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ABSTRACT

Modern FPGAs are used to implement a wide range of circuits,
many of which have coarse-grained and fine-grained components.
The ever-increasing size of these circuits places great demand on
CAD tools to synthesize circuits faster and without loss in quality.
Synthesizing coarse-grained components onto fine-grained FPGA
resources is inefficient, and past attempts to optimize FPGAs for
word-oriented datapaths have met with limited success. This paper
presents a CAD flow to fully compile Verilog into a configuration
bitstream for a new type of FPGA with time-multiplexed coarse-
grained resources. We demonstrate two approaches with gains of
61x and 42x in synthesis time on average compared to QuartusII,
but due to time-multiplexing and current synthesis limitations we
achieve circuit speeds of 14x and 8.5x slower on average. We show
the tools can also trade density for maximum clock frequency.

Categories and Subject Descriptors

B.6.3 [Design Aids]: Automatic Synthesis; B.7.2 [Design Aids]:
Placement and routing

General Terms

Algorithms, Design, Performance

1. INTRODUCTION
Modern FPGA devices contain over 1 million LUTs, over 1000

hard memory or multiplier blocks, and about 300 wires per row or
column. In addition, they are continuing to grow with Moore’s law.
As a result, great demand is placed on synthesis tools to compile
ever-larger netlists without degrading result quality or increasing
run-time. Given already long FPGA CAD run-times, vendors are
turning to parallel compilation. While this may help when powerful
compute systems are available, light-weight approaches would be
preferred.

One reason for slow CAD is that FPGAs are still bit-oriented.
This partly reflects their past when they were used for glue logic,
but modern usage has expanded to implementing a wide range of
circuits. Increasingly popular are generators like SOPCBuilder,
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EDK, and C-to-gates flows that generate large hardware datapaths.
These new circuits are mostly word-oriented, but they may also
have many fine-grained control signals.

Past attempts to optimize FPGAs for word-oriented datapaths
have met limited success. By organizing wires and logic into
words, the number of configuration bits can be reduced by sharing
them among a word, and multiplexer sizes can be reduced. How-
ever, only a small overall savings of roughly 10% [34] has been
realized.

One feature not attempted in prior datapath-FPGA research is
time-multiplexing. By time-multiplexing the coarse-grained ele-
ments and coarse-grained interconnect, the area-cost of these large
components can be amortized over many clock cycles. The im-
proved density also allows larger circuits to be mapped into smaller
architectures by trading off the maximum clock frequency. More-
over, it reduces the placement and routing problem size, which re-
duces synthesis time. Time-multiplexing has been applied to fine-
grain logic research [31, 14, 7], commercially by Tabula[12], and to
CGRAs[9, 22]. However, time-multiplexed coarse-grain elements
like ALUs as a logic resource for compiled HDL in an FPGA is
relatively unexplored.

What is needed for these word-oriented circuits is a heteroge-
neous time-multiplexed architecture that combines features from
FPGAs and CGRAs, and a set of CAD tools to synthesize circuits
to such an architecture. This research is focused on the CAD, and
specifically on the steps after logic synthesis, that is, the placement,
routing, and scheduling.

This paper presents a complete CAD flow that can compile the
full synthesizable subset of Verilog2005 into a configuration bit-
stream for this new type of FPGA. Common tools such as VPR [1],
ABC [2], OdinII [13], and Verilator [29] are used within the tool
flow, but new tools have been created for placing, routing, and
scheduling the time-multiplexed coarse-grain logic along with the
(not time-multiplexed) fine-grained logic. In Section 4 these tools
are compared to standard flows with QuartusII and VPR, demon-
strating that significant gains in compile-time and logic density are
possible. In Section 4.4 we demonstrate that the tools can trade
density for circuit speed, mapping large circuits to run slowly on a
small device, or run faster on a larger device. Also in Section 4.4,
we demonstrate that the tools can improve circuit speed at the cost
of compile-time by altering the bit-width (Wf ) of signals consid-
ered “fine-grained” and pushing more (or less) logic to the fine-
grained LUTs and interconnect. While the current results do not
achieve the same Fmax performance of standard flows, there are
many opportunities for significant performance gains in the future.

Our new FPGA architecture is called “Malibu” and is presented
in Section 2. Our proposal is to add coarse-grained ALU-like el-
ements (CGs) to the FPGA’s CLB. The CG is time-multiplexed,
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Figure 1: The Malibu Architecture CLB with the fine-grained

(FG) and coarse-grained (CG) parts.

Table 1: Malibu Units and Detailed Operations
Units Operators Area (T)

Multiply *1 35,000
Arithmetic +,–, <1,≤1,=, 6=,>,≥1 1,995

Logic
bitwise(&, |,∧,∼), ternary(?:),
extend1 , reductions(&, |,∧, !)

3,208

Interconnect 4x4 32b Xbar, CGI/Os, CG muxes 5,482
BarrelShift ≪,≫, concat 1,791

FG 16 4-LUTs, LUT I/O 19,455
Connection and Switch Blocks 17,519

Combined, incl. Multiply 82,739
Combined, no Multiply 47,739

1: Operators with both Signed and Unsigned modes

whereas the original CLB (now a portion of the CLB, called FG)
and the FPGA routing fabric is not. The CG also has dedicated
word-wide interconnect to the CG in the neighbouring CLBs. The
ALU we propose is Verilog-specific and supports Verilog operators
not found in typical ALUs, like bit concatenation (ab[7:0] =

{a,b}) and unary logic reductions (parity[0] = ˆa).

2. MALIBU ARCHITECTURE
For Malibu, the most important thing is to extract plenty of word-

wide operations from the source Verilog. These are mapped to
the time-multiplexed ALUs in the architecture. As well, the fine-
grained logic “leftovers” must also be extracted and mapped to the
LUTs in the architecture. However, before we can present the de-
tails of the CAD flow, we must first present a target architecture
and explain the coarse-grain/fine-grain interface.

