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Abstract—A computational circuit is custom-designed hardware
which promises to offer maximum speedup of computationally
intensive software algorithms. However, the practical needs to
manage development cost and many low-level physical design
details erodes much of the potential speedup by distracting
attention away from high-level architectural design. Instead,
designers need an inexpensive, processor-like platform where
computational circuits can be rapidly synthesized and simulated.
This enables rapid architectural evolution and mitigates the risk
of producing custom hardware. In this paper we present a
tool flow (RVETool) for compiling computational circuits into
a massively parallel processor array (MPPA). We demonstrate
the CAD runtime is on average 70x faster than FPGA tools, with
a circuit speed 6.4x slower than FPGA devices. Unlike the fixed
logic capacity of FPGAs, RVETool can trade area for simulation
performance by targeting a wide range of processor cores.

I. INTRODUCTION

To realize performance gains in many computationally in-

tensive software algorithms, designers are implementing them

in hardware as computational circuits. The end goal is often to

fabricate an ASIC to achieve the highest possible performance.

This is being done for a wide range of algorithms, including

molecular dynamics, weather simulation, video processing,

financial modeling, rendering, and nuclear simulation. Com-

putational circuits are word-oriented and are often very large,

requiring millions of gates.

Creating a computational circuit can be challenging and

slow. A designer must repeatedly synthesize and simulate

the circuit while debugging, improving, and verifying the

design. A correct design is important for avoiding costly

ASIC re-spins. Many such circuits are also modelled in C

or Matlab to ensure algorithmic correctness before the HDL

is even attempted, further increasing design time. As circuit

size increases, it takes longer to synthesize and simulate,

reducing designer productivity, increasing time-to-market, and

worsening the risk of missing a costly bug.

There are currently no solutions on the market which

simultaneously address both synthesis speed and simulation

speed. Very high synthesis speeds (on the order of seconds)

are achieved with compiled-code tools like Synopsis VCS

by translating HDL into compiled C. Although these tools

offer best-in-class simulation speed, simulating a hardware

design on a high-performance processor still yields emulation
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Fig. 1: Architecture overview

rates of 1MHz or lower. Parallel simulation may help, but

simulation is still dominated by communication costs: one of

the highest speedups reported is 13x for 32 processors [1].

Slow simulation speeds are a major obstacle for using these

tools to design computational circuits.

In contrast, fast simulation speeds of 100 MHz+ can ob-

tained with FPGA devices. However, the synthesis time to map

HDL to an FPGA can take hours or even days. Furthermore,

if the HDL does not fit in the target FPGA, designers must

resort back to simulation, buy a bigger device (if one exists),

or partition the circuit into multiple FPGAs for testing. Slow

synthesis and a strict capacity limit are major obstacles for

using FPGAs to design computational circuits.

To address both the synthesis and simulation speed prob-

lems, we propose to compile Verilog to run on a massively par-

allel processor array (MPPA). Our tool flow, RVETool (Rapid

Verilog Execution Tool), quickly synthesizes word-oriented

computational circuits for RVEArch, our MPPA optimized for

Verilog execution. RVETool can also target other MPPAs, such

as Ambric Am2045 by Nethra Imaging Inc., at the expense of

simulation speed.

The RVEArch architecture, first presented in [2], is an

array of processors that uses high-speed pipelined intercon-

nect and time-multiplexing to achieve a softer capacity limit

where capacity can be traded for performance. The key to

accelerating simulation is more than just using additional

processors; the low-latency, high-bandwidth NoC in many

MPPAs is necessary to overcome the communication bot-
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tlenecks in traditional parallel simulators. The pipelined and

deterministically scheduled interconnect in RVEArch further

enables it to efficiently emulate a circuit.

The objective of the toolflow, which is the topic of this

paper, is to map a circuit onto RVEArch quickly and effi-

ciently, resulting in high-speed emulation on the architecture.

The tool keeps the circuit at a behavioural level to leverage

the coarseness of the underlying architecture and improve

synthesis speed. In this paper, we demonstrate that our tools

can trade implementation area for speed in a coarse-grained

MPPA, a tradeoff first shown for a fine-grained architecture

by VEGA [3]. For our benchmarks, we automatically scale

circuits from 1 to 256 processors to cover a range of speed

versus area solutions that is unmatched by commercial FPGAs.

