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Abstract

In recent years, neural networks have regained popularity in a variety of fields such
as image recognition and speech transcription. As deep neural networks grow more
popular for solving everyday tasks, deployment on small embedded devices — such
as phones — is becoming increasingly popular. Moreover, many applications —
such as face recognition or health applications — require personalization, which
means that networks must be retrained after they have been deployed.

Because today’s state-of-the-art networks are too large to fit on mobile devices and
exceed mobile device power envelopes, techniques such as pruning and quantization
have been developed to allow pre-trained networks to be shrunk by about an order
of magnitude. However, they all assume that the network is first fully trained off-line
on datacenter-class GPUs, then pruned in a post-processing step, and only then
deployed to the mobile device.

In this thesis, we introduce DropBack, a technique that significantly reduces the
storage and computation required during both inference and training. In contrast
to existing pruning schemes, which retain the weights with the largest values and
set the rest to zero, DropBack identifies the weights that have changed the most,
and recomputes the original initialization values for all other weights. This means
that only the most important weights must be stored in off-chip memory both
during inference and training, reducing off-chip memory accesses (responsible for a
majority of the power usage) by up to 72x.

Crucially, networks pruned using DropBack maintain high accuracy even for
challenging network architectures: indeed, on modern, compact network architectures
such as Densenet and WRN-28-10, DropBack outperforms the current state-of-the-

art pruning techniques in both accuracy and off-chip memory storage required for
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weights. On the CIFAR-10 dataset, we observe 5X reduction in weights on an already
9x-reduced VGG-16 network, which we call VGG-S, and 4.5x on Densenet and
WRN-28-10 — all with zero or negligible accuracy loss — or 19, 27X, and 36X,
respectively, with a minor impact on accuracy. When the recomputed initial weights
are decayed to zero, the weight memory footprint of WRN-28-10 can be reduced up
to 72x.
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Lay Summary

Machine learning models power many consumer-facing features such as Apple’s
personal assistant Siri and Tesla’s self-driving cars. Because current models are too
large to store and adapt on mobile devices like smartphones, any model improvements
and updates must be done off-line using cloud resources. In many applications,
however, transmitting data to the cloud is unacceptable for privacy and security
reasons, and in such use cases the models cannot be retrained after deployment.

In this thesis, we aim to solve this issue by making it possible to train modern
machine learning models on these smaller, energy-constrained systems. We develop
DropBack, a method for reducing the on-device storage costs needed for creating —
i.e., training — large machine learning models. Unlike previous research, which has
focused on reducing the costs of using already created models, DropBack reduces the
costs of both creating and using such models. Compared to prior work, DropBack
decreases the on-device storage requirements by an order of magnitude, all while

retaining best-in-class accuracy results on modern image recognition networks.
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Chapter 1

Introduction

Neural networks are becoming an everyday part of modern life; from voice assistants
in cellphones to Amazon shopping recommendations, neural networks are ubiquitous.
Indeed, some have likened the resurgence of neural networks to the next dotcom-level
boom [5, 13, 59]. Typically, these neural networks are deployed in the cloud using
datacenter-class GPU compute resources; increasingly, however, they are also being
deployed on mobile devices, e.g., for voice and facial recognition [61, 62].

In comparison to top-end GPUs, mobile devices have very limited oft-chip
DRAM bandwidth and drastically reduced power envelopes. Because modern deep
neural networks are large and computationally expensive to use — and even more
computationally expensive to train — bringing the recent advances in neural network
technology to mobile devices remains a challenge. Consequently, much work in the
last three years has focused on reducing pre-trained neural networks to fit on mobile
devices so that they can be used for inference [14, 18, 64, 68].

Comparatively little attention, however, has been paid to enabling training within
the low power envelopes of mobile devices. On-device training is desirable to (re-
)train networks to improve accuracy for individuals users’ voices and faces [61, 62],
as well as in other applications where transmitting training data to the cloud is
undesirable for privacy and security reasons. This presents three key challenges:
(a) state-of-the-art networks need to be trained within the mobile device off-chip
DRAM size and off-chip bandwidth restrictions; (b) the power and energy costs of
training, which include computation and off-chip memory access, must be reduced



to fit within the mobile device power and energy budgets; and (c) models trained on
mobile devices should not lose significant accuracy compared to models trained in
the cloud.

In this thesis, we take a step towards enabling on-device training by developing
DropBack, an algorithm that lowers the off-chip memory usage for weights, and
optionally reduces the computation requirements, during training. We demonstrate
that DropBack can reduce the number of weights that must be stored during training
by up to 5x with no loss of accuracy, and up to 36 if a small amount of accuracy
can be sacrificed. Because retrieving weights in off-chip DRAM and computing on
it consumes substantial energy, reducing the memory footprint can in turn reduce the
required power envelope; if DropBack is incorporated in a neural network accelerator
— a task outside of the scope of this thesis — it can potentially reduce the energy

required to train deep neural networks on mobile devices by an order of magnitude.

1.1 Energy Consumption of Large Neural Networks

Energy Usage During Inference

Modern deep neural networks can use large amounts of storage and computation: for
example, the WRN-28-10 network [71] requires 144MB of weights to be accessed
in off-chip DRAM and 5.48 billion floating-point multiply-accumulate operations to
classify a single image. In the 45nm technology node, this requires a minimum of
47m] of energy for accessing DDR2 DRAM (2.6nJ per 64 bits accessed [25]) and a
further 27mJ for computation (estimating a single floating-point multiply-accumulate
at 5pJ = 0.9pJ + 4pJ per 32-bit floating-point fused multiply-accumulate [25]). In
addition, a realistic chip would also have other overheads, such as scheduling,
accessing on-chip register files and scratchpads, and so on. To label images at the
rate of 60 images per second, WRN-28-10 would consume a minimum of 2.8W! of

power on memory accesses and 1.6W?2 on computation.

1144M B % 60s~1 % 2600picojoules/64b = 2.8W
25.48 1090ps #6051« Spicojoules/op = 1.6W



Reducing Power During Inference

Because accessing DRAM costs ~650x more than a floating-point multiply [25],
reducing the number of weights present in the trained network can considerably
reduce the energy used for inference.

One simple method of reducing the weight count in neural networks is prun-
ing [14, 18, 38, 44, 46, 60, 64, 65, 74]. Pruning removes some — ideally most — of
the weights of a neural network, usually by dropping the weights with the lowest
values (we refer to this as magnitude-based pruning). An example of this pruning
technique is shown in Figure 1.2: a simple multi-layer perceptron with 13 weights is
first trained using the full network (Figure 1.2(a)), and then the weakest connections
are dropped by setting the lowest-value weights to zero (Figure 1.2(b)). Pruning
away these connections is often effective because neurons essentially compute a
weighted sum of their input connections, and connections with very low weight
values contribute very little to the neuron’s overall output. In this example, approxi-
mately half the weights in the network have been removed and the DRAM storage
needed for the weights is accordingly halved. When the network is now used to
classify an input, the bandwidth required to load the weights from memory, and the

associated power cost, are also cut in half.

Power During Training

Training consumes substantially more energy than inference. A single training
iteration using stochastic gradient descent on a single sample (e.g., an image) takes
approximately three times the number of weight accesses and operations compared
to inference on the same sample, as each weight must be retrieved once during the
forward pass, retrieved again during the backward pass, and updated to add the
newly computed gradient. In addition, training typically takes many thousands of
iterations on batches of tens to hundreds of samples each. For example, training the
WRN-28-10 image classification network processing 60 images per second would
consume a minimum of 15W of power including activations3 — far beyond the

cooling capacity of the iPhone design, which is SW [33].

3WRN-28-10 has 12 million activations, which cost 15.6mJ to access, and must be accessed twice
during training. Weights must be accessed 3 times, and computational requirements are roughly 3
times higher. (47mj +27mj)* 3+ 15.6mj % 2) % 60s~1 = 15.2W



The proportion of memory bandwidth taken up by weights depends on the
network being trained, the training library used, and the underlying hardware. For
example, in a multi-layer perceptron (MLP), weights are not reused within a single
image, and will take up a larger proportion of the bandwidth; on the other hand, in a
convolutional network, each weight can be reused multiple times, so, underlying
hardware permitting, less bandwidth is needed.

Figure 1.1 shows the power breakdown for two hypothetical libraries training
WRN-28-10, a convolutional network (i.e., the worst case for weight pruning).
Figure 1.1(b) describes an extreme points where weights are never reused per image
in a batch, and so must be accessed and updated for each activation map pulled from
memory (this is similar to other network architectures such as MLPs). Figure 1.1(a)
shows the opposite extremum, where the library and underlying hardware allow
perfect reuse, and the absolute minimum number of weight accesses occur in each
mini-batch#.

In the worst case — training a convolutional network, with perfect weight
reuse, perfect hardware, and optimal scheduling — activations can take up to 13x
more power than weight accesses>. However, activations can be readily compressed:
solutions such as gradient check-pointing [7] can compress activations by as much
as 7x by trading off fewer memory accesses for extra computation. In addition,
activations dominate only when many training examples are grouped together in
large batches for parallelism, such as in high-end devices like GPUs or TPUs; in
smaller devices with less compute resources, training with single images is common
and effective [47], and weights again dominate as in Figure 1.1(b). For WRN, it is
possible to have more weights than activations if the input images are small, in this
case 32x32x3.

On-device training therefore requires dramatic improvements in the number
of weights stored and accessed during the training process. Unfortunately, as we
discuss below, existing pruning techniques cannot be applied to reduce training-time

weight counts.

4This was calculated using the same equation as the initial example in this section, footnote 3,
modified so weights are only accessed once per mini-batch of 60 images, with one mini-batch being
processed per second: (27m; #3 +15.6mj %2) % 60s~! +47mJ « 1s~1 = 6.8W

51.87/.14=13.36



Power (W) 0.14 Power (W)

m Weight Access u Computation m Weight Access ® Computation
u Activation Access u Activation Access
(a) The full weight reuse library. (b) The no-weight reuse library.

Figure 1.1: Hypothetical power usages while training WRN-28-10 with a batch
size of 60, with iterations taking one second (60 images per second).

Hidden Laye Hidden Laye

Output Layer Output Layer

(a) The unpruned MLP. (b) The pruned MLP.

Figure 1.2: A Basic three layer multi-layer perceptron (MLP), unpruned in (a)
and pruned in (b).



Limitations of Existing Pruning Techniques

Existing pruning techniques [e.g., 38] require that the entire network with all weights
be fully trained before the pruning step can begin. Typically, the lowest-valued
weights are then removed from the network (i.e., set to zero), which often results in
an accuracy drop; to counteract this, the pruned network is then re-trained to recover
some accuracy [21].

Because existing pruning approaches start with a fully-trained unpruned network,
they cannot be used directly during training. It is possible, however, to imagine a
scheme where this weight-magnitude-based pruning stage is applied during every
iteration, and the full set of weights is never stored. We examine this possibility in
Section 3.1, where we show that magnitude-based pruning fails to attain acceptable
accuracy in nearly all cases. This is because in the beginning stage of training all
weights are initialized using random values [37], and a weight with low initial value
can increase dramatically before the training process converges.

