
Perturber: Semi-Synthetic Circuit Generation

Using Ancestor Control for Testing

Incremental Place and Route

David Grant and Guy Lemieux

University of British Columbia

Vancouver, BC, Canada
[davidg,lemieux]@ece.ubc.ca

Abstract— FPGA architects are always searching for more
benchmark circuits to stress CAD tools and device architectures.
In this paper we present a new heuristic to generate benchmark
circuits specifically for incremental place and route tools. The
method removes part of a real circuit and replaces it with a
modified version of the same circuit to mimic an incremental
design change. The generation procedure exactly preserves key
circuit characteristics and achieves a post–routing channel width,
critical path, and wire length that closely approximates those of
the original circuit. Additionally, the method is fast and thus is
suitable for use in on–the–fly benchmark generation.

I. INTRODUCTION

Incremental design changes arise for a number of reasons

including debug changes, iterative design improvement, and

physical resynthesis to meet timing closure. Since incremental

design changes are highly iterative in nature, the run–time

and quality of solutions produced by incremental place and

route tools are extremely important. To test the incremental

modes offered by CAD tools, incremental circuits are needed.

These circuits should behave like real circuits, except that a

large number of variations are needed to mimic the process

of small, incremental design changes. To our knowledge, no

incremental benchmark circuits exist to test FPGA tools. Good

FPGA benchmark circuits are difficult enough to obtain by

themselves – gathering incremental changes that represent the

evolution of the circuit is even more challenging.

Due to the difficulty of obtaining benchmark circuits, a

number of methods have been developed to create synthetic

circuits. These synthetic circuits are crafted in a way to

have similar properties to real circuits. These methods in-

clude stochastic generation using just a few parameters (e.g.,

gnl [1]), stochastic generation of clones based upon detailed

characterization of real circuits (e.g., ccirc+cgen [2], [3]),

and stochastic stitching together of real designs as subcircuits

of a larger design [4], [5]. Ultimately, these generators are

concerned with creating an entire benchmark circuit, making

This research has been enabled by the use of WestGrid computing re-
sources, which are funded in part by the Canada Foundation for Innovation,
Alberta Innovation and Science, BC Advanced Education, and the participat-
ing research institutions. WestGrid equipment is provided by IBM, Hewlett
Packard and SGI.

them unsuitable for creating incremental circuits where large

parts of the circuit must remain the same.

This paper describes a novel and simple new approach for

creating small, incremental, changes to a circuit. The approach

takes an original circuit (either real or synthetic) N , identifies

a sub-circuit S, removes it to produce N\S, and inserts a

replacement R into the hole left by the removal of S. For

generating benchmarks that contain incremental changes, a

large portion of the original circuit must remain the same,

which is why we say S is replaced with R, leaving the

remainder of the original circuit untouched. This terminology

will be used throughout this paper.

In [6], a method of using existing synthetic circuit genera-

tors to generate R from S and also to “stitch” R into N\S was

presented. It was shown that care is required in the stitching

process to avoid the inadvertent creation of combinational

loops in the overall circuit. The stitching method in [6]

transformed the problem into a graph matching problem which

was solved using existing tools. However, the problem is

combinatorially complex, and required the use of imprecise

heuristics with unpredictable run times to produce a stitched

solution. The circuits produced were characteristically similar

to the original except for elongation of the critical path which

would require further constraints to be added to the graph

matching problem and possibly additional run–time to solve

correctly.

To perform an incremental place and route, a CAD tool

requires both the original circuit and the incremental change.

Instead of capturing various properties of S and using those to

generate R, as is done in existing synthetic circuit generators,

we propose a new method to create R by using S directly.

After S is removed from the circuit, some of the edges (wires)

in S can be perturbed (that is, swapped with other edges in S)

to create a new circuit, R. If the perturbations are done under

specific restrictions, R will contain many characteristics which

are identical to S, and will remain loop-free. Further, the input

and output nets in S and R will be identical, which trivializes

the process of “stitching” R into N\S.

The remainder of this paper is organized as follows. Sec-

tion II presents the actual method used to “perturb” a circuit,

and also presents Ancestor Control, a modification to the



technique to better match the post–routing results to those of

the original circuit. Section III describes the experiments done

with the Perturber and the results of those experiments. Sec-

tion IV presents several techniques which were unsuccessful

at controlling the post–routing results. Directions for future

work specific to the Perturber are presented in Section V, and

conclusions are given in Section VI.

II. PERTURBING A CIRCUIT

This section describes a procedure we have called “per-

turbing” a circuit. It allows the rapid creation of incremental

changes to a circuit given the original. The procedure takes

a circuit which can be a complete circuit, or in our case part

of a complete circuit (S), and generates a modified circuit, in

this case R, which we then stitch back into the original circuit

(N\S).

The perturbation method introduced in this paper has several

attractive features for generating new circuits that make them

good synthetic approximations to the original circuit. That is,

the Perturber preserves many of the distinguishing character-

istics of the original circuit. These are:

• The number of nodes and edges are preserved – The

procedure does not create or delete nodes or edges, it

only moves them around.