This soft capacity limit is essential for enabling the design

of large complex computational circuits. We also show that

larger circuits can better utilize more processor cores than

small circuits. Hence, we anticipate that much larger circuits

can scale to efficiently utilize thousands of processors.

Having a fast Verilog synthesis and simulation flow removes

the need for a C or Matlab implementation in the design

flow, further saving time. Algorithmic correctness can be

demonstrated with behavioural Verilog, laying the groundwork

for the final RTL implementation in Verilog.

The overall research goals of this work are to provide a

new platform for synthesizing and simulating computational

circuits. This platform should improve upon FPGAs by offer-

ing 10x faster synthesis, 10x density, and at least 1

10
th of the

simulation performance. Although the architecture and tools

are still in their infancy, we have already exceeded these goals.

This paper makes the following contributions:

1) It introduces a tool flow to quickly synthesize Verilog

for an MPPA architecture.

2) It shows the platform (tools+architecture) can achieve

fast synthesis and fast simulation.

3) It demonstrates the tools can automatically scale a circuit

to trade area for performance.

Section II presents related work on accelerating circuit sim-

ulation. Section III provides a brief overview of our execution

model and architecture, and Section IV details the tool flow for

the architecture. We present the results of several experiments

in Section V, and conclude in Section VI.

II. RELATED WORK

There are several general techniques for accelerating circuit

simulation: compiled-code simulators, parallel simulators, and

hardware-based accelerators.

Compiled-code simulators translate a circuit into a fixed

program for native execution on a fast CPU. Compilation

is very fast compared to traditional FPGA CAD flows be-

cause no placement or routing is required. Compilation can

remain at the behavioural level (rather than gate level) for

additional speed, and can also be combined with event-driven

simulation [4] to avoid updating parts of a circuit that do

not change. However, the resulting program is single-threaded

so the final simulation speed is still slow (on the order of

1MHz). Verilator [5], VTOC [6], VBS [7], Symphony’s VHDL

Simili [8], Synposys VCS, and Cadence NC-Verilog are all

examples of compiled-code simulators.

Parallel simulators are concerned with the same funda-

mental task: simulating a circuit concurrently on as many

processors as possible. Parallel gate-level simulation is well

researched [9], [10], [11], [12], [13]; speedups are usually

less than 10 due to high inter-processor communication costs.

PVSim [14] is a combined compiled-code and parallel simu-

lator for up to 8 CPUs implemented with MPI. Compared to

FPGAs, parallel simulators are up to six orders of magnitude

slower [15], [16], making them prohibitive for verification.

For parallel simulation with thousands of processors, a low-

latency, high-bandwidth communication network is required.

Hardware based accelerators, like Cadence’s Palladium [16]

and Mentor Graphics VStation Pro [17], use processors or

FPGAs for acceleration. These systems require a complete

gate-level synthesis and emulate a design at roughly 2MHz.

Although this is slow compared to an FPGA, they can handle

very large circuits. These simulators are also large and expen-

sive: ranging in size from a mini-tower computer to a rack,

they cost 0.4 to 10 million dollars [18]. Slow synthesis and

prohibitive cost are significant barriers to using these devices.

Coarse-grain reconfigurable arrays (CGRAs) and massively

parallel processor arrays (MPPAs) are potentially well-suited

for speeding up simulation of computational circuits. As

a result, our architecture bears great resemblance to these

architectures. A wide range of CGRAs exist (e.g. ADRES [19],

PipeRench [20], Tartan [21], RaPiD [22], SCORE [23] ) and

MPPAs (e.g., Ambric [24], Tilera (based on RAW) [25]).

However, in contrast to these existing architectures, we offer

several improvements for increased efficiency of simulating

computational circuits: no resources are used to implement a

C or C-like programming model (e.g., no branch instructions

or global memory), efficient implementation of logic gates like

multiplexers (in the ALU) and bit-level signals (in a PLA), and

concurrent execution of routing and processing tasks.

GPUs are often considered for high-performance comput-

ing, but current GPUs are designed for SIMD operations and

have a large global memory optimized for coherent (struc-

tured) memory accesses. For circuit simulation, each core must

execute a different program, so a true MIMD architecture is

required. Poor core-to-core communications and high latencies

from using unstructured data accesses throttle any potential

speedups from a GPU [26].