Consequently, reducing the weight storage needs and the number of weights
accessed during training — and thereby reducing the energy usage and power
requirements — calls for a novel approach to weight storage during training. We

briefly outline our approach below.

1.2 DropBack: Pruning While Training

In this thesis, we develop DropBack, a novel pruning algorithm that (a) can train
deep neural networks without accuracy loss while storing up to 4.5x fewer weights
during the training process, and (b) produces a pruned network with weight reduction
comparable to state-of-the-art post-training pruning techniques on modern networks.

DropBack is based on three key insights: (1) that weights that have accumulated
the most gradient updates over time account for most of the learning; (2) that
accumulated gradients are predicated on how the initialization values are chosen for
the remaining weights; (3) that a pseudo-random number generator can recompute
initialization values as required and do not need to be stored. Based on these
observations, DropBack stores only critical weights during training and recomputes
the initial value for the rest of the weights, called untracked weights. Intuitively,

recomputing the non-critical weights allows the training algorithm to leverage the



scaffolding created by their initial values to improve the learning process for the
critical weights. The DropBack algorithm is described as Algorithm 2 in Chapter 3.

The weight reduction substantially reduces both memory footprint and memory
bandwidth requirements during training. For example, DropBack can reduce the
active weight count in the convolutional neural network WRN over 360x, matching
the baseline performance of VGG-S, reducing the required memory bandwidth from
8GB/s to 22MB/s when labeling images at 60 images per second. The network
weights now take 0.4MB to store, comfortably fitting in the on-chip SRAM memory
of a recent iPhone [33], where accessing 64 bits of on-chip data costs only 5pJ on a
45nm process (instead of 2.6nJ off-chip) [25]. Interestingly, the DropBack algorithm
preferentially removes entire 3 X 3 convolutional filters (up to 99%), even though the
algorithm itself has no concept of a convolutional filter.

DropBack differs substantially from prior pruning techniques, which either
(a) train an unconstrained network, prune the network, then retrain the network, or
(b) add an additional term to the loss function of the network to encourage sparsity
that can be used for post-training pruning. DropBack instead prunes the network
from the very first iteration, does not require separate pruning and retraining phases,
and does not require additional modifications to the loss function of the network.

DropBack outperforms best-in-class pruning methods on network architectures
that are already dense and have been found particularly challenging to reduce [41-43].
On Densenet, DropBack achieves 5.86% validation error with 4.5x weight reduction,
and on WRN-28-10 DropBack achieves 3.85%—4.20% error with 4.5x-7.3x weight
reduction. For both Densenet and WRN-28-10 these weight reduction ratios are
state of the art compared to post-training pruning techniques. The memory used
during training and inference for weight storage is limited, and no extra steps are
required to reduce the network after training.

With the addition of an initial weight decay parameter the untracked weights
can be reduced to zero, providing both memory and computational sparsity. On
Densenet with 500K tracked weights in Section 4.4.2, DropBack with decay can
achieve 77.77% sparsity — i.e., 77.77% of the weights are zero and can be removed
entirely — without any accuracy loss. On WRN-28-10, DropBack with decay can
achieve 86% sparsity (500K tracked weights) without decrease in accuracy, and 99%
sparsity with only a 1% increase in error (100K tracked weights). The weight decay



variant of DropBack is described as Algorithm 3 in Section 3.3.

1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 contains background
information on neural networks and related work, including other methods of
reducing the memory footprint and energy consumption of neural networks. Chapter 3
presents the intuition behind DropBack and develops the DropBack algorithm in
three phases. Chapter 4 reports and discusses the accuracy and weight reduction
ratio of the final two DropBack variants, and presents relevant tradeoffs. Finally,

Chapter 5 discusses potential future research directions and concludes this work.



Chapter 2
Background

Understanding DropBack requires a basic knowledge of neural networks, how they
are trained, and how they can be compressed using existing techniques. This chapter
lays out the two types of neural network used in this thesis — multi-layer perceptrons
(MLPs) and convolutional neural networks (CNNs). It then discusses how the
computational and memory requirements of these networks differ during training

and inference, and describes the different compression methods currently in use.

2.1 Neural Networks

Neural networks are constructed of many interconnected neurons, each of which
performs a simple mathematical function. In the two variants we consider here,
information flows across the network in a feed-forward fashion, with the outputs
of neurons in earlier “layers” becoming inputs to neurons in later layers. Neurons
organized in regular structures and trained with large datasets have achieved state-
of-the-art performance in problems such as classification, regression, and speech
understanding. By convention, networks are called “deep” if they contain more than
several layers.

Before discussing how to reduce the computational and memory impacts of
training, we first give a basic outline of their operation. Section 2.1.1 describes the
multi-layer perceptron, one of the simplest forms of neural networks. Section 2.1.2

describes how neural networks are used once trained, and section 2.1.3 gives a basic



overview of how neural networks are trained.

2.1.1 The Structure of MLPs and CNNs

The simplest neural network consists of one neuron, and is called a perceptron; such
a network is shown in Figure 2.1. The perceptron takes two inputs, x and y, and
outputs a single resulting value, f(x,y). Internally, the perceptron stores constant
two weights, wi and w», one for each input. The mathematical operation performed
by the perceptron is the dot product, so we have f(x,y) = wix+wyy. Typically the
output of a perceptron is then passed through an activation function — originally the
Heaviside step function [54], and more recently the sigmoid [37] and rectified linear
unit (ReLU) [1] functions. ReLU is typically used in vision-related applications [1],

and merely cuts off all negative values at O:
f(x) =max(0, x) 2.1

Perceptrons can be combined into multiple layers to create a multi-layer percep-
tron (MLP). An example of a simple three-layer MLP is shown earlier in Figure 1.2(a).
The input (topmost) layer takes two inputs, x and y, and feeds each to two different
neurons (i.e., perceptrons). Each neuron has its own weights for both x and y, labeled
w1, wa, wz, and wy. Each neuron has a single output, o and o, respectively, which
is the dot product of their respective weights followed by an activation function. In
this example, the activation function is ReLU (Equation 2.1). The outputs of the
input layer are the inputs to the hidden layer of three neurons, with each neuron in
the hidden layer receiving o; and o, as inputs. The hidden layer passes outputs to
the final (output) layer, a single neuron.

Compared to a single perceptron, MLPs are capable of solving non-linearly
separable problems, and, indeed, any computable function [12]. However, because
every neuron has a separate weight for every feature in the input, they quickly grow
too large to train even with a modest number of input dimensions. For example, in the
commonly used ILSVR2012 dataset [55], images are typically scaled to 256x256x3,
for a total input size of 196,608 pixels; given an MLP with 1,000 neurons in the
input layer, just that layer would use approximately 800MB of weights. In order to

scale neural networks to problems with many inputs, such as image recognition,

10



alternative structures are therefore used.

The most common alternative to basic MLPs is a convolutional neural network
(CNN). CNNs are built out of convolutional layers, pooling layers, and typically
one or two “dense layers” — another name for a layer of an MLP — as the final
layers. The convolutional layers take advantage of the observation that vision tasks
— such as detecting edges — are the same regardless of where in the image they
occur, i.e., are invariant under translation. The convolutional layers are therefore
built from convolutional “filters” which, when convolved with a set of neighboring
pixels, produce one output value. The operation of the filter is shown in Figure 2.2.
A filter will only consider pixels in its receptive window — e.g., the filter in
Figure 2.2 has a 3x3 receptive window — and pixels outside this window never
contribute to the current output value being computed. To produce an entire output
layer, the convolutional filter is moved across the input layer (e.g., left to right in
Figure 2.2). Typically, each convolutional layer consists of many filters, the outputs
of which are stacked to produce many output feature maps as inputs to the next layer.
Pooling combines the outputs from a few neurons, usually using the max function
to effectively downsample the previous layer. As with the “dense” MLP layers,
convolutional and pooling layers are stacked together to form a network. Figure 4.1

shows a fairly small CNN which we use as one of the evaluation models.

2.1.2 Inference

For the inference task, such as classifying an input image as a cat vs. a dog, the
neural network is run forward: inputs are provided to the first layer, which in turn
computes the inputs to the second layer, and so on. The outputs of the final layer
form the output of the entire network; for example, they might represent confidence
that the image belongs to a certain class (e.g., cat or dog).

During a forward pass, the weights of the network are only read and never
updated, and storage needed for intermediate results is limited to a single layer.! The
amount of intermediate result memory required to perform inference can therefore be
minimal, depending on the exact structure of the network and how the computations

are scheduled. On the other hand, all of the weights for the entire network must be

1Or a small, constant number of layers in more advanced networks like residual networks [22]
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f(X,Y)

Figure 2.1: A basic two input single output perceptron.

read during each inference pass.

The amount of computation and memory required for inference tasks with a
given network can often be further reduced by modifying the network through
pruning, which removes some weights from the network, or quantization, which
reduces the number of bits needed to represent each weight. Pruning is described

in Section 2.2.1 and quantization in Section 2.2.2.

2.1.3 Training

To train a neural network, the weights of each neuron are first initialized to a small
random value, usually drawn from a scaled normal distribution [40]. The aim of
training is to change these weights to give the correct output for each example in the
training set, which contains multiple inputs, each paired with its respective “ground
truth” label. If the training set is drawn from the same distribution as the examples
the network is expected to classify, and care is taken to prevent the model from
overtraining, a trained network can be deployed and perform with accuracy close to
its performance on the training set.

Weights are typically trained using an optimization algorithm called stochastic

gradient descent (SGD). First, after one or more inputs (a “batch”) are classified
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Input Feature Map

Row 1:1%x1+3%x0+4%x1=5
1 0 1 Row 2: 2%2+2%6+7%2=30

Row 3: 3*0+5*04+6%0=0

2 2 2 Ouput Pixel = 35

3X3 Filter

Figure 2.2: A 3x3 convolutional filter calculating the value of a single output.
To compute the entire output feature map the filter would be strided along
the input feature map, to produce five total outputs this example.

using the forward pass, the loss (prediction error) on these inputs is computed; the
mean squared error, shown in Equation 2.2, is commonly used as the loss function.
Next, the algorithm calculates the gradient of each weight with respect to the loss.
Finally, each weight’s gradient is scaled by a factor called the learning rate and
subtracted from the weight as shown in Equation 2.3. In effect, each weight is updated
based on how much it contributed to the error of the current output compared to the
ground truth.

Applying the chain rule to the problem of computing any gradient in the network

yields an algorithm called back-propagation, or backprop [37]. The key observation
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is shown in Equation 2.4: the partial derivative of loss with respect to the weight
can be chained through the unactivated output of the neuron itself and through the
activation function by multiplying the relevant partial derivatives. Because this can
be done in a layer-by-layer fashion starting from the last layer and ending on the first,

the weight-update part of the backprop algorithm is also known as the backward

pass.
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The backward pass is far more memory intensive than the forward pass; the
exact factor depends on the implementation details of the deep learning library
used and the network being trained, but can range from 2x to 100x. A significant
component of this cost comes from the need to store the activations of each layer,
needed to compute how the loss changes with respect to each weight. For an MLP,
this activation storage cost is equivalent to the number of weights in the next layer;
for a CNN, on the other hand, the number of activations for each weight is much
higher since the same small set of weights (i.e., filter) produces an entire output map.

