
A Spatial Computing Architecture for Implementing

Computational Circuits

David Grant and Guy G. F. Lemieux

Department of Electrical and Computer Engineering

University of British Columbia

Vancouver, BC, V6T 1Z4

Email: davidg,lemieux@ece.ubc.ca

Abstract—To accelerate many computational software algo-
rithms, designers are implementing them as computational
circuits. These algorithms are diverse and include molecular
dynamics, weather simulation, video encoding, and financial
modelling. Circuit designers repeatedly synthesize and simulate
circuits for debugging and incremental design, but due to the
size of computational circuits these steps are slow and waste
designer productivity. In this paper we present an architecture
and tool flow for rapidly compiling and simulating/executing
computational circuits. We use a motion estimation circuit to
demonstrate the performance vs. capacity scalability of our
architecture, and show that the performance is comparable to
an FPGA-based design.

I. INTRODUCTION

To realize performance gains in many computationally in-

tensive software algorithms, designers are implementing them

in hardware as computational circuits. This is being done for

a wide range of algorithms, including molecular dynamics,

weather simulation, video encoding, financial modelling, ren-

dering, and nuclear particle simulation. These computational

circuits are word-oriented and are often very large, requiring

millions of gates.

Unfortunately, creating a custom computational circuit is

challenging and slow. A designer must repeatedly synthesize

and simulate the circuit while debugging and incrementally

adding to the design. As circuit size grows, it takes longer

to synthesize and simulate, thereby reducing the produc-

tivity of the circuit designer. This paper presents a cus-

tom architecture—and a simulator for that architecture—for

simulating/executing computational circuits. This paper also

presents a methodology to show how an automatic tool could

quickly map a computational circuit onto the architecture.

Field Programmable Gate Arrays (FPGAs) and similar re-

configurable devices solve the simulation half of the problem.

They use emulation to actually implement the circuit [1]. How-

ever, these devices have two major problems for computational

circuit designers. First, they require a circuit synthesized at

the gate level, which takes several hours for a large circuit.

Second, they suffer from a strict capacity limit on the number

of gates that can be implemented. If a circuit does not fit within

this limit, the designer must resort to software simulation

(slow), buy a bigger device (if one exists), or partition the

circuit into two or more FPGAs. These two problems, slow

synthesis time and a strict capacity limit, are major obstacles

for using FPGAs to create computational circuits.

To solve these two problems and retain the speed of an

FPGA, we propose a custom architecture and a tool flow for

computational circuits. The architecture is an array of pro-

cessors that uses time-multiplexing to achieve a soft capacity

limit where capacity can be traded for performance. The tools

use a technique called behavioural compilation [2], [3], [4]

and leverage the coarseness of the architecture to improve

synthesis speed.

The research goals for the architecture and tools are:

1) To compile a circuit 10x faster than FPGA CAD tools,

requiring minutes instead of hours for synthesis.

2) To have a capacity 10x that of an FPGA, and a perfor-

mance no less than 1

10
th an FPGA at full capacity.

3) To be able to automatically trade capacity for speed,

matching the speed of an FPGA at “low capacity”.

Section II presents our architecture, and Section III presents

the simulator for the architecture. Section IV give an outline

of our tool flow for the architecture. We present the results

of mapping a motion estimation circuit to the architecture in

Section V, and conclude and present future work in Section VI.

II. ARCHITECTURE

This section presents our architecture for simulat-

ing/executing computational circuits. The architecture is an

array of processors, where each processing element (PE)

only communicates with its four immediate neighbours. The

architecture overview is shown in Figure 1. Each PE consists

of a router and a core; both follow a pre-programmed static

schedule. The architecture does not require a global low-skew

clock, and avoids the long routing wires used in many coarse-

grained reconfigurable arrays (CGRAs). The design presented

here serves as a starting point for further research which will

investigate parameters such as the size of the memories.

In this design, all PEs receive the same clock frequency,

but neighbouring PEs can have a small, known clock skew

between them. From the point of view of a PE, the bounded

skew gives the appearance that the clock is synchronized

with its four neighbours. Since communication is restricted

to neighbouring PEs, a larger skew between distant PEs does

not matter. With this design, the architecture is readily scalable

to high clock frequencies on the order of 3 GHz or higher.