III. OUR EXECUTION MODEL AND ARCHITECTURE

Computational circuits will be implemented in Verilog, or

translated into Verilog from a high-level language like C.

Rapid simulation requires a highly parallel, word-oriented

platform with very low latency network-on-chip interconnect.

The fast interconnect is critical because it must compete with

the communication speed of the bare wires in the circuit it is

emulating.

Our approach to implementing a computational circuit can

be applied to almost any MPPA which supports processor-
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to-processor messaging, such as Ambric’s. We view each

processing element (PE) as containing a router and a core. In

RVEArch they are separate hardware entities; in our Ambric

implementation a single SRD implements both. Both are time-

multiplexed and both follow a pre-programmed static schedule.

The router is a 5x5 crossbar with registered outputs. Long-

distance (pipelined) communication pathways are created by

routing data through several PEs.

Using this time-multiplexed approach, the user clock is

different than the system clock. Each PE router and core

contain a schedule with exactly n instructions (the schedule

length) to be executed in an infinite loop to implement the

overall circuit. One pass of this schedule is equivalent to

one user clock cycle, so the user clock has a frequency of
1

n
· 1 GHz on RVEArch.

These pre-determined schedules mean the entire architecture

is deterministic. This is similar to the GraphStep execution

model [27]. It is the responsibility of the tools to schedule

the code for each processor and for each router so that

data is always in the correct place at the correct time. Non-

deterministic delays, such as waiting for input data from an

external device, must be handled at the user-circuit level. We

are currently assuming the circuit uses a single clock domain.

We believe this greatly simplifies the design of computational

circuits, which is also the objective of this platform. Multiple

clock domains remains an issue for future work.

A. Ambric Implementation

We have implemented this execution model on a slightly

modified “idealized” Ambric architecture. We assume a 1 GHz

clock instead of the 300 MHz clock used in the Am2045,

and assume a single-cycle communication delay between

neighbouring Ambric SRD processors. We also assume that

every instruction executes in a single cycle, and that sufficient

memory exists to hold the entire schedule.

A single SRD implements both the router and core of our

execution model. It uses lookup tables to determine which

neighbouring SRDs to write to, then read from, then which

core instruction to execute to complete a system clock cycle.

Ambric uses blocking registers, requiring that all reads and

writes are matched; our deterministic schedule gives us exactly

this, so there is no risk of deadlocking the architecture.

In Section V we have used the output of RVETool to

estimate the native-compiled code schedule length of each test

circuit on this idealized architecture. The schedule length is

calculated by summing the maximum number of reads and

writes required across all PEs in each timeslot, and adding

one to each total for the actual instruction execution.

B. RVEArch

RVEArch, shown in Fig. 1, distinguishes itself from other

MPPAs in several ways:

• It uses very low-latency, very high-bandwidth intercon-

nect to connect only neighbouring PEs.

• It is intended to scale up to 100 × 100 PEs on a single

chip by using a skew-tolerant clock distribution network.
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Fig. 2: RVEArch PE core

• It contains a dedicated router.

• It contains a PLA to implement bit-level operations.

RVEArch uses a global clock, but PEs communicate only

over short distances. Thus, while local skew between all

neighbouring PEs needs to be small and bounded, global skew

requirements are relaxed and permit the use of a low-energy

clock distribution network. Since all PEs use the same clock

source, the neighbours will still operate in synchrony. With

this design, the architecture is readily scalable to high clock

frequencies. Results presented in this paper assume a 1 GHz

clock is realizable in 65nm.

The RVEArch processor core is shown in Fig. 2. It is a

simple processor with time-multiplexed ALU and data mem-

ory D to implement user-level circuit behaviour. There are

no branch instructions, but conditional moves and multiplex

(select) functions are supported. Node memory R is used to

temporarily store ALU results—emulating a wire for data used

in the same user clock cycle and a flip-flop for data needed in

the next user cycle. Likewise, node memory X is used by the

router to store data destined for this core. There are also four

buffered, direct links to adjacent PE cores (node memory N ,

S, E, and W ) which are used as a lower-latency alternative

to the router for neighbour-only connections. These links are

enabled in RVEArch for all results presented in this paper.