Compressing or reducing the number of activations in CNNs and neural networks
is therefore an active area of research. Some research has focused on storing
activations in larger, slower memories farther away from the computation such
as [52], while another work focused on recomputing the activations as the backward
pass progresses [7]. Activations have also been compressed successfully through
omitting zero values [46, 53, 74]. While activation storage is expensive, activations
are only ever accessed twice — once to write the activations from the forward
pass, and once to read them for the current neuron in a backward pass. In contrast,
weights are repeatedly accessed— especially in CNNs — during the forward pass,
and during the update from the backward pass.

DropBack complements the work on reducing activation storage at training
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time by also reducing storage requirements for weights during training. Chapter 3
describes how DropBack modifies the training process in a way that can reduce the

number of weights that need to be stored by an order of magnitude or more.

2.2 Compression Techniques

Research to date has examined two main methods of reducing the memory and
computational overhead of deep neural networks: pruning and quantization. Pruning
a neural network removes weights, filters, or entire sections of the network deemed
unimportant to producing network’s final output. Weights to be removed are selected
via a heuristic, e.g., removing the smallest-magnitude weights. Quantization, on the
other hand, does not modify the structure of the network itself but instead changes
how its weights and activations are represented. Each value is stored using fewer bits
than normal (which means that the stored value is approximate), reducing both the
memory needed to store the weights and/or activations as well as the computational
cost. Other techniques have been proposed such as HashedNets [8] and Huffman
coding [18], but are less commonly used than pruning or quantization as they require

significant restructuring of neural network libraries.

2.2.1 Pruning

Pruning, or the removal of specific parameters in a neural network, was introduced
in 1990 as a technique for improving generalization and reducing the number of
examples needed to train a network [38]. Magnitude-based pruning is the most basic
approach: it simple removes the lowest-magnitude weights up to a user-specified
percentage (e.g., 95% of the weights). Like most pruning methods, magnitude-based
pruning requires that the network be trained first, then pruned, and only then retrained
to recover accuracy. This method was effective on the smaller datasets used by LeCun
et al. [38], but loses significant accuracy compared to more modern methods on
larger networks and datasets. While this technique analytically predicts the effect
of pruning and prunes weights with the smallest predicted perturbation [38], the
retraining step is still required.

Later work considered using the second derivatives to select parameters to

prune [21], or training the network itself to learn which connections are important
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through either ¢! or ¢? regularization [18]. Computing the second derivatives of all
the parameters is, however, computationally and memory intensive, and training
with ¢! and €2 regularization results in slower training. Alvarez and Salzmann [3]
focused on reducing the rank of the parameter matrices during training for later
compression, again at the cost of increased time required for training, and is not able
to reduce training time memory usage compared to standard training.

Overall, pruning networks to enforce sparsity levels of 90%—99% after training
has been effective for many networks [14, 18, 38, 44, 46, 60, 64, 65, 74]. In contrast
to DropBack, all of these post-training pruning techniques require a retraining step
to regain lost accuracy, and both pruning and low-rank constraints still require
un-pruned backpropagation during the training phase. In fact, the memory and
energy cost of the extra backpropagation step in standard pruning methods increases
the barrier to training in low-power embedded systems.

Other work has attempted to prune the network during training, either to improve
accuracy or to increase sparsity. Zhu and Gupta [75] gradually increase the number
of weights masked from contributing to the network, while Molchanov et al. [49]
extend variational dropout [32] with per-parameter dropout rates to increase sparsity.
Babaeizadeh et al. [4] inject random noise into a network to find and merge the most
correlated neurons. Finally, Langford et al. [35] decay weights every k steps (for a
somewhat large value of k), inducing sparsity gradually. However, unlike DropBack,
all of these techniques store the entire unpruned network (plus potentially a 2x
overhead for extra state per weight in the network) and therefore require at least as

much memory to train as the unpruned network.

2.2.2 Quantization

Quantization can be used to reduce the inference-time and training-time memory
and compute requirements by representing the network weights and activations with
lower precision than normal. To reduce storage costs, numbers can be quantized after
training [9, 14, 17, 18, 64, 68, 72], or during an iterative retraining process [72]. All
of these techniques quantize floating-point number representations to fixed-point
representations; this can reduce the energy required for computation as floating-point

operations are more energetically expensive than fixed-point operations. Both Zhou
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et al. [72] and Gysel [17] go further and either encourage or mandate weight values
to be powers of two; this allows for multiplications to be replaced by single shift
operations, saving computation energy. Importantly, while the final product of these
methods is quantized, they all rely on the full floating-point weights being available
during training.

Quantization can also performed during training instead of as a post-processing
step as shown by Cai et al. [6], Courbariaux et al. [10, 11], Gupta et al. [16], Holt
and Baker [24], Hubara et al. [28], Mishra et al. [48], Rastegari et al. [51], Simard
and Graf [57], Zhou et al. [73]. Out of all of these methods, only Courbariaux et al.
[10], Gupta et al. [16], Hubara et al. [28], Mishra et al. [48] use reduced precision
while training to lower the training-time storage costs; other methods store the full
non-quantized weights during backpropagation just like the post-training methods.
Quantization is orthogonal to pruning (and, in particular, to DropBack), and the two
techniques can potentially be combined.

Quantization has also been used to reduce the overhead of gradient broadcasts
in distributed training environments. Seide et al. [56] reduce gradients to a single
bit upon broadcast, saving 32x the bandwidth compared to standard 32-bit floating-
point (FP32) gradient broadcasts. Similar approaches with less quantization than
that achieved by Seide et al. [56] have been studied by Alistarh et al. [2], Wangni
et al. [66], Wu et al. [67]. All of these works have a shared limitation. Each local
device maintains the full FP32 parameters as well as an additional error term for each
gradient to correct the quantization upon each broadcast, so such approaches reduce
inter-node communication costs at the cost of local storage. Because DropBack
only ever tracks a small subset of gradients, a distributed implementation could also
reduce broadcast costs (by the same amount as the weight compression factor) by
only syncing the tracked weight sets, and doing so without maintaining a full set of

the parameters on each local training node.

2.2.3 Other Compression Methods

Very few techniques have attempted to reduce the inference-time and training-time
memory and compute costs. HashedNets [8] use a hash function to group neuron

connections into buckets; within each bucket, all connections use the same weight
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value. In effect, HashedNets quantize the weights, but use a lookup table to permit
a full 32-bit floating-point weights to be used during computation. However, the
technique was never tested beyond MNIST, a small and extremely easy dataset,
where it achieved decent but not state-of-the-art compression.

Huffman coding [29] has also been used to compress neural networks [18].
As a lossless compression technique, the coding was applied after both pruning
and quantization had been performed, and after the network had been trained to
completion. This allowed the network to be compressed approximately 2 more than
pruning and quantization alone, but required additional computation to decompress
the weights on every access, and complicated the memory access pattern. Huffman
decoding is far more expensive than the weight regeneration mechanism used to
represent non-tracked gradients in DropBack (see Figure 3.2), but is orthogonal to
our technique and can be used to compress the tracked weights if the energy cost is

warranted.

2.3 xorshift
The xorshift algorithm [45] is a very lightweight method of generating high quality

pseudo-random numbers. Shown in Algorithm O, the state x is initialized to any
real integer, Z$, and then shifted and xor-ed three times. Later, in Section 3.2, this

xorshift algorithm will be modified to regenerate initial values.

Algorithm 0: The 32-bit xorsHiFT algorithm. The parameter x is a single
32-bit non zero number; for deterministically regenerating weights, x is the
flattened index of a weight plus a constant factor that is different for every
training run.

Initialization: x ~ Z
Output: x
x=x&®(x << 13)
x=x®(x>>17)
x=x&®(x <<9)
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2.4 Summary

DropBack differs from all of these techniques by specifically targeting memory
constraints during training, and, unlike all of them, prunes the network from the

very first iteration of training. DropBack is described next in Chapter 3.
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Chapter 3

The DropBack Algorithm

Uniquely among pruning techniques, DropBack prunes weights from the very first
iteration of training; the full set of weights is never stored in or retrieved from
memory. To provide this reduction in memory usage, DropBack continuously omits
weights that it determines to be least important to the final output of the network;
these are called untracked weights. The final version, Algorithm 3, produces a sparse
network where all the untracked weights are zero during inference.
This chapter develops DropBack in three steps, each building on insights from
the previous version:
* Algorithm 1, where untracked weights are set to zero.
* Algorithm 2, where untracked weights maintain their initial value which can
be regenerated on the fly without storage.
* Algorithm 3, where untracked weights are decayed from their initial value to
zero over time during training.

The rest of this chapter describes each of these in detail.

3.1 Algorithm 1

We first investigated an adaptation of the magnitude-based pruning approach [38,
etc.] commonly used for post-training pruning. In this algorithm, each iteration of
training tracks only the highest-magnitude weights, while all other weights are set to

zero. The details of the computation are shown in Algorithm 1. In the algorithm,
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Wik and W, represent tracked and untracked weights, 7" and U are tracked and
untracked accumulated gradients, S is the set of sorted accumulated gradients, & is
the number of gradients to track, A is the lowest tracked cumulative gradient, and &
is the learning rate. The mask indicates a boolean matrix with the same shape as
the weights, and mask indicates its logical inverse. The 1 operator indicates that the
mask is boolean.

Although the listing in Algorithm 1 sorts all the weights before pruning for
exposition clarity, it is not necessary to physically store and sort the full weight set.
In a practical implementation, the tracked weight set would be stored using a priority
queue of size n, in which an incoming gradient higher than the stored minimum
evicts the smallest element.

In contrast with the common post-training magnitude based pruning techniques,
Algorithm 1 encapsulates the training-pruning-retraining phases in a single training
step, which reduces the number of epochs required to converge. In essence, each step
in this algorithm is equivalent to a post-pruning retraining step. Ideally, this would
move the network towards an optimum while reducing the number of parameters
from the very first training step.

We tested Algorithm 1 using both LeNet-300-100 [37] and a smaller multi-layer
perceptron with only 100 hidden neurons, which we refer to as MLP-100. The
achieved weight reduction ratio was slightly less than 2, an inferior result compared
with other existing pruning techniques (detailed results are discussed in Section 4.2).
Below, we investigate why Algorithm 1 performs poorly, and draw insights for

creating a better version.

