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CAD tool designers are always searching for more benchmark circuits to stress their software.

In this article we present a heuristic method to generate benchmark circuits specially suited for

incremental place-and-route tools. The method removes part of a real circuit and replaces it with

an altered version of the same circuit to mimic an incremental design change. The alteration con-

sists of two steps: mutate followed by perturb. The perturb step exactly preserves as many circuit

characteristics as possible. While perturbing, reproduction of interconnect locality, a characteristic

that is difficult to measure reliably or reproduce exactly, is controlled using a new technique, ances-
tor depth control (ADC). Perturbing with ADC produces circuits with postrouting properties that

match the best techniques known to-date. The mutate step produces targetted mutations resulting

in controlled changes to specific circuit properties (while keeping other properties constant). We

demonstrate one targetted mutation heuristic, scale, to significantly change circuit size with little

change to other circuit characteristics. The method is simple enough for inclusion in a CAD tool

directly, and fast enough for use in on-the-fly benchmark generation.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—

Testing tools; B.6.0 [Logic Design]: General

General Terms: Algorithms, Design, Experimentation, Measurement, Reliability, Verification

Additional Key Words and Phrases: Automated development tools, design automation, graph

algorithms, hardware-supporting software, place and route, testing

ACM Reference Format:
Grant, D. and Lemieux, G. 2008. Perturb+Mutate: Semisynthetic circuit generation for incremen-

tal placement and routing. ACM Trans. Reconfig. Technol. Syst. 1, 3, Article 16 (September 2008),

24 pages, DOI = 10.1145/1391732.1391736 http://doi.acm.org/10.1145/1391732.1391736

This research has been made possible through the use of WestGrid computing resources, which

are funded in part by the Canada Foundation for Innovation, Alberta Innovation and Science, BC

Advanced Education, and the participating research institutions. WestGrid equipment is provided

by IBM, Hewlett Packard and SGI. This work was also funded by Altera and NSERC.

Authors’ address: D. Grant (corresponding author), G. Lemieux, Department of Electrical and Com-

puter Engineering, The University of British Columbia, 2332 Main Mall, Vancouver, BC, Canada,

V6T 1Z4; email: davidg@ece.ubc.ca.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1936-7406/2008/09-ART16 $5.00 DOI 10.1145/1391732.1391736 http://doi.acm.org/

10.1145/1391732.1391736

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 16, Pub. date: September 2008.



16:2 • D. Grant and G. Lemieux

1. INTRODUCTION

In-system reprogrammability with FPGAs gives system designers a key ad-
vantage over using ASICs. It enables the construction of a simple, bare-bones
prototype which can be modified and extended until the final design is done.
These incremental design changes can arise for a number of reasons, includ-
ing additional functionality or late requirements changes (ECOs), bug fixes,
workarounds for errors in the circuit board or other chips, and debugging by
adding circuitry for observability, controllability, and logic analysis.

Although there are many types of incremental design changes, a few use-
cases do not really need incremental CAD tools. For example, large-scale ECOs
or generation of the final production bitstream almost always entails a full re-
compile. In contrast, debugging in-circuit or adding small features to a sys-
tem under test greatly benefits from incremental CAD tools. In these very
common use-cases, the tools produce a temporary bitstream to implement the
change.

As a result, incremental place-and-route performance is particularly impor-
tant for FPGAs. The incremental tools must recompile successfully and quickly,
and meet all timing constraints. It is also expected that the incremental tools
are stable. This means that a reasonable change to the input circuit (i.e., one
which does not significantly alter the properties of the netlist) should recompile
quickly and with a similar result to the original.

Since the bitstream is only for temporary use, incremental FPGA tools are not
usually concerned with meeting power constraints or further improving timing.
This is in contrast to ASIC tools, where incremental tools are more commonly
used for incremental improvement of metrics such as wirelength, timing, or
power [Cong and Sarrafzadeh 2000; Coudert et al. 2000]. While FPGA tools do
need a similar incremental improvement mode, we are not concerned with that
mode of usage in this work. Instead, we are concerned with the place-and-route
tool performance in response to incremental design changes.

To assist with the development and evaluation of incremental place-and-
route algorithms targeting design changes, a set of benchmark circuits is re-
quired. Such incremental circuits must be specified in two forms: an origi-
nal form and a modified form. We are unaware of any benchmark circuits
available for this purpose.1 Existing circuit generation schemes produce en-
tire synthetic circuits, but they do not produce incremental circuits. In fact,
we were unable to easily modify them to do so: Our first attempt resulted in
a scheme that is computationally expensive and unable to control logic depth
[Grant et al. 2006].

To generate incremental circuits, we start with a real circuit. From this,
the modified circuit is created by replacing a subcircuit of the original
with a synthetically generated subcircuit. Since the modified version con-
sists of both real and synthetic parts, we say these incremental circuits are
semisynthetic.

1The difficulty of obtaining benchmark circuits for testing CAD tools is already widely acknowl-

edged. Obtaining full design changes for a benchmark, which may expose the history of bugs or some

potentially embarrassing or litigious artifact in the development process, is even more difficult.
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In this article, we describe the Perturb+Mutate approach to generating syn-
thetic or semisynthetic circuits, also called clones. The overall technique is sim-
ple, quick, and produces synthetic results which closely reproduce most netlist
topological properties, as well as postrouting properties.

Perturb [Grant and Lemieux 2006] produces a variation of an original cir-
cuit with the objective of exactly preserving as many properties of the original
netlist as possible. Perturbing is based on edge-swapping, a technique that
has been used in several prior efforts [Ghosh et al. 1998; Coudert et al. 2000,
Kundarewich and Rose 2004]. However, an important feature unique to our
Perturb tool is ancestor depth control (ADC), a method used to preserve circuit
locality during swapping. Ancestor depth control results in a clone circuit that
reproduces the postrouting properties (channel width, wirelength, and critical-
path delay) of the original circuit as well as CGen [Kundarewich and Rose 2004],
the best generator known to-date.

Mutate is intended to controllably change one characteristic, such as the size
of a circuit, while keeping all other properties intact. In molecular biology and
genetics, this level of control is called a targetted mutation. It can be difficult
to produce targetted mutants because one change to the primary characteristic
often produces unintended side effects in other characteristics. However, tar-
getted mutants are valuable for experimentation with CAD tools because they
provide greater control by limiting the number of changed variables.

The key difference between our previous work and Perturb+Mutate is that
the latter distinguishes between transformations that preserve characteristics
(Perturb) of the circuit from those that controllably modify them (Mutate). Mu-
tate can be used, for example, to test the ability of the incremental placer to
create room for added debugging logic. In this article, we propose one mutation
heuristic that first upscales a circuit via replication and then downscales by
random subsampling. By following this with a Perturb step, the mutant can be
further obscured from its original source.

Simplicity and speed allow Perturb+Mutate to be easily embedded directly
into an incremental CAD tool so it can test itself thoroughly and quickly. For
example, once the tool and original benchmark are loaded, a Perturb and in-
cremental CAD pass can be tested without saving or reloading the netlist or
restarting the tool. A predefined series of clones, each followed by an incremen-
tal update, can also be applied in rapid succession to thoroughly test the flow.
This can also save a significant amount of time in overhead, for example, for
rebuilding the routing graph of the architecture or the unchanged portion of
the netlist.

