J Sign Process Syst
DOI 10.1007/s11265-010-0562-x

Rapid Synthesis and Simulation of Computational

Circuits in an MPPA

David Grant - Graeme Smecher -
Guy G. F. Lemieux - Rosemary Francis

Received: 13 February 2010 / Revised: 31 July 2010 / Accepted: 9 November 2010

© Springer Science+Business Media, LLC 2010

Abstract A computational circuit is custom-designed
hardware which promises to offer maximum speedup of
computationally intensive software algorithms. How-
ever, the practical needs to manage development cost
and many low-level physical design details erodes much
of the potential speedup by distracting attention away
from high-level architectural design. Instead, designers
need an inexpensive, processor-like platform where
computational circuits can be rapidly synthesized and
simulated. This enables rapid architectural evolution
and mitigates the risk of producing custom hardware.
In this paper we present a tool flow (RVETool) for
compiling computational circuits into a massively paral-
lel processor array (MPPA). We demonstrate the CAD
runtime is on average 70x faster than FPGA tools,
with a circuit speed 5.8x slower than FPGA devices.
Unlike the fixed logic capacity of FPGAs, RVETool
can trade area for simulation performance by targeting
a wide range in the number of processor cores. We
also demonstrate tool scalability to very large circuits,
synthesizing, placing, and routing a ~1.6 million gate
random circuit in 54 min.

D. Grant (X) - G. Smecher - G. G. F. Lemieux
University of British Columbia, 2332 Main Mall,
Vancouver, BC Canada, V6T 1Z4

e-mail: daviddg@ece.ubc.ca

G. Smecher
e-mail: graeme.smecher@mail. mcgill.ca

G. G. F. Lemieux
e-mail: lemieux@ece.ubc.ca

R. Francis

University of Cambridge, 15 JJ Thomson Avenue,
Cambridge CB3 OFD, UK

e-mail: Rosemary.Francis@cl.cam.ac.uk

Published online: 15 December 2010

Keywords Circuit CAD - Field programmable
gate arrays - Logic CAD . Software architecture -
Software tools - FPGA-based design -

Spatial computing

1 Introduction

To realize performance gains in many computation-
ally intensive software algorithms, designers are imple-
menting them in hardware as computational circuits.
The end goal is often an ASIC or FPGA implementa-
tion to achieve the highest possible performance. This
is being done for a wide range of algorithms, includ-
ing molecular dynamics [1], fluid dynamics [2], video
processing [3], financial modeling [4], ray tracing [5],
and nuclear simulation [6]. Computational circuits are
word-oriented and are often very large, requiring mil-
lions of gates.

Creating a computational circuit can be challenging
and slow. A designer must repeatedly synthesize and
simulate the circuit while debugging, improving, and
verifying the design. For ASIC implementations, a cor-
rect design is important for avoiding costly re-spins.
Many such circuits are also modelled in C or Matlab to
ensure algorithmic correctness before the HDL is even
attempted, further increasing design time. As circuit
size increases, it takes longer to synthesize and simu-
late, reducing designer productivity, increasing time-to-
market, and worsening the risk of missing a costly bug.

Having a fast Verilog synthesis and simulation flow
reduces the need for a C or Matlab implementation in
the design flow, further saving time. Instead, algorith-
mic correctness can be demonstrated with behavioural

@ Springer

J Sign Process Syst

Verilog, laying the groundwork for the final RTL im-
plementation in Verilog.

Current solutions tend to offer either fast synthesis
speed or fast simulation speed. Very high synthesis
speeds (on the order of seconds) are achieved with
compiled-code tools like Synopsis VCS by translating
HDL into compiled C. Although these tools offer best-
in-class simulation speed, simulating a hardware design
on a high-performance processor still yields emulation
rates of 1 MHz or lower. Parallel simulation may help,
but simulation is still dominated by communication
costs: one of the highest speedups reported is 13x for
32 processors [7]. Slow simulation speeds are a major
obstacle for using these tools to design computational
circuits.

In contrast, fast simulation speeds of 100 MHz+ can
be obtained with FPGA devices. However, the synthe-
sis time to map HDL to an FPGA can take hours or
even days. Furthermore, if the HDL does not fit in the
target FPGA, designers must resort back to simulation,
buy a bigger device (if one exists), or partition the
circuit into multiple FPGAs for testing. Slow synthesis
and a strict capacity limit are major obstacles for using
FPGAs to design computational circuits.

To address both the synthesis and simulation speed
problems, we propose to compile Verilog to run on
a massively parallel processor array (MPPA). Our
tool flow, RVETool (Rapid Verilog Execution Tool),
quickly synthesizes word-oriented computational cir-
cuits for RVEArch, our MPPA optimized for Verilog
execution. RVETool can also target other MPPAs,
such as Ambric Am2045 by Nethra Imaging Inc., at the
expense of simulation speed.

The RVEArch architecture, first presented in [8], is
an array of processors that uses high-speed pipelined
interconnect and time-multiplexing to achieve a soft
capacity limit, where capacity can be traded for per-
formance. The key to accelerating simulation is more
than just using additional processors; a low-latency,
high-bandwidth NoC with fast core-to-core messages is
necessary to overcome the communication bottlenecks
in traditional parallel simulators. The pipelined and
deterministically scheduled interconnect in RVEArch
enables it to be even more efficient at emulating a
circuit.

The objective of the toolflow, which is the topic of
this paper, is to map a circuit onto RVEArch quickly
and efficiently, resulting in high-speed emulation on
the architecture. RVETool accepts behavioural Verilog
and converts it to a high-level RTL that operates
on words. To leverage the coarseness of the underly-
ing architecture and improve synthesis speed, it does

@ Springer

not break down all operations to a gate-level/bit-level
netlist. We demonstrate that the tool can trade imple-
mentation area for speed in a coarse-grained MPPA,
a tradeoff first demonstrated in fine-grained FPGAs
with VEGA [9] and later with TSFPGA [10]. TSFPGA
also added a modulo scheduling refinement, which
we do not yet implement. In this paper, RVETool
automatically compiles circuits to use between 1 and
1,024 processors. This soft capacity limit is essential for
enabling the design of large, complex computational
circuits.
This paper makes the following contributions:

1. It introduces a tool flow to quickly synthesize
Verilog for an MPPA architecture.

2. It shows the platform (tools+architecture) can
achieve fast synthesis (70x faster than FPGA CAD
tools) and fast simulation (5.8x slower than an
FPGA).

3. It demonstrates the tools can automatically scale a
circuit to trade area for performance.

4. It shows the tool can synthesize very large circuits
(1.6 million gates) in a reasonable amount of time
(54 min).

5. It shows the architecture requires a reasonable
amount of memory, approximately 16kB for each
PE (data and instruction memory), for emulating
circuits.

The first version of RVETool was presented in [11].
In this paper, we report improved CAD runtimes, im-
proved fnax results with criticality-aware scheduling
and a tail-to-head optimization, resource usage and a
breakdown of longest-path delays. We also show that
tool runtime scales well when processing very large
circuits.

Section 2 presents related work on accelerating cir-
cuit simulation. Section 3 provides a brief overview of
our execution model and architecture, and Section 4
details the tool flow for the architecture. We present
the results of several experiments in Section 5, and
conclude in Section 6.

2 Related Work

There are several general techniques for accelerating
circuit simulation: compiled-code simulators, parallel
simulators, and hardware-based accelerators.
Compiled-code simulators translate a circuit into a
fixed program for native execution on a modern CPU
(e.g., Pentium IV 3 GHz). Compilation is very fast
compared to traditional FPGA CAD flows because

J Sign Process Syst

no placement or routing is required. Compilation can
remain at a high level (rather than gate level) for
additional speed. Execution can also be combined with
event-driven simulation [12] to avoid updating parts of
a circuit that do not change. However, the resulting
program is single-threaded so the final simulation speed
is still slow (on the order of 1 MHz). Verilator [13],
VTOC [14], VBS [15], Symphony’s VHDL Simili [16],
Synposys VCS, and Cadence NC-Verilog are examples
of compiled-code simulators.