The architecture (Figure 1) starts with a standard fine-grained
(FG) FPGA, and adds a time-multiplexed coarse-grained process-
ing element (CG) to the CLB. The CG connects to the fine-grained
CLB through coarse-grained inputs (CGI) and outputs (CGO).
There are Ncgi CGIs, where each one aggregates a bundle of Wf

signals from the fine-grained (FG) resources as an input to the
ALU, zero-extended to 32-bits. There are Ncgo CGOs, where each

CGO latches the Wf least significant bits produced by a specific in-
struction, providing them to the LUTs or FPGA routing resources.
When Wf = 0, the fine-grained resources (all traditional LUTs
and interconnect) are removed, leaving only the new CG.

Each CG is time-multiplexed; it always executes one instruction
per cycle, and all communication is explicitly pipelined and sched-
uled. It operates on a system clock that is different than the user
clock cycle; we anticipate a 1 GHz system clock in 65nm technol-
ogy using custom layout techniques can be readily achieved. Each
CG contains a schedule with exactly SL instructions (the schedule
length). On the active user clock edge, the instructions start execut-
ing, one per system clock cycle. At the end of the SL instructions,
the CG pauses for the next user clock edge before starting over.
One complete pass of the SL is required for each user clock cycle,
so this limits the Fmax to 1

SL
· 1 GHz.

All common Verilog operations can be easily mapped onto the
ALUs in the CG. For example, adding two 4-bit values in Verilog,
written as o = a + b, can be expressed using 32-bit ALU opera-
tions in C language as o = ( (a&0xf) + (b&0xf) )&0xf.
However, the ALUs we propose are Verilog-specific; they auto-
matically truncate output results to the desired width by forcing all
upper bits to zero. The width is encoded in the instruction, and is a
separate input to the ALU as shown in Figure 1. For some opera-
tions the width has a special meaning, for example for concat it is
used to specify the number of bits to concatenate from the LSB in-
put (the remaining 32−width bits are taken from the MSB input),
and the output is not truncated. Each input operand width is left
unspecified and the CAD ensures the correct width is provided by
inserting zero-extend or sign-extend operations where necessary.

A complete list of all operations in Malibu are shown in groups
in Table 1, including the estimated area using VPR’s units of
minimum-width transistor area (T). The area estimate is from a
manual gate-level design of each part except the multiplier [5],
counting the number of basic components (gates, muxes, etc.) re-
quired for each, and then converting those into minimum-width
transistors. E.g., an OR gate requires 3 NMOS and 3 PMOS tran-
sistors, and a PMOS requires 1.5x the area of an NMOS, so the OR
gate requires 7.5 T.

The combined area for the blocks is slightly less than the sum of
individual unit areas due to redundancy removal when combined.
The acronym MALIBU, an extension of ALU, originates from the
name of these groups or units. The ALU itself comprises a total of
30 operations. Multiply and comparisons have signed and unsigned
variations. Each CG operation also requires a 5-bit width parameter
for the output width in bits. Exceptions are sign extension, Verilog
unary logic reduction, and concatenation which use the width an
input because the output width is implied. To save area, only one
in five columns of CLBs contain a multiplier.

The result of a CG operation can potentially be written to any
address in the R memory, to any of the CGOs, and to any address
in each of the N, S, E, W (NSEW) memories concurrently. Each
of these memories operate synchronously using a single write port
and three read ports. So far, our CAD results indicate each NSEW
memory should have up to 16 entries, and the R memory should
have up to 64 entries.

To simplify the tools, the FG does not contain any flip-flops. In-
stead, the flip-flop state is stored in either an R or NSEW memory.
The value is transferred to a CGO latch at the beginning of each
user clock cycle so the value is stable for the duration of the cycle.

To avoid introducing another memory block in the CG to im-
plement user-circuit memory, we have a novel feature where user-
circuit memory blocks are packed into a contiguous block of space
in R. Special load/store operations are used and require one extra



Table 2: Malibu Memory Area Estimates
SRAM eDRAM Flash

Specifications µm2 µm2 µm2

NSEW 32x16, 3R1W 1,229 – 3,521 — —
R 32x128, 3R1W 4,669 – 28,160 — —

Instr. 90x256, 1RW 11,290 – 30,849 6,682 1,579
Instr. 90x1024, 1RW 45,158 – 96,840 26,726 6,318

system cycle to perform the required indexing. The largest user
memory block in our benchmarks is 2kbit, for which we add 64
more entries to R (total 128).

Figure 1 also shows a 4x4 routing crossbar. It writes values to the
NSEW memories located in the four cardinal neighbours by taking
values from the local NSEW and R memories. Although there are
5 sources, a 4:1 mux is sufficient because the W crossbar output
never requires the W crossbar input, for example. The crossbar
routes coarse-grained signals concurrently with computation, and
keeps CG communication off the FG routing resources. The ALU
cannot write to the same NSEW memory as the crossbar in the
same clock cycle. The CAD detects this condition and writes to R
instead, then schedules a transfer from R to the target NSEW in the
next available cycle. We found the ability for the ALU to write to
NSEW directly is important for performance.

We have encoded each CG instruction, including all of the source
and destination addresses and crossbar control, into 90 bits. In con-
trast, there are well over 1,000 configuration bits in a traditional
VPR-style CLB (ten 6-LUTs require 640 bits, the 60 LUT inputs
require at least 5 bits each, plus bits needed to configure flip-flops
and all of the interconnect). However, after time-multiplexing, the
CG requires SL× 90 bits. If the user extensively time-multiplexes
a large circuit onto very few CLBs, upwards of 1024 instructions
per CLB might be required. However, our current tools show 256 is
sufficient. The long-term goal of the CAD is to significantly reduce
this value.

The CG makes extensive use of memories. We estimated the
area of these memories, but found results can vary as shown in
Table 2. The NSEW and R memories need very fast read and
write access, so they should be implemented as SRAM. The in-
struction memory is primarily read-only and accessed sequentially,
allowing it to be pipelined. It may be implementable in SRAM,
eDRAM, or flash. An upper bound on SRAM area was obtained
using the Artisan Memory Compiler. However, it is not optimized
for small memories and includes overhead like redundancy. Us-
ing technology parameters for SRAM [24, 28], eDRAM [15] and
flash [17], we computed lower bounds on area as follows. Using
transistor counting, we estimate control logic overhead (decoders,
sense amps, drivers) as 50% area per bit, which correlates with
data in [15]. Each extra port is modelled as 100% area per bit.
For example, a 3-port, 32b memory implemented in 0.25µm2/bit
technology would require 0.25 × 32 × 3 × 1.5 = 36µm2 area.
To convert to VPR transistor-area (T) metrics, the iFAR reposi-
tory assumes the area of 1T≈0.5µm2 in 65nm. Using the SRAM
lower bounds, each MALIBU CLB requires 17,188µm2 for mem-
ory, compared with 15,110µm2 for the FG and CG logic (no mul-
tiplier), and 8,760µm2 for the FG interconnect.