The remainder of this work is organized as follows. Section 2 gives the back-
ground and previous work to the circuit generation approach. Section 3 provides
terminology and an overview of Perturb+Mutate. Section 4 presents Perturb
and ancestor depth control. Section 5 presents Mutate. Section 6 presents sev-
eral additional techniques which were unsuccessful at controlling the postrout-
ing results for Perturb. Directions for future work specific to Perturb+Mutate
are presented in Section 7, and conclusions are given in Section 8.

The incremental circuits and generation tools described in this article are
available online at http://www.ece.ubc.ca/∼lemieux/downloads.
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2. BACKGROUND AND PREVIOUS WORK

This section introduces previous work on incremental CAD for FPGAs and
benchmark circuit generation.

2.1 Incremental CAD for FPGAs

There is very little published work on incremental place-and-route algorithms
for FPGAs. One placement algorithm, known as ICP, is an incremental improve-
ment flow [Singh and Brown 2002a, 2002b]. It is designed to apply small netlist
changes to improve timing. We are not aware of any published algorithms that
target design changes for FPGAs. However, both Altera and Xilinx support in-
cremental placement and routing modes for design changes, suggesting that
design-change flows are very important in practice.

2.2 Benchmark Circuit Generation

This article is concerned with generating benchmarks for incremental
placement-and-routing tools used in design-change flows. Since there is no
known prior work, a de facto benchmark suite does not yet exist for this purpose.
We started this circuit generation effort to test our own incremental placement
tool aimed at design changes [Leong 2006].

Netlist changes produced by incremental improvement flows are inappropri-
ate as benchmarks for design-change flows. Improvement-based flows use au-
tomated methods such as retiming algorithms [Singh et al. 2005] to iteratively
propose and apply numerous small netlist changes. The sequence of netlist
changes, such as placement-moves or duplications, depends heavily upon the
success of previous netlist changes and the current physical mapping infor-
mation. These are often oriented towards correcting physical layout, such as
straightening critical nets.

In contrast, design-change flows are intended for netlist changes made by
the user, not those proposed by the CAD tool. As a result, the types of changes
introduced by the user involve modifications of a larger scale that that do not
rely upon details of the previous mapping solution. For example, design changes
may involve significant rewiring to fix bugs, or the addition or removal of gates
to change features. This assumption only affects the way in which we gen-
erate incremental circuits; it does not prevent the CAD tools from using the
original mapping solution to reduce the runtime to produce the new mapping
solution.

There are several studies published on generating whole synthetic circuits
that possess the properties of real circuits. The rmc tool stochastically generates
circuits in a top-down fashion with just a few parameters: the number of LUTs,
total input pins used on all LUTs, primary inputs, primary outputs, and the
Rent parameter [Darnauer and Dai 1996]. The gnl tool adds two parameters to
this list, net degree distribution and terminals-per-block distribution, and gen-
erates synthetic circuits in a bottom-up clustering approach [Stroobandt et al.
2000]. In both of these methods, the Rent parameter captures locality informa-
tion. However, they are not ideal: specifically, rmc may create combinational
cycles, and gnl is unable to control delay characteristics.
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The tools CIRC and GEN were created to first measure key circuit proper-
ties and then generate clones based on these properties [Hutton et al. 1998].
These tools define several circuit characteristics such as the circuit shape and
the edge-length distribution. Definitions for these properties are given in Sec-
tion 3.1.

However, Verplaetse et al. [2000] show that GEN does not preserve locality
very well. In Hutton et al. [2002], the tools are extended to include sequential
circuits. Refinements to improve the reproduction of locality were introduced
in the CCirc and CGen tools [Kundarewich and Rose 2004]. CCirc first parti-
tions a circuit and characterizes the partitions separately, then CGen generates
clusters accordingly and joins them together. Another change in CGen is the
use of iterative edge swaps to better match properties of the generated circuit
to the specified characteristics. These changes make CGen dramatically better
at preserving wirelength, routed channel width, and also delay. CGen is the
best synthetic generator known to-date, but it is unable to scale circuit size and
cannot generate incremental circuits.

Methods to promote greater realism were introduced in Pistorius et al. [1999]
and Tom and Lemieux [2005]. These methods stitch together real circuits as if
they are IP blocks or subcircuits within a larger design.

Another circuit generation approach involves perturbing a real circuit
through a sequence of edge swaps to create a synthetic clone [Kapur et al. 1997;
Ghosh et al. 1998].2 The perturbations preserve certain wiring characteristics of
a circuit, collectively called the wiring signature. To preserve the wiring signa-
ture, perturbations must abide by a set of 13 rules given in Ghosh et al. [1998].
This set of rules is larger than necessary and does not preserve important prop-
erties such as depth profile, fanout distribution, and edge-length distribution.
This can negatively impact delay characteristics, which was untested in Ghosh
et al. [1998]. More importantly, the perturbations also destroy interconnect lo-
cality [Verplaetse et al. 2000].

All past generation methods have focussed on generating an entire synthetic
circuit. To solve the problem of creating incremental benchmark circuits for
place and route, we have developed our Perturb method [Grant and Lemieux
2006] using a simplification of the method from Ghosh et al. We have also added
ancestor depth control, a new mechanism to preserve locality. Our Perturb tech-
nique preserves more circuit characteristics than any previous circuit genera-
tion scheme.

Previous schemes such as GEN strive to reproduce topological netlist fea-
tures as accurately as possible in the synthetic clone, but due to random-
ness and imprecise heuristics these techniques generate an approximate clone
rather than a true clone. While unpredictable deviation from precise specifi-
cations can be argued to be a feature, it should be noted that the extent of
these deviations are uncontrolled, even when the algorithm attempts to reduce
them.

2In their work, Ghosh et al. call a perturbed circuit a “mutant”. Throughout this article, we use the

terms “perturb” or “mutate” to describe minor or major circuit changes, respectively, resulting in a

synthetic circuit.
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In contrast, the ability to preserve these properties precisely with Perturb
helps to control the reproduction of circuit characteristics. However, it is also
possible to modify the rules to allow it to alter some circuit characteristics in
a controllable fashion; Mutate is an example of this. The ability to precisely
control more circuit parameters than any other previous scheme makes this
approach a better resource for observing the effect of each parameter on syn-
thetic circuit quality.

2.3 Incremental Circuit Generation Objectives

The main goal of traditional full-circuit generators is to closely mimic the prop-
erties of real circuits so that the CAD tools are given a realistic workload. If it
is unrealistic, the tools will be unable to exploit properties known to exist in
real circuits. For example, a random graph is a poor synthetic circuit because
there is no connection locality, making it difficult for placement tools to reduce
congestion.

Similarly, an incremental circuit generator might be expected to produce
incremental changes that mimic those made to a real circuit. Real changes may
result in large, medium, or small alterations to the netlist. Large alterations are
not good for testing incremental tools, since there is little similarity in the netlist
to exploit. For example, consider a large alteration that significantly degrades
routability or delay. This should not be used to benchmark an incremental tool
because there is no reasonable way the tools can avoid the degradation. The
tools are placed at an immediate disadvantage and will likely run slowly, fail to
route, or fail to meet timing. Also, although medium alterations are interesting,
it is difficult to define expectations. Is the problem easier or harder? Is the
designer expecting good performance? Should a full recompile be done?

