
SEMI–SYNTHETIC CIRCUIT GENERATION USING GRAPH MONOMORPHISM FOR
TESTING INCREMENTAL PLACEMENT AND INCREMENTAL ROUTING TOOLS

David Grant, Scott Chin, and Guy Lemieux

University of British Columbia
Vancouver, BC, Canada

email: [davidg,scottc,lemieux]@ece.ubc.ca

ABSTRACT

FPGA architects are always searching for more benchmark
circuits to stress CAD tools and device architectures. In this
paper we present a new method to generate benchmark cir-
cuits by removing part of a real circuit and replacing it with
a synthetic clone. This replacement or stitching process can
easily introduce combinational loops if the synthetic circuit
contains an input-to-output dependence that was not in the
original subcircuit it is replacing. We show that this can be
expressed as the graph monomorphism problem, and that
a solution to that problem gives a precise stitching assign-
ment that is cycle-free. This technique can be used to cre-
ate new benchmark circuits that are identical to the original
circuit except for small, local changes. The resulting semi-
synthetic benchmarks are ideal for testing incremental place
and route tools.

1. INTRODUCTION

Incremental design changes arise for a number of reasons
including debug changes, iterative design improvement, and
physical resynthesis to meet timing closure. To test the in-
cremental modes offered by CAD tools, incremental cir-
cuits are needed. These circuits should behave like real cir-
cuits, except that a large number of variations are needed
to mimic the process of small, incremental design changes.
To our knowledge, no incremental benchmark circuits ex-
ist to test FPGA tools. Good FPGA benchmark circuits are
difficult enough to obtain by themselves – gathering incre-
mental changes that represent the evolution of the circuit is
even more challenging.

A number of methods exist to create synthetic cir-
cuits including stochastic generation using just a few pa-
rameters (e.g., gnl [1]), stochastic generation of clones
based upon detailed characterization of real circuits (e.g.,
ccirc+cgen [2, 3]), and stochastic stitching together of
real designs as subcircuits of a larger design [4, 5]. Ulti-
mately, these generators are concerned with creating an en-
tire benchmark circuit, making them unsuitable for creating

Fig. 1. A synthetic sub–circuit (clone) replacement that in-
troduces a combinational loop.

incremental circuits where large parts of the circuit must re-
main the same.

This paper describes an approach for creating synthetic
incremental circuits. The approach takes an original circuit
(either real or synthetic) N , identifies a sub-circuit S, re-
moves it to produce N\S, and replaces S with a replacement
R. Of these steps, identifying S and generating replacement
R can be done easily. However, the process of stitching R
into N\S is not robust and requires care to avoid the cre-
ation of combinational loops. We are unaware of any previ-
ous work done where part of a circuit (S) is removed from a
larger circuit (N ) and replaced with a synthetic clone (R).

Figure 1 illustrates the problem of combinational loops.
S and R are identified in the dashed areas of Figures 1a and
1b respectively. We refer to R as a “clone” of S regardless
of whether it exactly mimics all the characteristics of S. In
this case, R contains the same number of inputs, outputs,
and LUTs as S, however, the mapping of the input r1 to n5
and output r6 to n9 has created a combinational loop.

To create R, we build upon existing generators, partic-
ularly ccirc+cgen and gnl. These tools use techniques
to avoid the creation of combinational loops within R, but
they have no knowledge of the circuit in which R will be
stitched. Ideally, generators would accept input/output de-
pendence constraints that specify which inputs should not
be connected to which outputs. If R was created under such
constraints, the process of “stitching” it back into the origi-
nal circuit would be trivial. However, existing generators do
not accept such constraints.



Instead of creating a methodology which depends upon
features of one specific tool, we show how a replacement
circuit R can be stitched into an original circuit N to gener-
ate incremental benchmarks using any synthetic generation
tool. We present two related problems in this paper: (a)
generating a graph P of permissible input-to-output depen-
dences from N\S, and (b) assigning the inputs and outputs
of R to specific cut points of N\S in a way that prevents
combinational loops. We solve both of these problems us-
ing heuristic techniques.