One limitation of this architecture is the assumption of a single
user clock domain. We believe this greatly simplifies the types of
circuits created by C-to-gates flows, which we hope would natu-
rally target this type of architecture. Nevertheless, it is important to
address multiple clock domains in our future work.

For the details presented in this section, please keep in mind
this architecture is intended to be a starting point for many op-
timizations which we have not yet performed. The emphasis in

this paper is about producing a flexible CAD system that can al-
low us to model many variations in the architecture. We assume
fully-populated C blocks and IOBs, and all FG and CG intercon-
nect wires are directional but span only a single CLB in length. As
well, we usually run the tools in an “exploratory mode”, where the
number of resources float, allowing us to find the natural demand
rather than trying to fit to a fixed limit.

3. MALIBU TOOLFLOW
The Malibu CAD tools use a CDFG (Control and Data Flow

Graph) representation of the circuit where graph nodes are circuit
operations and graph edges are communication. Each node has an
operation type, a set of ordered sources, a set of sinks, and an output
bit-width. Each edge has a delay (number of system cycles) and a
bit-width equal to that of the driving node. The value Wf is the
fine-grained width threshold; all nodes and edges wider than Wf

are implemented on the CG resources only, placing the nodes and
edges Wf or smaller in the FG resources only.

The objective of the tool flow is to assign each coarse-grained
node to a <CG, timeslot>-tuple, each fine-grained node to a LUT,
and to route all edges. The tools are divided into several steps for
fine-grained synthesis and FPGA mapping, placement, routing, and
a step called scheduling to order the time-multiplexed operations
over time. All steps are timing-driven, which means minimizing
the schedule length.

The academic FPGA CAD flow is shown in Figure 2a. It uses
T-VPack and VPR[20], which have become the de facto standards
for academic FPGA clustering, placement, and routing. Synthesis
from Verilog to technology-mapped LUTs is done with QuartusII
since OdinII only implements a subset of Verilog. This toolfow is
used as a baseline comparison for results in Section 4.

This section describes two approaches for mapping a circuit to
the Malibu architecture: Malibu-CAD (M-CAD) and Malibu-HOT
(M-HOT). Both approaches extend the academic FPGA CAD flow
to add support for coarse-grained time-multiplexed entities. Fig-
ure 2b shows the M-CAD approach, which follows the same or-
der of operations as the traditional CAD flow. Figure 2c shows
the height-oriented tool (M-HOT) approach which performs place-
ment, routing, and scheduling simultaneously. These two ap-
proaches are identical up to the clustering step. Generally, M-CAD
runs faster but produces slower circuits than M-HOT.

Prior work [11] details RVETool, which is the coarse-grained
part of the M-CAD approach. Therefore, in this paper we only in-
clude the details required for the fine-grained integration and for the
new M-HOT approach. We refer the reader to [11] for the details
of the M-CAD coarse-grained synthesis.

The input Verilog is parsed, elaborated, then split into fine-
grained and coarse-grained parts. The fine-grained part is synthe-
sized to LUTs and then merged with the coarse-grained operations
for clustering, placement, routing, and scheduling. The parse step
outputs the fine-grained circuit parts using a subset of Verilog com-
patible with OdinII and ABC for synthesis to LUTs.

Not shown in Figure 2 is an architecture file input used to specify
the number of PEs, the width of buses, the size of each memory, and
the resources in each PE (e.g., if the PE can perform I/O). These
parameters act as constraints in the tool flow and are available at all
steps.

3.1 Parse and Coarse-Grained Synthesis
The first step in both the M-CAD and M-HOT flow is to construct

a CDFG representation of the circuit. A modified version of Verila-
tor [29] parses the input and performs several simple optimizations
like module elaboration, dead code elimination, and constant fold-
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flow. M-HOT performs placement, routing, and scheduling simultaneously.

ing. Verilator is not a full-scale commercial-quality synthesis tool,
it is designed to output a sequential C++ program, not perform full
synthesis of parallel logic. We use Verilator because it is easy to
extract a CDFG before it begins to serialize the graph, and because
it generates high-quality output for many circuits. However, it ap-
pears to perform poorly in some cases (see Section 5).

The Verilator output requires further processing for the Malibu
architecture. Signals and operations (CDFG edges and nodes) less
than or equal to a specified width (Wf = 3 in Figure 1), are con-
sidered fine-grained and marked to use the FG resources. Coarse-
grained operations that compute FG signals (like a comparison) are
mapped to CGOs, while CG operations that depend on FG sig-
nals are mapped to CGIs. The remaining operations are considered
coarse-grained, and most map trivially onto the supported CG op-
erations. However some require more complicated graph transfor-
mations [11] to legalize the CDFG for the architecture.

Before producing the final CDFG, the FG logic is separated from
the CG logic and written to a distinct RTL Verilog file for OdinII
synthesis.

3.2 Fine-Grained Synthesis
The fine-grained parts of the circuit are synthesized to LUTs

using OdinII and ABC, then merged back into the coarse-grained
CDFG for clustering. Using RTL Verilog simplifies the description
when Wf > 1: OdinII elaborates the design to single-bit oper-
ations, then ABC cleans up any dangling logic (e.g. from an add
operation where the carry bit is discarded), and tech-maps to LUTs.

LUT packing into CLBs is integrated with the placement tool
and done with the CG placement. The number of CGI and CGO in-
terfaces needed in a CLB will change while performing CG place-
ment, so LUT packing is done as part of placement.

3.3 Malibu Cluster
The clustering tool collects CG operations into CLB clusters for

each CLB. It also groups the LUTs which source or sink CG values
into the same CLBs as the CG operation. The overall goal is to
reduce the amount of communication by the CG logic.

