
example of the pattern ABC{3-}DEF{3-}EFG and assume the
WT entry has already detected up to the second fragment DEF.
Regardless of when and how many instances of ABC and DEF
appear later, our only concern is the appearance of EFG, which
can appear any time after three bytes have passed after the first
DEF is detected. In fact, which fragments and combinations of
wildcards precede the fragment EFG is irrelevant at this point as
the trace only progresses forward. In the case where a fragment is
preceded by a wildcard and followed by a regular fragment (as the
DEF in the pattern ABC{-3}DEF{3}EFG), its corresponding WT
entry is left unchanged as the speculation phase is performed in
the CSB not in the WT. As a result, the WT will still expect the
fragment DEF while the CSB expects the next fragment EFG.
Hence, the concurrent use of CSB and WT follows two traces.

For within wildcard, everything works the same as at-least
wildcard with one exception: an update to the byte range. Unlike
the at-least condition, the within condition expires after the given
number of bytes has passed since detection of the last fragment.
One way to get around such complexity is to simply remove the
upper limit by converting the within wildcard back to an at-least
wildcard by using the byte length of the second fragment as lower
bound for n. This approach works at the cost of increased false
positive probability due to loss of the upper bound.

Instead, PERG-Rx keeps the upper bound by refreshing the
ByteRange condition every time the current fragment is matched
again. Whenever the current fragment (whose next link number is
the same as the link number in the WT entry) re-appears in the
datastream, the upper bound condition ByteRange is increased
accordingly. To do this, WT is essentially monitoring two traces:
both the current and next link numbers of the incoming metadata.

In any true (non-lossy) trace of a within wildcard, the current
fragment must always arrive before the appearance of the next
fragment at a byte position satisfying the ByteRange. In our lossy
WT trace, the range attribute will always be refreshed just in time

in a true trace. However, additional false positives are introduced
when the ByteRange is refreshed by a current fragment that
appears but does not satisfy all of the proper preceding fragments
in the overall rule. The number false positives introduced by this
scheme should be much lower than the alternative discussed
earlier of removing the upper limit; we have not investigated the
difference, but expect it is significant.

One issue with WT is that forward-only lossy progress may
lead to a large number of verifications. For example, for the rule
ABC{-3}DEF{-3}EFG, consider that once progress is made to
the last fragment EFG, a verification must be done whenever
another EFG segment is matched in the datastream. The only time
this history state is cleared is when a new file begins. However,
our experiments show that with a Bloomier filter and two levels of
checksum, it is very unlikely a trace would progress that far in the
first place unless such a pattern truly does appear in the data
stream. Alternatively, host software may be able to roll back the
WT state for a rule if verification by the host fails.

7. Scalability and Dynamic Updateability
Given the rapid growth and frequent updates to virus databases, it
is important to verify PERG/PERG-Rx scalability and
updateability. By scalability, we mean the architecture can achieve
high density/utilization of patterns in each BFU without reporting
a large number of false positives. By a dynamic update, we mean
the ability to add new rules to previously generated hardware
without the need to recompile the RTL. Because recompiling and
verifying RTL can take days, this feature allows immediate virus
protection during that time period.

After compiling the main database, the utilization and
configuration of each BFU is analyzed. Recall from [1] that the
filter consolidation algorithm attempts to pack each BFU above
90%. The exceptions to this are: the utilization bar is lowered
greatly for short lengths, and a new BFU length is forced
whenever the current length is equal to half of the last-assigned
BFU length (32/16 split) or if the current length has an excess
number of fragments that is much greater than the BFU_TABLE
size. There is still room available in each BFU to map new rules.

The maximum number of patterns that can be mapped onto a
Bloomier hash table of m entries with two hash functions is m/2.
Consider a specific PERG hardware instance holding the main
ClamAV database. Theoretically, in this instance with 1.7
fragments per rule on average and 86.7% utilization in filter table
entries, the system is still capable of accepting 12,935 more rules
with the exact same hardware resource usage. This estimation
does not account for new rules that contain common fragments –
these utilize the on-chip cache, which has 87% utilization in this
instance.

One possible counter argument to the scalability claim is that
as a derivative of a Bloom Filter, the false positive probability in
each Bloomier filter will increase with higher levels of utilization;
as a result, performance will degrade due to more frequent off-
chip Metadata Unit accesses. In reality, however, the hit rate for
each BFU is relatively evenly distributed with bursts at a couple
of filter lengths. While due to these bursts we cannot conclude the
hits in BFUs are evenly distributed, it does indicate that there is
no obvious correlation between the hit rate and utilization. PERG-
Rx relies mostly on CRC8 checksum for false positive hits.

Another possible argument against our scalability claim is
that the probability of perfect-hashing a new pattern into the
BFUs would be low. To determine this behavior, we evaluated the
dynamic updatability of PERG-Rx experimentally using the daily
signature update (29-Sept-2008) as a test subject. After
preprocessing through the compiler flow, 1033 rules were
identified and broken down into 2040 unique fragments.

We test the probability of successful insertion to the BFUs as
follows. BFUs were generated with the original main database.
Two tests were then run. In Test 1, each fragment is inserted one
by one and removed before insertion of the next fragment so they
do not interfere each other. In Test 2, the fragments are inserted
cumulatively and never removed unless it fails to map; the order
they are inserted is arbitrary without any optimization. In both
tests, only one fragment from one rule cannot be perfectly-hashed
by the hard-coded hash functions. Mapping this requires new hash
functions which can be altered without a new bitstream.