For small alterations, however, it is clear that the tools must always perform
well. They must be stable, complete successfully and quickly, and meet timing.
To ensure there is reasonable chance for success in these objectives, the incre-
mental circuit should be similar in structure to the original. However, it should
also be different enough to present a different problem to the tool (not just the
same circuit). Hence, the objective of our incremental circuit generator is to
closely mimic as many properties of the original circuit as possible while still
exemplifying a change.

The modified form should have similar routability and delay to the original. If
the incremental tools can preserve routability and delay across several different
incremental changes, each with “similar difficulty” to the original, this gives
confidence that the tool is stable. Then, for stable input changes provided by
the designer (like a minor bugfix), the tool can be expected to produce a stable
result.

We do not consider generating “more difficult” incremental circuits in this
article because we believe the problem of generating “similar difficulty” incre-
mental circuits to be more challenging and more useful. Likewise, we do not
consider “easier” incremental circuits that are expected to significantly improve
delay or routability. In those cases, a full place-and-route should be done to cap-
ture the full improvement; relying upon incremental tools to properly reflect
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Fig. 1. Diagram for semisynthetic circuit generation: (a) the original circuit N , with a selected

subcircuit S; (b) S is removed to produce N\S; (c) R is generated using Perturb+Mutate and stitched

into S\R to produce N\S ∪ R. Wires that remain in their original location are shown in gray.

this improvement is unwise, since it may be lost the next time a full place-and-
route is performed. While future incremental circuit generators may wish to
expand upon this method, we believe it to be a prudent starting point.

3. PERTURB AND MUTATE OVERVIEW

This section describes the general approach taken to solving the problem of
producing an incremental benchmark circuit (Section 3.1). We then present
our implementation of this general approach in Section 3.2, which focuses on
two tools created for this purpose: Perturb and Mutate.

3.1 Terminology and Circuit Change Model

Our general approach for creating an incremental benchmark circuit starts
with an original circuit which is represented by a directed acyclic graph (or
DAG) N , as shown in Figure 1(a). To produce this graph, a sequential circuit is
transformed into an equivalent network of combinational logic by cutting the
graph so that all flip-flop outputs appear as virtual inputs to the circuit, and all
flip-flop inputs appear as virtual outputs. The nodes of the graph are logic blocks
(LUTs) of the combinational logic, while each directed edge represents a single
fanout connection from source to sink. Multiple fanouts of a single net in the
circuit are represented with multiple edges in the graph. A significant concern
in this article is avoiding the creation of a cycle in the DAG when modifying
the edges. Such a cycle would imply a combinational loop in the circuit, which
is not allowed.

As originally defined in Hutton et al. [1998], the terms “circuit size”, “number
of I/Os”, “delay level”, “shape”, “edge-length distribution”, and “fanout distri-
bution” are used to describe properties of the circuit. The size is the number of
nodes. Latches, inputs, and constant drivers are assigned a delay level of 1. A
forward breadth-first traversal labels remaining nodes with a delay level equal
to 1 plus the maximum level of its predecessors. The shape is the histogram
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of nodes per delay level. An edge length is the difference in delay levels of its
source and sink nodes. The edge-length distribution is a histogram of edges per
length. Fanout distribution is a histogram of nodes per fanout, where fanout is
the total number of outgoing edges from a node.

For an incremental benchmark, a significant portion of the generated circuit
should be identical to the original form. To do this, we consider a region of
change in the DAG, which is a vertex-induced subgraph S of N . Since N is the
input circuit, S is a subcircuit of N , as shown in Figure 1(a).

The subcircuit S is removed to produce N\S (Figure 1(b)) and then replaced
with a replacement R (Figure 1(c)). The replacement R should be created using
information in N\S to avoid creating combinational loops in the overall circuit.

We assume that R must interact with N\S through the same input and
output signals that were used by S. This means that all changes are entirely
localized to the selected subcircuit. This does not really affect the generality
of our approach, since we can choose S to be as large as we wish to contain
all changes. Also, the addition of new primary inputs or primary outputs to R
at chip level does not present any difficulty for this model because these new
signals do not interact with the rest of the circuit (N\S). Although these new
inputs or outputs would not be difficult to add, we do not capture the effect of
these new signals with our methodology.

This model is convenient since it captures most types of design changes. For
example, to model critical path changes, S could be selected to include the chain
of logic along the critical path (or a portion thereof) and then altered accordingly.
Note that the graph model only directly captures logic depth, so the critical
path must be identified by traditional timing analysis. Alternatively, S could
be an independent IP block with an added feature to produce R. In this second
case, the predefined I/O interface to the IP block remains the same. To model
situations where the IP-block interface must change, S could be considered to
include the IP block plus all associated logic that is needed to keep the change
contained.

Our early effort at producing incremental circuits tried to adapt standard
full-circuit generation methods to create replacement R. This approach worked,
but the process of stitching R back into N\S without forming combinational
loops is nontrivial [Grant et al. 2006]. The loops arise because R is generated
blindly, without knowledge of combinational paths in N\S that may connect
outputs of R back to inputs of R. There is no easy way to constrain genera-
tors like gnl or CGen from creating input-output paths that would form a loop.
Instead, we attempted to take the blindly generated R and stitch it back into
N\S more intelligently to avoid loops. This requires solving a graph monomor-
phism problem, which is computationally challenging. Instead, we devised the
Perturb method to directly avoid creating loops and simplify stitching by con-
trolling how R is generated.

3.2 Perturb and Mutate Flow

This section outlines the tool flow for two tools, Perturb and Mutate, used in
our implementation of the general approach presented the previous section. Our
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flow starts by computing the depth level of each node, as shown in Figure 1(a).
This level information will be used later by Perturb to preserve the depth profile
and avoid creating combinational loops in the final circuit.

Next, the subcircuit S is selected and removed from N (Figure 1(b)). There
are many possible ways of selecting S, including random selection, placement-
based selection, design hierarchy, top-down partitioning, or bottom-up clus-
tering. For simplicity, our flow uses the bottom-up clustering tool T-VPack
[Marquardt et al. 2000] to form large clusters containing hundreds of lookup
tables, and we randomly select one of these clusters as S. Clustering ensures
that highly connected logic is grouped together, and by selecting a single cluster
for S we are more likely to select a module or a component that a user may be
debugging or updating.

Last, S is passed through Mutate to produce a temporary circuit T , then
altered with Perturb to produce R, and finally R is inserted back into the
original circuit, as shown in Figure 1(c). Careful restrictions in the Perturb tool
simplify stitching R and guarantee the final circuit is free of combinational
loops.

The Perturb tool creates R by using S or T directly. Instead of capturing var-
ious properties of S and using these to generate R (as done with approaches
like CCirc+CGen), T is iteratively perturbed until a new circuit is produced.
Each perturbation involves swapping some of the edges in T with other edges
in T . These swaps are done under some simple restrictions, presented in Sec-
tion 4.1, to preserve many of the circuit characteristics of T in R. Further, the
input and output nets in T and R are identical, which trivializes the process of
stitching R into N\S.

The Mutate tool produces targetted mutations in S before it is perturbed into
R. As an example, we implement a scaling mutation that changes the number
of nodes in the circuit while keeping other circuit characteristics relatively
unchanged. We use a two-step approach to achieve arbitrary circuit scaling
using two simple scaling techniques. The circuit is first enlarged by creating
multiple parallel copies of S and tying the inputs and outputs together with
multiplexers. The circuit is then reduced by randomly selecting and deleting
nodes under certain restrictions to maintain the validity of the circuit. A similar
process can be developed to controllably modify other circuit characteristics,
such as logic depth (placing more logic in series), shape (pushing nodes in some
logic levels forward or backward), and so forth.