• The fanout distribution is identical – The procedure

ensures the fanout of each net is identical to the original

circuit.

• The depth profile is preserved – Nodes are not permitted

to be moved to a new logic depth in the circuit. Edges

are moved between nodes under a specific set of rules

that ensures the depth of any node in the circuit is left

unchanged.

• No combinational loops are created – Since the depth

of each node is maintained, the original levelization (we

describe what we mean by the levelization of a circuit

below) of the circuit is still valid, thus there cannot be

any combinational loops introduced into the circuit.

• Stitching R back into N\S is trivialized – The input

and output nodes in S and R are identical (as are all

the internal nodes), so the stitching procedure is reduced

to matching up node names and copying the fanout

information for each node. This makes it extremely useful

for generating incremental benchmarks on–the–fly.

In many cases, it may not be desirable to identically preserve

all the aforementioned characteristics. An incremental user

change, for example, is likely to slightly change several

characteristics of the circuit. However, we would also like to

have the ability to hold some (or all) circuit characteristics

constant when generating benchmarks. For this reason, we

proceed with a perturbation procedure that maintains all the

above characteristics. Section V, Future Work, presents some

additions to the Perturber which would allow these character-

istics to fluctuate.

A. Perturbation Procedure

The Perturber starts with knowledge of the complete circuit

N and S ∈ N which has been identified in N but not removed

yet. N is first “levelized” so that an overall level of each node

in S can be assigned. The process of “levelizing” a circuit

refers to computing the maximum depth through combina-

tional logic of each LUT in the circuit. Latches, inputs, and

constant drivers are assigned a depth of 1. Assuming the circuit

contains no combinational loops, a simple traversal starting at

all level 1 nodes, and feeding the maximum input level of each

LUT forward, will correctly assign the maximum logic depth

(the level), to each LUT in the circuit. There is an important

distinction between levelizing N and levelizing S. In this case

the complete circuit, N , is levelized and the level numbers are

copied to S, so S may contain “inputs” which are not at level

1.

When the level of each node in S is known, a list containing

all the edges between any two given levels in S can be created.

The perturbation method proceeds by randomly selecting an

edge out of this list and swapping with the sink of a second

edge in the list under the following conditions:

1) The source and sink levels of both edges to be swapped

must match. Swapping edges with mismatched source

or sink levels may be valid, but would necessitate a

recomputation of the levels of all nodes in the fanout

cone of the edges swapped. The lists of edges between

each pair of levels in the circuit would also need to be

updated or rebuilt. For large circuits over a large number

of edge swaps, this can significantly increase the time

to perturb the circuit. Ensuring the source and sink level

match also preserves the fanout distribution and depth

profile of the circuit.

2) The source node can not be level 1. A level 1 source

node is either an input to the original circuit or the

direct output of a latch. In either case, we allow inputs

and latch outputs to proceed through one level of logic

to reduce the probability of directing the signal to a

completely different branch of logic in the circuit.

Only the edges are considered for swapping. The nodes

(LUTs and latches) in the circuit are untouched in the sense

that they do not need to be moved around. An incremental

user change to a circuit may modify the contents of a LUT,

but in terms placement and routing, the actual contents of the

LUT are irrelevant.

The perturber takes a single parameter, the perturbation

factor, which is the percentage of the edges in S to swap. All

the results in this paper used a perturbation factor of 25% 1,

meaning that the Perturber continues until it has randomly

selected 25% of the edges in the circuit and swapped each edge

with a random edge chosen under the criteria listed above.

For all the results presented in this paper we have verified

1Several tests were also run using perturbation factors of 12% and 50%.
The post–routing results were not significantly different than the results at
25%. At 50% the Perturber required disproportionately more time to generate
R since more of the swaps returned an edge to its original position, and the
perturber continues until the required number of edges are in a new location.



that swaps which return an edge to its original position are

infrequent, so the impact of such swaps are negligible.

When the Perturber is finished with S, it writes a new

circuit, R, which is then merged or stitched into the hole left

by the removal of S from N . This stitching process simply

matches the names of the nets in R with those which were

cut when S was removed from N . The nodes and edges in

R are copied into N\S and the fanins/fanouts for matching

input/output edges in R are reconnected, creating a complete

circuit.

By only swapping edges with matching source and sink

levels, the level of any node in the circuit does not change.

Thus, the original levelization is still valid after any number of

edge swaps. Because of this, we can be sure that we have not

introduced any combinational loops in the circuit even after

R is stitched into N\S.

Initial tests using this method showed promising results

for small areas cut out of N and then replaced. However,

under larger areas, the placement and routing results became

unfavourable when compared to existing circuit generators.

The placement and routing results for this initial method were

unacceptable. The problem was discovered to be (largely) that

the locality of the edges were not taken into account when

swapping, causing R to be very irregular (like a random circuit

actually), and consequently, very difficult to route. The next

section presents additional restrictions placed on the Perturber

with the goal of preserving the placement and routing results.