2. PROBLEM FORMULATION

Given a directed acyclic graph representing netlist N , sub-
circuit S, and replacement R, the circuit stitching problem
is to remove S from N (creating N\S), and replace it with
R in a way which prevents loops from being formed. To be
feasible, the number of inputs (and outputs) to (from) S and
R must be equal. When N\S is created, there are two sets
of nets left dangling from the cut. These cut points are con-
nected to two sets of new nodes: the set of nets I which are
inputs to S, and the set of nets O which are outputs of S.
From I , O, N , and S, one can construct loop graph L from
N\S. Using L, it is possible to constructively create R in a
way which creates no loops when stitched. However in the
case where R is pre-existing, e.g., created using a synthetic
generator such as cgen which is unaware of external loop
constraints, we construct permission graph P from L and a
dependence graph D from R. The circuit stitching problem
is then reduced to finding a mapping which shows that D is
monomorphic to P .

2.1. Loop Graph L of N\S

Given N\S and its cutpoints I (outputs driving S) and
O (inputs driven by S), we can construct the loop graph,
L(IL, OL, EL) shown in Figure 2a. The loop graph sum-
marizes which nets in OL connect through combinational
logic to nets in IL. Hence, it is a bipartite graph with nodes
IL and OL and edges EL. The edge set contains a “back”
edge from a node in OL to a node in IL if a combinational
path exists between those nodes in N\S. This edge set can
be constructed by a simple traversal of the network. Since
existing circuit generators are not aware of L, we must at-
tempt to match the cutpoints of N\S with the inputs and
outputs of R in a way which is cycle-free.

2.2. Dependence Graph D of R

Given R, we compute a dependence graph D(ID, OD, ED)
of R. The dependence graph is a bipartite directed graph that
contains a vertex for each input and each output in R. In-
puts that drive outputs through combinational logic are rep-
resented by a directed edge from the corresponding input

(a) Graph L (b) Graph D (c) Graph P

Fig. 2. (a) The loop graph, L, for the circuit N\S in Fig-
ure 1a. (b) The dependence graph, D, for the replacement
circuit, R from Figure 1b. (c) The permissible graph, P , for
the circuit N\S in Figure 1a.

vertex in ID to the output vertex in OD. The dependence
graph for circuit R in Figure 1b is shown in Figure 2b.

The problem of stitching R into N\S is that of find-
ing two 1–to–1 mappings fI : ID → IL and fO :
OD → OL such that the merge of D(ID, OD, ED) with
L(fI(ID), fO(OD), EL) contains no cycles. This problem
is combinatorially complex and we were unable to precisely
map it to any known problem. In order to solve it, we trans-
form the problem into an approximation of the original form
so that existing graph tools can be used to find a solution.

2.3. Permissible Graph P of N\S

The transformation we use is to construct a permissible
graph, P (IP , OP , EPi) from L(IL, OL, EL) as shown in
Figure 2c. This graph contains the same nodes as L, but
the edges of P represent a set of permissible forward edges
that will not create a cycle if P is merged with L.

It is not sufficient to simply omit forward edges in P if
there exists a corresponding back-edge in L. For example,
for every pair of back edges in L that connect with distinct
nodes, there is a corresponding “criss-crossing” pair of for-
ward edges which cannot exist simultaneously in P . Fig-
ure 3 illustrates this situation by showing a complete loop
graph, L, and two edges in a permissible graph, P , which
cannot exist simultaneously. If the two edges in Figure 3 did
exist in P , and a mapping made use of both the edges, then
a combinational loop would be created. To be maximal in
the number of edges, P must be constructed with only one
of these forward edges but not both. Hence, P cannot be
uniquely determined from L, and in fact there are numer-
ous maximal Pi graphs which can be constructed from L,
making the problem challenging. In our methodology, we
construct just one P in a particular way as described in Sec-
tion 3.2.

2.4. Graph Monomorphism Problem

We now express the problem as a graph monomor-
phism problem. Graph monomorphism is similar to
graph isomorphism, except that the number of edges
need not be the same. Given the replacement depen-
dence graph, D(ID, OD, ED), and the permissible graph,



Fig. 3. (a) An example loop graph, L. (b) Two edges that
cannot simultaneously exist in P given L.

Pi(IP , OP , EPi), a 1–to–1 function that maps the vertices
from ID, OD → IP , OP is required (f : ID, OD →
IP , OP ) such that {u, v} ∈ ED only if {f(u), f(v)} ∈
EPi . That is, we wish to determine if D(ID, OD, ED) is
a monomorphic graph[6] to Pi(IP , OP , EPi). If we can do
this for any of the possible maximal Pi graphs, then we have
computed a cycle–free way to stitch R.