4. PERTURBING A CIRCUIT

This section describes the procedure we call “perturbing” a circuit to rapidly cre-
ate a clone of this circuit. This procedure is implemented in the Perturb tool. In
contrast, Section 5 presents the Mutate tool and performs testing with the com-
bined Perturb+Mutate tool. Only the Perturb tool is considered in this section.
Perturb can be used to modify a complete circuit or to modify just a part of it.

To visualize the types of properties of the circuit that are preserved by Per-
turb, consider Figure 2. The original circuit is shown levelized in Figure 2(a).
There is a one-to-one mapping of nodes in the original and modified circuits:
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(a) original circuit (b) characteristics of each node left intact (c) circuit characteristic shapes left intact

Fig. 2. Circuit properties left intact by Perturb.

Each pair of nodes will be identical in the properties shown in Figure 2(b),
namely in the delay level, fanin, fanout, and distribution of edge lengths among
the fanins and fanouts. The original and modified circuits will also have iden-
tical shape characteristics to those shown in Figure 2(c), including node, input,
output, fanin, fanout, and edge-length shapes. The directed edges in Figure 2(c)
are drawn in proportion to their required edge length. The goal of Perturb is
to generate modified circuits and perfectly preserve all of these properties by
matching the input edges of the nodes with the output edges of other compatible
nodes.

Of course, if so much of the original circuit is kept intact, one must also ask
whether the perturbing procedure alters enough of the circuit to create a clone.
Is the clone a fraternal twin or identical twin? We will address this question
later when examining the place-and-route results of the clones.

4.1 Perturbation Procedure

The tool flow starts with the complete circuit, represented by N , and the induced
subset S, S ⊆ N , which has been identified in N but not yet removed. N is
first “levelized” to determine the delay level of each node.

Once the level of each node is known, a list containing all the edges for the
nodes between any two given levels in S can be created. An edge represents a
connection from one source to one sink. An edge swap is the exchange of sinks
between the two source nodes. The perturbation method randomly selects two
edges from this list and swaps them, subject to the following conditions.

(1) The two edges must come from different source nodes.

(2) The source and sink levels of both edges to be swapped must match. Swap-
ping edges with mismatched source or sink levels may be valid, but would
necessitate a recomputation of the levels of all nodes in the fanout cone of
the edges swapped. The lists of edges between each pair of levels in the
circuit would also need to be updated or rebuilt. For large circuits, this can
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significantly increase the time to perturb the circuit. Ensuring that the
source and sink levels match also preserves the edge-length distribution
and depth profile of the circuit.

(3) The edge swap must not create a multigraph. In other words, the swap is
rejected if it would result in multiple edges between the same source and
sink.

(4) The source node cannot be level 1. A level-1 source is either an input to
the original circuit or the direct output of a latch. In either case, we allow
inputs and latch outputs to proceed through one level of logic, to reduce the
probability of directing the signal to a completely different branch of logic
in the circuit.

Only edges are considered for swapping. The nodes (LUTs and latches) in
the circuit are left untouched because they do not need to be moved around. An
incremental user change to a circuit may modify the contents of a LUT, but this
is irrelevant to incremental placement and routing.

Perturb takes a single parameter, the perturbation factor, which is the per-
centage of edges to modify in S. All the results in this article use a perturbation
factor of 25%. Tests using perturbation factors of 12% and 50% gave postrouting
results that were not significantly different; however, at 50% Perturb required
disproportionately more time to generate R, since edges were returned to the
original position of a swapped edge with increasing frequency. Edges swapped
into the original position of another edge, or to their own original positions, are
not counted as swapped.

When Perturb is finished, the output R is stitched into the hole left by the
removal of S from N . The stitching process simply matches the names of the
nets in R with those which were cut when S was removed from N . The nodes
and edges in R are copied into N\S and the fanins/fanouts for matching in-
put/output edges in R are reconnected, creating a complete circuit.

By only swapping edges with matching source and sink levels, the level of
each node in the circuit remains the same. This means the original levelization
is preserved, and therefore no combinational loops have been introduced into
the circuit and all shape characteristics are left intact.

Place-and-route tests using this method show promising results when S is
small relative to N . When a larger S is used, however, the results become
unacceptable compared to existing circuit generators. The problem is that the
locality of the edges is not considered during swapping, causing R to become
irregular and difficult to route (like a random circuit). In the next section we
place an additional restriction on Perturb, with the goal of preserving locality
and postrouting characteristics.

4.2 Ancestor Depth Control

The major problem with Perturb, as described before, is that locality is not con-
sidered during edge swapping. For example, two unrelated buses could easily
end up “cross-connected.” This destroys the “nice” regular features of the circuit
and makes it harder to route.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 16, Pub. date: September 2008.



16:12 • D. Grant and G. Lemieux

level=2 3 4 5 6

1

2

3

4

5

6

7

8

9

10

12

11

13

14

16

15

Fig. 3. Ancestor selection region (shaded) for the net connecting nodes 10 and 14 with d = 2.

To control the locality of perturbations done to the circuit, we restrict Perturb
to only swap edges within related chains of logic. To do this, an additional
restriction on the edge-swapping criteria is added, as follows.

(5) Both edges to be swapped must share a common ancestor through combi-
national logic within a certain ancestor depth. This is called ancestor depth
control (ADC).

The ADC is specified by a single parameter, d . When an edge in the circuit is
selected, the edge has a selected source and a selected sink. A list of candidate
edges for the swap is computed dynamically by first finding all the ancestors
within d levels of the selected source, then walking forward through all fanouts
from each ancestor back to the original depth. For each LUT visited, if the LUT
level matches the level of the selected source, and this LUT contains a sink
that matches the level of the selected sink, then the associated edge may be
swapped with the selected edge.

Figure 3 shows part of an example network which can be perturbed. If the
net between nodes 10 and 14 is selected by Perturb, the selected source is node
10 at level 4, and the selected sink is node 14 at level 5. For an ADC value
d = 2, the list of candidate swap edges would be built by walking backwards
from node 10, visiting nodes 6, 5, 3, and 2. Nodes 2 and 3 are two levels away
from the starting node, so the backtrace stops and begins to follow all forward
paths until each path reaches the original depth of 4. The procedure would find
nodes 8 and 9 in addition to the nodes identified by the backtrace. The final
step is to evaluate all outputs of all identified nodes and add those edges to the
candidate list which meet the criteria identified in Section 4.1. In this example,
the candidate netlist would include the edges between the following pairs of
nodes: (8, 12), (8, 13), (9, 13). Of these edges, one would be randomly selected,
say (8, 13), and the sinks would be swapped. The final circuit would thus contain
edges between nodes (8, 14) and (10, 13). The original perturbation procedure
would have also included the edge between nodes (7, 11) in the candidate list,
but the ADC method excludes it.