B. Static Ancestor Depth Control

The major problem with the Perturber was that there is no

concept of locality during the edge swapping. For example,

two buses that are from completely independent parts of

the circuit could be easily “cross–connected”. This leads to

destroying the “nice” regular features of the circuit, such as

buses and independent sequences of logic, thus increasing the

irregularity of the circuit and making it harder to route.

To control the locality of the perturbations done to the

circuit, we restrict the Perturber to only swap edges within

related chains of logic. To do this, an additional restriction on

the edge swapping criteria is added:

3) Both edges to be swapped must share a common ances-

tor through combinational logic within a certain ancestor

depth, called the “ancestor control depth”.

The ancestor control depth is specified as a single number,

d. When an edge in the circuit is selected, the edge has a

selected source and a selected sink. A list of candidate edges

for the sink swap is computed dynamically by first finding

all the ancestors within d levels of the selected source, then

walking forward through all fanouts from each ancestor back

to the original depth. For each LUT visited, if the LUT level

matches the level of the selected source, and the LUT contains

a sink that matches the level of the selected sink, then the LUT

contains an edge that may be swapped with the selected edge.

Figure 1 shows part of an example network which can be

perturbed. If the net between nodes 10 and 14 is selected by

the perturber, the selected source is node 10 at level 4, and the

level=2 3 4 5

1

2

3

4

5

6

7

8

9

10

12

11

13

14

Fig. 1. Ancestor selection region (shaded) for the net connecting nodes 10

and 14.

selected sink is node 14 at level 5. If, for example, the ancestor

control depth was set to d = 2, the list of candidate swap edges

would be built by walking backwards from node 10, visiting

nodes 6, 5, 3, and 2. Nodes 2 and 3 are two levels away from

the starting node, so the backtrack stops and begins to follow

all forward paths until each path reaches the original depth of

4. The procedure would find nodes 8 and 9 in addition to the

nodes identified by the backtrack. The final step is to evaluate

all the outputs of all the identified nodes and add edges to the

candidate list which meet the criteria identified in Section II-A.

In this example, the candidate net list would include the edges

between the following pairs of nodes: (8, 12), (8, 13), (9, 13).
Of these edges, one would be randomly selected, say (8, 13),
and the sinks would be swapped. The final circuit would

thus contain an edge between nodes (8, 14) and (10, 13).
The original perturbation procedure would have also included

the edge between nodes (7, 11) in the candidate list, but the

ancestor control method excludes it.

In the next section, we show that this method of ancestor

depth control can produce a perturbed circuit with post–routing

results which are similar to those of the original circuit.

III. EXPERIMENTAL RESULTS

In this section we present the results of two experiments.

The first tests the feasibility of using the Perturber with

and without ancestor control to generate complete circuits

(synthetic clones) from an original circuit. This is something

that would never be done when testing incremental place and

route tools but it shows that the Perturber generates very effec-

tive clones using simpler heuristics than ccirc+cgen. The

second experiment tests the Perturber with ancestor control

on three different cutout region sizes to assess how well the

post–routing characteristics of the input MCNC circuits are

mimicked. As mentioned in Section II, the Perturber preserves

key characteristics of the circuit, such as the number of

nodes, number of edges, fanout distributions, and depth profile.

Therefore, only the change in post–routing results need to be

examined in these experiments.

Table I shows the placement and routing results for the 20

largest MCNC benchmarks using vpr. The CW column is

the minimum channel width required to route the circuit. The



TABLE I

PLACEMENT AND ROUTING RESULTS FOR MCNC CIRCUITS.

Name Nodes Edges CW CP(ns) WL

alu4 1522 2533 33 12.0 9301
apex2 1878 4073 47 13.1 15794
apex4 1262 3626 49 12.1 11085
bigkey 1931 4945 46 6.0 9097
clma 8414 24958 67 24.4 83587
des 1591 3679 58 10.7 11050
diffeq 1871 5069 34 15.8 8979
dsip 1594 3383 42 5.9 6962
elliptic 4724 12037 55 20.4 30388
ex1010 4598 15643 58 16.6 42961
ex5p 1064 3218 49 12.4 9525
frisc 4425 12730 54 26.8 30152
misex3 1397 3137 42 11.4 10164
pdc 4575 15654 67 25.8 49485
s298 1938 5806 28 21.2 9130
s38417 7559 22294 41 15.6 38076
s38584.1 7541 18641 43 12.8 40122
seq 1750 3807 45 14.9 14418
spla 3690 12658 58 15.5 33871
tseng 1431 3577 39 14.7 6689

Average: 47.75 15.41 23541.8

CP column is the critical path, in nanoseconds, of routing

the circuit using a channel width 20% larger than the value

reported in the CW column. The WL column is the total wire

length of the final routed circuit. These numbers are used as

the baseline comparison for the two experiments presented in

this section, with results in Tables II and III.