Parallel simulators are concerned with the same
fundamental task: simulating a circuit concurrently on
multiple processors for maximum speedup. Parallel
gate-level simulation is well researched [17-21] but
speedups are usually less than 10 due to high inter-
processor communication costs. PVSim [22] is a com-
bined compiled-code and parallel simulator for up to
8 CPUs implemented with MPI. Compared to FPGAs,
parallel simulators are up to six orders of magnitude
slower [23, 24], making them prohibitive for verification
of large systems. For parallel simulation with thousands
of processors, a low-latency, high-bandwidth communi-
cation network is required.

Hardware based accelerators, like Cadence’s Palla-
dium [24] and Mentor Graphics VStation Pro [25], use
processors or FPGAs for acceleration. These systems
require a complete gate-level synthesis and emulate a
design at roughly 2 MHz. Although this is slow com-
pared to an FPGA, they can handle very large circuits.
These simulators are also large and expensive: ranging
in size from a mini-tower computer to a rack, they
cost 0.4 to 10 million dollars [26]. Slow synthesis and
prohibitive cost are significant barriers to using these
devices.

Coarse-grain reconfigurable arrays (CGRAs) and
massively parallel processor arrays (MPPAs) are po-
tentially well-suited for speeding up simulation of com-
putational circuits. As a result, our architecture bares
great resemblance to these architectures. There exists
a wide range of CGRAs (e.g. ADRES [27], PipeRench
[28], MATRIX [29], Tartan [30], RaPiD [31], SCORE
[32]) and MPPAs (e.g., Ambric [33], Tilera (based on
RAW) [34]).

However, in contrast to these existing architectures,
the RVEArch approach offers several improvements
for increased efficiency of simulating computational
circuits: no resources are used to implement a C or
C-like programming model (e.g., no branch instructions
or global memory), efficient implementation of logic
gates like multiplexers (in the ALU) and bit-level sig-
nals (in a PLA, not yet supported), and concurrent
execution of routing and processing tasks.

GPUs are often considered for high-performance
computing, but current GPUs are designed for SIMD
operations and have a large global memory optimized
for coherent (structured) memory accesses. For circuit
simulation, each core must execute a different program,
so a true MIMD architecture is required. Poor core-to-
core communications and high latencies from using un-
structured data accesses throttle any potential speedups
from a GPU [35].

3 Execution Model and Architecture

Computational circuits will be implemented in Verilog,
or translated into Verilog from a high-level language
like C. Rapid simulation requires a highly parallel,
word-oriented platform with very low latency network-
on-chip interconnect. The fast interconnect is critical
because it must compete with the communication speed
of the bare wires in the circuit it is emulating.

Our approach to implementing a computational cir-
cuit can be applied to almost any MPPA which supports
processor-to-processor messaging, such as Ambric’s.
We view each processing element (PE) as containing a
router and a core. In RVEArch they are separate hard-
ware entities; in our Ambric implementation a single
SRD processor implements both in software. Both are
time-multiplexed and both follow a pre-programmed
static schedule. The router is a 5 x 5 crossbar with
registered outputs. Long-distance (pipelined) commu-
nication pathways are created by routing data through
several PEs.

Using this time-multiplexed approach, the user clock
is different than the system clock. Each PE router and
core contain a schedule with exactly » instructions (the
schedule length) to be executed in an infinite loop to
implement the overall circuit. One pass of this schedule
is equivalent to one user clock cycle, so if we assume
RVEArch has a 1 GHz system clock, the user clock
frequency would be % -1 GHz on RVEArch.

These pre-determined schedules mean the entire ar-
chitecture is deterministic. This is similar to the Graph-
Step execution model [36]. It is the responsibility of the
tools to schedule the code for each processor and for
each router so that data is always in the correct place
at the correct time. Non-deterministic delays, such as
waiting for input data from an external device, must
be handled at the user-circuit level. We are currently
assuming the circuit uses a single clock domain. We be-
lieve this greatly simplifies the design of computational
circuits, which is also the objective of this platform.

@ Springer

J Sign Process Syst

Multiple clock domains remains an issue for future
work.

3.1 Idealized Ambric

We have used this execution model to target a slightly
modified “idealized” Ambric architecture. We assume
a 1 GHz clock instead of the 300 MHz clock used in
the Am2045, and assume a single-cycle communication
delay between neighbouring Ambric SRD processors.

We also assume that every instruction executes in
a single cycle, that all RVE instructions are available
on Ambric, and that sufficient memory exists to hold
the entire schedule. These assumptions permit a fair
comparison with RVEARCch, where relatively simple
changes have been made to make idealized Ambric
more competitive. However, RVEArch and idealized
Ambric still differ in their interconnect design, as mod-
ifying the Ambric interconnect to mimic the RVEArch
interconnect would be a fundamental change to its
design.

A single SRD processor implements both the router
and core of our execution model. It uses lookup tables
to determine which neighbouring SRDs to write to,
then read from, then which core instruction to execute
to complete a system clock cycle. Ambric uses blocking
communication channels, requiring that all reads and
writes are matched; our deterministic schedule gives
us exactly this, so there is no risk of deadlocking the
architecture.

In Section 5 we have used the output of RVETool
to estimate the native-compiled code schedule length
of each test circuit on this idealized architecture. The
schedule length is calculated by summing the maximum
number of reads and writes required across all PEs
in each timeslot, and adding one to each total for the
actual instruction execution.

3.2 RVEArch

RVEArch, shown in Fig. 1, distinguishes itself from
other MPPAs in several ways:

— It uses a low-latency, high-bandwidth interconnect
to connect only neighbouring PEs.

— Itisintended to scale up to 100 x 100 PEs on a sin-
gle chip by using a skew-tolerant clock distribution

network.

— It contains a dedicated router.

— It contains a PLA to implement bit-level
operations.

RVEArch uses a global clock, but PEs communi-
cate only over short distances. Thus, while local skew

@ Springer

router

core
PE

Figure 1 Architecture overview.

between all neighbouring PEs needs to be small and
bounded, global skew requirements are somewhat re-
laxed and permit the use of a lower-energy clock dis-
tribution network. Since all PEs use the same clock
source, the neighbours will still operate in synchrony.
With this design, the architecture is readily scalable to
high clock frequencies. Results presented in this paper
assume a 1 GHz clock is realizable in 65 nm.

The RVEArch processor core is shown in Fig. 2. It
is a simple processor with time-multiplexed ALU and
data memory D to implement user-level circuit behav-
iour. There are no branch instructions, but conditional
moves and multiplex (select) functions are supported.
Node memory R is used to temporarily store local ALU
results—emulating a wire for data used in the same
user clock cycle and a flip-flop for data needed in the

to/from

router
L mem
R —
(R) — >
&
mem :; g
X
(X) P W
N 51 accum
é b — ®— data
w———>F— ®-— mem
mem (N, S,E,W) (D)
N _| , T TTTTTTrorrmaTrrrreres] """"" N
S ; PLA N
E E
N W

Figure 2 RVEArch PE core.

J Sign Process Syst

next user cycle. Likewise, PE memory X is used by
the router to store data destined for this core from
external PEs. There are also four buffered, direct links
to adjacent PE cores (memories N, S, E, and W) which
are used as a lower-latency alternative to the router for
neighbour-only connections. These links are enabled in
RVEATrch for all results presented in this paper. The six
PE memories (R, X, N, S, E, and W) represent wires
or flip-flops in the user circuit, but from the RVEArch
perspective these are implemented as register files of a
traditional processor. These register files have separate
read ports and write ports which require both an ad-
dress (register number) and data. RVETool computes
the register numbers automatically.

The dedicated router in each PE, shown in Fig. 3,
allows all five router outputs to be assigned in a single
cycle. The control is an instruction memory and de-
coder to set multiplexer select and register/write enable
lines for the router in each cycle. One control word
is read per time slot and it always advances to the
next word (no jumping or branching). At the end of
the schedule it restarts at offset zero. Similarly, the
PE core in Fig. 2 also has an instruction memory and
decoder that functions the same way, but it is not
shown. We will show the separate router has a 3.8x
performance advantage over the Ambric implementa-
tion where communication must be done serially and
inline with the PE core computation. It is a key feature
to keep communication costs low.

eﬂ— "‘

control
Core

S

Figure 3 RVEArch PE router.