The tool can cluster code to varying degrees to target any number
of CLBs, allowing a tradeoff between area (number of CLBs) and
performance (Fmax). This is demonstrated in Section 4.4.

For the M-CAD approach, the clustering tool uses hMETIS [16]
to partition the graph using recursive bisection. To guide hMETIS,
all nodes are assigned a weight of 1, except constants which are
replicated as needed and assigned a weight of 0 so they can be
placed in any CLB for free. Load and store operations from user
memory, and CGI/CGO interface operations, are connected with
very high edge weights to ensure they will not be separated.

The M-HOT approach keeps CG instructions independent (clus-
ter size of one) because it favours a “move-and-compute” model
where computation is done while values are being routed through
the current CLB en route to a final CLB instead of being computed
in a CLB, stored locally, and then routed later. Other than keep-
ing together the load/store and CGI/CGO interface operations, no
clustering is done for M-HOT.

3.4 M-CAD Flow
The M-CAD tool flow performs placement, routing, and

scheduling in distinct steps as in traditional CAD. Information is
only passed forward so the routing result, for example, cannot be
used to go back and generate a better placement. This section
briefly describes each step and how the coarse-grained and fine-
grained resources are handled. Prior work [11] details just the CG
aspects, but the FG aspects presented here are new.

3.4.1 Malibu Place

The Place tool assigns the code clusters to CGs and LUTs into
FGs. The goal is to keep the critical path small.

The tool uses VPR’s [20] timing-driven annealing placement al-
gorithm with two changes to the cost function. First, a different def-
inition of “delay” is used in the cost function computation to handle
both the fine-grained and coarse-grained operations being placed.
Second, a parameter penalty discourages illegal placements.

To simplify placer delay estimates, all delays are expressed as
integers. Each hop of a coarse-grained communication path has a
delay of one, with the total delay being the number of hops. We pre-
computed Elmore delays with VPR to estimate how far (in CLBs)
a fine-grained signal travels in one system clock cycle. The placer
can thus estimate FG delays quite easily. The Schedule tool ulti-
mately determines the order of execution of instructions using the



actual delays from VPR routing, so an estimate at this point is suf-
ficient.

The time-multiplexed network introduces an additional level of
complexity not found in regular FPGAs: two nodes within the same
CG may be scheduled in timeslots far apart, causing additional de-
lay not modeled by the number of hops. Unfortunately this delay is
not known until scheduling is complete, so at this stage we assume
it is zero.

The delay computation is used with a slack and criticality com-
putation to calculate the timing_cost, which is part of the place-
ment cost function. The slack, criticality, and timing_cost com-
putations are the same as in VPR.

The placer allows illegal placements to be considered. The
penalty parameter adds a fixed cost each time memory size is
exceeded, unavailable CG or FG resources are used, too many
CGI/CGO registers are used, or too few/many CLBs, are used.

At the end of placement, if required, the Place tool also packs
multiple small user memories into each CG, ensuring they do not
overlap. However, the problem of splitting a large user memory
across multiple CG is left for future work.

3.4.2 Malibu Route

After placement, VPR’s PathFinder router is used to route the
fine-grained logic. The schedule tool reads the delay information
from VPR and records the delay of each fine-grained link in the
DFG.

The coarse-grained routing problem is different from conven-
tional CAD flows because the routing network is time-multiplexed,
so temporal as well as spatial decisions must be made. The spa-
tial routing is done using a simple horizontal-then-vertical routing
strategy. The router follows existing routes from the same source
as far as possible before branching the route towards the new des-
tination CG.

The temporal routing decisions are made during scheduling.
When the endpoint of a route is to be scheduled, the scheduler
follows each hop of the route, checking that the necessary CG re-
sources are available. If a conflict arises, the route is held in place
for as many timeslots as necessary until the resources are available
at the next hop. For the Fmax results in Section 4.1 it was never
necessary to hold a value to avoid a routing conflict for any circuit.
In practise over all our experiments we have never seen a value held
more than two cycles, meaning the architecture has an abundance
of CG routing resources.

3.4.3 Malibu Schedule

The Schedule tool orchestrates the overall execution of code
and movement of data to reproduce the behaviour of the origi-
nal circuit. It assigns each instruction to a timeslot in a CG, it
assigns each coarse-grained route-hop to a timeslot resolving all
routing collisions along the way, and it ensures all values are pro-
duced/consumed at the appropriate times on the fine-grained re-
sources.

The scheduling algorithm is variation of list scheduling. It begins
at timeslot = 0 and assigns as many operations as it can across
all CGs in that timeslot. It iterates over the sinks of the scheduled
operations and uses the routing delay information to compute the
minimum timeslot in which those sinks may be scheduled. It then
moves on to the second timeslot, and so on. This timeslot-oriented
approach ensures the scheduler is fast and is always making for-
ward progress. NOP instructions are inserted in all timeslots that
do not contain a circuit node after scheduling.

An operation may be scheduled in timeslot if:

• The timeslot is empty in the CG’s ALU.

• All source signals have arrived in time.

• All internal CG resources required by the operation are avail-
able.

• All routing resources required by the output of the operation
(fine-grained and coarse-grained) are available for the first-
hop of the route.

At each timeslot, nodes are considered in order of criticality as
computed during placement. This simple ordering reduces the final
SL and thus increases the Fmax by ≈10%.

At the end of scheduling, accesses to the NSEW and R memories
are assigned specific offsets using a greedy approach. At this point,
the CG operations and FG LUTs for each CLB are packed into a
single output bitstream.

3.5 M-HOT Flow
The Malibu height-oriented tool flow (M-HOT) is shown in Fig-

ure 2c. M-HOT is based a modulo graph embedding scheduler [25],
which was tested on a CGRA up to 4x4 PEs. There are several dis-
tinctions from the work presented here which are elaborated upon
in the following sections.

• Support was added to place, route, and schedule fine-grained
operations in parallel with the coarse-grained operations.
VPR is called to obtain the FG routing delays.

• Support was added for registers. M-HOT ensures that ex-
pected flip-flop behaviour is reproduced.