Initial Weights are a Poor Metric for Selection

Proper weight initialization is essential in order to train deep neural networks quickly,
and even to learn at all [40]. These initial weights are typically drawn at random
from a scaled Gaussian distribution, and updated by the stochastic gradient descent
optimization algorithm. During the first iteration of training, weight updates are
scaled by a typical learning rate of 0.001 to 0.1 when using stochastic gradient
descent with momentum, or higher learning rates of up to 0.5 without momentum,

so they move little compared to their initial magnitude. As a result, pruning away the
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lowest-magnitude weights after the very first training step leads to a nearly random
selection of weights to be dropped. In effect, the only weights that are tracked are
those with the highest initial value, and no other weights have the opportunity to

learn.

Vanishing Gradients Result in Poor or No Learning

Algorithm 1 suffers from another problem that stems from immediately setting
untracked weights to zero. When most of the weights are zero, the activations in
much of the network also become zero during the forward pass. In turn, this causes
the gradients of the loss with respect to those weights to also become zero during
the backward pass, which inhibits learning. In our experiments, for example, setting
the 90% of the MLP-100 network to zero (10x weight reduction) caused nearly 99%
of the gradients to become zero as well, preventing optimization.

This effect is well-known in the literature as the vanishing gradient problem [15].
To counteract vanishing gradients, the post-training pruning schemes such as those
of Zhu and Gupta [75] and Han et al. [18] increase the sparsity of the network
very gradually so that relatively few additional weights are zeroed in every training
iteration; although the final sparsity achieved with those methods can be as high
as 90%, that level of sparsity is only achieved at the very end of training. Because
we aim to reduce the memory footprint from the very start of the training process,

however, we cannot employ this gradual sparsity technique in DropBack.

3.2 Algorithm 2

The second step in developing DropBack is based on the two key observations
from evaluating Algorithm 1: (a) that dropping the lowest-magnitude weights early
on inhibits learning, and (b) that resetting weights to zero results in the vanishing
gradient problem. We take advantage of these observations in the three insights

discussed below.

Insight 1: Track the Highest Accumulated Gradients

Section 3.1 shows that the naive approach of tracking only the highest-magnitude

weights is not effective during the first few training iterations, and so cannot be used
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Algorithm 1: Pruning the Lowest-Magnitude Weights

Initialization: W© with W© ~ N(0,0)
Output: W
while not converged do

(i=1). (-1
T= {’W(O) +31% % st.we Wt,k}
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s.t.w € Wutrk}
S=sort(TUU)
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mask = 1(S > 1)

WO = mask - (W=D —aVf (WD, x0)) + mask-0
t=t+1

end
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Figure 3.1: Distribution of accumulated gradients over 100 epochs of standard
SGD training on MNIST using a 90,000-weight MLP.
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to reduce the memory footprint throughout the entire training process. Informally,
this is because the initial value of each weight, typically drawn from a scaled normal
distribution [40], serves as scaffolding which gradient descent can amplify to train
the network.

Instead, our approach in DropBack is to first observe that each weight is a sum of
its initial value and the gradient accumulated during training, and logically separate
the two components. (At first sight, this may appear counterproductive because now
the initial value may need to be stored for each weight; we resolve this problem
using Insight 2 below.) Then, to reduce the number of weights tracked, we keep
only a fixed number of weights which have learned the most overall — that is, the
weights with the highest accumulated gradients.

To validate this hypothesis, we examined the distribution of accumulated
gradients during the first 100 training iterations of a 90,000-weight MLP on the
MNIST dataset (see Section 4.1 for experimental method details). In the histogram,
shown in Figure 3.1, most gradients are very close to zero. This shows that weights
move very little from their initial values, and suggests that only a small fraction of
gradients needs to be tracked provided the remaining weights are kept at their initial

values.

Insight 2: Recompute Initialization-time Values for All Untracked Weights

As discussed in Section 3.1, simply setting untracked weights to zero impairs training;
this is because the scaffolding provided by the initialization values is critical to
the accuracy of the trained network in order to prevent vanishing gradients. If the
initialization values can be preserved, we reasoned, we should be able to achieve
higher accuracy and better pruning.

To validate this hypothesis, we trained the 90,000-weight MLP on MNIST as in
Section 3.1, but this time allowed the untracked weights to retain their initialization-
time values. We observed that the tracked weights could be reduced up to 60x if
initialization values were preserved, but only 1.8X if untracked weights were zeroed
(see Section 4.2.1 for details). This is in line with the observation that zeroing weights
causes gradients to vanish (see Section 3.1), and suggests that initialization-time

values for all weights should somehow be preserved.

24



However, storing the initialization-time values would require accessing memory
to retrieve them during both the forward and backward passes of training — a costly
proposition for large networks where an off-chip memory access consumes upwards
of 2900x more energy than a 32-bit floating-point add.

To avoid storing these initial weights, we observe that in practice the values are
initialized using a pseudo-random number source that is initialized using a single
seed value and post-processed to fit a scaled normal distribution [40]. Because
each value only depends on the seed value and its index, it can be deterministically
regenerated precisely when it is needed for computation, without ever being stored
in memory.

While the value might still be very briefly stored in the on-chip register file (in a
CPU or GPU), register files are small SRAMs located very close to the processor’s
functional units, and accessing them costs a fraction of the energy needed to access
off-chip DRAM [25], for example. In addition, as the register file only serves to
communicate values between individual CPU or GPU instructions, the lifetime of
this storage is limited to the few instructions that it takes to generate the value and
use it to multiply with a single activation value, so only a very small amount of
storage is needed.

To recompute a normally distributed pseudo-random initialization value, we
employ the xorsHIFT algorithm described earlier in Section 3.2, modified to output
a floating-point number between —1 and 1. This computation, shown in Algorithm 4,
requires eight 32-bit integer operations and one 32-bit floating-point operation.
Recomputing the weight, therefore, consumes about 1.5pJ of energy in a 45nm
process, which is still 1700x less energy than a single off-chip memory access.

Regenerating untracked parameters to their initial values also works out-of-the-
box for layers like Batch Normalization or Parametric ReLU, where the initialization
strategy is typically a constant value that is the same for the entire network. In this
case, DropBack merely regenerates the constant value rather than using Algorithm 4.
As aresult, these layers are also pruned by DropBack, a unique feature not found in

other pruning methods.
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Algorithm 4: The 32-bit xorsHIFT algorithm modified for generating random
floating-point numbers between —1 and 1. The parameter x is a single 32-bit
non zero number; for deterministically regenerating weights, x is the flattened
index of a weight plus a constant factor that is different for every training run.
The output of this algorithm can then be scaled by the number inputs to a layer
as suggested by LeCun et al. [40].

Initialization: x ~ Z

Output: x

x=x®(x << 13)
x=x®(x>>17)

x=x&®(x <<9)

x = (x&0x007££££f)|0x40000000
x=x-3.0

Insight 3: After a Few Epochs, Freeze Which Weights Are Tracked

During training, it may happen that a “new” gradient for an untracked weight exceeds
one of the accumulated gradients tracked by DropBack. This is very common during
the initial phase of training, and is an artifact of the optimization algorithm’s efforts
to select the most productive direction. However, this also means that gradients
for all of the untracked weights are still computed in every iteration. Selecting the
tracked set costs additonal energy as well, as either software or hardware sorting is
required. While the energy required for gradient computation and comparison is
small compared to retrieving all weights from off-chip DRAM, it can noticeably
contribute to the total energy expenditure once only a small fraction of weights are
tracked.

In order to sidestep most of these accesses, we reasoned that the weight selection
should stabilize after a few epochs. By then, most of the tracked gradients should
have accumulated sufficiently large magnitudes that it is unlikely that they would be
exceeded by a “new” gradient for an untracked weight; indeed, as most accumulated
gradients have small magnitudes (see Figure 3.1), we expected most weights to move
little.

To validate this intuition, we trained the 90,000-parameter MLP-100 on MNIST
using standard SGD while keeping track of the 2000 weights that had accumulated
the highest gradients. Figure 3.2 and Figure 3.3 show that the set of the 2,000 highest-
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Figure 3.2: Number of weights added/removed to the top-2K gradient set in
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Figure 3.3: Number of weights added/removed to the top-2K gradient set after
the first 100 iterations on MNIST. Note the y-axis scale is 1/10th the scale

of Figure 3.2.
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gradient weights stabilizes in relatively few iterations. Before the first iterations,
many weights are added to and removed from the set of 2,000 highest accumulated
gradients (Figure 3.2). After the first ten iterations, however, the top-2,000 gradient
set settles down with < 0.04% of all weights being added to or removed from the
top-gradient set in any iteration (Figure 3.3). This “noise” remains throughout the
training process.

This observation allows us to “freeze” which gradients are tracked after a small
number of epochs (e.g., 10-20), where an epoch is a full pass through the training
dataset (approximately 500 iterations per epoch). After freezing, no new gradients
may replace those in the currently tracked set, so gradients need to be computed
only for the weights in the tracked set instead of for all weights.

We investigated several methods of selecting the freeze epoch, including via
a hyper-parameter, freezing after some validation accuracy has been reached, and
freezing once the number of additions/removals became lower than a small percentage
of the tracked weight count (see Section 4.3.1). Because freezing at a constant
epoch worked better, we chose to freeze at the best epoch for each test in Chapter 4,

determined by sweeping the hyper-parameter space for the freeze epoch.

The Complete Algorithm 2

Algorithm 2 shows the resulting DropBack training process, which incorporates the
three insights above. N (0, o) is generated from the xorsHiFT pseudo-RNG shown in
Algorithm 4.

Weights are initialized from a scaled normal distribution [40], generated by the
XORSHIFT pseudo-random number generator. After a user defined epoch, the tracked
set is “frozen,” and gradients are only updated for the weights already tracked; this
saves additional computation time and energy. Note that the tracked gradient set T’
requires no storage: its elements are recomputed when needed from W*=' —Ww©_ As
in standard stochastic gradient descent, training ends once the network is considered

to have converged.
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Algorithm 2: Pruning the Lowest-Magnitude Accumulated Gradients
Initialization: W© with W© ~ N(0,0)
Output: W®
while not converged do

T= {’ZE;& W‘ st.we W,,k}

if not frozen:

SF (W=D ox(i-D)
U= {|M| s.t.wewu,,k}

ow
else:
U={}
S =sort(TUU)
A=S8;

mask = 1(S > A)
WO = mask - (W=D -V (WED; xE=D)) + mask - w®
t=t+1

end

3.3 Algorithm 3
Although the DropBack Algorithm 2 developed above reduces the storage required

for weights during training, using the trained network requires a modified inference
algorithm. This is because the trained network relies on the initial values of the
non-tracked weights being recomputed as they have been during training, which is
not supported out-of-the-box in existing neural network accelerators. Additionally,
the regenerated weights still present a computation overhead during inference.

We therefore examined the possibility of slowly decaying these initial weight
values to zero during the training process. We reasoned that, once the tracked
weights have been trained, the scaffolding provided by the initial weights is no
longer necessary, and can be gradually removed. As the initial weight values slowly
decay to zero, the tracked weights — the only weights that change during training
— should gradually adjust to compensate for the lower values (and, eventually, the
absence) of the non-tracked weights.