The dedicated router in each PE allows all five router

outputs to be assigned in a single cycle. This is a significant

advantage over the Ambric implemetnation where communica-

tion is done serially and inline with the PE core computation.

It is a key feature to keep communication costs low.

All buses are 32 bits wide, the node memory X and R are

each 16x32-bit, the data memory is 8 kB (2048x32-bit), the

remaining node memories are 4x32-bit. We assume all ALU

operations including multiply are single-cycle.

Computational circuits may also contain single-bit (e.g. con-

trol) signals that map poorly to word-oriented processors. The

PE core in Fig. 2 shows a PLA that is not time-multiplexed,

which generates these signals. We are investigating the imple-

mentation of the PLA, so it has been omitted from all results

in this paper. Instead, the tools currently implement single-bit

logic using ALU instructions. (Few of our benchmark circuits

use bit-wide signals.)
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IV. OUR TOOLFLOW - RVETOOL

This section introduces RVETool, a tool flow which maps

circuits onto RVEArch and other MPPA architectures. The

input is Verilog circuit, and the output is a bitstream for the

architecture or a simulator. The input circuit is also allowed

be many disjoint circuits, provided a common clock is used.

The tools use a graph representation of the circuit where

graph nodes are circuit operations and graph edges are commu-

nication. The tool flow objective is to partition the circuit into

clusters of executable code, one for each PE, and then schedule

data movement and order code execution to reproduce the

behaviour of the original circuit. At all steps, decisions favour

minimizing the length of the overall schedule for the fastest

possible simulation.

To test different parameters, an architecture file is used to

specify the number of PEs, the width of buses, the size of

each memory, and the resources in each PE (e.g., if the PE

can perform I/O). These parameters act as constraints in the

tool flow. In this paper we only vary the number of PEs.

RVETool is separated into five sub-tools: Parallelize, Com-

bine, Place, Route, and Schedule. Additionally, a Simulate

step is used to mimic our target architecture. Each step is

presented in the following sections.

A. Parallelize

The Parallelize tool parses the Verilog source and con-

structs a graph representation of the circuit (including the

control and data flow) at a behavioural level. It then performs

graph legalization for execution on the target architecture.

The tool uses a modified version of Verilator [5] for parsing

and graph construction. We allow Verilator to perform several

processing steps and simple optimizations like module elab-

oration, dead code elimination, and constant folding. It also

converts “free” hardware operations like bit-shifts or word-

length truncations into shift and mask instructions. Verilator

would normally generate a serialized C++ program for com-

pilation and execution on the host processor, but we terminate

it before it begins to serialize the graph.

The graph legalization is similar to technology mapping.

Many operations in the Verilator output (e.g., the arithmetic

and logic operations) map directly into PE instructions and are

trivially converted. There are, however, other required graph

transformations:

• Multiple writes to a single variable (a register, wire, or

variable in the source Verilog) are mapped to a chain

of multiplexers that feed a single write operation. This

allows the computation of the written value to be (poten-

tially) distributed among processors, while ensuring only

one instance of the final value exists.

• Circuit inputs and outputs are mapped into I/O load and

store operations. These operations are later placed on PEs

with the I/O resource by the Place tool.

• User-instantiated memories, represented as array opera-

tions in the behavioural graph, are mapped to PE memory

operations (load and store). The Combine tool ensures all

operations on a user memory reside in the same PE.

• Any node fanning out to a register is flagged as “end

of cycle”. If the node also fans out to a non-register it

is duplicated first. All registers are then replaced with

wires. This flag causes special treatment in the scheduler

to recreate the expected clock-edge register behaviour.

B. Combine

The Combine tool groups operations in the graph into code

clusters for each PE. Combine is similar to clustering in CAD

tools: wide nets and heavy communication nets are absorbed

into a single cluster and kept off the communication network.

It is this ability to combine code to varying degrees that trades

off area (PEs) for performance and achieves a soft capacity

limit. This is demonstrated in Section V-B.

The tool uses hMETIS [28] to partition the graph using

recursive bisection. To guide hMETIS, all nodes are assigned

a weight of 1, except constant inputs which are assigned a

weight of 0 so they can be placed in any cluster for free.

All edges are assigned a weight equal to the bit-width of the

variable on that edge. Load and store operations from data

memory are artificially connected with high edge weights to

ensure they will not be separated.