• M-HOT uses a variable-length schedule that is increased as
needed. This is sub-optimal, but it avoids searching for the
lowest schedule length through multiple invocations of the
tool. M-HOT also supports a fixed schedule length.

• The placement cost function was modified to encourage
nodes at each height to spread out to many CLBs, and also
modified so that multiple CDFG paths that end at the same
user register (logic reconvergence) will tend towards the
CLB which holds the register state.

The M-HOT approach makes better decisions because integrated
placement, routing, and scheduling has greater information about
resource usage than approximate cost functions in segregated flows
like M-CAD. However, it does increase runtime over M-CAD.

The top-level code of the algorithm is shown in Figure 3. The
algorithm accepts a CDFG and computes an as-late-as-possible
(ALAP) height for each node (operation). At the bottom at height
0 are the CDFG outputs. It processes each height, starting at the
largest (which are always CDFG inputs), because those nodes have
the longest path to the outputs at the bottom, so they are the most
critical.

At each height, it computes an affinity matrix and performs a
low-temperature anneal to assign each node to a CLB and the ear-
liest timeslot that gives it the lowest cost. When annealing is com-
plete, all nodes at the current height are locked so they cannot be
moved, and the next height is annealed.

3.5.1 Annealing

At each height, the annealer assigns coarse-grained operations to
CGs and fine-grained operations to LUTs in the FGs. The coarse-
grained and fine-grained nodes are annealed together, so either can
be a move candidate. After choosing a move, the annealer invokes



1: Compute ALAP height of each node
2: for height = maxheight to 0 do
3: nodes← all nodes at height=height
4: aff ← compute_affinity(nodes)
5: anneal(aff , nodes)
6: end for
7: Finalize modulo routes

Figure 3: M-HOT Top-Level Code

the router to determine the earliest timeslot for the current opera-
tion in the chosen CLB. Coarse- and fine-grained routing delays are
computed the same as the M-CAD approach.

If the operation is registered, it requires special handling. Not
only are the routes computed from the source operations to this
register, but unlike traditional operations the destination sinks will
already have known locations and timeslots. Hence, the paths to
them can be computed as well. They are known because a regis-
tered operation is always the terminus of a path, so it is always at
height 0 in the ALAP tree. However, the sinks of a register are
placed as some of the earliest operations. These routes are “mod-
ulo routes”, wrapping around the schedule back to timeslot 0. The
M-HOT approach does not target a fixed SL. Instead, it lengthens
SL as needed. As a result, the links on these modulo routes may
become broken as additional timeslots are added. The last step of
the main loop in Figure 3 completes and reconnects these dangling
routes.

At the heart of the annealer is a cost function. The annealing
schedule is from VPR but with a lower initial temperature. The
annealing cost function is from [25], but modified for the Malibu
architecture to achieve better results for mapping circuits. The cost
function for a node is:

cost =producer_cost+ affinity_cost+ parallel_cost

+ register_cost+ penalty

3.5.2 Producer Cost

The producer_cost is the cost of placing a CG operation in a
certain CLB at a certain timeslot, or a LUT in a certain CLB. It uses
actual routing information to compute the real cost (something the
M-CAD approach can only approximate by using the Manhattan
distance). The cost is the sum of the timeslot differences from each
source to the current node.

This is the same cost as in [25], except as follows. When the
CG operation has a register as a source, that source will not be
placed until height 0 is processed. Yet, a placement is needed to
compute this cost. In this case, to avoid spreading out the siblings
of that source register and incurring lengthy fanout delays when the
register is finally placed, the producer cost is the total Manhattan
distance from the candidate CLB location to each of the already-
placed siblings of the register.

3.5.3 Affinity Cost

The affinity cost keeps nodes with common descendants close
together to reduce future routing costs. It is computed among all
nodes at each height, and is calculated as described in [25]. Briefly,
it weights the Manhattan distance between a pair of nodes at this
height by the affinity weight between them. The affinity weight
counts the common sinks between the nodes in future graph levels
which are not yet placed. It looks up to 3 levels deep, with the
common sink count being counted 4 times at level 1, twice at level
2, and once at level 3. Thus, two nodes with many common sinks
in the very next level of the graph will be penalized by a higher
affinity cost if they are placed too far apart.

3.5.4 Parallel Cost

This cost attempts to spread out nodes from the same level so
they are placed in different CLBs. This cost simply counts the num-
ber of node-pairs placed into the same CLB. Without this cost, they
tend to bunch up in the same CLB, requiring more timeslots to
schedule. The implementation in [25] prefers to place nodes “on
the left” of the array, since this is where I/O is located. For Malibu,
it is better to force the nodes to spread out.

3.5.5 Register Cost

In a circuit with registers, two sinks of a register may be placed
far apart since there is no cost to tie them together, in turn creat-
ing unnecessarily long routes and artificially inflating the SL. [25]
avoids this problem by pre-placing all inputs, outputs, registers, and
memories. If the circuit has a specific pin mapping this would be a
reasonable approach for M-HOT too, however it is not always de-
sirable to impose this restriction so two costs are added to the cost
function: a cost to keep sinks of registers together, this was shown
previously as the producer_cost, and a cost for register path re-
convergence.

To encourage reconvergence, a register_cost is computed to be
the sum of the Manhattan distances between each node in the cur-
rent height and the sinks of any registers in the node’s respective
fanout cone. This encourages the operation to be placed along the
straight-line path between the source and eventual register location.
While the registers themselves have not yet been placed, the sinks
of those registers have been placed, so the Manhattan distance can
be computed. The cost for sinks is exponentially weighted by pow-
ers of 2 based on depth in the same way as the affinity calculation.

3.5.6 Penalty Cost

The penalty cost discourages invalid/illegal placements. It is
computed the same way as the M-CAD approach.

3.5.7 Routing

Because placement, routing, and scheduling are done together
with the M-HOT tool, there is no opportunity to incorporate the
actual FG routing delays into the flow without of invoking VPR in
the inner loop of the annealer.