PE

PE

PE

PE

PEPE
clock

router

core

PE

Fig. 1. Architecture overview

When a circuit is mapped to this architecture, the user clock

is different from the system (3 GHz) clock. Each PE router and

each PE core contain a schedule with exactly n instructions

to be executed in an infinite loop to implement the overall

circuit. One pass of this schedule is equivalent to one user

clock cycle, so the user clock has a frequency of 1

n
3 GHz. Each

rising clock edge causes routers and processors to advance to

the next instruction in their schedule, which is similar to how

other CGRAs behave. These pre-determined schedules mean

the entire architecture is deterministic. It is the responsibility

of the tools to orchestrate the code for each processor and the

schedule for each router so that data is always in the correct

place at the correct time. Non-deterministic delays, such as

waiting for input data from an external device, must be handled

at the user-circuit level.

The PE router component is a 5x5 crossbar with a register

on each output. In a user circuit, all potential communication

paths (wires) are known at compile time and are statically

scheduled. Each communication must have a timeslot in each

router between its source and sink(s). Each router follows

an individual schedule to pass data between its five links;

five messages may be passed in a single cycle provided the

destinations are all different. The router can also delay a

message by holding the value in the output register. This

will be used to avoid data collisions. Given a circuit, the

tools determine when every signal needs to be generated, and

when it needs to arrive. This information is used to create the

configuration (schedule) for each router.

The processor core is shown in Figure 2. It is a simple

processor with several additions. The ALU and data mem-

ory D are used to implement user-level circuit behaviour.

Node memory R is used to temporarily store ALU results—

emulating a wire for data used in the same user clock cycle and

a flip-flip for data needed in the next user cycle. Node memory

X is used by the router to store values for the core without

being perfectly synchronized to its operation. There are also

four buffered, direct links to adjacent PEs (node memory N ,

S, E, and W ) which are used as a lower-latency alternative

to the router for short connections.

A
L

U

(R)
mem

N
S
E
W

N
S
E
W

N
S
E
W

N
S
E
W

mem
(X)

accum

PLA

mem (N, S,E,W)

to/from

router

mem
data

(D)

Fig. 2. PE core

Computational circuits will also contain single-bit signals,

such as control logic, that do not map well to word-oriented

processors. Our architecture provides a mechanism to deal

with such signals so they do not degrade the performance of a

circuit. The PE core in Figure 2 includes a PLA for generating

and communicating these bit signals. This logic is not time-

multiplexed. The PLA communicates with neighbouring PEs

over dedicated wires, and is connected to the PE core datapath

for decision-making logic. The tools must identify bit-level

signals in the source circuit and generate the configurable logic

for it. If a circuit stresses the capacity of these resources, the

tools can fall back to processor instructions to ensure there is

no strict capacity limitation in the architecture.

Initially all buses are 32 bits wide, the node memory X and

R are each 16x32-bit, the data memory is 8 kB (2048x32-bit),

the remaining node memories are 4x32-bit, and we assume

the ALU contains a single-cycle multiplier. These are all

parameters that will be changed and tested as future work.

III. ARCHITECTURE SIMULATOR

This section presents the design of a simulation platform for

our architecture. The simulation platform was designed to be

flexible to facilitate the exploration of the various architectural

parameters. The simulator currently implements all features

of the architecture except the bit-level resources (the PLA

in Figure 2). This is not critical because the PLA merely

accelerates bit-level operations that can also be executed

(inefficiently) in the ALU.

To speed up the simulator, the code for each PE is compiled

directly to the host processor using a native compiler. This

gives the fastest possible simulation (a good thing when

simulating 1,000 cores on a desktop computer), but requires

the tool flow to insert cycle() calls in the PE code to denote

instruction boundaries. This means that the simulator does not

run the same binary as the proposed architecture, but it is still

cycle-accurate. The simulator switches to a different PE when

it encounters a cycle() call.

The simulator executes each system (3 GHz) clock cycle in

three phases:



1) Copy all registers (in the router and the PE core) to

temporary locations for reading. This simulates a rising

clock edge where all registers are latched and stable for

the duration of the clock cycle. The next steps write to

the original registers and read from these stable values.

PEs can be simulated in any order within each cycle.

2) Execute one system cycle in every PE core. The sim-

ulator passes program control to the PE, and allows it

to run until cycle() is called. The simulator uses the

POSIX swapcontext() call to implement low-level,

lightweight context switching among PEs using a de-

terministic scheduler. This is done because full context-

switching between thousands of threads is wasteful and

because the OS scheduler is non-deterministic.