C. Placement

The Place tool assigns code clusters to physical PEs while

trying to keep the critical path as small as possible.

The problem is similar to the FPGA CAD placement prob-

lem, so we use VPR’s [29] timing-driven annealing algorithm

with a different cost function. The pipelined routing network in

RVEArch means the delay between two nodes is equal to the

Manhattan distance, not a propagation delay along a wire as in

conventional CAD. The time-multiplexed PE cores introduce

an additional level of complexity not found in FPGAs: two

nodes within the same PE may be scheduled in timeslots far

apart, causing additional critical-path delay. Unfortunately this

delay is not known until scheduling is complete, so at this stage

we assume it is zero.

The delay in clock cycles between two nodes i and j is:

delay(i, j) =







1 i, j placed in same PE

2 i, j placed in adjacent PEs

3 + mh(i, j) otherwise

Where mh(i, j) is the Manhattan distance between the PEs

of i and j. For nodes in the same PE, the PE core must execute

an instruction to produce the next value. For adjacent PEs, the

value must be produced and communicated over a neighbour

link. For distant PEs, there is a two cycle penalty to access

the pipelined routing network, plus a number of cycles equal

to the Manhattan distance to traverse it. The delay(i, j) is

used with a slack and criticality computation to calculate the

timing cost of the circuit, which is part of the placement cost

function. The slack, criticality, and timing cost computations

are the same as in VPR [29].

In addition to timing cost, the VPR placement cost function

uses a wiring cost, which we compute differently than VPR:

wiring cost =
∑

∀i,j∈circuit

mh(i, j)
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i.e., the Manhattan distance from every source to every sink.

Since all communication links are time-multiplexed, the Man-

hattan distance prioritizes latency (performance) over intercon-

nect utilization. This is different from traditional bounding-

box minimization [30], where limited physical wiring forces

wirelength to be more important than delay.

The final placement cost function is similar to VPR’s:

∆C = λ · ∆timing cost

previous timing cost

+(1− λ) · ∆wiring cost

previous wiring cost

+penalty

The variable penalty is used to discourage illegal placements

by adding 1000 to the cost each time memory size is exceeded,

unavailable PE resources are used, or too few/many PEs are

used. λ is used to place more (or less) emphasis on the timing-

driven aspects of placement, and for this work λ = 0.9.

At the end of placement, the Place tool packs any user-

instantiated memories into single PEs, ensuring they do not

overlap. The problem of splitting a large user memory across

multiple PEs is left for future work.

D. Route

After placement, the Route tool routes data between all

communicating PEs (ignoring internal PE communications).

The routing problem is different from conventional CAD flows

because the routing network is time-multiplexed, so the router

must make temporal as well as the conventional spatial routing

decisions. RVEArch also contains two routing resources: PE

routers for routing data over any distance (requiring 2 + h

cycles, where h is the number of hops), and single-cycle lower-

latency links for communicating between adjacent PEs.

For long-distance routes, the tool uses a simple horizontal-

then-vertical routing strategy, routing each path without con-

sidering congestion or collisions. In practice, we find there

is little routing contention over space and time, and that the

router can operate adequately without considering congestion

at all. The Schedule tool resolves any routing conflicts by

introducing a “hold slot” and pushing back the conflicting

route to a later timeslot.

For neighbour communication, the router marks the required

neighbour-neighbour link, again ignoring congestion and con-

flicts. The Schedule tool assigns the link usage to a timeslot

and directs the value to a specific offset of the N , S, E, or W

node memory, or may delay the producing node if resources

are unavailable.

E. Schedule

The Schedule tool orchestrates the overall execution of

code and movement of data to reproduce the behaviour of

the original circuit. It assigns each instruction to a timeslot in

a PE core, and assigns each route-hop to a timeslot in the PE

routers, resolving all routing collisions along the way.

The main loop of the Schedule tool is shown in Algo-

rithm 1. The scheduler begins at timeslot = 1 and assigns

as many nodes as it can across all PEs in that timeslot. It then

moves on to the second timeslot, and so on. This timeslot-

oriented approach ensures the scheduler is fast and is always

making forward progress. NOP instructions are inserted in all

timeslots that do not contain a circuit node after scheduling.