The first experiment compares the routing results of

ccirc+cgen clones with that of the Perturber both with

and without ancestor control. For these tests the perturber was

set to operate on the entire circuit. Each test was performed

10 times, and the average results are given in Table II. All

of the data is of the form average percentage ± standard

deviation percentage, where both numbers are the percentage

of the original MCNC result, given in Table I. For example,

in Table II, the first row (alu4) and the first column of data

(ccirc+cgen, CW %) contains the data −0.9 ± 4.3. This

means that the average channel width of the 10 ccirc+cgen

alu4 clones was 0.9% lower than the channel width of the

original alu4 circuit. From Table I the original channel width

of alu4 was 33, so the channel width being reported is actually

33−(33∗0.009) = 32.7. The standard deviation is reported as

4.3%, meaning the actual standard deviation is 33∗0.043 = 1.4
tracks. We present the results using percentages to allow the

quality of the results to be compared between the various

circuits. We also present the worst case and average results

for all 20 MCNC circuits for each test.

When comparing the Perturber to ccirc+cgen it should

be noted that ccirc+cgen is designed to capture the quali-

ties of a circuit and generate a complete clone using just these

qualities. The perturber takes an existing circuit and modifies it

in such a way to preserve key features. The tools are intended

for two different tasks, and the Perturber would not normally

be run on 100% of the circuit. However, it is important to

validate that the Perturber is performing more intelligently

than just a random circuit generator, and the results of another

synthetic circuit generator are used to make such a comparison.

Unfortunately, the Perturber without the ancestor depth

control mechanism is not behaving much better than a random

circuit generator. The routed channel width, critical path,

and required wire length are all significantly higher than the

original circuit, and significantly higher than ccirc+cgen,

both on average and in the worst case results. These results

tell us that it is possible to preserve many key characteristics

of the circuit (Section II), but still end up with a circuit that

does not behave much like the original.

The final three columns of data in Table II, under the

“Perturber with Ancestor Control” heading, show a significant

improvement. These results again use a perturbation factor of

25%, and use an ancestor control depth2 of d = 3.

In many cases the Perturber with ancestor depth control

was able to produce a circuit with post–routing properties

closer to the original than ccirc+cgen did. The same is

true for the worst case results. We believe this validates our

approach taken to create the Perturber with the ancestor control

mechanism, and allows us to proceed to use the Perturber to

generate circuits with incremental changes.

Circuits useful for testing incremental place and route tools

involve changes to a small portion of the circuit, not creating

a clone of the entire circuit. The second experiment removes

a random portion of the circuit, S, which is perturbed with

ancestor control to create R which is then stitched back into

the original circuit. The new circuit is then placed and routed

with vpr. The random cutout was done with three different

sizes, 5, 10, or 20% of the nodes of the original circuit. Each

size test was performed 8 times on random regions of each

circuit, and for all tests a perturbation factor of 25% and an

ancestor control depth of 3 was used. As previously mentioned,

the Perturber preserves many of the features of the circuit, so

we do not present results for any characteristic mentioned in

the beginning of Section II.

The results in Table III show that the Perturber is able to

create new circuits that have very similar place and route

properties as the original. Notice the trend in increasing

deviation for all data from the original MCNC benchmarks

as the cutout size increases. This increase would eventually

reach the values at 100% node cutout, which is actually the

last 3 columns of data in Table II, under the “Perturber with

Ancestor Control” heading.

It is also interesting to address the speed of the Perturber.

There are 3 ∗ 8 ∗ 20 = 480 circuits which were generated,

placed and routed for Table III. On a P4 3GHz, with 1GB of

RAM, the process of cutting out S from N , perturbing S into

R, and stitching R into N\S was completed in approximately

8 minutes for all 480 circuits (approximately one perturbed

circuit per second).

2The data in Tables II and III were also generated for an ancestor control
depths of 2 and 4. A depth of 2 appeared to be too restrictive for finding
candidate edges to swap with, whereas a depth of 4 showed a significant
step towards no ancestor control for some circuits. For this reason, we use a
control depth of 3 in all experiments.



TABLE II

AVERAGE PLACEMENT AND ROUTING RESULTS OF 10 CCIRC+CGEN CLONES OF EACH MCNC CIRCUIT, 10 CLONES GENERATED BY THE PERTURBER,

AND 10 CLONES FROM THE PERTURBER USING ANCESTOR CONTROL TO MAINTAIN LOCALITY.

ccirc+cgen Perturber Perturber with Ancestor Control (d = 3)