To test this intuition, we allowed the initial values to decay to zero over time

using an exponential decay term controlled by the number of iterations, each iteration
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scales down the initial values regenerated until they reach 0. Details are shown
in Algorithm 3. In all of our experiments, using 32-bit floating-point weights, every
initial parameter has decayed to zero by iteration 1,000. Overall, DropBack with the
decay modification achieves the best accuracy to weight reduction tradeoff on all of
the networks used in this thesis except the MLPs (see Section 4.2.3 for details).

Algorithm 3: Decaying the Initial Parameters
Initialization: W© with W© ~ N(0,0)
Output: W®
while not converged do

(i-1)..(i-1)
T= {’ZE;& %’ s.t.we erk}

if not frozen:

o lst.we erk}

ow
else:
U={}
S =sort(TUU)
A=8

mask = 1(S > 1)
W = mask - (W=D —aVf(WED; x0=D)) + mask - WO « 57!
r=t+1

end

3.4 Differences with Existing Approaches

Most existing pruning techniques (discussed in Section 2.2.1) either require the
network to be retrained after pruning is performed, or need additional terms to be
applied to the loss function of the network to encourage increased sparsity. Pruning
techniques that rely on retraining are well-studied [14, 18, 44, 46, 64, 74, etc.], and
can achieve close to the original accuracy of the unpruned network. Rather than
decrease the memory footprint during training, these algorithms actually increase it
because they typically track the full network plus additional parameters. In addition,
they typically increase training time, as an additional retraining or fine-tuning

training stage is required. DropBack differs from these because it substantially
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reduces the memory footprint and memory access counts during training as well as
when the pruned network is used for inference.

Adding a term to the loss or additional parameters to encourage sparsity has also
been examined in several papers [4, 49, 75, etc.]. While these pruning techniques
are as effective as pruning using a retraining stage, they either massively increase the
time to convergence, memory usage, or both. These pruning techniques require extra
parameters for stochastic gradient descent to update, making the optimization task
more difficult and increasing memory usage by several times. In contrast, DropBack
is able to reduce the memory footprint of weights during training and converges
at a rate equivalent to a non-pruning training algorithm. These alternative pruning
techniques could be used to gradually reduce the computation and memory required
while training a network, but no current work has done so, and additionally these
existing techniques cannot provide an upper bound on memory usage from the very
first iteration like DropBack.

In the next chapter, we evaluate the variants of DropBack on real-world deep
neural networks, investigate the reason why DropBack is effective, and analyze the

tradeoffs for both algorithms.
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Chapter 4

Results and Discussion

DropBack was tested on three different datasets and a total of five different neural
networks, achieving between 4x to 72X weight reduction without losing more
than 2% in validation accuracy. On the more complicated networks, WRN-28-10
and Densenet, DropBack Algorithm 2 outperformed the current state-of-the-art
pruning techniques on CIFAR-10 in accuracy and weight reduction. The DropBack
variant that decays weights to zero, Algorithm 3, reduced the number of non-zero
parameters by 98.6% on the WRN-28-10/CIFAR-10 with an acceptable accuracy
loss of 1.4 percentage points. When the network architecture allows it, this scheme
naturally results in zeroing out entire convolutional filters — with 94% of the 3x3
convolutional filters removed entirely — a further reduction in computation.

In the remainder of this chapter, we detail the methods, networks, and datasets

used for testing, and discuss the results.

4.1 Methods

DropBackwas tested on five networks and three datasets, using standard industry

tools. Results are directly comparable to other pruning papers.

4.1.1 Training Methods

DropBack was implemented using the Chainer deep neural network toolkit [63];
all runs, including DropBack runs, were trained on an NVIDIA 1080Ti GPU. We
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compared DropBack against four training regimes:

a baseline implementation without any pruning;

a straightforward magnitude-based pruning implementation where only the
highest weights are kept after each iteration, i.e., Algorithm 1;

variational dropout [32], which can progressively prune weights during
training but at least doubles the memory footprint; and

network slimming [42], a modern train-prune-retrain pruning method that

achieves state-of-the-art results on modern network architectures.

All DropBack results were optimized using stochastic gradient descent without

momentum, as all other optimization strategies cost significant extra memory. All

methods without DropBack used the ADAM optimizer [31] with the parameters

specified by the original papers.

4.1.2 Networks Used

A total of five deep neural networks are used to test DropBack. The first two are

basic MLPs with a different numbers of neuron in their hidden layer, the third is a

straightforward convolutional neural network, and the final two are state-of-the-art

convolutional networks with complex, compact architectures. They are:

LeNet-300-100 [39], a common benchmark MLP, with 786 neurons in the
input layer, 300 neurons in the first hidden layer, 100 neurons in the second
hidden layer, and 10 neurons in the output layer, for a total of 266K weights;
MLP-100, a smaller variant of LeNet-300-100, with only 100 hidden neurons
in the first hidden layer and no second hidden layer, for a total of 90K weights;
VGG-S [70], shown in Figure 4.1, a smaller variant of VGG-16 [58] that omits
one fully connected layer and reduces the other two to 512 neurons instead of
4,096 and adds modern batch normalization layers between its convolution
blocks;

Densenet [27], shown in Figure 4.2, a very densely interconnected variant of
VGG aimed at improving training accuracy while reducing the weight count;
and

WRN-28-10 [71], a modern wide residual network with state-of-the-art

performance on image tasks, which features a complex architecture with four
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different different blocks, shown in Figure 4.3, and is discussed in more detail

below.
LeNet-300-100 and the original VGG-16 are widely acknowledged to be very
overprovisioned [30], with many more weights than necessary (i.e., later variants
with fewer weights perform just as well or better), but are often used to demonstrate
pruning effectiveness [14, 44, 46]. To avoid pruning purely due to the network being
too large, we focus on the MLP-100 variant to LeNet-300-100, as well as a much
smaller VGG-S variant of VGG-16 that reduces the weight count from 138M to
15M.

Densenet and WRN-28-10 are both much newer and more complex convolutional
networks with fewer parameters, and were chosen precisely because their complex,
more interconnected architectures make them very challenging to prune with existing
techniques [41-43]. Densenet is constructed from stacks of convolutional layers,
with the output of each stack being fed to all downstream stacks (rather than just the
next layer as in a standard convolutional network). The authors of Densenet argue that
this design removes the vanishing gradient problem, strengthens feature propagation,
and reduces the number of parameters compared to standard convolutional neural
networks. WRN-28-10 is constructed of four types of blocks, shown in Figure 4.3.
Block type A has two stacked convolutions but also concatenates its inputs to the
outputs of those convolutions, carrying the input feature maps downward without
modification. Block type B is similar, but has two bottleneck layers — layers of
1x1 convolutions — surrounding a normal 3x3 convolutional layer. Block type C
is the same as A, but with many more filters in each convolutional layer, while
block type D adds a dropout layer [60] between pairs of convolutions. Wide residual
networks are extremely effective at image classification tasks, but as the number of

filters in the wide block are increased the parameter count dramatically increases.

4.1.3 Datasets

DropBack was evaluated on the MNIST digit recognition dataset [36], the Fashion-
MNIST small grayscale image dataset [69], and the CIFAR-10 color image recogni-
tion dataset [34]. For MNIST, two networks were used: LeNet-300-100 and MLP-100.
For Fashion-MNIST, we used VGG-S alone. For CIFAR-10, three networks were
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Figure 4.1: The VGG-16 network architecture. VGG-16 is an older convo-
lutional neural network and is designed with a single path through the
network, with different blocks of 3x3 filters stacked together.

used: VGG-S, Densenet [26], and WRN-28-10 [71].

4.2 Handwritten Digit Recognition (MNIST)

DropBack was first evaluated using Algorithm 1, Algorithm 2, and Algorithm 3
on the MNIST handwritten digit dataset using LeNet-300-100 MLP and MLP-100.
Training was allowed for up to 100 epochs, and the initial learning rate of 0.4 was
reduced every 25 epochs by a factor of 0.5. Training was stopped after five epochs

in which accuracy did not improve over the previous best epoch.

4.2.1 Pruning by Weight Magnitude: Algorithm 1

To demonstrate that standard post-training pruning techniques cannot be used to

prune networks at training time, we first examined Algorithm 1, a naive adaptation of

35



Figure 4.2: The Densenet network architecture. Densenet connects the output
of each convolutional layer to the inputs of all downstream layers in order
to propagate feature information more readily throughout the network.
Figure taken from [27].

X Xi X Xy

convixl conv3x3

conv3x3

(a) basic (b) bottleneck (c) basic-wide (d) wide-dropout

Figure 4.3: The types of wide residual network blocks. wide residual networks
are built from these four blocks. Figure taken from [71].
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LeNet-300-100 Val. Error Weight Reduction Best Epoch Freeze Epoch

Baseline 266K 1.41% 1x 65 N/A
Naive 50K 86.56% 5.33% 94 0
Naive 20K 91.1% 13.3x 67 0
Naive 5K 89.89% 53.32x 45 0
Naive 1.5K 90.0% 177.74% 54 0
MLP-100 Val. Error Weight Reduction Best Epoch  Freeze Epoch
Baseline 90K 1.70% 1x 47 N/A
Naive 50K 11.56% 1.8% 31 0
Naive 20K 88.9% 4.5% 87 0
Naive 5K 89.1% 18x 65 0
Naive 1.5K 89.5% 60x 56 0

Table 4.1: LeNet-300-100 (top) and MLP-100 (bottom) on MNIST, using the
naive prune-by-weight-magnitude Algorithm 1. Naive 50K refers to a
configuration where 50,000 weights are retained during training, Naive SK
to a configuration with 5,000 retained weights, and so on.

post-training pruning (see Section 3.1). In this scheme, only the highest-magnitude
weights are retained during every iteration, and the remaining weights are set to
Zero.

Table 4.1 shows the results for the baseline (unpruned) model and four con-
figurations of this naive scheme using Algorithm 1. Neither LeNet-300-100 or
MLP-100 can be effectively pruned using this scheme, with a 5x weight reduction
ratio resulting in an error only slightly above random (since there are 10 digits,
a random guess will be correct 10% of the time). MLP-100 can be reduced by
1.8x at the cost of a substantially lower accuracy, unfortunately, even higher weight
reductions result in no learning, with network output remaining random.

Because Algorithm 1 fails even on the simplest dataset used in this thesis, we

omit its results from the remainder of this chapter.

4.2.2 Pruning by Accumulated Gradient Magnitude: Algorithm 2

We next examined Algorithm 2, which retains the highest accumulated gradients and

restores the remaining weights to their initialization-time values (see Section 3.2).
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Figure 4.4: The accuracy vs. weight reduction trade-off for LeNet-300-100
and MLP-100 on Algorithm 2.

Table 4.2 shows the results on the MNIST digit dataset for the baseline (unpruned)
model and four configurations of DropBack, retaining 50,000 weights (1.8x weight
reduction), 20,000 weights (4.5x weight reduction), 5,000 weights, and 1,500 weights

(60x weight reduction), respectively. Figure 4.4 shows the same data visually.