Algorithm 1 Schedule Tool Main Loop

1: ready queue← all nodes flagged “end of cycle” or nodes

with no parent

2: timeslot← 1
3: loop

4: if is empty(ready queue) then

5: if is empty(next queue) then

6: return /* Scheduling complete */

7: end if

8: ready queue← next queue

9: timeslot← timeslot + 1
10: end if

11: node← dequeue(ready queue)
12: if not is schedulable(node) then

13: enqueue(next queue, node)
14: continue /* Restart loop */

15: end if

16: schedule routes(node)
17: node.timeslot← timeslot

18: for all node.children do

19: child.sched parent← child.sched parent + 1
20: if child.sched parent = |child.parents| then

21: enqueue(next queue, child)
22: end if

23: end for

24: end loop

The is schedulable(node) function checks whether node is

schedulable in the current timeslot. It verifies that all of the

following are true:

• The code position at timeslot is empty in the PE

• node may be scheduled as early as timeslot

• All PE core resources required by node are available

• All PE router resources required by the output of node

are available for the first-hop of the route

The schedule routes(node) function assigns route-hops to

timeslots in the PE routers. When a routing conflict arises,

a router holds the value for as many timeslots as necessary

for a free timeslot to be found in the next hop. When each

route arrives at the destination PE, the destination node(s)

are marked with the arrival timeslot; those nodes cannot be

scheduled before the arrival timeslot.

At the end of scheduling, memory accesses (to node mem-

ory and data memory) are assigned specific offsets using a

greedy approach. The code for each router and core is finally

packed into a single output bitstream.

F. Simulation

The bitstream is given to a compiled-code architectural

simulator to ensure functional correctness, or given to a
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statistics tool to extract useful performance data. All the results

for our architecture presented in this paper came from the

statistics tool after a complete pass through the toolflow. The

simulation tool runs sequentially on a PC, but uses its own

scheduler to emulate parallel execution of the bitstream. The

simulation accepts input stimulus from vector waveform files

and writes output waveform files. We verified the correctness

of our entire toolflow by simulating the same Verilog circuit

in Quartus II and comparing output waveforms.

V. EXPERIMENTAL RESULTS

In the following sections, we evaluate RVETool and

RVEArch. We begin by examining their overall ability to

quickly synthesize and simulate computational circuits com-

pared to traditional FPGA tools and software simulators. Next,

we evaluate their ability to scale a circuit across a number

of PEs, to better exploit parallelism than software simulators.

Finally, we compare computer-generated bitstreams with hand-

tuned ones, to explore the performance achievable by further

refining our CAD tools.

To evaluate each of these properties, we introduce several

benchmarks written in Verilog:

• The chem, dir, honda, mcm, pr, and wang bench-

marks [31] are dataflow– and DSP-style non-pipelined

computational circuits described in behavioural Verilog.

• AES is a byte-oriented implementation taken from Al-

tera’s QUIP suite [32]. It was modified in several places

to use lookup tables instead of bit-level logic operations.

• Motion Estimation (ME) is an image-processing algo-

rithm described in [2]; a block R of 16x16 pixels is swept

against a 32x32-pixel reference image M , searching for

the displacement which produces the lowest sum of

absolute differences (SAD).

• FFT8 and FFT16 are 8- and 16-point complex FFTs

respectively, implemented using a radix-2, decimation-

in-time decomposition.

Of these benchmarks, ME and FFT16 are the largest,

involving 3609 and 1192 circuit nodes, respectively. The other

benchmarks’ complexity varies from 90 nodes (wang) to 553

nodes (chem). A node is roughly equivalent to one arithmetic,

logical, or routing operation up to 32 bits in size.

A. Synthesis and Simulation Speed

We first consider the performance of the toolflow and

architecture. Table I shows both the time required to synthesize

Verilog into a format suitable for simulation, as well as the

corresponding simulation speeds for several platforms:

• Verilator (abbreviated Vltr), translates Verilog into a C++

program run on a 2.8 GHz Intel P4 PC,

• ModelSim 6.3d (abbreviated MS) run on the same PC,

• Idealized Ambric (abbreviated Amb, see Section III-A)

at 1 GHz, code estimated from output of RVETool,

• Altera Stratix-III FPGA (EP3SE80F, speed -2; abbrevi-

ated Stx-III), using Quartus II 9.0, and

• RVEArch (abbreviated RVE) at 1 GHz, code generated

by RVETool.