Instead, the M-HOT tool estimates the FG routing delay based
on Manhattan distance and Elmore delay, and calls VPR at the end
of scheduling to compute the actual delay for each route. In all our
benchmark trials we have found that even when the routing delay is
underestimated (e.g. a route has to go around some CLBs to avoid
congestion), it is close enough to the actual delay that the value will
still arrive before it is needed. M-HOT flags any routes with timing
violations and reports an error.

4. EXPERIMENTAL RESULTS
In the following sections, the M-CAD and M-HOT tools

are evaluated on the Malibu architecture. For baseline
comparison, the benchmarks were synthesized with Quar-
tusII 10.0 for a StratixIII (EP3SL340F1760I4L) FPGA, and
with VPR 5.0 using 65nm iFAR [33] architecture parameters
(n10k04l04.fc15.area1delay1.cmos65nm). For VPR, the ten 4-
LUT architecture was selected for area efficiency. The length-four
wires in the architecture were changed to length-one wires without
changing the delay characteristics to over-compensate for the CG
area being added to each of the FG CLBs. The architecture was
also modified to place the CLB pins only on the top or right of the
CLB to mimic overhead routing.

In Section 4.1 the maximum user clock speed (Fmax) is com-
pared. In Section 4.2 synthesis time is compared to QuartusII. Sec-



Table 3: Benchmark Circuit Information
QuartusII VPR Malibu

Circuit ALM 18× 4LUT Nodes Nets %r %1b

ethernet 6868 0 19626 9693 13686 15 61

fft16 6412 84 17006 2120 2236 29 0

wb_conmax 5349 0 16098 17917 23558 2 40

fft8 2075 28 5248 800 836 29 0

dma 1714 0 5071 18514 23650 6 41

ac97_ctrl 1254 0 3538 4911 6097 8 47

aes_core 1154 0 5021 3380 3970 1 8

tv80 850 0 2330 12186 16027 2 44

jpeg_enc 791 64 2836 4486 5882 11 13

systemcaes 716 0 2181 3043 3799 0 23

spi 488 0 987 664 856 6 37

des 298 0 865 4114 5497 0 34

systemcdes 237 0 650 1688 2131 0 24

pci_master 137 0 325 957 1342 8 71

me 5148 0 14388 5954 7020 14 0

chem 3526 175 36143 568 714 0 0

honda 1216 52 3795 249 293 0 0

dir 1150 8 6620 884 1190 6 22

mcm 1057 56 3067 232 288 0 0

wang 797 24 2275 134 152 0 0

pr 646 18 1893 176 194 0 0

tion Section 4.3 looks at the minimum-transistor-area required for
each benchmark. And finally in Section 4.4 we show the tools can
make tradoffs among Fmax, compile time, and density.

To evaluate these metrics, a variety of Verilog benchmarks are
used, summarized in Table 3. The chem, dir, honda, mcm,
pr, and wang benchmarks [30] are dataflow– and DSP-style non-
pipelined computational circuits described in behavioural Verilog;
me is our own motion estimation design; fft8 and fft16 are our
own deeply pipelined 8- and 16-point complex FFTs implemented
using a radix-2, decimation-in-time decomposition; jpeg_encoder
is from [32]. The other benchmarks are the 11 largest (in ALM
count) from the IWLS 2005 benchmark set[6], excluding the ones
with names of the form sXXXXX which appear to be the output
of another synthesis tool since they are composed entirely of 1-bit
logic gates with mangled names.

Table 3 shows the synthesized size of each benchmark using
QuartusII for a StratixIII, VPR for the modified iFAR architecture,
and Malibu. The 18× column is the number of 18×18 multipliers
used. We were unable to use QuartusII to produce BLIF with hard
multipliers, and OdinII’s limited Verilog support would require a
massive rewrite of our benchmarks, so the VPR results use LUTs
exclusively. The %r column is the percent of nodes which are reg-
istered, and is important in the HOT approach where these nodes
are all at height=0. The %1b column is the percent of nodes which
output a single-bit value. These nodes are implemented on the fine-
grained resources when Wf ≥ 1. For some circuits, like dma and
tv80, much fewer QuartusII ALMs than Malibu nodes are needed.
This highlights the strong need for us to examine and improve the
front-end logic synthesis in our flow. Since that is a major under-
taking, we leave that for future work.

4.1 Maximum Frequency (Fmax)
Figure 4 graphs the Fmax across all circuits for the baseline

Quartus and VPR test, and for the M-CAD and M-HOT tools with
Wf = 1. The data is fastest result of 10 trials, and for the Mal-
ibu results is the fastest result for all architecture sizes. The data,
sorted by the Quartus Fmax, allows us to highlight three trends.
First, the QuartusII Fmax is 10x higher on average than M-CAD
with Wf = 1. Changing to Wf = 4 (not shown), M-CAD im-
proves to an 8.4x gap. Alternatively, if we eliminate the FG LUTs
completely (Wf = 0), the M-CAD Fmax is 14x lower. We con-
sider this a fairly good result for time-multiplexing.
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Table 4: Synthesis Time Speedup vs. Quartus
All Circuits Circuits with fine-grained signals

Tool Wf=0 Wf=0 Wf=1 Wf=2 Wf=4

M-CAD 61.1x 20.1x 8.5x 8.6x 8.7x
M-HOT 42.0x 4.9x 12.1x 11.8x 12.1x

Second, the Fmax results for the M-HOT tool are, on average,
45% higher than M-CAD across all values of Wf . Compared to
Quartus the M-HOT tool Fmax is 8.5x, 6.3x, and 4.8x lower for
Wf=0, 1, 4 respectively. For time-multiplexed architectures, this
indicates that this may be a better way to map circuits than follow-
ing traditional CAD.

Third, the benchmarks towards the left of Figure 4 have a large
percentage of fine-grained wires. FPGAs implement these very
well, but the time-multiplexed Malibu architecture does not, av-
eraging 15x slower (M-CAD, Wf = 1). However, on the right of
the graph where the FPGA performs poorly are the coarse-grained
benchmarks. These are the types of circuits the Malibu architecture
is targeted for, and they show a 3x higher Fmax over the Stratix III
result.

4.2 Compile Time
Table 4 shows speedup, compared to Quartus, of the complete

Verilog-to-bitstream compile time for the Malibu M-CAD and M-
HOT toolflows.