8. Simulation Results
PERG-Rx has been implemented in both C as a cycle accurate
simulator and synthesizable Verilog. According to Xilinx ISE, the
design can operate at 180MHz on a Virtex-II Pro VP100 FPGA.
For the Metadata Unit, we use 4 MB SRAM with 64 bit data
width operating at one-quarter of the core frequency. While the
Verilog source code is functional under Modelsim, we do not
have a complete platform to evaluate PERG-Rx in hardware yet.
Hence, results regarding false-positive probability, BFU hit rates,
etc. are determined from the C simulator.

Our test starts with ClamAV 0.93.1, containing 85,625 basic
and regular expression rules in total. Patterns containing regular
expressions, segments less than 4 bytes long, or displacement
gaps larger than 512 bytes are ignored, resulting in removal of
1,246 patterns. We end up with a total of 84,380 rules containing
a total of 164,864 fragments and 12,049,565 bytes (characters). A
total of 1,230 segments/fragments are identified to be shared by
two or more rules. During matching, file extensions are ignored
and left to the host system for consideration.

Table 3 shows the resource utilization as well as comparison
with other pattern matching designs. The resource usage in
PERG-Rx includes the SRAM memory controller used. Note with
PERG-Rx as the first hardware engine for anti-virus pattern
matching, so we cannot compare to similar work. Instead, Table 3
roughly compares PERG-Rx to NIDS systems using Snort.
Performance Efficiency Metric (PEM) is a common metric used
by pattern-matching engine designs and defined as the ratio of
throughput (Gbps) to logics cells per character.

9. Conclusion and Future Work
PERG-Rx is an extension of the PERG pattern matching engine
designed to support limited regular expressions, namely the

various types of wildcards found in the ClamAV database. The
support is added at a very small hardware cost. Despite the lossy
state tracking mechanism which maps multiple traces for each rule
with wildcard operators to a single trace, experimental results
show that the false positive rate remains as low as the original
PERG design.

Acknowledgements
The authors thank CMC Microsystems/SOCRN for providing
equipments, as well as NSERC, Altera, and Actel for funding.

10. References
[1] J. Ho and G. Lemieux, “PERG: A Scalable FPGA-based

Pattern-matching Engine with Consolidated Bloomier
Filters,” ICFPT, 2008, 73-80.

[2] X. Zhou, B. Xu, Y. Qi, and J. Li, “MRSI: A fast pattern
matching algorithm for anti-virus applications,” Int’l. Conf.
on Networking, 2008, 256-261.

[3] Clam Antivirus. http://www.clamav.net.
[4] T. N. Thinh, S. Kittitornkun, and S. Tomiyama, “Applying

cuckoo hashing for FPGA-based pattern matching in
NIDS/NIPS,” ICFPT, 2007, 121-128.

[5] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The
Bloomier filter: an efficient data structure for static support
lookup tables,” SIAM, 2004, 30-39.

[6] B. Bloom, “Space/time trade-offs in hash coding with
allowable errors,” Comm. ACM, 1970, 13, 422-426.

[7] Y. Cho and W. M-Smith, “Fast reconfiguring deep packet
filter for 1+ gigabit network,” FCCM, 2005, 215–224.

[8] R. Sidhu and V. Prasanna, “Fast Regular Expression
Matching Using FPGAs,” FCCM, 2001, 227-238.

[9] I. Sourdis, D. Pnevmatikatos, S. Wong, and S. Vassiliadis,
“A reconfigurable perfect-hashing scheme for packet
inspection,” FPL, 2005, 644-647.

Table 3. Resource Utilization and Comparison
System Device

(Xilinx)
Freq.
(MHz)

of Chars
of LCs

Mem*1

(kb)
LCs per

Char
Mem.per

Char
(bits/char)

Throughput
(Gbps)

PEM

PERG-Rx XC2VP100 180 8,645,488 42,809 3,024 0.00495 0.354 1.3*2 262.62
Cuckoo Hashing [4] XC4VLX25 285 68,266 2,982 1,116 0.043 16.7 2.28 53.02

HashMem [9] XC2V1000 338 18,636 2,570 630 0.140 34.6 2.70 19.60
ROM+Coproc [7] XC4VLX15 260 32,384 8,480 276 0.260 8.73 2.08 8.00

*1: Derived from BRAM usage only

Table 4. Simulation Results
Single File

(Ubuntu7_10_x86.iso)
Extracted
Files (274)

 # of Bytes Scanned 729,608,192 727,677,929
 # of False Positives 4 4
 False Positive Prob.
 for Each Byte Scanned 0.0000005% 0.0000005%

 # of Off-chip Mem. Req. 82,499,591 80,500,329
 Prob. of Off-chip Mem.
Req. for Each Byte
Scanned

11.31% 11.07%

 Off-chip Mem. Throughput 21.56 MB/s 21.10 MB/s
 # of Secondary Check Hits 5,931,478 4,005,953
 Prob. of Secondary Check
Hits for Each Byte Scanned 0.81 % 0.55 %