Accuracy and Weight Reduction

Using MLP-100 with a modest 1.8x reduction in weights, DropBack slightly exceeds
the accuracy of the baseline model. This slight accuracy improvement matches the
trend reported in prior work such as DSD [20], where a sparse layer that omits
30% to 50% weights outperforms the baseline dense model with all of the weights
retained. However, DSD first trains the network to convergence on the complete
parameter set, and only then prunes some weights and retrains the resulting sparse
network, with this process repeated several times (the final network output of DSD

is not sparse, and therefore not included in this thesis as comparison). In contrast,
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LeNet-300-100  Val. Error Weight Reduction Best Epoch Freeze Epoch

Baseline 266K 1.41% 1x 65 N/A
DropBack 50K 1.51% 5.33% 24 10
DropBack 20K 1.78% 13.3x 33 20
DropBack 5K 2.58% 53.32x% 32 20
DropBack 1.5K  3.84% 177.74% 97 40
MLP-100 Val. Error Weight Reduction Best Epoch  Freeze Epoch
Baseline 90K 1.70% Ix 47 N/A
DropBack 50K 1.58% 1.8x 24 5
DropBack 20K 1.70% 4.5% 32 5
DropBack 5K 2.50% 18x% 27 20
DropBack 1.5K  3.78% 60x 26 20

Table 4.2: LeNet-300-100 (top) and MLP-100 on the MNIST digit dataset,
using Algorithm 2.

DropBack achieves this accuracy improvement without ever storing the full dense
configuration of the network, and without repeatedly retraining the network to
convergence.

The larger LeNet-300-100 MLP sees a slight drop in accuracy, at 50K retained
weights, but the initial weight reduction of 5.33x is much higher than MLP-100.
It also reaches maximum accuracy nearly 3x fewer epochs than Baseline. Further
reducing the model to 20K weights (4.5x weight reduction) results in nearly the
same accuracy as the baseline, and convergence in about 50% fewer epochs than
Baseline.

With an extreme weight reduction of 1.5K tracked weights, the error rate roughly
doubles. However, the nearly 60x reduction in the weight storage requirement for
MLP-100 and 177x% for LeNet-300-100 potentially offers an attractive design point

for low-power embedded accelerators in future mobile and edge devices.

Freezing Epoch

We also investigated the effect of freezing the tracked gradient selection process (see
Section 3.2) early during training. The freeze epoch was selected by a hyper-parameter

sweep.
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Figure 4.5: Rate of convergence using Algorithm 2 for LeNet-300-100 for our
technique our and the baseline model. Note that the y-axis starts as 0.90,
and the final accuracies are within 1% of each other.

For both MNIST networks, freezing sooner to reduce the computational overhead
results in lower achieved accuracy at very high weight reduction ratios, but for
smaller weight reduction ratios freezing early has little effect on the overall accuracy.
When the weight reduction ratio is small, the weights being swapped in and out
of the tracked set are considerably less important than in high weight reduction
ratios, therefore freezing early is less likely to choose a poor tracked parameter set.
Figure 4.5 shows the rate of convergence for DropBack and the baseline on the
LeNet-300-100 network; despite converging to the nearly same accuracy DropBack

has more noise than the Baseline.

Allocation of Retained Weights

Next, we examined which network layers retained the most weights. We reasoned that
as the weight reduction factor increases and accuracy drops, the network will reduce
the precision of feature detection and put more resources into decision-making.

Table 4.3 shows that the number of parameters retained per layer indeed varies
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layer DropBack 1.5K  DropBack 10K  Baseline

fcl (100x784) 734 (48.9%) 7223 (72.2%) 78500 (87.6%)
fc2 (100x100) 512 (34.1%) 2128 (21.3%) 10100 (11.3%)
fc3 (100x10) 254 (16.9%) 549 (5.5%) 1010 (1.1%)

Total 1500 10000 89610

Table 4.3: Number of gradients for each layer retained in the final trained
MLP-100 network.

LeNet-300-100  Val. Error Alg. 2 Val. Error Alg. 3  Best Epoch

Baseline 266K 1.41% 1.41% 65
DropBack 50K 1.51% 1.51% 43
DropBack 20K 1.78% 2.10% 50
DropBack 5K 2.58% 3.32% 58
DropBack 1.5K  3.84% 10.70% 81
MLP-100 Val. Error Alg. 2 Val. Error Alg. 3 Best Epoch
Baseline 90K 1.70% 1.70% 47
DropBack 50K 1.58% 1.69% 44
DropBack 20K 1.70% 2.06% 41
DropBack 5K 2.50% 2.06% 70
DropBack 1.5K  3.78% 17.14% 78

Table 4.4: The MNIST digit dataset using LeNet-300-100 (top) and MNIST-
100-100, using Algorithm 3. All models where frozen from epoch 25.

depending on the number of tracked weights. The smaller DropBack 1.5K network
allocates a much higher proportion of its weights to the later layers compared to the
DropBack 10K network and the baseline. As later layers make decisions based on
the features provided by earlier layers, this result suggests that the more reduced
network indeed assigns proportionally more neurons to the critical decision-making
tasks.

4.2.3 DropBack with Weight Decay: Algorithm 3

Finally, we investigated whether decaying the untracked weights to zero (as opposed

to recomputing their initialization-time values) was effective on these small networks.
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We examined Algorithm 3 on the MNIST digit dataset, using the same networks as
with Algorithm 2 above and an untracked weight value decay rate 6 = 0.90. This
adds an extra floating point multiply to every parameter in the network, however the
cost of doing so is low since the number of weights in all networks is in the millions,
and the number of operations is in the billions. Additionally, this extra cost is only
present for the first 1000 iterations before all initial parameters have decayed to zero.

The results are shown in Table 4.4 and Figure 4.4. Overall, compared with the
results from Algorithm 2 results in Table 4.2, decaying weights resulted in increase
validation error rates for a given weight reduction ratio, especially on the highest
level of weight reduction ratios tested. For example, with 1.5K weights retained,
the error increases to 10.70% on LeNet-300-100 and 17.14%; With the exception
of LeNet-300-100 DropBack 50K, all of the other weight reduction ratios also see
an increase in error compared to Algorithm 2. This appears to be because these
relatively small networks rely on the scaffolding provided by the initial parameters,
and without this the remaining parameters have trouble retaining generalization
accuracy.

At the higher end of the weight reduction ratios, the error is too high to be
usable. DropBack 20K offers reasonable error for weight reduction, LeNet-300-100
increases from 1.78% error to 2.10% with a weight reduction ratio of 13.3%, and
MLP-100 increases from 1.70% to 2.06% for a weight reduction ratio of 4.5x%.

4.3 Fashion Item Icon Recognition (Fashion-MNIST)

We next evaluated DropBack on the VGG-S convolutional network. Because the
MNIST dataset is not challenging for deep convolutional networks like VGG, which
can achieve 98% accuracy [58], we evaluated it on Fashion-MNIST, a dataset that
is the same size as MNIST (28x28 grayscale images, 10 categories) but is also
much more challenging for modern networks in terms of achieved accuracy [69].
Stochastic gradient descent without momentum was used with a maximum of 200
epochs, with the learning rate constant for all epochs; no data augmentation was
performed.

Both Algorithm 2 and Algorithm 3 were evaluated, for a variety of tracking

constraints and freezing epochs in order to explore the weight reduction vs. accuracy
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trade-offs. The results are presented in Table 4.5 for Algorithm 2 and in Table 4.6
for Algorithm 3.

4.3.1 Pruning by Accumulated Gradient Magnitude: Algorithm 2

Accuracy and Weight Reduction

DropBack Algorithm 2 achieved slightly higher accuracy than the Baseline while
reducing the model 5x, resulting in a network where only 3M parameters out of the
approximately 15M original parameters differed from their initial values. A higher
weight reduction ratio of nearly 30x increased the error to 7.4%, likely an acceptable
tradeoft for embedded edge devices with very stringent weight storage budgets.
Compared with results shown later on the CIFAR-10 dataset (see Section 4.4
and Table 4.7), the network can be reduced far more (up to ~ 30x) with a lower
error rate that what is observed for CIFAR-10. This is because Fashion-MNIST is a
simpler dataset than CIFAR-10: it consists of 28x28x 1 grayscale images, versus
32%32x%3 images in full color. Since the images are grayscale, the network does not
need to distinguish different features in each color channel, and fewer convolutional

filters overall are required.

Freezing Epoch

Like the earlier experiments on MNIST, we also examined the effect of selecting the
freezing epoch on accuracy. Unlike in the case of MNIST, where higher reduction
ratios resulted in a later optimal freezing epoch, the optimal freezing epoch for
the MNIST-Fashion experiments did not appear to depend on the target reduction
ratio. The optimal freezing ratio was chosen in the same way as with the MNIST
experiments, by hyper-parameter sweep. In all but the DropBack 5M case, the
optimal point was 30 epochs. Possibly, the parameter selection on Fashion-MNIST

is easier due to the makeup of the dataset compared to the standard MNIST dataset.

4.3.2 DropBack with Weight Decay: Algorithm 3

Finally, we investigated the weight-decay variant of DropBack on the MNIST-Fashion
task using the VGG-S network. The results are shown in Table 4.6 and Figure 4.6.

43



Fashion MNIST Validation Error Weight Reduction Best Epoch  Freeze Epoch
VGG-S Baseline 15M 5.43% Ix 178 N/A

VGG-S DropBack 5SM 5.14% 3.0x 105 25

VGG-S DropBack 3M 5.43% 5.0x 151 30

VGG-S DropBack 500K 7.39% 30.0x 175 30

VGG-S DropBack 200K 13.44% 75.0x 189 30

VGG-S DropBack 100K 19.80% 150.0x 172 30

Table 4.5: VGG-S on Fashion-MNIST, using Algorithm 2.

Fashion MNIST Val. Error Alg. 2 Val. Error Alg. 3 Best Epoch
VGG-S Baseline 15M 5.43% 5.43% 178
VGG-S DropBack 5SM 5.14% 5.32% 75

VGG-S DropBack 3M 5.43% 5.62% 158
VGG-S DropBack 500K 7.39% 6.50% 192
VGG-S DropBack 200K 13.44% 8.87% 93

VGG-S DropBack 100K 19.80% 16.34% 40

Table 4.6: VGG-S on Fashion-MNIST, using Algorithm 3.

At the lower weight reduction ratios, Algorithm 3 results in minimal increases in
error compared to Algorithm 2 at the lower weight reduction ratios, but in exchange
creates useful levels of computational sparsity by zeroing a large proportion of
weights. For example, DropBack 3M has 80% of the model parameters decayed
to zero by the end of training. During training, this sparsity does not result in
computation savings because the weight decay is achieved over time; however,
at inference time, many of the weights are zero and computation savings can be
significant.