All buses are 32 bits wide, the data memory is fixed
at 8kB (2,048 x 32-bit), and the instruction memory
must be at least 8kB (1,000 x 59-bit, 40 bits for the PE
core instruction plus 19 bits for the router control) to
synthesize all benchmarks at 10x FPGA density. For
all results presented in this paper, we allow RVETool
to increase the number of entries in the PE memories as
necessary, instead of enforcing usage limits. But based
on the results, for our benchmarks over a wide range
of architecture sizes, we found that 16 entries for the X
and R memories, and 4 entries for the remaining mem-
ories is sufficient. We also assume all ALU operations
including multiply are single-cycle.

Computational circuits may also contain single-bit
(e.g. control) signals that map poorly to word-oriented
processors. The PE core in Fig. 2 shows a PLA that
is not time-multiplexed, which generates these signals.
We are investigating the implementation of the PLA,
so it has been omitted from all results in this paper.
Instead, the tools currently implement single-bit logic
using ALU instructions. (Few of our benchmark cir-
cuits use single-bit signals.)

4 RVETool Flow and Algorithms

This section describes RVETool, a tool flow which
maps circuits onto RVEArch and other MPPA archi-
tectures. The input is a Verilog circuit, and the output
is a configuration bitstream for the architecture or a
simulator. The input circuit is also allowed to be many
disjoint circuits, provided a common clock is used.

The tools use a graph representation of the circuit
where graph nodes are circuit operations and graph
edges are communication. The tool flow objective is
to partition the circuit into clusters of executable code,
one for each PE, and then schedule data movement
and order code execution to reproduce the behaviour
of the original circuit. At all steps, decisions favour
minimizing the length of the overall schedule for the
fastest possible simulation.

To test different parameters, an architecture file is
used to specify the number of PEs, the width of buses,
the size of each memory, and the resources in each PE
(e.g., if the PE can perform I/O). These parameters act
as constraints in the tool flow. In this paper we only vary
the number of PEs.

RVETool is separated into four sub-tools: Paral-
lelize, Combine, Place, and Schedule. Additionally, a
Simulate step is used to mimic our target architecture.
Each step is presented in the following sections.

@ Springer

J Sign Process Syst

4.1 Parallelize

The Parallelize tool parses the behavioural Verilog
source and constructs an RTL graph representation of
the circuit (including the control and data flow). All
operations are left at a high-level and not elaborated to
gates. It then performs graph legalization for execution
on the target architecture.

The tool uses a modified version of Verilator [13] for
parsing and graph construction. We allow Verilator to
perform several processing steps and simple optimiza-
tions like module elaboration, dead code elimination,
and constant folding. It also converts “free” hardware
operations like bit-shifts or word-length truncations
into shift and mask instructions. Verilator would nor-
mally generate a serialized C++ program for compi-
lation and execution on the host processor, but we
terminate it before it begins to serialize the graph.

The graph legalization is similar to technology map-
ping. Many operations in the Verilator output (e.g.,
the arithmetic and logic operations) map directly into
PE instructions and are trivially converted. There are,
however, other required graph transformations:

— Multiple writes to a single variable (a register, wire,
or variable in the source Verilog) are mapped to a
chain of multiplexers that feed a single write oper-
ation. This allows the computation of the written
value to be (potentially) distributed among proces-
sors, while ensuring only one instance of the final
value exists.

— Circuit inputs and outputs are mapped into 1/O
load and store operations. Later, the Place tool
will restrict these operations to PEs with the I/O
resource.

— User-instantiated memories, represented as array
operations in the graph, are mapped to PE memory
operations (load and store).

— Any node fanning out to a register is flagged as
“end of cycle”. If the node also fans out to a
non-register it is duplicated first. All registers are
then replaced with wires. This flag causes special
treatment in the scheduler to recreate the expected
clock-edge register behaviour.

4.2 Combine

The Combine tool groups operations in the graph into
code clusters for each PE. Combine is similar to cluster-
ing in FPGA tools: wide nets and heavy communication
nets are absorbed into a single cluster and kept off
the communication network. But, instead of aiming to
achieve fully packed clusters like a clustering tool, we

@ Springer

want to combine code to varying degrees so that area
(PEs) can be traded for performance. This soft capacity
limit is demonstrated in Section 5.2.

A partitioning algorithm can achieve exactly this, so
the tool uses hMETIS [37] to partition the graph using
recursive bisection. To guide hMETIS, all nodes are
assigned a weight of 1, except constant inputs which
are assigned a weight of 0 so they can be placed in any
cluster for free. All edges are assigned a weight equal to
the bit-width of the variable on that edge. To ensure all
operations involving a user memory reside in the same
PE, load and store operations for a data memory are
artificially connected with high edge weights to ensure
they will not be separated.

4.3 Placement

The Place tool assigns code clusters to physical PEs
while trying to keep the critical path as small as
possible.

The problem is similar to the FPGA CAD placement
problem, so we use VPR’s [38] timing-driven annealing
algorithm with a different cost function. The pipelined
routing network in RVEArch means the delay between
two nodes is equal to the Manhattan distance, not
a propagation delay along a wire as in conventional
FPGA CAD. The time-multiplexed PE cores intro-
duce an additional level of complexity not found in
FPGAs: two nodes within the same PE may be sched-
uled in timeslots far apart, causing additional critical-
path delay. Unfortunately this delay is not known until
scheduling is complete, so at this stage we assume it
is zero.

The delay cost between two nodes i and j, in units of
clock cycles, is:

1 i, j placed in same PE
delay(i, j) = { 1 i, j placed in adjacent PEs
2 4+ mh(i, j) otherwise

Where mh(i, j) is the Manhattan distance between
the PEs of i and j. For nodes in the same PE, the PE
core must execute an instruction to produce the next
value. For adjacent PEs, the value must be produced
and communicated over a neighbour link, which re-
quires no additional time. For distant PEs, there is a
two cycle penalty to access the pipelined routing net-
work, plus a number of cycles equal to the Manhattan
distance to traverse it. The delay(i, j) is used with
a slack and criticality computation to calculate the
timing_cost of the circuit, which is part of the placement
cost function. The slack, criticality, and timing_cost
computations are the same as in VPR [38].

J Sign Process Syst

In addition to timing cost, the VPR placement cost
function uses a wiring cost, which we compute differ-
ently than VPR:

wiring_cost = Z mh(i, j)

Vi, jecircuit

i.e., the Manhattan distance from every source to
every sink. Since all communication links are time-
multiplexed, the Manhattan distance prioritizes latency
(performance) over interconnect utilization. This is
different from traditional bounding-box minimization
[39], where limited physical wiring forces wirelength to
be more important than delay.

The final placement cost function is similar to VPR’s:

Atiming_cost

AC=A- - —
previous_timing_cost

Awiring_cost

+{0=A)- - P
previous_wiring_cost

+ penalty

The variable penalty is used to discourage illegal place-
ments by adding 1,000 to the cost each time memory
size is exceeded, unavailable PE resources are used, or
too few/many PEs are used. The parameter A is used
to place more (or less) emphasis on the timing-driven
aspects of placement; for this work, A = 0.9.

At the end of placement, it is possible that several
small, user-instantiated memories have been placed in
the same PE. The Place tool assigns a base offset ad-
dress for each user-instantiated memory, ensuring they
do not overlap in PE data memory D. It then updates
the relevant LOAD/STORE operations with this base
offset. Individual memory addresses are assigned after
scheduling. Note this step only handles user memories
that are smaller than the PE data memory, so circuits
that instantiate large user memories (larger than 8kB)
cannot be compiled. The problem of splitting a large
user memory across multiple PEs is left for future work.

4.4 Schedule

The Schedule tool orchestrates the overall execution of
code and movement of data to reproduce the behaviour
of the original circuit. It assigns each instruction to
a timeslot in a PE core, and assigns each route-hop
to a timeslot in the PE routers, resolving all routing
collisions along the way.