It is worth noting that ADC does not perpetually restrict edge swaps between
unrelated edges. Two edges which may not have had a close ancestor in the past
may eventually find they have a close ancestor after a number of edge swaps
have taken place. Although we have not formally measured the extent of this
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Table I. Place-and-Route Results for Unmodified MCNC Circuits

Nodes CW CP WL
Channel Width Critical Path Wire Length

Name (4-LUTs) (DFFs) Edges (tracks) (ns) (CLBs spanned)
alu4 1522 0 2533 33 12.0 9301
apex2 1878 0 4073 47 13.1 15794
apex4 1261 0 3626 49 12.1 11085
bigkey 1699 224 4945 46 6.0 9097
clma 8364 33 24958 67 24.4 83587
des 1591 0 3679 58 10.7 11050
diffeq 1494 377 5069 34 15.8 8979
dsip 1362 224 3383 42 5.9 6962
elliptic 3602 1122 12037 55 20.4 30388
ex1010 4598 0 15643 58 16.6 42961
ex5p 1064 0 3218 49 12.4 9525
frisc 3539 886 12730 54 26.8 30152
misex3 1397 0 3137 42 11.4 10164
pdc 4575 0 15654 67 25.8 49485
s298 1930 8 5806 28 21.2 9130
s38417 5974 1463 22294 41 15.6 38076
s38584.1 6192 1260 18641 43 12.8 40122
seq 1750 0 3807 45 14.9 14418
spla 3690 0 12658 58 15.5 33871
tseng 1046 385 3577 39 14.7 6689

Average: 47.8 15.4 23542

effect, it seems a good strategy to gradually relax the depth control when a
larger number of edge swaps is requested.

In the next section, we show that ADC produces a perturbed circuit with
postrouting results which are similar to those of the original circuit.

4.3 Perturb Results

In this section we present the results of two experiments. The first experi-
ment uses Perturb to generate complete circuits (synthetic clones) from an
original circuit. This is something that would be done to test the stability of
results from a full (nonincremental) place-and-route flow, for example, to elim-
inate noise in measured results. It shows that Perturb generates very effective
clones using simpler heuristics than CCirc+CGen. The second experiment uses
Perturb to generate incremental circuits with three different sizes for S. This
demonstrates how well the postrouting characteristics are preserved after just
a subcircuit change. As mentioned at the beginning of this section, Perturb pre-
serves most characteristics of the circuit by design, including the number of
nodes, number of edges, fanout distributions, and depth profile. Therefore, only
the changes in postrouting results need to be examined in these experiments.

Table I shows the placement and routing results for the 20 largest MCNC
benchmarks using vpr [Betz et al. 1999]. The “CW” column is the minimum
channel width required to route the circuit. The “CP” column is the critical
path, in nanoseconds, of routing the circuit using a channel width 20% larger
than the value reported in the CW column. The “WL” column is the total wire-
length of the final routed circuit. These numbers are the baseline values to be
used in conjunction with the percentage-change results for the two experiments
presented Tables II and III.

The first experiment compares the routing results of CCirc+CGen clones with
those of Perturb with ancestor depth control. For these tests, Perturb was set
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Table II. Percent Change in Place-and-Route Results with Fully Synthetic Circuits

CCirc+CGen Perturb, operating on entire circuit

Name CW % CP % WL % CW % CP % WL %
alu4 −0.9 ± 4.3 0.8 ± 6.9 −5.0 ± 2.4 5.3 ± 3.1 6.0 ± 9.7 0.2 ± 1.9
apex2 7.2 ± 2.3 5.1 ± 1.5 5.6 ± 1.6 9.3 ± 1.9 14.5 ± 13.1 7.3 ± 1.2
apex4 −12.4 ± 2.6 0.0 ± 6.7 −11.9 ± 2.7 −1.0 ± 1.5 5.5 ± 7.0 −0.3 ± 1.3
bigkey −5.4 ± 7.1 7.7 ± 4.7 25.3 ± 2.8 11.7 ± 2.6 8.0 ± 7.0 77.3 ± 2.4
clma 57.3 ± 3.4 14.7 ± 7.9 60.7 ± 2.8 47.2 ± 2.2 9.0 ± 2.5 40.6 ± 1.2
des 12.2 ± 6.7 3.8 ± 2.0 20.5 ± 1.7 −7.1 ± 4.7 1.0 ± 2.0 1.2 ± 1.6
diffeq 19.4 ± 4.0 3.9 ± 7.7 18.6 ± 4.7 9.2 ± 3.3 −4.0 ± 5.8 3.8 ± 3.1
dsip 2.9 ± 3.1 6.1 ± 4.8 21.9 ± 3.5 0.3 ± 4.3 4.7 ± 3.3 38.7 ± 2.3
elliptic 14.5 ± 2.4 −5.3 ± 6.1 26.0 ± 1.5 −0.7 ± 2.2 −0.2 ± 5.9 3.0 ± 3.6
ex1010 12.2 ± 2.4 −1.4 ± 1.7 12.4 ± 2.2 37.1 ± 2.9 2.2 ± 3.4 31.2 ± 1.0
ex5p −9.6 ± 2.9 5.8 ± 7.6 −8.7 ± 2.6 5.1 ± 1.5 5.9 ± 5.1 4.2 ± 0.9
frisc 27.6 ± 3.3 −1.9 ± 4.1 30.7 ± 3.1 38.0 ± 22.2 7.2 ± 3.3 31.5 ± 2.0
misex3 −1.0 ± 2.0 2.0 ± 3.9 0.5 ± 1.4 3.6 ± 1.8 6.6 ± 9.9 3.6 ± 1.3
pdc 11.2 ± 1.9 −31.1 ± 3.8 12.6 ± 0.8 17.9 ± 1.1 −19.6 ± 15.4 16.7 ± 0.6
s298 −3.6 ± 5.8 0.0 ± 4.5 −7.5 ± 3.2 10.7 ± 2.7 18.2 ± 24.2 8.4 ± 3.4
s38417 100.7 ± 3.6 12.1 ± 4.3 115.6 ± 3.0 56.4 ± 2.4 21.5 ± 4.4 46.1 ± 2.5
s38584.1 64.9 ± 3.5 4.4 ± 4.4 73.8 ± 2.1 0.6 ± 4.8 −3.8 ± 3.4 3.4 ± 1.8
seq 1.6 ± 1.8 −19.4 ± 7.9 0.5 ± 1.6 6.9 ± 2.5 −19.1 ± 1.7 4.5 ± 1.9
spla 12.9 ± 2.0 10.0 ± 18.9 17.5 ± 1.9 19.0 ± 2.3 16.7 ± 21.4 22.2 ± 1.9
tseng −10.8 ± 3.2 13.3 ± 4.2 2.7 ± 3.3 −0.3 ± 4.4 5.7 ± 4.2 3.9 ± 1.9
Worst Case: 100.7 ± 3.6 −31.1 ± 3.8 115.6 ± 3.0 56.4 ± 2.4 21.5 ± 4.4 77.3 ± 2.4

Absolute
Average:

19.4 ± 3.4 7.4 ± 5.7 23.9 ± 2.4 14.4 ± 3.7 9.0 ± 7.6 17.4 ± 1.9

Table III. Percent Change in Place-and-Route Results with Semisynthetic Circuits

Perturb, 5% cutout size Perturb, 20% cutout size

Name CW % CP % WL % CW % CP % WL %
alu4 4.2 ± 3.9 2.6 ± 7.4 −0.3 ± 1.4 4.5 ± 2.3 8.6 ± 9.9 0.8 ± 1.7
apex2 1.1 ± 2.5 4.2 ± 1.9 −0.3 ± 2.0 1.6 ± 2.2 4.4 ± 2.8 0.2 ± 1.7
apex4 0.0 ± 1.1 3.9 ± 4.4 −0.4 ± 1.3 1.5 ± 3.0 12.2 ± 22.5 1.1 ± 3.3
bigkey 10.1 ± 6.8 −1.9 ± 1.1 0.9 ± 2.0 12.5 ± 7.4 1.3 ± 3.1 0.1 ± 2.9
clma −4.7 ± 1.2 −2.0 ± 2.7 −1.4 ± 1.2 6.2 ± 2.2 0.5 ± 2.4 5.9 ± 1.1
des −11.4 ± 6.0 3.3 ± 2.6 −0.9 ± 1.7 −8.4 ± 5.9 1.3 ± 2.0 0.2 ± 2.6
diffeq −1.8 ± 2.7 −2.1 ± 4.1 −6.1 ± 1.4 4.4 ± 5.2 −3.8 ± 3.2 0.0 ± 1.6
dsip 1.2 ± 5.4 1.1 ± 2.6 0.3 ± 3.0 3.6 ± 7.0 −0.1 ± 1.2 0.5 ± 1.3
elliptic 2.0 ± 3.4 −3.4 ± 2.7 0.6 ± 0.6 2.7 ± 1.4 7.9 ± 30.3 1.4 ± 1.2
ex1010 2.6 ± 3.9 1.0 ± 4.4 1.0 ± 2.4 18.8 ± 6.5 3.8 ± 5.7 14.0 ± 4.5
ex5p 0.5 ± 2.1 5.3 ± 6.9 0.7 ± 1.3 4.3 ± 1.7 14.1 ± 22.7 3.6 ± 1.1
frisc 3.0 ± 2.8 −1.4 ± 2.7 2.6 ± 2.1 3.7 ± 1.7 1.4 ± 4.4 3.6 ± 1.2
misex3 −0.6 ± 2.8 11.9 ± 15.0 −0.1 ± 2.4 3.9 ± 1.8 4.3 ± 7.1 3.5 ± 2.5
pdc 0.4 ± 1.3 −27.7 ± 5.9 0.2 ± 0.7 5.0 ± 1.9 −28.4 ± 4.5 3.4 ± 0.6
s298 5.4 ± 3.8 10.2 ± 4.2 4.4 ± 2.7 9.8 ± 3.2 7.4 ± 7.0 6.4 ± 2.7
s38417 −0.3 ± 1.6 1.7 ± 2.5 1.3 ± 1.2 21.3 ± 3.6 11.2 ± 8.3 14.8 ± 1.8
s38584.1 1.2 ± 2.8 1.5 ± 2.2 3.0 ± 1.5 10.5 ± 5.1 1.7 ± 2.7 7.7 ± 2.2
seq 0.3 ± 2.8 −21.6 ± 1.8 0.1 ± 1.1 4.2 ± 3.0 −19.1 ± 6.5 3.7 ± 2.2
spla −0.6 ± 2.0 3.2 ± 4.3 1.8 ± 1.3 4.7 ± 1.2 39.2 ± 58.8 6.0 ± 0.7
tseng 0.6 ± 4.1 −0.2 ± 3.8 −1.2 ± 1.5 2.9 ± 5.0 4.0 ± 3.7 0.1 ± 3.4
Worst Case: −11.4 ± 6.0 −27.7 ± 5.9 −6.1 ± 1.4 21.3 ± 3.6 39.2 ± 58.8 14.8 ± 1.8

Absolute
Average:

2.6 ± 3.2 5.5 ± 4.2 1.4 ± 1.6 6.7 ± 3.6 8.7 ± 10.4 3.9 ± 2.0

to operate on the entire circuit (S = N using the terminology from Section 3.1).
The arithmetic average of results from ten different synthetic clones are given
in Table II. All data is of the form average percentage difference ± standard
deviation percentage, where both numbers are the percentage of the original
MCNC result given in Table I. For example, in Table II, the first row (alu4) and
the first column of data (CCirc+CGen, CW %) contains the data −0.9±4.3. This
means that the average channel width of the ten CCirc+CGen alu4 clones was
0.9% lower than the channel width of the original alu4 circuit. From Table I, the
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original channel width of alu4 was 33, so the average channel width observed
is 33− (33∗0.009) = 32.7. The standard deviation is reported as 4.3%, meaning
that the actual standard deviation is 33 ∗ 0.043 = 1.4 tracks. We present the
results as percentages to aid comparisons between the various circuits. At the
bottom of the table, we summarize the worst-case row and the absolute average
for all twenty rows in the table.

From the results, we see that Perturb produces clones which more
closely reproduce the channel width and wirelength characteristics than does
CCirc+CGen. Critical-path delay is also good: Although the average is slightly
higher, the worst case is smaller for Perturb. The standard deviations in results
for both schemes are similar, with values between 2% and 5% being common.
In all but four cases, those circuits which are difficult for Perturb (results differ
by ≥ 10%) are also difficult for CCirc+CGen. In contrast, there are thirteen
cases which are difficult for CCirc+CGen but not difficult for Perturb. These re-
sults suggest that Perturb generates synthetic clones with excellent postrouting
properties.

Although not shown, the results of using Perturb without ADC are much
worse than the CCirc+CGen results. This tells us that it is possible to preserve
many characteristics of the circuit, including wiring characteristics, but still
end up with a circuit that does not behave like the original. Hence, circuit
locality must be considered, but it is not properly captured by these metrics. It
should be noted that the perturbations in Ghosh et al. [1998] do not consider
locality at all.

The Perturb results in Table II use an ADC value of d = 3. The data in
Table II (and Table III) was also generated for d = 2 and d = 4. A depth of 2
appeared to be too restrictive for finding candidate edges to swap, whereas a
depth of 4 showed a significant step towards the results with no ADC for some
circuits. Hence, we used d = 3 for all experiments.

The second experiment examines postrouting properties of incremental cir-
cuits. A subcircuit S is first identified to contain 5% or 20% of the LUT nodes in
N . Although many schemes could be used to identify S, we use T-VPack with
an extremely large cluster size and randomly select one of the clusters. This
ensures that S is somewhat realistic: a fully connected group of LUTs and flip-
flops that are selected without any regard for placed location or CLB boundaries.
Then, S is perturbed and stitched back into the original circuit. The modified
circuit is clustered and fully placed and routed with vpr. This helps assure
us that new postrouting results are based upon the properties of the netlist
and not on those of the original placement. We generated eight incremental
semisynthetic clones, each time selecting a different random region for S.

The results in Table III show that Perturb is able to create new circuits
that have very similar postrouting properties to the original. As expected, a 5%
netlist change results in smaller changes to postrouting characteristics than a
20% change. Although not shown, the results for a 10% change are in between
these results. Also as expected, the change in results for incremental circuits
is smaller than that for fully synthetic circuits. This suggests the incremental
changes are not too dramatic, and the magnitude of change roughly scales with
the size of change.
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In the end, we must also revisit the question as to whether Perturb suffi-
ciently changes a circuit when producing a clone. This is a difficult question
to address, but we offer the following insight. First, Perturb produces different
clones with different random seed values; that is, the same clone is not being
produced in all cases. Second, to ensure differentiation, Perturb always verifies
that the required number of edges have changed from the original according
to the perturbation factor (set to 25% for this work3). If insufficient edges have
changed, it continues to run. Third, the technique generates clones that some-
times produce large changes to the average postrouting properties. This sug-
gests that considerable disturbances to the original circuit can be made. Fourth,
from the standard deviation results, the amount of variation within a family of
clones roughly agrees with the amount of variation from CCirc+CGen. Also, the
standard deviation is sometimes large and sometimes small, suggesting some
variety across circuits.