Both Malibu CAD approaches show a significant speedup com-
pared to Quartus ranging from 249x faster (chem) down to 1.3x
faster (dma) for M-CAD. Malibu compile-time is designed to be
fastest with coarse-grained-only circuits (fft16, me, chem, fft8,
honda, mcm, wang, and pr). When removed, the overall speedup
decreases as expected. Since these circuits have no fine-grained
signals, setting Wf > 0 has no effect on results as the fine-grained
handling code is never invoked.

For the remaining circuits, on average, there is still a speedup
when fine-grained signals are implemented on the FG resources.
However, the speedup range changes from 42x faster (spi) to al-
most 50x slower (wb_conmax). We consider wb_conmax to be
anomalous because a traditional VPR route of wb_conmax takes
14 minutes, whereas VPR called by the Malibu to route the FG
resources takes 5 hours. This further highlights the need for im-
provements to our front-end synthesis: the traditional VPR route
uses Quartus-generated BLIF, whereas Malibu is extracting nearly
the same number of FG nodes as the entire Quartus-optimized cir-
cuit.

For both the M-CAD and M-HOT flows, the compile-time
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pared to the Fmax for Wf = 1.

changes little as Wf increases. Once the fine-grained resources
are invoked they require approximately the same time to process
even though the quantity of FG logic increases. Also, M-CAD gets
slower but M-HOT gets faster with Wf > 0 because M-HOT an-
neals fewer objects at each height as Wf increases.

4.3 Area
Figure 5 shows the transistor area, normalized to the VPR area

result, of the smallest Malibu architecture size required to success-
fully synthesize each benchmark. It also shows the area required
for the Fmax results presented in Figure 4 for each benchmark.
The Malibu area is the sum of the tile area (Tables 1 and 2) and the
FG routing area as reported by VPR. In many cases, particularly
for Wf = 0, the minimum area is achieved by time-multiplexing
the circuit on just a few CLBs. However the tools are enforcing re-
source constraints so this is not possible for all circuits. The map-
ping is constrained by the instruction memory (256 instructions), R
(64 plus 64 user data-memory entries), NSEW (16 entries), CGIs
(4 per CLB), CGOs (16 per CLB), LUTs (16 per CLB), and circuit
I/Os (one CG input and one CG output per CLB).

The benchmarks to the left of the vertical divider have no fine-
grained elements so the result for Wf = 1, 2, 4 is the same as
Wf = 0. For Wf = 0, on average, the required architecture is
15.5x smaller, with an average user clock speed of 20.1 MHz. This
is expected because the smallest area is most often a 3x3 or 4x4
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Figure 7: Frequency versus area tradeoff for the ethernet

benchmark. M-HOT produces faster results than M-CAD. In-

creasingWf also improves the frequency.

array of CLBs, and the Malibu CAD tools fold the operations in
time to fill the instruction memory which is the limiting constraint.

For Wf = 1, 2, 4 (circuits to the right of the vertical divider),
the minimum required area is, on average, 1.8x, 1.5x (not shown),
and 1.8x larger than the VPR area results. The limiting constraint
in these cases was the number of LUTs per CLB, which was set to
16. More FG resources per CLB would help in this case, so would
a heterogeneous architecture where some CLBs do not have the CG
component, and so would a better CG/FG partitioning strategy and
better front-end logic synthesis. The Malibu CAD tools will enable
such architecture and tool exploration in future work.

For comparison, Figure 5 also shows the area for the Fmax re-
sults presented in Figure 4 for Wf = 1. This architecture size is
always larger than the minimum size. On average, the maximum
frequency is 1.4x higher, but uses 3.1x the area of the minimum
architecture size. This demonstrates the tool’s ability to trade area
for performance, this is further explored in the next section.

Figure 6 shows the Fmax from Figure 4 compared to the
minimum-area frequency for Wf = 1. The Fmax is, on aver-
age, 1.4x larger. Again, to the left of the divide are benchmarks
with no fine-grained elements, so Wf is actually zero. There is
a larger frequency difference for these circuits because the CGI,
CGO, and LUT constraints are removed, and the tools can time-
multiplex more aggressively at the expense of speed (only really
constrained by instruction memory). When the FG resources are
used (to the right of the divider) the additional constraints (CGIs,
CGOs, and LUTs) increase minimum area required to synthesize.
This pushes the area closer to the architecture size where the Fmax

is achieved, resulting in the higher frequency. For future work we
plan to investigate the ratio of CG and FG resources in each CLB, as
this result indicates more FG resources may be beneficial in some
cases.

4.4 Feature Evaluation
This section examines some unique features of the Malibu tool

flow. Figure 7 shows the user frequency of the ethernet benchmark
for the M-CAD and M-HOT approach for Wf =0,1,4 over a range
of architecture sizes from 3x3 CLBs to 45x45 CLBs. For each size,
the tools are forced to use all available CLBs, hence the decrease
in performance on larger architectures once communication delay
dominates the schedule. The tools would not normally be run in
this mode unless fitting a large circuit on a small architecture. Usu-
ally the tools would be allowed to find the best architecture size
by allowing some CLBs to remain empty. The dotted line repre-
sents the range of architectures where constraints were violated in



the final result, so the synthesized circuit is not viable given our
architectural settings.

This graph shows the Malibu tools can trade density (number
of CLBs) for speed by targeting any sized architecture and time-
multiplexing more code (or less) on the CGs. This is useful for
fitting a large design in a small architecture.

The graph also shows the tradeoff involving Wf . Increasing Wf

from 0 to 1 for both the M-CAD and M-HOT flows, causes the
frequency to also increase. It also causes the peak Fmax to require
slightly fewer CLBs, meaning density is increased. This result is
expected, because the fine-grained control logic is moved to the FG
resources where it can be computed and distributed more quickly.