The main loop of the Schedule tool is shown in Fig. 4.
The algorithm is variation of list scheduling. The sched-
uler begins at timeslot = 1 and assigns as many nodes

1: ready_queue < all nodes flagged “end of cycle” or
nodes with no parent

2: timeslot < 1
3: loop
4: ifis_empty(ready_queue) then
5 if is_empty(next_queue) then
6: return /* Scheduling complete */
7: end if
8: /* Swap queues, increase to next timeslot */
9: ready_queue < next_queue
10: timeslot < timeslot + 1
11: endif
12: /* Find a schedulable node */
13: node < dequeue(ready_queue)
14: if not is_schedulable(node) then
15: enqueue(next_queue, node)
16: continue /* Restart loop */
17: endif
18: /* Create routes, record scheduled timeslot */
19: schedule_routes(node)
20: node.timeslot < timeslot
21: /¥ Increment sched. count in all children, enqueue
any that
22: * are now schedulable */

23: for all node.children do
24: child.sched_parent < child.sched_parent + 1

25: if child.sched_parent = |child.parents| then
26: enqueue(next_queue, child)

27: end if

28: end for

29: end loop

30: /* Optional tail-to-head optimization */
31: tail_to_head()

Figure 4 Schedule tool main loop.

as it can across all PEs in that timeslot. It then moves
on to the second timeslot, and so on. This timeslot-
oriented approach ensures the scheduler is fast and is
always making forward progress. NOP instructions are
inserted in all timeslots that do not contain a circuit
node after scheduling.

The is_schedulable(node) function checks whether
node is schedulable in the current timeslot. It verifies
that all of the following are true:

— The code position at timeslot is empty in the PE

— node may be scheduled as early as timeslot

— All PE core resources required by node are
available

— All PE router resources required by the output of
node are available for the first-hop of the route

@ Springer

J Sign Process Syst

Table 1 Synthesis/compile time, simulation speed, and density comparisons (RVE results average of 100 trials).

Circuit Synthesis/compile time (s) Best simulation speed (fmax, MHz) Area at best speed
Vitr MS Stx-III Amb, Vitr MS Amb Stx-III RVE RVE Stx-1II RVE Density
RVE no crit crit (ALMs) crit (PEs) (ALMSs/PE)

AES 3 1 148 6.33 2.61 0480 4.8 559 29.9 20.9 191 224 0.9

pr 3 1 228 2.25 236 0016 2.7 165 42.9 58.7 382 12 31.8
wang 3 1 182 2.49 233 0.015 80 158 43.5 58.4 442 24 18.4
honda 3 1 202 2.62 219 0.027 140 237 24.8 333 547 32 17.1
mcm 3 1 219 2.68 223 0.014 67 222 40.5 44.7 609 40 15.2

dir 3 1 372 3.04 1.66 0.012 85 183 15.1 19.2 1,084 48 22.6
FFTS8 3 1 207 3.29 1.76 0.058 131 121 63.8 56.9 1,974 96 20.6
chem 4 1 477 5.00 049 0.013 125 176 26.8 29.7 2278 48 47.5
ME 3 1 277 8.74 0.15 0.001 120 337 33.0 38.5 3,018 256 11.8
FFT16 3 1 790 5.04 073 0.022 44 237 42.6 383 4,678 192 24.4
geomean 3 1 272 3.7 1.27 0.02 77 218 33.9 372 970.2 62.4 15.5
FFT8-human 167 167 64

ME-human 250 250 64

The schedule_routes(node) function, described fur-
ther in the next subsection, computes a series of route-
hops from the node to all sinks, then assigns the
route-hops to timeslots in the PE routers.

When a signal arrives at the destination PE, the des-
tination node(s) are marked with the arrival timeslot;
those nodes cannot be scheduled before the time of
arrival.

The enqueue(node) function can optionally use the
criticality computed during placement to order the
nodes in the queue so the most critical nodes will
dequeue first. This reduces the final schedule length
and thus increases the f.x by ~9.7%, on average.
This improvement is shown between the two columns
labeled ‘RVE no crit’ and ‘RVE crit’ in Table 1.

At the end of scheduling, memory accesses (to node
memory and data memory) are assigned specific offsets
using a greedy approach. At this point, the code for
each router and core is ready to be packed into a single
output bitstream.

4.5 Schedule—Routing

The routing algorithm is contained within the Schedule
tool, and is called when needed. It computes a se-
ries of route-hops from a given source location to a
PE sink. The routing problem is different from con-
ventional CAD flows because the routing network is
time-multiplexed, so the routing process must make
temporal as well as the conventional spatial routing de-
cisions. RVEArch also contains two routing resources:
PE routers for moving data beyond the 4 immediate
neighbours (requiring 2 + & cycles, where £ is the num-
ber of hops), and single-cycle links for communicating
between adjacent PEs.

@ Springer

For long-distance routes, the routing algorithm
uses a simple horizontal-then-vertical routing strategy,
routing each path without considering congestion or
collisions.

When a routing conflict arises, the router holds the
value in place for as many timeslots as necessary until
a free timeslot is found in the next hop. In practice,
however, we find there is little routing contention. This
is shown in the results section in the last column of data
in Table 5 labeled ‘Hold’.

For neighbour communication, the router creates
a route-hop that uses the neighbour-neighbour link,
again ignoring congestion and conflicts. The Schedule
tool assigns the link usage to a timeslot and directs the
value to a specific offset of the N, S, E, or W node
memory, or may delay the producing node if resources
are unavailable.

4.6 Schedule—Tail-to-Head Optimization

The Schedule tool can implement time-borrowing be-
tween pipeline stages by moving some operations done
at the tail-end of the schedule to the head. If all tail
operations in the last timeslot can be moved to the
head, the overall schedule length can be shortened by
1 cycle, resulting in a higher fiax-

We implemented this tail-to-head optimization as
follows. Nodes are relocated until a node cannot be
moved, e.g. because of unavailability of routing re-
sources or the ALU. If all nodes are moved out of the
last timeslot, the schedule length is decreased and all
wrap-around routes are re-computed. Then, optimiza-
tion tries to shrink the schedule again.

Testing shows this optimization improves the over-
all schedule length by an average of 1.11 cycles (see

J Sign Process Syst

Table 4). However, because of the complexity added to
the architecture to support this optimization (needing
to discard the output of the first run of instructions
that are at the tail), we have opted to not include
this optimization in any other results presented in this

paper.
4.7 Simulation

The bitstream is given to a compiled-code architectural
simulator to ensure functional correctness, or given to
a statistics tool to extract performance data. All the
results presented in this paper come from the statistics
tool after a complete pass through the toolflow. The
simulator runs sequentially on a PC, but uses its own
thread scheduler to emulate parallel execution of the
PEs. The simulator accepts input stimulus from vector
waveform files and writes output waveform files. We
verified the correctness of our entire toolflow by simu-
lating all benchmark circuits (excluding the randomly-
generated circuits) by comparing output waveforms
against those produced by Quartus II.

5 Experimental Results

In the following sections, we evaluate RVETool and
RVEArch. We begin in Section 5.1 by examining their
overall ability to quickly synthesize and simulate com-
putational circuits compared to traditional FPGA tools
and software simulators. Next, in Section 5.2, we eval-
uate their ability to scale a circuit across a number of
PEs, to better exploit parallelism than software simu-
lators. In Section 5.3 we compare computer-generated
bitstreams with hand-tuned ones, to explore the per-
formance achievable by further refining our CAD
tools. In Section 5.4 we explore the resources needed
by RVEArch to implement the circuits. Finally, in
Section 5.5, we investigate the synthesis speed of the
tools with very large circuits (up to ~1.6 million gates).

To evaluate each of these properties, we introduce
several benchmarks written in Verilog:

— The chem, dir, honda, mem, pr, and wang
benchmarks [40] are dataflow— and DSP-style
non-pipelined computational circuits described in
behavioural Verilog.

— AES is a byte-oriented implementation taken from
Altera’s QUIP suite [41]. It was modified in several
places to replace bit-shuffling computation with
pre-computed table lookups to improve perfor-
mance on the target word-oriented architecture.
This is because the PLA in RVEArch, which would

provide the desired high-performance bit-oriented
operations, is not yet supported.

— Motion Estimation (ME) is an image-processing
algorithm described in [8]; a block R of 16 x 16
pixels is swept against a 32 x 32-pixel reference
image M, searching for the displacement which
produces the lowest sum of absolute differences
(SAD).