It is also interesting to examine the runtime of Perturb. There are 3 ∗ 8 ∗
20 = 480 circuits which were generated, placed, and routed for Table III. On
a Pentium 4 running at 3GHz with 1GB of RAM, the process of cutting out
S from N , perturbing S into R, and stitching R into N\S was completed in
approximately 8 minutes for all 480 circuits (approximately one circuit per
second). This includes all I/O and spawning several Linux processes per clone.

5. MUTATING A CIRCUIT

Perturb provides a reliable starting point for generating synthetic circuits
where key characteristics of S are exactly preserved; however, it may be de-
sirable to alter some of these features in controlled ways. For example, an in-
cremental user-design change to a circuit is likely to either increase or decrease
the size of the circuit. To demonstrate how this can be done, we have added the
Mutate preprocessing step to scale S before the Perturb step. By scaling before
the circuit is altered with Perturb, we can be less concerned about the realism
of the scaling mechanism.

There are two ways to scale a circuit: reduction and enlargement. Scaling
is of particular interest in benchmarks for incremental place-and-route tools
because the place-and-route tool must fill holes left by inserting a smaller R
into N\S or must make room for a larger R. It is likely that a user change to a
circuit will not be exactly the same size when the incremental place-and-route
tools are called.

The Mutate tool performs the required scaling on S and produces T by first
enlarging S beyond the required size and then reducing the circuit to achieve
the required scaling. If a reduction in size is requested, the enlargement step
is skipped, and if an enlargement of an exact integer factor is requested, the
reduction step is skipped. T is then passed to Perturb, which generates R. The
name “Mutate” arises due to the gross changes this tool makes to the input
circuit, S.

3This means that 25% of the edges will be moved without another edge being swapped in where

the original edge was located.
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5.1 Circuit Reduction

To perform reduction, a “shotgun” approach is used. The required number of
nodes to remove from the circuit is computed, and then nodes in S are randomly
selected and deleted under the following restrictions.

—If a selected node is the only source for another node, then both nodes must
be deleted. This could lead to a cascade of removals to return the circuit to a
valid state.

—If a selected node is the only sink of another node, then both nodes must be
deleted. Again, this could cascade.

—The selected node must not be a primary input or a primary output.

Nodes (or chains of nodes) are removed until the required number of nodes have
been successfully deleted. When complete, the circuit will be smaller without
skewing many of the original characteristics.

5.2 Circuit Enlargement

Increasing the size of a circuit is a harder problem, complicated further by the
need to preserve locality. Adding nodes using a shotgun approach, similar to
the procedure used in circuit reduction for removing nodes, does not work well
in highly connected circuits where there may be no nodes nearby with available
inputs. The maximum number of inputs on a node is fixed for a particular FPGA
architecture (in this research we have used 4 inputs), so we cannot arbitrar-
ily add nodes wherever required. Hence, the shotgun approach would lead to
“filling out” the circuit, where sparsely connected portions of the circuit would
become highly connected, and highly connected portions would remain largely
untouched. We felt this would not very well mimic a user change to a circuit.

Because S is nominally a relatively small part of N , we replicate S a number
of times to achieve an enlargement. This also preserves the characteristics of
S. These copies are placed in parallel and additional logic (LUTs) is added to
properly multiplex the inputs and outputs of each copy together, creating T .
This logic increases depth of the region by 2. It is possible to also place copies of
S in series instead of in parallel, but this would have more dire consequences
to maximum logic depth.

5.3 Mutate Results

To test the Mutate step, we tested the two components of the scaling operations
(enlargement and reduction) separately. The 20 largest MCNC benchmarks
were again used, and in each circuit a subcircuit containing 5%, 10%, and 20%
of the nodes was scaled to 50%, 75%, 200%, and 400% of its original size. After
scaling, the replacement circuit was sent to Perturb and stitched back in N\S.
Ten trials were performed at each size of S and each scaling factor. The average
normalized postrouting results are shown for the 5% case in Figures 4, 5, and 6.
In all three figures, the value 1.00 on the vertical axis represents the results
without Mutate, taken from Table III.

Figure 4 shows the minimum routable channel width for a scaled 5% cutout
size. It is difficult to predict the impact of scaling on channel width. On the one
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Fig. 4. Normalized channel width for a 5% cutout size.

Fig. 5. Normalized critical-path delay for a 5% cutout size.

hand, we might expect that a size reduction in one region of a circuit will reduce
the number of tracks required to route the circuit because the routing problem
is being made easier. On the other hand, a size reduction may have the oppo-
site effect by compacting the placement around an already congested region,
causing further congestion. Similarly, an increase in circuit size may increase
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Fig. 6. Normalized wirelength for a 5% cutout size.

or decrease the minimum number of tracks required to route the circuit. In
some large circuits (clma, pdc, and frisc), there is a positive correlation be-
tween channel width and size, but in others (s38584.1 and s38417) the trend
is not apparent. For smaller circuits, the trend is less clear or not existent at
all. Most importantly, however, Figure 4 shows that Mutate has increased the
minimum channel width by at most 12% (s38584.1 at 400%).

Figure 5 shows the critical path for a scaled 5% cutout size. For most circuits,
reducing the size of S results in a decrease in the critical path, which is expected.
Removing logic from a circuit will decrease the critical path, either because the
removed logic was part of the critical path or because the circuit is smaller after
the reduction. For circuits where the critical path has increased, it is possible
that Perturb has made the place-and-route problem more difficult, resulting in
more “bad” moves.

For 200% and 400% increases, shown in Figure 5, there is an expected in-
crease in the critical path. Since the amount of logic in the circuit has increased,
finding a placement for the additional logic will naturally increase the critical
path. Additionally, the enlargement process involves adding two additional logic
levels to the circuit, which might also increase the critical path.

Despite the increases, most of the data falls within 15% of the original circuit,
again showing that Perturb+Mutate is not significantly altering the postrouting
characteristics of the circuit in unexpected ways.

Figure 6 shows the routed wirelength for a scaled 5% cutout size. The only
feature that stands out on this graph is the noticeable increase in wirelength
for most 200% and 400% scales. A 5% cutout region scaled to 400% would result
in a 15% increase to the size of the circuit. Figure 6 shows that the wirelength
for a 400% mutation increases by 10% to 25%, which is close to the expected
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amount. The postrouting wirelength results of Mutate show that it is again
preserving the postrouting characteristics of the original circuit.

The results for mutations with 10% and 20% cutout sizes are not presented,
but they show similar trends to the 5% case. However, the trends observed are
more pronounced because a larger portion of the circuit is being mutated in
each case. They also reinforce the observation that Perturb+Mutate does not
change the postrouting characteristics of the circuit in unexpected ways.