It is possible to estimate a theoretical maximum frequency of a
circuit using the graph-depth of the CDFG after parsing by assum-
ing each node in the CDFG takes one system clock cycle and that
communication is free. These maximums are shown on Figure 7
for the ethernet benchmark for each value of Wf . For Wf = 0 M-
CAD is achieves 56% of the maximum and M-HOT 89%. M-HOT
exceeds the maximums at Wf = 1 and 4 because of chains of fine-
grained operations are being optimized and synthesized by OdinII
and ABC into LUTs, reducing the number of operations along the
critical path after parsing. Because of this, the important metric is
the Wf = 0 value where no optimizations are applied. Averaging
across all circuits, M-CAD achieves 35% of the post-parsing max-
imum frequency, and M-HOT 52%. Therefore, the performance of
M-HOT could be, at most, doubled without using optimizations or
a better parsing/CDFG construction tool.

5. LIMITATIONS AND FUTURE WORK
Moving forward, we plan to remove limitations of the Malibu

tool flow like the restriction of a single clock domain. There are
also promising scheduling approaches like the edge-centric modulo
scheduler proposed by Park et al. [27] that could further improve
circuit speed or density and keep compile time low.

VPR takes several hours to route the fine-grained parts of the
wb_conmax, fft16, and tv80 benchmarks from within the Malibu
framework. All other benchmarks route within a few seconds from
within the framework. By itself, VPR can place and route those
benchmarks in under 14 minute with input generated by Quartus
(see Figure 2a). Despite this long runtime, VPR still produces a
high-quality result. This is something that requires investigation
and could result in improvements to VPR or the fine-grained netlist
generator in the Malibu tools.

There are two avenues for future work to improve the quality of
the results. Figure 7 shows that M-HOT achieves 89% of the theo-
retical maximum frequency based on the parser output graph depth.
Overall, the M-HOT approach is 52% of this maximum, so better
placement, routing, and scheduling algorithms can only close this
gap. Adding optimizations is one way to reduce the graph depth
and increase the frequency. The other option is to replace Verila-
tor with a commercial-quality front-end synthesis tool. Verilator
was chosen because it is easy to extract a coarse-grain CDFG from
parsed and elaborated Verilog. These hooks need to be added to
other synthesis software.

Having a CAD flow is essential to enable architecture explo-
ration. We also plan to test various architectural parameters like
the size of the memories, the number of LUTs per CLB, and het-
erogeneous architectures involving multipliers, CLBs with no CGs,
and CLBs with large memories, to try and reduce the required tran-
sistor area while still maintaining a high-quality synthesis result
and a fast compile time. Also, the limitations of our front-end logic
synthesis needs to be investigated, as we are producing graphs with
significantly more nodes (and larger depth) than is likely needed.

6. RELATED WORK
Synthesizing a circuit for an FPGA is a well researched and un-

derstood problem. In this work we make use of academic tools T-
VPack+VPR [1], ABC [2], and ODIN II [13], as well as QuartusII,
a commercial tool.

Mapping to a CGRA also has many academic solutions, e.g. [18,
35]. These tools are designed to map software loop “kernels” from
sequential programs into the CGRA, not HDLs. CGRA archi-
tectures are usually controlled by a host processor, and have ac-
cess to global memory. When mapping circuits to an FPGA with
coarse-grained resources, there is no host processor or global mem-
ory. Other novel CGRA scheduling solutions include reconvergent
scheduling [19], DRESC [21], SPR [9], and modulo graph embed-
ding [26]. These solutions all use iterative algorithms to achieve
a high-quality mapping solution. Malibu seeks very fast compiles
with some loss of quality, so iterative approaches are incompatible
with our runtime objective.

Many CGRA architectures exist which time-multiplex coarse-
grained resources (e.g. ADRES [22], PipeRench [10], Tartan [23],
RaPiD [8], SCORE [3] ). In contrast, this work offers an approach
for implementing circuits, not programs. Unlike other work, we
integrate LUTs into the architecture to implement fine-grained sig-
nals. No resources are used to implement a C or C-like program-
ming model (e.g., no branch instructions or global memory). There
is ALU support for HDL operations like bit concatenation, unary
logic reduction, and automatic truncation of results.

The tradeoff between density and circuit speed in time-
multiplexed architectures was first demonstrated for fine-grained
FPGAs with VEGA [14] and later with TSFPGA [7]. TSFPGA
also added a modulo scheduling refinement, which we do not yet
implement. However, in this work we time-multiplex the coarse-
grained resources, not the fine-grained resources.

Datapath-oriented FPGA research has investigated logic config-
uration bit-sharing [4], as well as interconnect configuration-bit
sharing and bus-based multiplexers [34]. However, this research
has not looked at time-multiplexing.

7. CONCLUSIONS
Modern FPGAs implement a wide range of circuits which have

both coarse-grained and fine-grained elements. Great demand is
on CAD tools to synthesize these ever-larger circuits faster, and
without loss in quality. To address these issues, we have proposed
adding coarse-grained time-multiplexed resources to the FPGA
CLB to create Malibu, a new FPGA architecture.

To study the tradeoffs of new architecture, we have developed
a full CAD flow which fully compiles Verilog2005 into a configu-
ration bitstream. Two physical mapping approaches were demon-
strated: M-CAD is based on the traditional FPGA CAD tool flow
with scheduling at the end, and M-HOT is based on a CGRA sched-
uler for simultaneous placement, routing, and scheduling.

For M-CAD we demonstrate compile-time speedups of up to
249x (61x average) compared to QuartusII synthesizing for a
StratixIII FPGA. However, due to time-multiplexing and current
synthesis limitations we achieve a circuit speed 14x slower on av-
erage. The M-HOT synthesis takes longer, only 42x faster than
Quartus on average, but the final circuit speed is improved to only
8.5x slower. Enabling the fine-grained resources improves the final
circuit speed, and this slows compile-time for M-CAD but speeds
it up for M-HOT.

Finally, we demonstrate up to 15.5x savings in transistor area
utilizing the tool’s ability to trade density for the final circuit speed,



and time-folding the circuit as much as possible onto a small target
architecture.

It is difficult to compare tools such as this with more mature
work such as VPR and Quartus, but the architecture and tools show
promising results. Most importantly, they show it is possible to
achieve fast synthesis and good performance on the Malibu archi-
tecture. This is really the starting point for significant additional
future work, where various algorithms, heuristics, and architectural
features can be optimized and improved. In particular, we believe
significant gains in Fmax, runtime, and density can all be obtained.
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