In the higher range of weight reduction ratios, on the other hand, Algorithm 3
actually outperforms Algorithm 2 by 1-3%. At 500K tracked parameters, only 3.3%
of the network is non-zero. Using a coordinate-list sparse matrix representation,
the sparsified weight matrix of VGG-S trained by DropBack with pruning to 500K
weights would use only 3.77MB compared to S7TMB for the unpruned baseline in a
dense matrix representation, including metadata overhead. Compared to Algorithm 2,

storing the weights as a standard sparse matrix without the requirement to regenerate
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Figure 4.6: Weight reduction ratio vs. accuracy for VGG-S on Fashion MNIST.

their initial values is beneficial for further reducing inference time energy, as weights
no longer need to be recomputed using the xorsHIFT RNG. An accelerator such as
the Efficient Inference Engine [19] can, according to the authors, leverage this level
of sparsity to improve energy efficiency by 10x compared to a dense weight matrix

representation.

4.4 Color Image Classification (CIFAR-10)

Finally, we evaluated DropBack on the CIFAR-10 dataset. This dataset presents
a much more challenging task than MNIST or Fashion-MNIST because (a) the
images are larger (32x32 pixels vs. 28%28), and, more importantly, (b) the images
are in color, which means that the network must learn to reason about and combine
features detected in three separate color channels.

In addition to the fairly straightforward VGG-S network, we also evaluated on
Densenet and WRN-28-10. These are modern networks with complex architectures

and state-of-the-art performance on image classification tasks. We specifically
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Figure 4.7: Weight reduction ratio vs. accuracy for VGG-S, using Algorithm
2 and Algorithm 3.

selected them because both networks are compact with very dense connections, and
are very challenging for prior pruning methods to optimize [42]. VGG-S was trained
for 300 epochs, while Densenet and WRN-28-10 were trained for 500 epochs; the
highest-accuracy epoch was selected for the final result. For all three experiments, the
learning rate started at 0.4 and decayed 0.5x every 25 epochs; no data augmentation

was performed.
4.4.1 Pruning by Accumulated Gradient Magnitude: Algorithm 2

Accuracy and Weight Reduction

Table 4.7 and figures 4.7, 4.8, and 4.9 show how DropBack compares to variational
dropout, network slimming, and magnitude-based pruning on VGG-S, Densenet,
and WRN-28-10. Overall, DropBack can achieve comparable (or even slightly

improved) accuracy on VGG-S and Densenet with a five-fold weight reduction, and
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CIFAR-10 Validation error Weight reduction Best epoch Freeze epoch
VGG-S Baseline 15M 10.08% Ix 214 N/A
VGG-S DropBack SM 9.75% 3% 127 5
VGG-S DropBack 3M 9.90% 5% 128 20
VGG-S DropBack 750K 13.49% 20x 269 35
VGG-S DropBack 500K 20.85% 30x 201 15
VGG-S DropBack 100K 52.15% 150 30 15
VGG-S Var. Dropout 13.50% 3.4x 200 N/A
VGG-S Mag Pruning .80 9.42% 5.0x 182 N/A
VGG-S Slimming 11.08% 3.8 196 N/A
Densenet Baseline 2.7M 6.48% Ix 382 N/A
Densenet DropBack 500K 5.86% 4.5% 409 N/A
Densenet DropBack 100K 9.42% 27x% 307 N/A
Densenet Var. Dropout 90% Ix N/A N/A
Densenet Mag Pruning .75 6.41% 4.0x 480 N/A
Densenet Slimming 5.65% 2.9%x 495 N/A
WRN-28-10 Baseline 36M 3.75% 1x 326 N/A
WRN-28-10 DropBack 8M 3.85% 4.5% 384 N/A
WRN-28-10 DropBack 7TM 4.02% 5.2x 417 N/A
WRN-28-10 DropBack SM 4.20% 7.3% 304 N/A
WRN-28-10 DropBack 1M 31.18% 36.48% 460 N/A
WRN-28-10 DropBack 500K 41.02% 72.96x 494 N/A
WRN-28-10 DropBack 100K  83.12% 364.80x 57 N/A
WRN-28-10 Var. Dropout 90% 1% N/A N/A
WRN-28-10 Mag Pruning .75 26.52% 4x 109 N/A
WRN-28-10 Slimming .75 16.640% 4x 173 N/A

Table 4.7: Validation accuracy and weight reduction ratio of several pruned

networks on the CIFAR-10 dataset, trained using Algorithm 2.
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Figure 4.8: Weight reduction ratio vs. accuracy for Densenet, using Algorithm
2 and Algorithm 3.

up to 20x-30x weight reduction if some accuracy is sacrificed. On WRN-28-10,
DropBack achieves 7x weight reduction with less than 0.5% accuracy compared to
other techniques which all offer at best 4x weight reduction at over 10% increase in
error rate.

WRN-28-10 and Densenet are challenging, as they are already quite dense for the
accuracy level they achieve. Variational dropout works well only on VGG-S and fails
to converge — that is, fails to achieve better-than-random accuracy — on Densenet
and WRN. Magnitude-based pruning tops out at a worse accuracy than DropBack
on WRN-28-10 and Densenet, despite offering less weight reduction when pruning
80% and 75% of the parameters, respectively. Finally, network slimming achieves
slightly better top accuracy on Densenet at the cost of 36% less weight reduction,
but results in dramatic accuracy loss when applied to WRN-28-10; this is in line
with recent work which has shown that WRN is hard to reduce more than about

2x without losing significant accuracy [41-43]. Only DropBack is able to achieve
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Figure 4.9: Weight reduction ratio vs. accuracy for WRN-28-10, using Algo-
rithm 2 and Algorithm 3.

weight reduction on the order of 5x with little to no accuracy loss on WRN-28-10
and Densenet.

Convergence and Freezing

With the more complicated networks WRN-28-10 and Densenet, freezing early
resulted in significant accuracy drops of ~10% compared to not freezing. This is
because these networks are much more difficult to train than VGG-S, as demonstrated
by the larger best epoch values in Table 4.7. Intuitively, with higher weight reduction
ratios and more complex networks, freezing early results in a more substantial
accuracy drop because parameters that are on the edge of being included in the
tracked set are far more critical. With larger tracked sets, weights that are being
swapped in and out of the tracked set have smaller gradients, therefore contribute less
to the error. With more complex networks, additional noise, such as the noise added

by parameter selection changing each iteration, can be beneficial to training [50].
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Figure 4.10: VGG-S CIFAR-10 epoch vs. validation accuracy for our method
at SM tracked parameters, variational dropout, and the baseline model.

Therefore, WRN-28-10 and Densenet were run without freezing.

Figure 4.10 shows that DropBack initially learns slightly more slowly than the
uncompressed baseline on VGG-S, but exhibits the same convergence behavior as
the baseline after about 20 epochs. Variational dropout, in contrast, learns more
quickly initially but converges to a lower accuracy, essentially because the rapid
movement results in numerical instability and poor performance [23] (see Section 4.5

for details).

4.4.2 DropBack with Weight Decay: Algorithm 3

Accuracy and Weight Reduction

The results of training networks on CIFAR-10 using Algorithm 3 are shown in

Table 4.8. In almost every case, Algorithm 3 improves the weight reduction ratio.
The level of weight reduction achieved for an acceptable accuracy loss depends

on the network used. The newer WRN-28-10 network is reduced the most, and at

high compression levels is still more accurate than any VGG-S result. Densenet
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CIFAR-10 Validation error Best epoch

VGG-S Baseline 15M 10.08% 214
VGG-S DropBack SM 9.82% 234
VGG-S DropBack 3M 10.12% 188
VGG-S DropBack 500K 13.41% 227
VGG-S DropBack 100K 51.08% 255
Densenet Baseline 2.7M 6.48% 382
Densenet DropBack 500K 5.83% 479
Densenet DropBack 100K 45.24% 437
WRN-28-10 Baseline 36M 3.75% 326
WRN-28-10 DropBack 8M 3.66% 493
WRN-28-10 DropBack 7M 3.66% 493
WRN-28-10 DropBack 5SM 3.87% 478
WRN-28-10 DropBack 1M 4.65% 460
WRN-28-10 DropBack 500K  5.06% 562
WRN-28-10 DropBack 100K  8.74% 362

Table 4.8: Validation accuracy and weight reduction ratio of several pruned
networks on CIFAR-10 using Algorithm 3

has far fewer parameters than the baseline WRN-28-10 or VGG-S networks, but
Algorithm 3 is still able to achieve weight reduction ratio while maintaining accuracy.
Compared to VGG-S, the advantages of the newer, more complex architectures are
clear especially when reduced to S00K and 100K tracked parameters. Densenet at
500K tracked parameters gains almost 1% in test accuracy, whereas VGG-S loses
3.4%, compared to the baseline accuracy result for the respective network.

Using DropBack with 100K tracked weights, WRN-28-10 has the highest weight
reduction ratio and significantly lower validation error than VGG-S or Densenet;
Densenet, on the other hand, suffers a colossal increase in error when only 100K
weights are tracked. This is likely due to its unique highly interconnected architecture:
in a standard CNN like VGG-S, the outputs of one layer are fed into only the next
layer. In Densenet the output of each layer is fed to into every layer below. This
causes each weight in Densenet to affect more of the output than either WRN-28-10
or VGG-S
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The more sparsely connected WRN-28-10 network retains much higher accuracy
even with high weight reduction ratios. At 100K, the error only doubles compared
to the baseline, and WRN-28-10 still outperforms the best (lowest error) version of
VGG-S.

These results suggest that, (a) that network architecture has a significant impact
on the possible weight reduction with DropBack, and (b) that sparsely connected

architectures tend to perform better.

Filter-Level Sparsity

Finally, we asked whether the weights that were pruned away correlated with the
convolutional filter structure of the network. Because each filter represents a different
feature, we reasoned that most of the weight pruning would occur in units of entire
filters.

To investigate filter-level sparsity, we asked how many weights remained (i.e., had
non-zero values) in each 3x3 convolutional filter at the end of the training process
using Algorithm 3. We selected Weight reduction levels of 500K, and 100K tracked
parameters as these both still outperformed the VGG-S baseline. The histograms
show filters with O to 9 weights for each network and training configuration in
Figures 4.11to 4.18, inclusive.

For WRN-28-10, the vast majority of 3x3 filters have been decayed to zero
completely, allowing them to be removed from the network entirely. This is a
significant computational savings, as each filter requires approximately 20 operations
per pixel. Figure 4.11 shows the number of non-zero weights per 3x3 convolution
for DropBack 500K, while Figure 4.13 shows the same for the case of 100K tracked
parameters.

We also investigated the filters that were not entirely removed and asked how
many filter values are non-zero. Figures 4.12 and 4.14 show the same histograms as
above but now without the all-zero filters, again for S00K and 100K, respectively.
In both cases, the vast majority of the remaining filters have only a single value.
This again results in substantial reduction in the computation effort, as applying a
single-value filter requires just a single operation per pixel.