3. BENCHMARK GENERATION PROCEDURE

In this section, we describe the high level flow used to gen-
erate R and stitch it back into N\S. The tool flow accepts
a BLIF file as input, and produces a new BLIF file which
can be used as a replacement for the original circuit.

3.1. Replacement Region Selection

First, a replacement region S is selected from the input
BLIF. For our experiments, S is selected by clustering the
circuit with TV-Pack and choosing all the nodes that fall
within a specific cluster. All the LUTs, latches, and nets
within S are then removed, which creates dangling nets in
the original circuit. These nets will be un–dangled when R
is stitched back into the circuit.

Given S, we also considered growing S to include all
combinational logic surrounding S. An S with cutpoints
only on input/output pin and latch boundaries would trivi-
alize the stitching problem, since no edge assignment could
create a combinational loop. However, we found that an ex-
panded S in the MCNC benchmarks caused most or all of
the original circuit to be selected. Such an expansion may
be viable for large real circuits, but is impractical for the
MCNC circuits we used.

3.2. Compute Permissible Graph

The nets cut in the removal of S from N are categorized as
input or output depending on whether they are an input or
an output to S. Recall these are the sets I and O of nets. In
Figure 1a, I = {n4, n5, n6} and O = {n8, n9}.

Finding a permissible graph, P (IP , OP , EP ), with the
maximum number of edges, is NP–Complete (see the “Feed-
back Arc Set” problem in [7]). We compute an approxima-
tion to a maximal P as follows. Begin with N\S, and per-

form a breadth–first search beginning at O, attempting to
reach nets in I . For every path from a net in O to a net in I ,
the corresponding edge from I to O is left unconnected in
P , and every other edge from I to O is added. This produces
an oversized graph because some edges in P will still create
cycles in N\S ∪ P . To arrive at a valid permissible graph,
we run a loop detection algorithm on N\S∪P to find edges
in P that are directly involved in a loop. We select one such
edge and remove it, and repeat this process until N\S ∪ P
is cycle free.

3.3. Characterization and Generation

In order to generate a suitable replacement, S is character-
ized using ccirc. When generating R with cgen, the full
ccirc profile is used. When using gnl, the number of in-
puts, outputs, LUTs, and latches are taken from the ccirc
profile and used to create a gnl input file. Either gnl or
cgen is then invoked to generate R.

3.4. Fixing Inputs and Outputs

Because of the generation methods used by gnl and cgen,
R may not contain the exact number of inputs/outputs speci-
fied. Thus, R may not precisely match the hole left by N\S.

To add inputs to the circuit, a vertex in ID is selected. A
new LUT is then inserted to drive the selected input, allow-
ing additional inputs nets to be added to the circuit. The se-
lected vertex should have a low number of connected edges
because each new input duplicates all the dependence edges
in ED, and we wish to avoid unnecessarily complicating the
graph monomorphism problem. Removing inputs is done
by selecting two input vertices, again with a low number of
connected edges, and merging the corresponding input nets
into a single net. The creation and removal of outputs use
similar techniques to merge output nets or create new ones.

3.5. Stitching

The permissible graph, P , and the dependence graph D of R
are used to stitch R into N\S. This step assigns the inputs
and outputs of the replacement circuit to all dangling nets.
Verification is also done to ensure the final circuit contains
no loops and no dangling logic. The stitching procedure is
described in Section 4. The output of this step is a BLIF
suitable for input into any tool flow the original BLIF could
have be used in.

4. STITCHING ASSIGNMENT

The procedure used to stitch a clone into the original circuit
is to first solve the graph monomorphism problem. That is,
determine if the graph P (IP , OP , EPi) is a monomorphic



Fig. 4. A correct stitching for R in Figure 1.

graph to D(ID, OD, ED), and determine the vertex map-
pings. Using the vertex mappings, the inputs and outputs of
R are assigned to the cut nets in the original circuit, and a
new BLIF file is created.