Name CW % CP % WL % CW % CP % WL % CW % CP % WL %

alu4 -0.9 ± 4.3 0.8 ± 6.9 -5.0 ± 2.4 18.2 ± 0.0 -0.2 ± 0.3 11.6 ± 0.4 5.3 ± 3.1 6.0 ± 9.7 0.2 ± 1.9
apex2 7.2 ± 2.3 5.1 ± 1.5 5.6 ± 1.6 30.9 ± 1.5 16.6 ± 12.0 32.8 ± 0.1 9.3 ± 1.9 14.5 ± 13.1 7.3 ± 1.2
apex4 -12.4 ± 2.6 0.0 ± 6.7 -11.9 ± 2.7 8.2 ± 2.9 -3.3 ± 2.6 6.2 ± 0.1 -1.0 ± 1.5 5.5 ± 7.0 -0.3 ± 1.3
bigkey -5.4 ± 7.1 7.7 ± 4.7 25.3 ± 2.8 8.7 ± 0.0 7.5 ± 1.2 73.0 ± 1.5 11.7 ± 2.6 8.0 ± 7.0 77.3 ± 2.4
clma 57.3 ± 3.4 14.7 ± 7.9 60.7 ± 2.8 88.1 ± 4.2 19.7 ± 3.2 88.3 ± 2.6 47.2 ± 2.2 9.0 ± 2.5 40.6 ± 1.2
des 12.2 ± 6.7 3.8 ± 2.0 20.5 ± 1.7 4.3 ± 1.2 11.7 ± 4.5 64.0 ± 2.0 -7.1 ± 4.7 1.0 ± 2.0 1.2 ± 1.6
diffeq 19.4 ± 4.0 3.9 ± 7.7 18.6 ± 4.7 69.1 ± 2.1 11.0 ± 4.7 70.9 ± 2.7 9.2 ± 3.3 -4.0 ± 5.8 3.8 ± 3.1
dsip 2.9 ± 3.1 6.1 ± 4.8 21.9 ± 3.5 8.3 ± 8.4 4.4 ± 2.7 50.6 ± 0.3 0.3 ± 4.3 4.7 ± 3.3 38.7 ± 2.3
elliptic 14.5 ± 2.4 -5.3 ± 6.1 26.0 ± 1.5 47.3 ± 0.0 -4.7 ± 0.1 53.6 ± 0.0 -0.7 ± 2.2 -0.2 ± 5.9 3.0 ± 3.6
ex1010 12.2 ± 2.4 -1.4 ± 1.7 12.4 ± 2.2 80.2 ± 1.2 10.0 ± 16.5 74.9 ± 0.9 37.1 ± 2.9 2.2 ± 3.4 31.2 ± 1.0
ex5p -9.6 ± 2.9 5.8 ± 7.6 -8.7 ± 2.6 15.3 ± 1.4 3.3 ± 6.3 13.3 ± 1.2 5.1 ± 1.5 5.9 ± 5.1 4.2 ± 0.9
frisc 27.6 ± 3.3 -1.9 ± 4.1 30.7 ± 3.1 51.9 ± 0.0 16.9 ± 5.8 57.3 ± 1.4 38.0 ± 22.2 7.2 ± 3.3 31.5 ± 2.0
misex3 -1.0 ± 2.0 2.0 ± 3.9 0.5 ± 1.4 23.8 ± 0.0 1.0 ± 2.0 24.6 ± 1.8 3.6 ± 1.8 6.6 ± 9.9 3.6 ± 1.3
pdc 11.2 ± 1.9 -31.1 ± 3.8 12.6 ± 0.8 38.8 ± 2.1 -19.3 ± 17.7 41.3 ± 0.8 17.9 ± 1.1 -19.6 ± 15.4 16.7 ± 0.6
s298 -3.6 ± 5.8 -0.0 ± 4.5 -7.5 ± 3.2 10.7 ± 0.0 3.5 ± 3.3 7.5 ± 4.2 10.7 ± 2.7 18.2 ± 24.2 8.4 ± 3.4
s38417 100.7 ± 3.6 12.1 ± 4.3 115.6 ± 3.0 213.4 ± 1.7 28.6 ± 1.6 234.8 ± 6.4 56.4 ± 2.4 21.5 ± 4.4 46.1 ± 2.5
s38584.1 64.9 ± 3.5 4.4 ± 4.4 73.8 ± 2.1 169.8 ± 6.6 24.6 ± 5.7 187.4 ± 1.3 0.6 ± 4.8 -3.8 ± 3.4 3.4 ± 1.8
seq 1.6 ± 1.8 -19.4 ± 7.9 0.5 ± 1.6 26.7 ± 0.0 -15.0 ± 7.3 22.0 ± 1.0 6.9 ± 2.5 -19.1 ± 1.7 4.5 ± 1.9
spla 12.9 ± 2.0 10.0 ± 18.9 17.5 ± 1.9 44.8 ± 0.0 16.3 ± 15.4 53.0 ± 0.9 19.0 ± 2.3 16.7 ± 21.4 22.2 ± 1.9
tseng -10.8 ± 3.2 13.3 ± 4.2 2.7 ± 3.3 16.7 ± 1.8 10.5 ± 2.2 30.4 ± 0.5 -0.3 ± 4.4 5.7 ± 4.2 3.9 ± 1.9

Worst Case: 100.7 ± 3.6 -31.1 ± 3.8 115.6 ± 3.0 213.4 ± 1.7 28.6 ± 1.6 234.8 ± 6.4 56.4 ± 2.4 21.5 ± 4.4 77.3 ± 2.4
Absolute
Average:

19.4 ± 3.4 7.4 ± 5.7 23.9 ± 2.4 48.7 ± 1.8 11.4 ± 5.8 59.9 ± 1.5 14.4 ± 3.7 9.0 ± 7.6 17.4 ± 1.9