In contrast to WRN-28-10, we observed fewer filters entirely reduced to zero
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in VGG-S and Densenet, with either 100K or 500K tracked weights. On VGG-S
with 500K tracked parameters, only 88% of the filters were set completely to zero
compared with the 94% of the filters from WRN-28-10 500K. Figure 4.15 and
Figure 4.16 show how dense the VGG-S filters are overall compared to the WRN-28-
10 filters in Figure 4.11 and Figure 4.12. Like WRN-28-10, VGG-S had many single
value filters (Figure 4.16), but had relatively more high complexity filters whereas
WRN-28-10 had essentially no filters with more than four non-zero weights. This
suggests that VGG-S requires more complex filters than the WRN-28-10 network,
perhaps because the more complex units that comprise the WRN-28-10 architecture
pre-encode some of the necessary computation and allow the filters themselves to
be less complex. VGG-S also could not be reduced as far as WRN-28-10 without
catastrophic accuracy loss.

Densenet, on the other hand, relies on very complex filters, and did not achieve
as much filter-level sparsity as VGG-S or WRN-28-10. The histograms are shown in
Figures 4.17 and 4.18. While 64% of the filters are entirely zero, the second highest
category of filter were filters with 7 non-zero values.

This result is intuitive, as the Densenet network used in this thesis has 5x
fewer parameters than the next smallest network (VGG-S), but no complex building
blocks like WRN-28-10 to account for some of the complexity. Therefore, to achieve
better or similar accuracy as VGG-S network, the filters will have to incorporate
more information. This more dense representation of information also helps explain
Densenet’s poor performance at higher weight reduction ratios — while some filters
can be simplified, there are fewer filters overall to modify. Removing a single value
from a filter in Densenet has far more impact than on VGG-S or WRN-28-10.

4.4.3 Weight Reduction: Algorithm 2 vs. Algorithm 3
The question of selecting DropBack Algorithm 2 versus DropBack Algorithm 3

depends greatly on the network, weight reduction desired, and energy reduction
required. Table 4.9 shows a side-by-side comparison of Algorithms 2 and 3, using
results from Section 4.4.

VGG-S performs better at higher weight reduction levels when using Algorithm
3, with the added benefit of the computational sparsity from the decayed to O initial
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Figure 4.11: Histogram of 3x3 convolutional filters in WRN-28-10 with Drop-
Back 500K Algorithm 3, including filters with all zeros.
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Figure 4.12: Histogram of 3x3 convolutional filters in WRN-28-10 with Drop-
Back 500K Algorithm 3, excluding filters with all zeros.
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Figure 4.13: Histogram of 3x3 convolutional filters in WRN-28-10 with Drop-
Back 100K Algorithm 3, including filters with all zeros.
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Figure 4.14: Histogram of 3x3 convolutional filters in WRN-28-10 with Drop-
Back 100K Algorithm 3, excluding filters with all zeros.
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Figure 4.15: Histogram of 3x3 convolutional filters in VGG-S with DropBack
500K Algorithm 3, including filters with all zeros.
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Figure 4.16: Histogram of 3x3 convolutional filters in VGG-S with DropBack
500K Algorithm 3, excluding filters with all zeros.
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Figure 4.17: Histogram of 3x3 convolutional filters in Densenet with DropBack
500K Algorithm 3, including filters with all zeros.
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Figure 4.18: Histogram of 3x3 convolutional filters in Densenet with DropBack
500K Algorithm 3, excluding filters with all zeros.
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CIFAR-10 Alg.2  Alg.3

VGG-S DropBack 5M 9.75%  9.82%
VGG-S DropBack 500K 20.85% 13.41%
VGG-S DropBack 100K 90.00 %  51.08%

Densenet DropBack 500K 5.86 %  5.83%
Densenet DropBack 100K 942 %  45.24%

WRN-28-10 DropBack 8M 385%  3.66%
WRN-28-10 DropBack 500K 59.89 % 5.06%
WRN-28-10 DropBack 100K  89.86 % 8.74%

Table 4.9: Comparing Algorithm 2 and Algorithm 3 on CIFAR-10.

values. At less extreme amounts of weight reduction, DropBack 5M, Algorithm 2 is
very slightly better, although the computational sparsity obtained by Algorithm 3
makes the 0.07% increase in error acceptable.

Densenet, on the other hand, exhibits very different behavior when pruned. At
low weight reduction levels, both algorithms perform the same, with Algorithm 3
taking longer to converge while introducing 78% weight sparsity. The weight
reduction factor at DropBack 100K for Densenet is less than what WRN-28-10 and
VGG-S achieved, but Algorithm 3 suffers a significant increase in validation error.
This is because the densely connected architecture of the network causes too many
activations to become zero, removing substantial expressive power of the already
compact network. Leaving the initial parameters intact with Algorithm 2 results,
on the other hand, preserves more accuracy and outperforms the baseline VGG-S
network.

Finally, on WRN-28-10, Algorithm 3 outperforms Algorithm 2 at all levels of
weight reduction, and does not lose accuracy as quickly at high levels of weight
reduction. Using DropBack 100K Algorithm 3, WRN-28-10 outperforms the best
VGG-S network even with the largest weight reduction ratio of 364.80x. While
WRN-28-10 is the largest network used for CIFAR-10, and thus should see the
highest weight reduction ratios, no other network was able to achieve a comparable

accuracy at 100K tracked parameters.
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Figure 4.19: Diffusion (¢?) distance vs. training time on MLP-100 (note log
time scale).

4.5 Discussion

Finally, we sought to understand how DropBack is able to offer better accuracy at
higher weight reduction ratios than prior work across a wide range of deep neural
networks.

To investigate this, we applied the training process analysis from Hoffer et al. [23].
Briefly, the authors observe that the average £2 (BEuclidean) distance of wei ghts from
their initial values is a logarithmic function of training time, i.e., ||w; — wg|| ~ logz.
They therefore model SGD as a random walk on a random potential surface, which
exhibits the same logarithmic distance effect (known as ultra-slow diffusion). The
authors demonstrate that SGD configurations that preserve the ultra-slow diffusion
effect result in models that generalize well.

We therefore asked whether DropBack follows the same principle. We reasoned
that, because DropBack tracks the highest gradients, DropBack should preserve the
largest contributors to the £? diffusion distance of the baseline training scheme. In
addition, because most of the remaining gradients are close to zero (see Figure 3.1),

we expected the ¢* diffusion distance to evolve similarly to that of the baseline
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Figure 4.20: Evolution of weights under SGD projected into 3D space using
PCA for DropBack, baseline, magnitude based pruning, and variational

dropout.

unpruned training scheme. Finally, because fewer of the largest contributors are
preserved when the weight reduction ratio is higher, we expected the average £2
distance to be greater in configurations with a higher weight reduction ratio.

To verify this intuition, we measured the diffusion distance for the baseline un-
compressed network, DropBack, variational dropout, and magnitude-based pruning,
all on the MLP-100 network.! Figure 4.19 shows that under DropBack Algorithm 2
weights diffuse very similarly to the baseline training scheme. The overall £2 distance
is negligibly lower because the untracked weights remain at their initialization values.
In contrast, magnitude-based pruning begins with a substantial £? distance (because
many initialization values are immediately zeroed) and does not provide enough
scaffolding structure for SGD to train well. Finally, variational dropout drastically
alters the loss surface of the network, and so diffuses much faster than the baseline
and DropBack. This results in numerical instability (the total variation of the solution

is not bounded, and the optimization does not converge) as Hoffer et al. [23] predict;

INetwork slimming, being a train-prune-retrain technique, is not amenable to this type of analysis.
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this explains the failure of variational dropout to converge on the denser networks
(see Section 4.4).

To visualize how the weight values themselves evolve under DropBack com-
pared to the Baseline and the two pruning techniques, we projected the parameter
space to three dimensions using Principle Component Analysis (PCA). PCA is a
dimensionality reduction technique that projects a coordinate space, in this case the
parameters of the MLP-100 network, down to a space with fewer dimensions.

Figure 4.20 shows that under DropBack, the principal components of the trained
weight vector stay very close to those of the Baseline-trained weight vector, whereas
those of magnitude-based pruning and variational dropout diverge significantly. If
we consider the training path of the Baseline configuration to be ideal, DropBack
results in a similar near-ideal evolution.

With DropBack Algorithm 3, the diffusion distance is altered more significantly,
and the path SGD takes during optimization changes correspondingly. When tracking
only 1.5K of the original 90K parameters, the path and diffusion distance is altered
drastically compared to the paths taken by Algorithm 2 and the Baseline. This
explains the results from Table 4.2 and Table 4.4, where the DropBack variant
Algorithm 2 performs better on the same dataset (MNIST) and network (MLP-100).

4.6 Summary

On the MNIST dataset, DropBack can reduce the number of weights in both LeNet-
300-100 and MLP-100 to 20K tracked weights with validation errors of 1.78% and
1.70% respectively, compared to 1.41% error and 1.70% error for their respective
unreduced baselines.

On the Fashion-MNIST dataset with VGG-S, DropBack can reduce the number
of weights by 5x with a validation error of 5.43%, matching the baseline accuracy
exactly.

On the CIFAR-10 dataset, DropBack is effective at reducing the number of
weights used in all networks. On VGG-S, DropBack achieves a 9.90% validation
error with a 5x weight reduction. On Densenet, DropBack achieves 5.86% validation
error with 4.5x weight reduction, and on WRN-28-10 DropBack achieves 4.20%
error with 7.3x weight reduction. For both Densenet and WRN-28-10 these weight
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reduction ratios are state of the art compared to post-training pruning techniques,

without an increase in error.
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Chapter 5

Conclusion

Neural networks are becoming an everyday part of modern life. As their popularity
grows, they are deployed to smaller and smaller devices. In order to fit the memory,
energy, and computational bounds of these devices, neural networks must be
compressed, which typically results in accuracy loss and longer training times.
DropBack can reduce the number of weights in networks up to 5x with no accuracy
loss and up to 36x with slight accuracy loss.

DropBack reduces weight storage both during and after training by (a) tracking
only the weights with the highest accumulated gradients, and (b) recomputing the
remaining weights on the fly. With the addition of a decay term for the untracked
weight set, DropBack can be used to create compute sparsity both during and after
training, increasing the potential for energy savings even more.

Because DropBack prunes precisely those weights that have learned the least,
its weight diffusion profile during training is very close to that of standard (uncon-
strained) SGD, in contrast to other techniques. This allows DropBack to achieve
better accuracy and weight reduction than prior methods on dense modern networks
like Densenet and WRN-28-10, which have proven challenging to prune using
existing techniques. On Densenet, a 5x weight reduction ratio can be achieved with
no accuracy loss. On WRN-28-10, a 7x weight reduction ratio can be achieved with
no accuracy loss. With a slight increase in error, WRN-28-10 can be reduced by
36X.

DropBack is the first pruning technique to store only a small subset of weight
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gradients during the training process. This is a key advantage, as it will make it
possible for future work to dramatically reduce the memory footprint and memory
bandwidth needed to store and access weights during training. Because of this, future
designs that combines DropBack with custom hardware will be able to train networks
larger than currently achievable with typical hardware, or to train standard-size
networks on small mobile and embedded devices, which is currently not possible

with standard training techniques and mobile GPUs.
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