Fig. 3 graphs the simulation speed results. In all cases,

the FPGA implementation runs faster than the alternatives,

but takes a much longer time to synthesize. The RVEArch

provides the fastest simulation results of the software-based

alternatives, with a synthesis time comparable to Verilator. The

Idealized Ambric results show that RVETool can generate fast,

scalable code for other MPPA architectures as well. Not only

do the software platforms exhibit the poorest performance,

they demonstrate poor scalability as the larger circuits tend

to run more slowly. In comparison, RVEArch and Ambric

maintain a relatively constant simulation performance as the

circuit size increases.

The fast synthesis speed of RVETool is a combination of:

targeting a coarse-grained MPPA (less work for the tools),

not synthesizing to gates (less work for the tools), and using

algorithms that allow quality of results to be balanced against

runtime.

Our tools presently exhibit two anomalous results. First, the

AES circuit optimizes well to memory-based lookup tables,

resulting in high performance on an FPGA and in ModelSim.

However, Verilator does not optimize AES as aggressively,

resulting in poorer performance in our architecture. Second,

the long build time of the ME circuit is caused by our

conversion script taking 18 seconds to convert Verilator’s

nested tree output into a graph. The converter is written in

an interpreted language (PHP) and does many complex array

operations. This time could be significantly reduced by using

a non-interpreted language with static memory allocation.

From Table I, at peak performance the RVE average number

of PEs used is 54 and the average density is 18 ALMs/PE. We

roughly estimate one PE is the silicon-area equivalent of 80

Stratix-III ALMs. The tools can scale the implementation to

any number of PEs, and Table II shows the simulation speed

results of our architecture at a target density of 80 ALMs/PE

(meaning that the circuit is implemented in the same silicon

area as an FPGA). The average speed is slightly less than

1/10th that of the FPGA. Continuing the scaling to our target

of 10x FPGA density (800 ALMs/PE), the average speed is

3.9 MHz. At this density, all circuits smaller than ‘FFT8’ are

implemented on a single PE. While this speed is not ideal, it
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TABLE I: Synthesis/compile time, simulation speed, and density comparisons

Synthesis/compile time (s) Best simulation speed (MHz) Density at best speed

Circuit Vltr MS Stx-III
Amb,

Vltr MS Amb Stx-III RVE
Stx-III RVE Ratio

RVE (ALMs) (PEs) (ALMs/PE)

AES 3 1 148 4 2.61 0.48 4.8 559 29.9 191 56 3.4

pr 3 1 228 2 2.36 0.016 2.7 165 42.9 382 16 23.9

wang 3 1 182 2 2.33 0.015 8.0 158 43.5 442 16 27.6

honda 3 1 202 2 2.19 0.027 14.0 237 24.8 547 28 19.5

mcm 3 1 219 2 2.23 0.014 6.7 222 40.5 609 36 16.9

dir 3 1 372 5 1.66 0.012 8.5 183 15.1 1084 56 19.4

FFT8 3 1 207 4 1.76 0.058 13.1 121 63.8 1974 160 12.3

chem 4 1 477 3 0.49 0.013 12.5 176 26.8 2278 48 47.5

ME 3 1 277 27 0.15 0.001 12.0 337 33.0 3018 236 12.8

FFT16 3 1 790 8 0.73 0.022 4.4 237 42.6 4678 140 33.4

Geo. Mean 3 1 272 3.9 1.27 0.019 7.7 218 33.9 954.4 54 18.0

FFT8-human 167 64
ME-human 250 64

demonstrates that our tools can fold a design in space.

B. Platform Scalability

In this section, we demonstrate the ability of the toolflow to

trade the number of available processing elements (PEs) with

the effective user clock rate (simulation speed), avoiding the

hard capacity limits imposed by commercial FPGAs.

Fig. 4 shows the simulation speed as the size of the array

ranges from 1 PE (1 × 1) to 256 PEs (16 × 16). When a

small number of PEs are used, a nearly linear relationship

exists between the benchmark performance and number of

PEs. Outside the linear region, each benchmark exhibits an

optimum PE allocation where its performance is maximal.

Beyond this maximum, performance is limited by inter-PE

communications and the use of additional PEs is detrimental.