TABLE III

AVERAGE PLACEMENT AND ROUTING RESULTS FOR 8 TRIALS (4 DIFFERENT REGIONS PERTURBED TWICE) OF A 5, 10, AND 20% NODE CUTOUT OF EACH

MCNC CIRCUIT. THE NUMBERS REPRESENT THE AVERAGE PERCENTAGE INCREASE (OR DECREASE) FROM THE MCNC RESULTS FROM TABLE I. THE

PERTURBER IS APPLIED ONLY TO THE CUTOUT REGION USING A PERTURBATION FACTOR OF 25% AND AN ANCESTOR CONTROL DEPTH OF 3. NOTE THAT

THE DATA UNDER THE “PERTURBER WITH ANCESTOR CONTROL” HEADING IN TABLE II WOULD REPRESENT A 100% NODE CUTOUT IN THIS TABLE.

5% Node Cutout 10% Node Cutout 20% Node Cutout

Name CW % CP % WL % CW % CP % WL % CW % CP % WL %

alu4 4.2 ± 3.9 2.6 ± 7.4 -0.3 ± 1.4 5.7 ± 4.4 5.3 ± 6.4 -0.7 ± 1.2 4.5 ± 2.3 8.6 ± 9.9 0.8 ± 1.7
apex2 1.1 ± 2.5 4.2 ± 1.9 -0.3 ± 2.0 0.0 ± 2.0 12.4 ± 24.5 -0.1 ± 1.2 1.6 ± 2.2 4.4 ± 2.8 0.2 ± 1.7
apex4 0.0 ± 1.1 3.9 ± 4.4 -0.4 ± 1.3 0.5 ± 1.8 15.4 ± 15.0 -0.6 ± 1.2 1.5 ± 3.0 12.2 ± 22.5 1.1 ± 3.3
bigkey 10.1 ± 6.8 -1.9 ± 1.1 0.9 ± 2.0 8.7 ± 6.0 -0.3 ± 2.8 0.0 ± 2.0 12.5 ± 7.4 1.3 ± 3.1 0.1 ± 2.9
clma -4.7 ± 1.2 -2.0 ± 2.7 -1.4 ± 1.2 -1.3 ± 2.0 -0.8 ± 4.4 1.1 ± 1.4 6.2 ± 2.2 0.5 ± 2.4 5.9 ± 1.1
des -11.4 ± 6.0 3.3 ± 2.6 -0.9 ± 1.7 -7.3 ± 6.9 4.7 ± 3.6 -0.7 ± 1.4 -8.4 ± 5.9 1.3 ± 2.0 0.2 ± 2.6
diffeq -1.8 ± 2.7 -2.1 ± 4.1 -6.1 ± 1.4 1.1 ± 2.7 -2.5 ± 3.1 -4.6 ± 2.6 4.4 ± 5.2 -3.8 ± 3.2 0.0 ± 1.6
dsip 1.2 ± 5.4 1.1 ± 2.6 0.3 ± 3.0 3.3 ± 10.6 0.8 ± 1.3 -0.9 ± 2.2 3.6 ± 7.0 -0.1 ± 1.2 0.5 ± 1.3
elliptic 2.0 ± 3.4 -3.4 ± 2.7 0.6 ± 0.6 0.2 ± 1.5 -2.1 ± 5.5 0.9 ± 1.0 2.7 ± 1.4 7.9 ± 30.3 1.4 ± 1.2
ex1010 2.6 ± 3.9 1.0 ± 4.4 1.0 ± 2.4 10.1 ± 3.3 5.0 ± 6.8 7.1 ± 2.2 18.8 ± 6.5 3.8 ± 5.7 14.0 ± 4.5
ex5p 0.5 ± 2.1 5.3 ± 6.9 0.7 ± 1.3 1.3 ± 1.5 9.4 ± 16.6 2.5 ± 1.7 4.3 ± 1.7 14.1 ± 22.7 3.6 ± 1.1
frisc 3.0 ± 2.8 -1.4 ± 2.7 2.6 ± 2.1 5.1 ± 1.9 0.2 ± 2.6 3.2 ± 1.2 3.7 ± 1.7 1.4 ± 4.4 3.6 ± 1.2
misex3 -0.6 ± 2.8 11.9 ± 15.0 -0.1 ± 2.4 1.8 ± 2.5 3.1 ± 9.4 0.9 ± 1.1 3.9 ± 1.8 4.3 ± 7.1 3.5 ± 2.5
pdc 0.4 ± 1.3 -27.7 ± 5.9 0.2 ± 0.7 1.3 ± 1.7 -21.2 ± 11.2 1.1 ± 0.9 5.0 ± 1.9 -28.4 ± 4.5 3.4 ± 0.6
s298 5.4 ± 3.8 10.2 ± 4.2 4.4 ± 2.7 7.1 ± 3.8 9.5 ± 6.2 4.9 ± 2.3 9.8 ± 3.2 7.4 ± 7.0 6.4 ± 2.7
s38417 -0.3 ± 1.6 1.7 ± 2.5 1.3 ± 1.2 3.0 ± 2.8 8.0 ± 3.7 3.5 ± 2.5 21.3 ± 3.6 11.2 ± 8.3 14.8 ± 1.8
s38584.1 1.2 ± 2.8 1.5 ± 2.2 3.0 ± 1.5 2.6 ± 5.0 0.8 ± 1.5 3.5 ± 1.8 10.5 ± 5.1 1.7 ± 2.7 7.7 ± 2.2
seq 0.3 ± 2.8 -21.6 ± 1.8 0.1 ± 1.1 1.9 ± 2.8 -13.7 ± 13.5 2.2 ± 1.7 4.2 ± 3.0 -19.1 ± 6.5 3.7 ± 2.2
spla -0.6 ± 2.0 3.2 ± 4.3 1.8 ± 1.3 -0.2 ± 1.9 10.7 ± 14.7 3.2 ± 0.8 4.7 ± 1.2 39.2 ± 58.8 6.0 ± 0.7
tseng 0.6 ± 4.1 -0.2 ± 3.8 -1.2 ± 1.5 -1.9 ± 5.8 2.2 ± 3.8 -1.5 ± 2.2 2.9 ± 5.0 4.0 ± 3.7 0.1 ± 3.4