3) Execute one system cycle in each PE router. The router

context memory is advanced to the next configuration,

and values on each communication link are copied to

the output registers according to the new configuration.

The simulator simulates input and output by attaching

communication channels to files instead of other PEs (usually

to PEs along the edge of the device). The above three steps

are executed until the data from all input files is depleted.

IV. TOOLS

This section outlines our method to automatically map

computational circuits to our architecture. Currently the tools

are incomplete, so designs must be hand-mapped to our

architecture. The example design presented in Section V was

hand-mapped following the method presented here. The flow

is a modified version of an FPGA CAD flow because many

similar problems are being solved. The input is a circuit,

specified in Verilog, and the output is a bitstream for the

architecture or simulator. The tool flow is separated into

five steps: Parallelize, Combine, Placement, Schedule and

Route, and Code Generation.

The Parallelize step parses the Verilog source and partitions

the circuit into a large number of parallel operations, where

each parallel partition could be implemented on an individual

PE. The tool begins by constructing a graph that represents

the control and data flow of the design at the behavioural

level. To construct this graph, the circuit is transformed into

an equivalent network of combinational logic by separating

the circuit so that flip-flop outputs appear as virtual inputs to

the circuit, and all flip-flop inputs appear as virtual outputs.

In one user clock cycle, operations (nodes in the graph)

and communication (edges) are mapped to processors and

interconnect. At this stage, the tools assume a latency of 1
for each communication hop. This determines a lower bound

for the number of system clock cycles (3 GHz) required to

implement a user clock cycle. The Schedule and Route tool

may insert additional system cycles (by increasing edge delays

or adding operations) to resolve resource conflicts, so the

number of system clock cycles in a user clock cycle may

increase.

At this point, the tool separates the bit-level and word-level

operations, and could duplicate logic to improve performance.

User instantiated memory is mapped into the 8 kB data

memory (see Figure 2). To handle a larger user memory, the

tools must coordinate several PEs to implement the memory

required.

It is anticipated that the number of parallel operations in a

computational circuit will exceed the number of PEs available.

The Combine step groups the parallel operations from the

Parallelize step into code clusters, with one cluster for each

PE. Combine is similar to clustering in CAD tools: short nets

and heavy communication nets are absorbed into a single PE

and kept off the communication network. It is this ability to

combine code that trades off area (PEs) for performance and

achieves a soft capacity limit.

The Placement step assigns the code clusters to physical

PEs so that communication is minimized. Using a rough code

schedule, which is computed for each code cluster, the placer

prioritizes which communication paths to minimize. This step

is similar to FPGA placement, so a modified version of the

VPR [5] simulated annealer can be used. However, the cost

function will have to be modified due to the pipelined inter-

connect in the architecture. Since all communication links are

time-multiplexed, the Manhattan distance from every source to

every sink is a good estimate for communication latency. This

is different from traditional bounding-box approaches where

the location of the source is less important.

After placement, the Schedule and Route step orders the

code on each PE and routes data between the PEs for correct

overall operation. There are several factors not present in

current FPGA architectures that need to be considered here:

1) The architecture contains direct links to neighbouring

PEs that avoid the routing network.

2) The architecture contains both bit-level and word-level

resources for routing data.

3) The routing network is time multiplexed, so the Sched-

ule and Route steps must work together. For example,

due to congestion, data may be delayed along the routed

path for a few cycles. If the router does this the scheduler

must delay the code that depends on the data by the same

number of cycles, which may affect when subsequent

output results are available for routing.

Schedule and Route must iterate to finalize the order of

the code and router schedules. The scheduler must accept a

partially completed route (or no route on the first pass) and

schedule the code within each PE to minimize the user clock

period. The router must take the code schedule and route all

sources to all sinks over the time-multiplexed communication

network. If the router succeeds, this step is complete. If it

fails, the scheduler is re-invoked with a partially completed

route. Excessive iterations can be avoided by always making

forward progress (i.e., previous connections are never ripped

up or re-routed).

In the final step, Code Generation, the code assigned to

each PE is compiled for the target architecture, and the routing

schedule for each PE is assembled and packed into a bitstream.



Fig. 3. Graph of motion estimation performance vs. size

V. EXAMPLE: MOTION ESTIMATION

To the study the architecture, a motion estimation (ME)

algorithm was implemented based on an ASIC ME circuit [6].