— FFT8 and FFT16 are 8- and 16-point complex
FFTs respectively, implemented using a radix-2,
decimation-in-time decomposition.

Of these benchmarks, ME and FFT16 are the largest,
involving 3,609 and 1,192 circuit nodes, respectively.
The other benchmarks’ complexity varies from 90
nodes (wang) to 553 nodes (chem). A node is roughly
equivalent to one arithmetic, logical, or routing opera-
tion up to 32 bits in size.

5.1 Synthesis and Simulation Speed

We first consider the synthesis speed and simulation
speed of the toolflow and architecture, respectively.
Table 1 shows the average of 100 compilations of both
the time required to synthesize Verilog into a format
suitable for simulation, as well as the corresponding
simulation speeds for several platforms (all synthesis
time results were gathered using the same PC):

— Verilator (abbreviated Vltr), translates Verilog
into a C++ program run on a 2.8 GHz Intel
Pentium IV PC,

— ModelSim 6.3d (abbreviated MS),

— Idealized Ambric (abbreviated Amb, see Section
3.1) at 1 GHz, code estimated from output of
RVETool,

— Altera Stratix-II FPGA (ep3se8OF, speed —2;
abbreviated Stx-11I), using Quartus II 9.0,

— RVEArch without criticality (abbreviated RVE no
crit) at 1 GHz, results previously presented in [11],
and

— RVEArch with criticality (abbreviated RVE crit) at
1 GHz, as described in Section 4.

Figure 5 shows the best simulation speed results
from Table 1 in graphical form. In all cases, the FPGA
implementation runs faster than the alternatives, but
it also takes a much longer time to synthesize. The
RVEArch provides the fastest simulation results of
the software-based alternatives, with a synthesis time
comparable to Verilator that is roughly 70 times faster
than the FPGA tools. The Idealized Ambric results
show that RVETool can generate fast, scalable code

@ Springer

J Sign Process Syst

1000

-~ — __ Stratix-lll
A e— T
R0 R — <
RVETool+RVEArch
- v
< 10
= = —
£ RVETool+Ic 1 Ambric
z D
17 e
& 1 — 2
f =
ks == =
K g Verilator
E o1 * FFET8
@ . honda N FFT16
T R e ,
Prig ymem ==\ -
/ ! - ~
0.01 dir chem._ ——
. —— ModelSim
SNME_—
0.001 - T = T
0 1000 2000 3000 4000 5000

Circuit Size (ALMs)

Figure 5 Simulation speed comparison.

for other MPPA architectures as well. Not only do the
software platforms exhibit the poorest performance,
they demonstrate poor scalability as the larger circuits
tend to run more slowly. In comparison, RVEArch
and Ambric maintain a relatively constant simulation
performance as the circuit size increases.

The fast synthesis speed of RVETool is a combina-
tion of targeting a coarse-grained MPPA (less work for
the tools), not synthesizing to gates (less work for the
tools), and using algorithms that allow quality of results
to be balanced against runtime.

The results of the AES benchmark are slightly anom-
alous. Quartus and ModelSim implement the table
lookups we introduced for the bit-shuffling logic ex-
tremely well, resulting in high performance on those
platforms. Verilator does not optimize these constructs

60| Bx il
want
—_ 4
T 50
s —~
3 ’§§
o 40
C% —
S honda—F——>— <
5 30 chem——
é FET16 e
%)
= S E——
= —AES” =
10
- —
0 I
10 100
Number of Processors

(a)

as aggressively, resulting in average performance in
both Verilator and on our architecture.

5.2 Platform Scalability and Density

In this section, we demonstrate the ability of the
toolflow to trade the number of available processing
elements (PEs) with the effective user clock rate (simu-
lation speed), avoiding the hard capacity limits imposed
by commercial FPGAs.

Figure 6a shows the simulation speed as the size of
the array ranges from 9 to 256 PEs (3 x 3 to 16 x 16)
this the complete dataset from which the RVE columns
in Table 1 were created. When a small number of PEs
are used, speedup is linear with the number of PEs.
Outside the linear region, each benchmark exhibits an
optimum PE allocation where its performance peaks.
Beyond this peak, performance decreases as inter-PE
communication paths lengthen.

Of the benchmarks shown in Fig. 6a, Motion Es-
timation (ME) performance peaks at a large number
of PEs because it is a large circuit and it exhibits
chiefly nearest-neighbour communications. Another
large circuit, FFT16 scales similarly even though it
exhibits more complex communication patterns. Also,
the smallest circuits (wang and pr) achieve peak per-
formance with the fewest PEs. In general, the num-
ber of PEs needed to achieve a benchmark’s peak
speedup tends to be correlated with circuit size. Real
computational circuits would likely be much larger than
any of these small benchmarks, so we anticipate the
architecture is scalable far beyond 256 cores.

100

\
dir _FET16 \lﬁ /
\ \ /
\\ < \ /
_ % 1N \ 7
é hem \\ \
g /N
= 60 AES\ /IS N
< N\ N \ =
=2 X / —
3 T —
% 40 FRI8 —
% ———honda B— —
3 %_/—— —
~~mcm <
20 JWang —
— [—
0
10 100
Number of Processors
(b)

Figure 6 a Simulation speed (fmax) for benchmarks synthesized for 9-256 PEs. b Schedule length for 9-256 PEs.

@ Springer

J Sign Process Syst

Figure 6b shows the same results as Fig. 6a, but
plots the schedule length rather than f,.x. The schedule
length indicates the size of the instruction memory
needed.

We roughly estimate the silicon area of one PE in
terms of Stratix-III ALMs as follows. First, we esti-
mated the largest Stratix-1II die size as 850 mm? at
65 nm, which contains 135,000 ALMs [42]. Next, we
budgeted 0.5 mm? for each PE in 65 nm. This allows
room for several blocks of 16kB SRAM (0.05 mm?
each [43]), a PE as powerful as a 32-bit ARM core with
a multiplier (0.1 mm? [44]), and additional resources
including routing. From this, we deduce that a PE is
roughly equivalent in area to ;23/%02 ~ 80 ALMs.

From Table 1, at peak performance the RVE av-
erage number of PEs used is 62.4 and the average
density is 15.5 ALMSs/PE. This means that RVEArch
offers é—g = % the density of an FPGA when operating
at peak clock speeds. However, RVETool can scale
the implementation to any number of PEs. To improve
density, Table 2 shows the simulation speed results of
our architecture at a target density of 80 ALMs/PE
(meaning that the circuit is implemented in the same
silicon area as an FPGA). At the same density, the aver-
age speed is slightly less than 1/10th that of the FPGA.
Continuing the scaling to reach 10x FPGA density
(800 ALMSs/PE), the average speed is 3.6 MHz. At this
density, all circuits smaller than FFTS8 are implemented
on a single PE. While this is not ideal, it demonstrates
that our tools can fold a design in space. It also shows
an advantage of using a custom architecture. Even on a
single PE, RVEArch achieves a higher f,x than the
Verilator compiled simulation for many benchmarks.
This is because, on average, Verilator uses 6.38 x 86
assembly instructions for each node (compiled with

Table 2 Simulation speed at 80 and 800 ALMs/PE density.
1x FPGA density 10x FPGA density

g++ —0O3 —§, counted only instructions for the circuit,
excluded comments, labels, and code included from
the Verilator support libraries and macros) whereas
RVEATrch can implement each node in a single instruc-
tion which executes in a single cycle.

5.3 CAD Tool Efficiency

The simulation speed of each benchmark is determined
by the benchmark itself, the CAD tools, and the ar-
chitecture. To investigate how well our toolflow maps
code onto each PE, we compare with the lowest-bound
schedule length for all benchmarks, and also to hand-
written code for two of the larger benchmarks (FFTS8
and ME).

Table 3 compares the lowest possible schedule length
with the actual schedule lengths used to compute the
fmax Tesults in Table 1. These bounds are determined
from the maximum depth of the user circuit graph
after the Parallelize tool, which means communication
delays are excluded. On average, our results are just
over two-fold worse than the lower bound. This indi-
cates that, while there is room to improve our results,
there are not order-of-magnitude improvements to be
found. The two worse results, FFT8 and FFT16, are
heavily pipelined—due to pipelining at each stage, the
maximum graph depth is 4. However, registered results
saved in a PE at the end of the schedule are subse-
quently used in a different PE at the beginning of the
next iteration of the schedule. The results suggest it
is difficult for the tools to identify and exploit spatial
locality in these circuits.