Worst Case: -11.4 ± 6.0 -27.7 ± 5.9 -6.1 ± 1.4 10.1 ± 3.3 -21.2 ± 11.2 7.1 ± 2.2 21.3 ± 3.6 39.2 ± 58.8 14.8 ± 1.8
Absolute
Average:

2.6 ± 3.2 5.5 ± 4.2 1.4 ± 1.6 3.2 ± 3.6 6.4 ± 7.8 2.2 ± 1.6 6.7 ± 3.6 8.7 ± 10.4 3.9 ± 2.0

IV. PITFALLS

In this section, several unsuccessful methods of controlling

the post–routing results are presented. We include these for

the sake of completeness and because they provided valuable

insight into the behaviour of the Perturber. This insight lead

to the development of the ancestor control technique.

A. Wirelength Control

In an effort to control the channel width and the total

routed wire length in the circuit, a method to limit the wire

length during the perturbation procedure was implemented.

The method uses the total Manhattan distance of all the edges

in the circuit to approximate the total wire length in the circuit.



During perturbation, if an edge swap lowers the total area,

the swap is accepted. If the wire length increases, the move

is probabilistically accepted using an exponential function

similar to that used in simulated annealing.

The location of each node in the circuit is taken from a

placement of the original MCNC circuit. After the perturbation

procedure is complete, the entire circuit is re-placed and re-

routed. When considering using incremental place and route

tools, it is reasonable to assume we have a previous placement

of the circuit, so we can use that placement to drive this

technique.

The results from experiments using this method showed

very little difference over the original perturbation technique

(with no ancestor control), hence it was ineffective.

B. Bounding Box Control

Instead of limiting the wire length by using a Manhattan

metric, the bounding box can also be used. The bounding box

of a net is the half perimeter of the smallest box bounding all

the fanouts of a net. Additionally, the bounding box would

prevent random edge swaps over large distances. Consider

Figure 1 where (10, 14) is again the selected edge. Suppose

the (7, 11) edge is separated from the (10, 14) edge by a large

distance. A bounding box limitation would prevent the edges

from being swapped.

Here, we again follow a procedure similar to that used in

simulated annealing to always accept moves that lower the

total cost, and probabilistically accepts ones that do not. The

results from this technique marginally improved the output,

approximately a 1%-2% step closer to the original results, but

it was still ineffective overall.

C. Net Swapping

Instead of swapping individual sinks from edges, a method

of potentially preserving locality is to swap the entire net

that an edge is in. In other words, swap the source of entire

nets. This method, combined with the bounding box, aimed

to prevent nets from fanning out to all regions of the FPGA

when it was routed.

This method further improved the results over the bounding

box by an additional 1%, however, the results were not

statistically significant, or close to the original post–routed

results from the MCNC circuits. Only the ancestor depth

control described in Section II-B was effective at capturing

locality and preserving the channel width, critical path, and

total wire length results of the original circuit.

V. FUTURE WORK

There are several directions for future research for the

Perturber which would make it even more useful in generating

benchmarks for incremental place and route tools. Some of

the ideas in this section are already being explored, or have

already been partially implemented.

A. Dynamic Ancestor Depth

For all experiments in this paper, a static ancestor control

depth of 3 was used because it gave desirable results without

being overly restrictive in the choice of candidate edges to

swap during perturbation. However, this number was acquired

by observing post–routing results for different circuits under

test. It is not even ideal for all the MCNC circuits. A dynamic

method or heuristic to compute a good ancestor depth is

the next logical step. For example, when building the list of

candidate edges to swap with, an unbounded backwards search

can be terminated when a “good” number of candidates is

found, instead of at a fixed depth. Somehow, this method must

still attempt to preserve locality.