The CP(Graph+Map)[8] tool solves the general graph
monomorphism problem by using an exact search method
to find a solution, but has several pruning strategies
to reduce the problem search space. The solution is
a list of vertex pairs (ri, nj), indicating that vertex
ri in graph D(ID, OD, ED) should be mapped to ver-
tex nj in graph P (IP , OP , EPi). It is possible that
there is more than one valid mapping for a circuit.
One mapping for the stitching problem in Figure 1 is:
(r1, n6), (r2, n5), (r3, n4), (r5, n8), (r6, n9). This solu-
tion is shown in Figure 4, and is cycle free. Many times,
CP(Graph+Map) finds a solution quickly. In other cases, it
runs for a long time searching for a solution. We find that
stopping it after 20 seconds and restarting it with a different
seed increases the success rate; this is an imprecise heuristic.

5. BENCHMARK GENERATION AND TESTING

Using the 20 largest circuits in the MCNC benchmark suite,
we have generated new benchmarks for testing incremental
CAD tools. For each original MCNC circuit (N ), we clus-
tered the circuit using TV-Pack with a cluster size of 64.
We then selected 10 of the clusters to be used as the replace-
ment region (S). For each region we generated 10 different
clones (R) and stitched each one back into the original, cre-
ating 100 different variations of the original circuit. We then
repeated this exercise using a cluster size of 128. For larger
replacement regions where there could be several hundred
inputs and outputs to match, finding the solution to the graph
monomorphism problem becomes the bottleneck.

The results obtained by using ccirc on the generated
incremental benchmark circuits showed the characteristics
matched very closely with those of the original circuit, ex-
cept for one major feature. The maximum depth of the cir-
cuit exhibited a two–to–three fold increase, which we traced
to a single cause: no attempt is made to match the old depth
of each path through the circuit as the clone is stitched in.
The solution to the graph monomorphism problem often
found a mapping solution that caused the critical path to re–
enter R several times (while avoiding combinational loops),
and thus considerably increasing the critical path.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new method for bench-
mark generation which is ideal for testing incremental place
and route tools. We have formulated the exact stitching
problem which is combinatorially complex, and showed
how the problem can be approximated and solved with ex-
isting graph theory and tools. Using this process, a number
of benchmarks were generated from the 20 largest MCNC
benchmarks. Analysis of the benchmarks showed they were
similar to the original circuit except for an increase in logic
depth. The cause of this increase was identified and can po-
tentially be addressed in future work. Testing also showed
that no combinational loops were created by the stitching
process, which was the focus of this paper.

We wish to use the procedure described in this paper to
create more benchmarks by using additional cluster sizes or
by varying other parameters. Of particular interest in testing
incremental place–and–route tools is varying the size of R
with respect to S, so the tools need to make room for a larger
R or fill the hole left by a smaller R.

7. REFERENCES

[1] D. Stroobandt, P. Verplaetse, and J. van Campenhout, “Gener-
ating synthetic benchmark circuits for evaluating CAD tools,”
IEEE Trans. on CAD, vol. 19, no. 9, pp. 1011–1022, 2000.

[2] M. Hutton, J. Rose, and D. Corneil, “Automatic generation
of synthetic sequential benchmark circuits,” IEEE Trans. on
CAD, vol. 21, no. 8, pp. 928–940, 2002.

[3] P. Kundarewich and J. Rose, “Synthetic circuit generation us-
ing clustering and iteration,” IEEE Trans. on CAD, vol. 23,
no. 6, pp. 869–887, 2004.

[4] J. Pistorius, E. Legai, and M. Minoux, “Generation of very
large circuits to benchmark the partitioning of FPGAs,” in
ISPD ’99: Proceedings of the 1999 International Symposium
on Physical Design, 1999, pp. 67–73.

[5] M. Tom and G. Lemieux, “Logic block clustering of large
designs for channel-width constrained FPGAs,” in DAC ’05:
Proceedings of the 42nd Annual Conference on Design Au-
tomation, 2005, pp. 726–731.

[6] S. Zampelli, Y. Deville, and P. Dupont, “Approximate con-
strained subgraph matching.” in Principles and Practice of
Constraint Programming, 2005, pp. 832–836.

[7] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness. Freeman, 1979.

[8] Y. Deville, G. Dooms, S. Zampelli, and P. Dupont,
“CP(Graph+Map) for approximate graph matching,” in 1st In-
ternational Workshop on Constraint Programming Beyond Fi-
nite Integer Domains, Oct. 2005, pp. 31–47.