Table 4 shows the reduction in schedule length for
the tail-to-head optimization described in Section 4.6.
The data was generated the same way as in Fig. 6 (100
trials of architectures from 9 to 256 PEs). The schedule

Table 3 Comparison of lower bound vs. actual schedule lengths

80 ALMs/PE 800 ALMs/PE (average of 100 trials).

Req’d Speed Req’d Speed Circuit Lower Actual Factor
Circuit ALMs PEs (MHz) PEs (MHz) bound SL best SL
AES 191 4 72 1 1.9 AES 15 479 32
pr 382 4 40.4 1 1.1 pr 10 17.0 1.7
wang 442 8 47.5 1 6.1 wang 10 171 1.7
honda 547 8 29.4 1 1.3 honda 19 30.0 1.6
mecm 609 8 29.4 1 8.7 mecm 11 22.4 2.0
dir 1,084 12 8.9 1 83 dir 25 522 21
FFT8 1,974 28 35.6 4 7.8 FFT8 4 17.6 4.4
chem 2,278 28 28.0 4 6.7 chem 18 33.7 1.9
ME 3,018 40 104 4 1.2 ME 18 26.0 14
FFT16 4,678 56 23.0 8 5.6 FFT16 4 26.1 6.5
geomean 13.3 21.9 1.9 3.6 geomean 2.3

@ Springer

J Sign Process Syst

Table 4 Schedule length

) " Circuit Avg. timeslots
reduction for tail-to-head
L saved

optimization

(average of 100 trials). AES 0.32
pr 1.68
wang 1.74
honda 2.29
mcm 2.36
dir 1.95
FFT8 1.22
chem 1.92
ME 0.09
FFT16 1.36
geomean 1.11

lengths were then compared to those in Fig. 6. It is en-
couraging that the optimization performs consistently,
on average reducing the schedule length by 1.11 cycles.
However, as mentioned earlier, this adds complexity
to the architecture for a modest performance improve-
ment. Hence, we have not used this optimization in any
of the other results.

Figure 7 compares the scalability and performance
of RVETool to a human-written implementation. The
ME-human benchmark scales superlinearly because it
is able to eliminate memory loads and stores by instead
sending results to neighbouring PEs for processing.
This figure demonstrates that RVEArch is able to scale
aggressively, and that RVETool is able to track this
scalability curve up to a certain point.

At peak performances shown, FFT8 and ME show
performance gaps of roughly 2.8 and 4.8 x, respectively,
between handcrafted and tool-produced results. At this
stage, the tools are all first-generation algorithms; the
focus has been on infrastructure development and in-
tegration, not performance or quality of results. We
hope to reduce this performance gap as we refine the
algorithms.

gt i L O e
1001 #ft8 (human) == -i-“' wmnT

me (human) HAvg. 4.8x performance gap

Simulation Speed (MHz)

10 100
Number of PEs

Figure 7 Performance of human- and machine-generated
bitstreams.

@ Springer

5.4 Longest-Path and Resource Usage Analysis

The routing and compute resources for the longest
paths in each circuit can tell us where our algorithms
might be improved to reduce the overall schedule
length. The length of a path in the scheduled circuit is
the time required to traverse all compute and routing
resources from inputs and registers, to outputs and
registers. We use the longest path instead of the critical
path because the critical path is difficult to define in
a time-multiplexed environment where a non-critical
path may be delayed (by the scheduler) until it appears
to be critical, even though it isn’t. The schedule length
cannot be smaller than the longest path, so in that sense
they are also critical.

Table 5 shows the longest-path analysis for the best-
speed results from Table 1. All results are again the
average of 100 trials. In the table, starting from the left
is the schedule length of the synthesized circuit, and
then the longest path. Next is the number of longest-
paths because there is often more than one. The longest
path will always be less than or equal to the sched-
ule length; it can be lower in cases where an input
does not immediately occur in the first timeslot due to
scheduling decisions, or an output occurs before the last
timeslot.

The next three columns in Table 5 show the number
of routes of each type along the longest path. Local
uses PE memory R to communicate, Nbour uses the
neighbour memories N, W, E, or W, and Remote
uses the routing network and memory X. The higher
number of local routes shows that there is locality in
the circuits, and the tools are finding it. The neigh-
bour routes indicate that the tools are also scheduling
some compute—and-move operations, saving routing
timeslots.

The last five columns are the longest-path break-
down: the number of compute-only slots where an
ALU is in use; the number of wait slots spent waiting
for values to arrive or waiting for the ALU while it is
busy with other computation; the number of compute-
and-move slots (equal to the number of neighbour
routes); the number of routing timeslots where progress
is made; and the number of routing timeslots where a
value is held due to a route conflict.

The number of compute timeslots and route times-
lots are close, suggesting that the solution may benefit
from more compute-and-route operations using the
neighbour links to combine a compute and move into
a single cycle. The almost-zero number of hold slots
shows that our horizontal-then-vertical routing strat-
egy combined with the abundance of routing resources
means there are indeed few routing conflicts.

J Sign Process Syst

Table 5 Longest-path breakdown for best speed of each benchmark (average of 100 trials).

Circuit ~ Schedule Longest-path Number of route-link Longest-path timeslots
length types in longest path

Length Number Local Nbour Remote Compute Compute Route

(timeslots) of paths Compute Wait &Route Route Hold
AES 479 43.1 10.6 1.7 1.4 21 49 27.8 1.4 9.0 0.1
pr 17.0 17.0 9.7 4.6 1.4 0.7 6.2 7.6 1.4 1.8 0.0
wang 171 17.1 132 34 2.4 0.8 52 6.8 2.4 2.7 0.0
honda 30.0 30.0 31.8 7.5 35 1.0 9.5 13.5 3.5 35 0.0
mem 224 224 17.6 4.5 1.6 1.1 6.6 9.7 1.6 4.5 0.0
dir 522 48.6 343 6.1 1.2 22 8.7 30.5 1.0 9.1 0.0
FFTS8 17.6 15.9 3.7 12 0.4 0.4 2.0 10.6 0.3 33 0.0
chem 33.7 33.7 142 8.8 1.3 1.1 10.8 17.5 1.3 4.1 0.0
ME 26.0 26.0 24.0 9.6 1.5 0.0 10.6 13.9 1.5 0.0 0.0
FFT16 26.1 22.9 2.1 1.1 0.1 0.3 1.5 19.2 0.0 2.7 0.0

The number of wait cycles is larger than the number
of compute cycles. Wait cycles are the extra cycles
between the time an ALU operation is scheduled and
the time of its most closely scheduled predecessor ALU
operation. Some wait cycles are due to a ready opera-
tion waiting for the ALU, because it is busy servicing
a large number of other operations that are also ready.
Other wait cycles are due to an operation waiting for an
operand to arrive over the routing network; in this case,
the operand has already been computed but it must be
transported. To reduce the number of wait cycles, it is
possible to change the architecture by adding multiple
ALUs per PE, or adding longer interconnect wires that
span multiple PEs in a single clock cycle, or both. Fu-
ture work will investigate these and other architectural
options for reducing waiting time.

Table 6 shows the maximum memory entries used
by the corresponding memory type in a compilation
using 16 or 256 PEs. The memories would need to have
the number of entries indicated here to successfully
implement the benchmark without artifically inflating

Table 6 Maximum node memory resource usage in a single PE.

Circuit 16 PEs 256 PEs
Local Nbour Remote Local Nbour Remote

AES 14 4 8 6 2 5
pr 6 2 3 1 1 2
wang 5 3 3 1 1 3
honda 5 2 2 1 1 3
mecm 7 2 3 1 1 3
dir 36 4 20 6 4 7
FFTS8 27 3 5 5 3 4
chem 12 3 8 4 2 4
ME 140 1 1 11 2 2
FFT16 77 4 9 13 4 4

the schedule length to use less memory. Figure 8 plots
the register usage for the chem benchmark over a range
of architecture sizes. The other benchmark circuits
show a similar trend. As expected, the maximum usage
within a single PE decreases as the circuit is spread over
space, showing the tools are distributing the work to
more PEs.