B. Scaling

There are two ways to scale a circuit, reduction and en-

largement. Scaling is of particular interest in benchmarks for

incremental place and route tools because the place and route

tool must fill holes left by inserting a smaller R into N\S or

make room for a larger R. It is likely that a user change to a

circuit will not be exactly the same size when the incremental

place and route tools are called, so the number of nodes, edges,

and fanout profiles must be allowed to change. Even if a user

change of approximately the same size is desired, a circuit

could be enlarged, then reduced, to alter the fanout and depth

profiles of R compared to S.

Reduction is by far the easiest of the two. The authors

actually have a working reduction implementation. Before the

perturbation phase (where S is perturbed into R), the number

of nodes to remove from the circuit is computed. Then nodes

in S are randomly selected and deleted under the following

restrictions:

• If a to-be-deleted node is the only source for another

node, then both nodes must be deleted. This could lead

to a cascade of removals to return the circuit to a valid

state.

• If a to-be-deleted node is the only sink of another node,

then both nodes must be deleted. Again, this could

cascade.

• The node must not be a primary input or a primary output.

Increasing the size of a circuit is a harder problem, compli-

cated further by the need to preserve locality.

C. Increasing the Critical Path

An additional useful feature for testing incremental place

and route that no circuit generator possesses is the ability to

increase (or decrease) the length of the critical path through

the circuit, without changing the size of the circuit. Such a

change to the circuit would force the incremental place and

route tool to shuffle nodes along the critical path to reduce it

with minimal adjustment to the rest of the circuit. A critical

path change is difficult to produce and test with real circuits

so a synthetic approach would be helpful in this area.



VI. CONCLUSIONS

In this paper we have presented a simple new method for

benchmark generation which is ideal for testing incremental

place and route tools. We have described a new technique that

perturbs a given circuit to generate a clone from an original

circuit. We have also extended the method to include “ancestor

depth control” which takes the locality of the edge swaps

into consideration. The perturber exactly preserves the number

of nodes, number of edges, fanout distribution, and depth

profile of the original circuit. Moving forward, the tool can be

expanded to permit some or all of these circuit characteristics

to fluctuate. In addition, the perturbation method guarantees

that no combinational loops will be created when operating

on all or just part of the circuit, and the procedure to stitch

part of the circuit back into the original has been trivialized.

Two experiments were conducted with the Perturber. The

first validated the approach by comparing the post–routing

results of the Perturber operating on 100% of the circuit to the

results of a synthetic circuit generator, ccirc+cgen. Results

indicate that Ancestor Control is the most effective method

of capturing locality and preserving post-placement and post-

routing characteristics of the original circuits. In fact, these

characteristics are closer to the original than ccirc+cgen.

The second experiment used the Perturber to modify 5%,

10%, and 20% of the MCNC benchmarks to create new

circuits with small changes that exhibited properties very

similar to the original. For the 5% case, the channel width,

critical path, and total wire length were all within 5.5% of

the original circuit, with a standard deviation of no more than

4.2%. The largest contributor to the 5.5% figure was actually

from a reduction of the critical path (the pdc and seq circuits).

We believe that these experiments have shown the pertur-

bation technique is viable for generating circuit benchmarks.

Finally, several directions for future work have been presented

which would add additional functionality to the perturber,

allowing it to generate benchmarks to test more sophisticated

features of incremental place and route tools.

ACKNOWLEDGEMENTS

Thanks to Dave Leong for integrating the Perturber in his

incremental place and route toolflow, and generating many bug

reports.

REFERENCES

[1] D. Stroobandt, P. Verplaetse, and J. van Campenhout, “Generating syn-
thetic benchmark circuits for evaluating CAD tools,” IEEE Trans. on

CAD, vol. 19, no. 9, pp. 1011–1022, 2000.
[2] M. Hutton, J. Rose, and D. Corneil, “Automatic generation of synthetic

sequential benchmark circuits,” IEEE Trans. on CAD, vol. 21, no. 8, pp.
928–940, 2002.

[3] P. Kundarewich and J. Rose, “Synthetic circuit generation using clustering
and iteration,” IEEE Trans. on CAD, vol. 23, no. 6, pp. 869–887, 2004.

[4] J. Pistorius, E. Legai, and M. Minoux, “Generation of very large circuits
to benchmark the partitioning of FPGAs,” in ISPD ’99: Proceedings of

the 1999 International Symposium on Physical Design. New York, NY,
USA: ACM Press, 1999, pp. 67–73.

[5] M. Tom and G. Lemieux, “Logic block clustering of large designs for
channel-width constrained FPGAs,” in DAC ’05: Proceedings of the 42nd

Annual Conference on Design Automation. New York, NY, USA: ACM
Press, 2005, pp. 726–731.

[6] D. Grant, S. Chin, and G. Lemieux, “Semi-synthetic circuit genera-
tion using graph monomorphism for testing incremental placement and
incremental routing tools,” in Proc. Field Programmable Logic and

Applications 2006, Madrid, Spain, Aug. 28–30, 2006.