6. PITFALLS

In this section, several unsuccessful methods of controlling locality, as evidenced
by poor postrouting results, are presented. We include these for completeness
and because they provided valuable insight into the behavior of Perturb. This
insight led to the development of the ancestor-depth-control technique. Addi-
tionally, we describe some limitations of the Perturb+Mutate technique. In some
of the situations presented next, we used information after placing the original
circuit to capture locality.

6.1 Wirelength Control

In an effort to control the channel width and total routed wirelength in the
circuit, we attempted to limit the wirelength during perturbation. The method
uses the total Manhattan distance of all edges in the circuit to approximate the
total wirelength in the circuit. During perturbation, if an edge swap lowers the
total wirelength, the swap is accepted. If the wirelength increases, the move is
probabilistically accepted, using an exponential function similar to that used
in simulated annealing.

The location of each node in the circuit is taken from a placement of the
original MCNC circuit. After the perturbation procedure is complete, the entire
circuit is replaced and rerouted. When considering incremental place-and-route
tools, it is reasonable to assume we have a previous placement of the circuit, so
we can use that placement to drive this technique.

The results from experiments using this method showed very little difference
over perturbation with no ancestor depth control. Hence, it was ineffective.

6.2 Bounding-Box Control

Instead of limiting the wirelength by using a Manhattan metric, the bound-
ing box can also be used. The bounding box of a net is the half perimeter of
the smallest box bounding all the fanouts of a net. Additionally, the bounding
box would prevent random edge swaps over large distances. Consider Figure 3
where (10, 14) is again the selected edge. Suppose the (7, 11) edge is separated
from the (10, 14) edge by a large distance; a bounding-box limitation would
prevent these edges from being swapped.

Here, we again follow a procedure similar to that used in simulated annealing
to always accept moves that lower the total cost, and probabilistically accept
ones that do not. This technique marginally improved the results by only 1% to
2% compared to using no control at all. Hence, it was also ineffective.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 3, Article 16, Pub. date: September 2008.



Perturb+Mutate: Semisynthetic Circuit Generation • 16:21

6.3 Net-Swapping

Instead of swapping individual sinks from edges, a method of potentially pre-
serving locality is to swap the entire net that an edge is in; in other words, this
technique swaps the sources of nets instead of the sinks. This method, combined
with the bounding box, aims to prevent nets from fanning out to all regions of
the FPGA when it is routed.

This method further improved the results over the bounding-box control by
an additional 1%. However, these results cannot be deemed significant, and are
still far from the original postrouting results of the MCNC circuits. Only the
ancestor depth control described in Section 4.2 was effective at capturing local-
ity and preserving the channel width, critical-path delay, and total wirelength
results of the original circuit.

6.4 Additional Limitations

The Perturb+Mutate approach does not properly handle two situations that
may appear in practice. First, coarse-grain blocks are not considered at all.
This makes it difficult to consider situations where coarse-grain blocks such as
multipliers are changed to LUTs, or vice versa. Second, the use of design hier-
archy may result in several replicated instances of one subcircuit; any change
to this subcircuit will result in several parallel but seemingly unrelated (un-
connected) changes throughout the netlist. In both of these situations, how-
ever, it is probably better to do a full recompile rather than an incremental
one.

When verifying that a circuit has had sufficient modifications, Perturb is un-
able to consider logic equivalence or other symmetry. With sufficiently large and
complex circuits, this should not present a problem. However, highly symmetric
parity trees may not exhibit sufficient differentiation between the original and
modified forms.

7. FUTURE WORK

Listed in the following are several directions for future research that can make
Perturb even more useful in generating benchmarks.

7.1 Dynamic Ancestor Depth

For all experiments in this article, a static ADC value of d = 3 was used be-
cause it gave desirable results, without being overly restrictive in the choice of
candidate edges to swap during perturbation. However, this value was chosen
by observing postrouting results for different circuits under test; it is not ideal
for all circuits. A dynamic method or heuristic to compute a good ancestor depth
is the next logical step. For example, when building the list of candidate edges
for swapping, an unbounded backwards search can be terminated when a “good”
number of candidates is found, instead of using a fixed depth. Somehow, this
method must still attempt to preserve locality.

Some further study is needed relating ADC to the Rent parameter.
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7.2 Increasing the Critical Path

An additional useful feature for testing incremental place-and-route that no
existing circuit generator possesses is the ability to controllably increase or
decrease the critical path length through the circuit. Such a change to the circuit
would force the incremental place-and-route tool to shuffle nodes along the
critical path with minimal adjustment to the rest of the circuit, approximating
an incremental improvement flow. A critical-path change is difficult to produce
and test with real circuits, so a synthetic approach would be helpful in this
area. In Section 5, circuit enlargement was done by duplicating S in parallel;
instead, duplicating S in series may be a way to directly increase the critical
path.

7.3 Breaking Correlations

Perturb identically preserves all node properties between both the original and
modified circuits. To create a greater variety in the types of generated circuits,
it may be useful to break the linkage between the fanin and fanout of each
node, allowing high-fanout nets to inherit a different fanin distribution. Other
correlations may similarly be broken.

7.4 Locality and Structure

Concerning locality and structure, Perturb does not understand structure that
arises from bus and datapath connections in an array multiplier, for example.
It isn’t clear how to add such a discernment ability to Perturb but this would
be useful to help preserve locality and routability of modified circuits.

8. CONCLUSIONS

In this article we have presented a simple new method for benchmark gen-
eration which is intended for testing incremental place-and-route tools. The
perturbation and scaling methods are simple and effective and do not create
combinational loops.

We have described a new technique that modifies a given circuit to generate
semisynthetic clones of an original circuit. Perturb exactly preserves a number
of key characteristic features of a circuit: the number of nodes, number of edges,
fanout distribution, and depth profile. We found that this information does not
sufficiently capture locality, so Perturb was extended to include ancestor depth
control, thereby taking the locality of edge swaps into consideration. We have
also presented Mutate, a tool that implements scaling the size of the circuit. In
the future, these tools can be expanded to permit more circuit characteristics,
such as the fanout distribution, to be controllably modified.

Two experiments were conducted with Perturb. The first validated the ap-
proach by comparing the postrouting results of Perturb operating on 100% of
the circuit to the results of a synthetic circuit generator, CCirc+CGen. Results
indicate that Perturb is effective at preserving postrouting characteristics of the
original circuits. Although not directly shown in the article, we also witnessed
the importance of ancestor depth control at controlling locality.
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The second experiment used Perturb to modify a small portion of the MCNC
benchmarks to create new incremental circuits. Like the full synthetic clones,
these incremental circuits also exhibited postrouting properties very similar
to the original. For the 5% cutout size, the channel width, critical path, and
total wirelength were all within 5.5% of the original circuit, on average, with a
standard deviation of no more than 4.2%.

A third set of experiments verified that Perturb+Mutate is able to add or
remove logic to a circuit without significantly altering the postrouting charac-
teristics in unexpected ways. In these experiments, Perturb+Mutate operated
on 5% to 20% of the MCNC benchmarks and scaled the operating region to 50%,
75%, 200%, and 400% of the original size to create new circuits.

We believe these experiments have shown the perturbation and scaling tech-
niques to be viable building blocks for generating incremental benchmark cir-
cuits. Finally, several directions for future work have been presented which
would add additional functionality to the tools, allowing generation of bench-
marks that test more sophisticated features of incremental place-and-route
tools.
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