The modest sizes indicated by Table 6 suggest that
only small memories are required. Also, we note that
the amount of instruction memory required in each PE
is also small—for the peak performance results shown
in Table 5, the schedule length is less than 50 words.
These modest memory sizes partially demonstrate the
feasibility of the architecture: from a memory perspec-
tive, it is possible to implement PEs that are both area-
efficient and can run at a high speed of 1 GHz.

20

€

£ 154

% Local

s

5

@ \

3 104

g Neighbour

B \\ g

& \/\

= N

=3

£ 5 \“ R
3 Remote N—

= \\ N P

Number of PEs

Figure 8 Maximum PE memory usage for the chem benchmark
for architectures with 9-256 PEs.

@ Springer

J Sign Process Syst

5.5 Tool Scalability to Large Circuits

In this section we test RVETool’s runtime on large
circuits. Since large benchmark circuits are difficult to
acquire, we randomly-generated synthetic benchmarks
with a custom tool. The circuits are generated without
any graph-depth or locality control, so they are not
suitable for testing the quality of the tool output. For
such testing, a more realistic random circuit generator
would be required.

The circuits have 32 inputs, 16 outputs, and contain
1,000 to 50,000 nodes. Each node is a 32-bit operation
(add, subtract, invert, and, or, xor, and multiply). To
put this into perspective, if we assume the simplest
case where each 32-bit operation requires 32 gates, the
50,000 node benchmark contains 1.6 million gates.

We also attempted to synthesize the circuits
in Quartus-IT v9.0 with the Ilargest Stratix-III
(EP3sL340r1760c2) to produce a rough comparison
with FPGA area usage and runtime. The 1,000 node
circuit required 22,066 ALMs (16.2% of the device)
and synthesized in 9 min. The 2,000 node circuit used
64,748 ALMs (47.6%) synthesized in 34 min. The 4,000
node circuit used 152,338 ALMs (112%) and stopped
after 80 min as it exceeded the size of the device. The
6,000 node circuit exhausted the 32-bit 4 GB memory
limit and was forced to quit after 2 h. The 10,000 node
circuit exhausted the memory after 13 h. The 50,000
node circuit ran for 24 h without finishing the analysis

10000

—Quartus —
~ RVETAAL 1 /"
/ nveToor |utal /
1000 — —
Il y 4
z = 71—
° 7/ 7
5 a7 ay
[$]
@ 100 - ,/ /.
g — 7/
£ 4 — Vi //
'_
(2] B
CRRTN B e | ,/ ,//
£ = Paraliglize”—7
s Ptace A7
@ 4 edule
1 Paums”d
,)\'\ 7
0.1
1000 10000 100000
Nodes

(a)

and synthesis phase (before placement and routing
in Quartus). To be fair, Quartus II was probably
attempting to do more optimizations than Verilator,
so our randomly generated circuits may have been too
unrealistic for it to handle.

Figure 9a shows the average synthesis time for
RVETool when run with ten trials of the random
benchmarks (a different random benchmark of the
same size for each trial) compiled for an architecture
of 1,024 (32 x 32) PEs. The total runtime curve is
shown, plus a breakdown for each step in the toolflow.
As the circuit size increases, the first two tool steps,
Parallelize and Place, dominate runtime. For the 50,000
node circuit, the total synthesis time was 54 min.

To reduce the overall time, the Parallelize (parsing,
elaboration, optimization, and DFG generation) and
Place steps are the two most likely targets. However,
it is unlikely that the parsing step can be improved
much, except by reducing the optimization done. The
Place step can be improved by reducing the inner-loop
iterations of the annealer, at the expense of quality. The
number of inner-loop iterations is the same as in VPR,
10 x n_clusters', which we have found to be a good
balance between quality and speed. Increasing this
causes longer run-times with little or no improvement
in results, and decreasing it gives significantly poorer
results. Beyond this, placement could be improved
by changing to a fundamentally different approach,
e.g. analytical placement. Alternatively, it was recently

200

150

100 -

50

Total Synthesis Time (Nodes Per Second)

T T T
30000 40000 50000

Nodes

(b)

T T
0 10000 20000 60000

Figure 9 a Synthesis time for placing large random circuits on 1,024 PEs (32 x 32). b Synthesis time nodes-per-second for large random

circuits.

@ Springer

J Sign Process Syst

shown that an MPPA is capable of greatly acceler-
ated placement by self-hosting a parallel simulated-
annealing algorithm [45].

Figure 9b shows the total synthesis time as a rate
in nodes-per-second. The initial rise in rate, ending at
~8,000 nodes, is caused by amortization of the tool
overhead. Beyond this, algorithmic complexity catches
up. Scaling to even larger circuits than shown here may
require heuristics with better algorithmic complexity or
with reduced quality of results.

6 Conclusions

In this paper, we presented a CAD toolflow
(RVETool) that maps computational circuits expressed
in Verilog onto an MPPA architecture (idealized
Ambric) and a custom architecture (RVEArch). We
evaluated the tools using a number of dataflow and
DSP-type benchmarks, and demonstrated their perfor-
mance relative to FPGAs (70x faster compilation, 5.8 x
slower simulation) and software simulators (on-par
compilation, 29x faster simulation). The RVETool +
RVEArch platform simulates computational circuits
with better performance than software simulators,
without incurring the long synthesis time of FPGA
tools. RVEArch also shows a 3.8x performance
improvement over the idealized Ambric architecture
because of the separate router.

We explored the trade-off between density (num-
ber of PEs used) and simulation speed of RVEArch,
demonstrating that it can avoid the hard capacity limit
of FPGAs using time multiplexing. We also examined
RVETool’s ability to effectively distribute a circuit sim-
ulation across a number of PEs, and its ability to com-
pile very large circuits in a reasonable amount of time.
We have shown the maximum resource usage of the
benchmarks are reasonable for implementation in an
architecture.

As more algorithms are converted to computational
circuits, a means for fast synthesis and fast simulation
becomes even more important. Besides reducing design
time and risk, designing a circuit at a behavioural level
does not require as much hardware design experience.
This allows software designers to participate in the
hardware design (and testing) process, further encour-
aging the development of computational circuits.

Acknowledgements This research is supported by the Natural
Sciences and Engineering Research Council of Canada
(NSERC). Equipment donations by CMC Microsystems and

Ambric are gratefully acknowledged. The authors would also
like to thank Deming Chen for providing several benchmark
circuits as well as Wilson Snyder, Duane Galbi, Paul Wasson,
and the many additional contributors to the Verilator open
source tool.

References

1. Shaw D. E., et al. (2007). Anton, a special-purpose machine
for molecular dynamics simulation. In Proc. ISCA (pp. 1-12).

2. Zygouris, V., et al. (2005). A navier-stokes processor for bio-
medical applications. In Proc. SiPS (Vol. 2-4, pp. 368-372).

3. Altera Corporation (2009). Video and image processing
example design.

4. Tian, X., & Benkrid, K. (2009). American option pricing
on reconfigurable hardware using least-squares Monte Carlo
method. In Proc. FPT (Vol. 9-11, pp. 263-270).

5. Fender, J., & Rose, J. (2003). A high-speed ray tracing engine
built on a field-programmable system. In Proc. FPT (Vol. 15—
17, pp. 188-195).

6. Donev, A., et al. (2010). A first-passage kinetic Monte Carlo
algorithm for complex diffusion-reaction systems. Journal of
Computational Physics, 229(9), 3214-3236.

7. Boukerche, A. (2000). Conservative circuit simulation on
multiprocessor machines. In Proc. high performance comput-
ing (pp. 415-424).

8. Grant, D., & Lemieux, G. (2008). A spatial computing
architecture for implementing computational circuits. In
Proc. MNRC (pp. 41-44).

9. Jones, D., & Lewis, D. (1995). A time-multiplexed FPGA
architecture for logic emulation. In Proc. custom integrated
circuits (pp. 495-498).

10. DeHon, A. (1996). Reconfigurable architectures for general-
purpose computing. Master’s thesis, Massachusetts Institute
of Technology.