As the number of PEs increase, PE utilization decreases

from 100% to below 5% in the 256-PE case. At 256 PEs,

on average, 81% of the idle (NOP) instructions are due to

the abundance of compute resources in comparison to the

circuit size; the schedule cannot be smaller than the critical

path. Waiting for data from inter-PE communications is the

remaining 19%. At peak performance the utilization ranges

from 15% to 70%, with no correlation to circuit size.

Of the benchmarks shown in Fig. 4, Motion Estimation

TABLE II: Simulation speed at 80 and 800 ALMs/PE density

80 ALMs/PE 800 ALMs/PE

Circuit ALMs
Req’d Speed Req’d Speed
PEs (MHz) PEs (MHz)

AES 191 4 6.6 1 1.9
pr 382 4 19.7 1 7.4
wang 442 4 26.8 1 8.3
honda 547 8 20.1 1 4.2
mcm 609 8 25.6 1 3.8
dir 1084 12 8.4 1 1.3
FFT8 1974 28 39.0 4 8.7
chem 2278 28 21.9 4 5.2
ME 3018 36 8.4 4 1.1
FFT16 4678 60 27.8 8 6.1

Geo. Mean 954.4 12.4 17.7 1.9 3.9

1 10 100

Number of Processors

0

10

20

30

40

50

60

S
im

u
la

ti
o
n
 S

p
e
e
d
 (

M
H

z
)

ME

FFT16

FFT8

AES

chem

dir

mcm

pr

wang

honda

Fig. 4: Simulation speed for all circuits for 1-256 processors

(ME) scales to large processor counts because it is a large cir-

cuit and it exhibits chiefly nearest-neighbour communications.

FFT16 also scales well, although it exhibits more complex

communication patterns. In all cases, a benchmark’s peak

speedup is strongly correlated with its size: the smallest (wang

and pr) show a peak performance at the fewest PEs. Real

computational circuits would likely be much larger than any

of these small benchmarks, so we anticipate the architecture

is scalable far beyond 256 cores.

C. CAD Tool Efficiency

The simulation speed of each benchmark is determined by

the benchmark itself, the CAD tools, and the architecture. To

investigate how well our toolflow maps code onto each PE, we

compare the scalability of automatically-generated and hand-

written code for two of the larger benchmarks (FFT8 and ME).

Fig. 5 shows the scalability of each implementation, normal-

ized to their single-core performance. The hand-written ME

benchmark scales superlinearly on this architecture because

the distributed implementation is able to avoid memory loads

and stores by instead sending results to neighbouring PEs for

processing. This figure demonstrates that RVEArch is able
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to scale aggressively, and that RVETool is able to track this

scalability curve up to a certain point.

Fig. 5: Performance of human- and machine-generated bitstreams

At peak performances shown, FFT8 and ME show perfor-

mance gaps of roughly 2.6x and 7.6x, respectively, between

handcrafted and tool-produced results. At this stage, the tools

are all first-generation algorithms; the focus has been on

infrastructure development and integration, not performance

or quality of results. We hope to reduce this performance gap

as we refine the algorithms.

VI. CONCLUSIONS

In this paper, we presented a CAD toolflow (RVETool)

that maps computational circuits expressed in Verilog onto an

MPPA architecture. We evaluated the tools using a number of

dataflow and DSP-type benchmarks, and demonstrated their

performance relative to FPGAs and software simulators. The

RVEArch architecture simulates computational circuits with

better performance than software simulators, without incurring

the long synthesis time of FPGA tools.

We explored the trade-off between density (number of PEs

used) and simulation speed of RVEArch, demonstrating that it

is effectively able to avoid the hard capacity limit of FPGAs

using time multiplexing. We also examined RVETool’s ability

to effectively distribute a circuit simulation across a number

of PEs. Although there is still significant room to improve our

algorithms, neither the architecture nor the tools have been

fully tuned and we have already exceeded our goals of 10x

faster synthesis runtime and 1

10
th simulation performance of

an FPGA. Additionally we have shown that our density goal

of 10x an FPGA can be met through time multiplexing.

As more algorithms are converted to computational circuits,

a means for fast synthesis and fast simulation becomes even

more important. Besides reducing design time and risk, design-

ing a circuit at a behavioural level does not require as much

hardware design experience. This allows software designers to

participate in the hardware design (and testing) process, further

encouraging the development of computational circuits.
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