Motion estimation is computationally intensive and highly

parallelizable, yet requires a distributed control and communi-

cation network, so it is a good candidate for a computational

circuit. Motion estimation takes a reference block R of an

image (16x16 pixels) and sweeps a search space M (32x32

pixels) of a second image to find the best match of that block.

This is called a full block search. For each position, the sum

of absolute differences (SAD) is computed, and the lowest

SAD is the best match. The SAD at search position (x, y) is

computed using:

15∑

i=0

15∑

j=0

abs(Ri,j − Mx+i,y+j)

We first mapped the ME circuit to a 16x16 PE array.

Then, the code from each group of 4 PEs was inlined onto

a single PE to create the 8x8, 4x4, 2x2, and finally 1 PE

implementations. This scaling demonstrates the performance

vs. capacity tradeoff of our architecture, and can be easily

done automatically by a tool. Finally, to compare circuit size

between our architecture and FPGA-based ME circuits, we

computed the equivalent number of FPGA LABs based silicon

area estimates where one PE is equal to 8 LABs (Stratix-III).

Figure 3 plots the performance vs. area of five scaled

versions of a motion estimation circuit implemented on our

architecture (1, 2x2, 4x4, 8x8, 16x16). It also plots the same

circuit on the FPGA (FPGA: Ours), and the results of three

other FPGA-based motion estimation designs (Bit parallel [7],

TA-2D [8], and SA-2D [8]). The TA-2D algorithm is similar

to the implemented algorithm (FPGA); they both use data

movement and an adder tree to sum the SADs.

The performance and area requirements for the 8x8 PE

implementation on the proposed architecture are comparable

to the FPGA implementation, and also comparable to the

published research. This means that 8x8 PEs of the proposed

architecture achieves a similar area and speed as an FPGA,

which gives us confidence in proceeding with further testing.

A linear interpolation between the 2x2 and 4x4 datapoints

gives a point at 77 LABs operating at 12437 searches per

second. This matches the stated objectives of 10x the density

and 1

10
th the performance. Unfortunately, this point is not

attainable for this ME circuit since PEs are discrete entities

that cannot be subdivided.

VI. CONCLUSION

In this paper we have presented a custom architecture for

simulating/executing computational circuits. The architecture

is based on an array of processors, and uses time-multiplexing

to trade circuit capacity for performance. We also presented an

outline of a fast tool flow for quickly compiling computational

circuits to the architecture.

We have presented an example implementation of motion

estimation that was hand-mapped to the architecture. The

motion estimation circuit showed that the architecture has the

desired capacity vs. performance tradeoff, and also that it is

able to match the speed of an FPGA at a lower capacity. This

demonstrates that the goals of the project are reasonable.

For future work, we plan to implement the automatic tool

flow so that the two remaining goals (10x tool speed over an

FPGA CAD tool, and 10x the capacity of an FPGA) can be

achieved.

ACKNOWLEDGMENT

This research is supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC) and CMC

Microsystems.

REFERENCES

[1] M. Larouche. (2007, January) Infusing speed and
visibility into ASIC verification. [Online]. Available:
http://www.synplicity.com/literature/whitepapers/pdf/totalrecall wp 1206.pdf

[2] Tenison Design Automation. (2006, October) Tenison
VTOC RTL to SystemC/C++ synthesis. [Online]. Available:
http://www.tenison.com/images/stories/Brochures/vtoc-10-25.pdf

[3] W. Snyder. (2007, June) Verilator-3.652. [Online]. Available:
http://www.veripool.com/verilator doc.pdf

[4] D. Greaves, “A verilog to C compiler,” in Proc. Rapid System Prototyping

(RSP), 2000, pp. 122–127.
[5] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool

for FPGA research,” in Proc. Field-Programmable Logic and Applications

(FPL), 1997, pp. 213–222.
[6] N. Roma and L. Sousa, “A new efficient VLSI architecture for full search

block matching motion estimation,” in Proc. Very Large Scale Integration

of Systems On a Chip (VLSI-SOC), 2002, pp. 253–264.
[7] C. Wei and M. Z. Gang, “A novel SAD computing hardware architecture

for variable-size block motion estimation and its implementation with
FPGA,” in Proc. Conference on ASIC (ASICON), vol. 2, Oct 2003, pp.
950–953.

[8] B. M. Li and P. H. Leong, “Serial and parallel FPGA-based variable
block size motion estimation processors,” Journal of Signal Processing

Systems, vol. 51, no. 1, pp. 77–98, 2008.