11. Grant, D., et al. (2009). Rapid synthesis and simulation of
computational circuits in an MPPA. In Proc. FPT (pp. 151-
158).

12. Lewis, D. (1991). A hierarchical compiled-code event-driven
logic simulator. IEEE Transactions on CAD, 10(6), 726-737.

13. Snyder, W. (2007). Verilator-3.652. Available: www.veripool.
com/verilator_doc.pdf.

14. Greaves, D. (2000). A verilog to C compiler. In Proc. rapid
system prototyping (RSP) (pp. 122-127).

15. Ching, J. (2007). VBS project homepage. Available: www.
flex.com/~jching/.

16. Symphony EDA (2008). VHDL simili v3.1 whitepaper.
Auvailable: www.symphonyeda.com/white_paper.htm.

17. Soulé, L., & Blank, T. (1988). Parallel logic simulation on
general purpose machines. In DAC (pp. 166-171).

18. Bailey, M. L., et al. (1994). Parallel logic simulation of VLSI
systems. ACM Computing Surveys, 26(3), 255-294.

19. Webber, D., & Sangiovanni-Vincentelli, A. (1987). Circuit
simulation on the connection machine. In DAC (pp. 108-
113).

20. Li, L., et al. (2003). DVS: An object-oriented framework for
distributed Verilog simulation. In Proc. parallel and distrib-
uted simulation (p. 173).

21. Dong, W., et al. (2008). WavePipe: Parallel transient sim-
ulation of analog and digital circuits on multi-core shared-
memory machines. In Proc. design automation conference
(pp. 238-243).

@ Springer

http://www.veripool.com/verilator_doc.pdf
http://www.veripool.com/verilator_doc.pdf
http://www.f/lex.com/~jching/
http://www.f/lex.com/~jching/
http://www.symphonyeda.com/white_paper.htm

J Sign Process Syst

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Li, T., et al. (2004). Design and implementation of a parallel
Verilog simulator: PVSim. In Proc. VLSI design (pp. 329—
334).

Jaeger, J. (2007). Virtually every ASIC ends up an FPGA.
Available: www.eetimes.com/showArticle.jhtml?articleID=
204702700.

Cadence (2006). Incisive enterprise palladium series with in-
cisive XE software (datasheet).

Mentor Graphics (2008). VStationPRO high-performance
system verification (datasheet).

Goering, R. (2004). Cadence touts emulation/acceleration
performance. Available: www.eetimes.com/showArticle.
jhtml?articleID=51200173.

Mei, B, et al. (2003). ADRES: An architecture with tightly
coupled VLIW processor and coarse-grained reconfigurable
matrix. In Proc. field-programmable logic and applications
(pp. 61-70).

Goldstein, S. C., et al. (1999). PipeRench: A coprocessor for
streaming multimedia acceleration. In ISCA (pp. 28-39).
Mirsky, E., & DeHon, A. (1996). MATRIX: A reconfigurable
computing architecture with configurable instruction distrib-
ution and deployable resources. In Proc. FPGAs for custom
computing machines (FCCM) (pp. 157-166).

Mishra, S. C., & Goldstein, M. (2007). Virtualization on the
Tartan reconfigurable architecture. In FPL (pp. 323-330).
Ebeling, C., et al. (1996). RaPiD—reconfigurable pipelined
datapath. In Proc. field-programmable logic and applications
(pp- 126-135).

Caspi, E., et al. (2000). Stream computations organized for
reconfigurable execution (SCORE). In FPL (pp. 605-614).
Halfhill, T. R. (2006). Ambric’s new parallel processor.
Microprocessor Report, 20(10), 19-26.

Tilera (2007). Tile64 processor product brief. Available:
www.tilera.com/pdf/ProBrief_Tile64_Web.pdf.

Perinkulam, A. S. (2007). Logic simulation using graph-
ics processors. Master’s thesis, University of Massachusetts
Ambherst.

deLorimier, M., et al. (2006). GraphStep: A system architec-
ture for sparse-graph algorithms. In FCCM (pp. 143-151).
Karypis, G., et al. (1999). Multilevel hypergraph partitioning:
Applications in VLSI domain. /IEEE Transactions on VLSI,
7(1), 69-79.

Marquardt, A., et al. (2000). Timing-driven placement for
fpgas. In Proc. field programmable gate arrays (pp. 203-213).
Betz, V., & Rose, J. (1997). VPR: A new packing, placement
and routing tool for FPGA research. In Proc. FPL (pp. 213—
222).

Srivastava, M. B., & Potkonjak, M. (1995). Optimum and
heuristic transformation techniques for simultaneous opti-
mization of latency and throughput. /[EEE Transactions on
VLSI, 3(1), 2-19.

Altera Corporation (2006). Benchmark designs for the quar-
tus university interface program (QUIP).

Altera Corporation (2007). Stratix III device handbook.
Agrawal, B., & Sherwood, T. (2006). Guiding architectural
SRAM models. In Proc. computer design (ICCD) (pp. 376—
382).

ARM (2009). Synthesizable ARM7TDMI™ 32-bit RISC
performance. Available: www.arm.com/products/CPUs/
ARM7TDMIS.html.

Smecher, G., et al. (2009). Self-hosted placement for mas-
sively parallel processor arrays. In Proc. FPT (pp. 159-166).

@ Springer

David Grant
Engineering from the University of Waterloo, Canada in 2002
and 2004. He worked for a year at SlipStream Data, Inc.
before starting his PhD. He is currently a PhD candidate at the
University of British Columbia. His research interests include
reconfigurable computing, massively parallel processing, and
automatic compilation techniques for such systems.

received his BASc and MASc in Computer

Graeme Smecher completed his M. A. Sc. (honours, 2006) at
Simon Fraser University, and graduated with a Master’s in En-
gineering from McGill University (2009). His research interests
include non-linear and statistical signal processing, with a focus
on switching amplification. He currently consults for a cosmology
laboratory at McGill University, where he designs FPGA-based
readout electronics and firmware for the next generation of
microwave telescopes.

http://www.eetimes.com/showArticle.jhtml?articleID=204702700
http://www.eetimes.com/showArticle.jhtml?articleID=204702700
http://www.eetimes.com/showArticle.jhtml?articleID=51200173
http://www.eetimes.com/showArticle.jhtml?articleID=51200173
http://www.tilera.com/pdf/ProBrief_Tile64_Web.pdf
http://www.arm.com/products/CPUs/ARM7TDMIS.html
http://www.arm.com/products/CPUs/ARM7TDMIS.html

J Sign Process Syst

Guy G. F. Lemieux received the B.A.Sc. degree from the
Division of Engineering Science at the University of Toronto,
and the M.A.Sc. and Ph.D. degrees in Electrical and Computer
Engineering at the University of Toronto, Toronto, ON, Canada.

In 2003, he joined the Department of Electrical and Computer
Engineering at The University of British Columbia, Vancouver,
BC, Canada, where he is now an Associate Professor. He is co-
author of the book Design of Interconnection Networks for Pro-
grammable Logic (Kluwer 2004). His research interests include
FPGA architectures, computer-aided design algorithms, VLSI
and SoC circuit design, and parallel computing.

Dr. Lemieux was a recipient of the Best Paper Award at
the 2004 IEEE International Conference on Field-Programmable
Technology.

Rosemary Francis completed her PhD in 2009 at the Univer-
sity of Cambridge. She developed a novel FPGA architecture
with time-division multiplexed interconnect for the effective im-
plementation of communication-centric systems, exploring both
hard and soft network-on-chip designs. She is currently managing
director of Ellexus Ltd, a software business serving the semicon-
ductor implementation industry.

@ Springer

	Rapid Synthesis and Simulation of Computational Circuits in an MPPA
	Abstract
	Introduction
	Related Work
	Execution Model and Architecture
	Idealized Ambric
	RVEArch

	RVETool Flow and Algorithms
	Parallelize
	Combine
	Placement
	Schedule
	Schedule---Routing
	Schedule---Tail-to-Head Optimization
	Simulation

	Experimental Results
	Synthesis and Simulation Speed
	Platform Scalability and Density
	CAD Tool Efficiency
	Longest-Path and Resource Usage Analysis
	Tool Scalability to Large Circuits

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

