
An FPGA-based Programmable Vector Engine for
Fast Fully Homomorphic Encryption over the Torus

Y. Serhan Gener∗, Parker Newton∗, Daniel Tan∗, Silas Richelson∗, Guy Lemieux†, and Philip Brisk∗

∗Department of Computer Science and Engineering, University of California, Riverside
†Department of Electrical and Computer Engineering, University of British Columbia

Abstract—This paper describes an FPGA-based vector engine
to accelerate the bootstrapping procedure of Fast Fully Ho-
momorphic Encryption over the Torus (TFHE), a popular and
high-performance fully homomorphic encryption scheme. Most
TFHE bootstraping comprises many matrix-vector operations
that are implemented using Torus polynomials, which are not
efficiently implemented on today’s standard arithmetic hardware.
Our implementation achieves linear performance scaling with up
to 16 vector lanes. Future work will switch to an FFT-based
polynomial multiplication scheme and switch to larger FPGA
parts to accommodate more vector lanes.

I. INTRODUCTION

Fully Homomorphic encryption (FHE) is a cryptographic
primitive which enables computing arbitrary functions on en-
crypted data [7], [9], [11], [12], [20]–[22], [32]. Applications
of FHE include such as privacy-preserving inference on neural
networks [5], [6], [16], [23] and private analysis of genomic
data [4], [24], [25]. The client encrypts their private data using
FHE and transmits the ciphertext to an untrusted server. The
server then homomorphically computes the desired function
on the encrypted data, obtaining a ciphertext of the output.
The client then decrypts the ciphetext to obtain the result.

Many FHE schemes rely on a ciphertext refreshing proce-
dure called bootstrapping [2], [14], [19]. Each homomorphic
operation introduces error into the ciphertext; eventually, the
error will grow too large to be decrypted correctly. Bootstrap-
ping the ciphertext reduces its error to a fixed value that can
be tolerated. Bootstrapping has emerged as the computational
bottleneck of the FHE schemes that employ it.

This paper presents a preliminary hardware accelerator for
the bootstrapping procedure employed in Fast Fully Homo-
morphic Encryption over the Torus (TFHE) [14]. We observe
that the computational bottleneck of TFHE is a polynomial
multiplication procedure which is repeatedly called within
TFHE’s bootstrapping procedure. Our accelerator adds TFHE-
specific custom instruction extensions to an FPGA-based
programmable vector engine. We observe linear performance
scaling as the number of vector lanes increases from 4 to 16;
however, our overall performance is limited compared to state-
of-the-art software and GPU-accelerated TFHE implementa-
tions. The key difference is that our polynomial multiplier
uses an O(n2) algorithm, which could be reduced to O(nlogn)
using a Fast Fourier Transform (FFT). We plan to address this
shortcoming in future work while switching to larger FPGA
parts to enable evaluation using additional vector lanes.

II. RELATED WORK

FPGA accelerators for the CKKS [28] and BFV [29], [33]
FHE schemes have been published recently. CKKS performs
approximate computation on reals [13], while BFV performs
integer computation exclusively [3], [8], [20]. In contrast,
TFHE is universal, as it homomorphically evaluates logic
gates, which can construct both exact and approximate circuits
[14]. We acknowledge earlier FHE hardware accelerators (e.g.,
Refs. [17], [18]), but eschew discussion to conserve space.

III. BACKGROUND

Notation: We denote the output x of algorithm A by x← A.
We denote sampling an element x from a distribution D by
x← D. Let S be a set. We denote sampling an element s from
the uniform distribution on S by s← S. If n ∈ Z>0, then we
denote the set of vectors of dimension n with elements in S
by Sn. If v ∈ Sn, then we write the ith component of v as
vi ∈ S. If q ∈ Z>0, then let Zq be the ring of integers modulo
q, and let Zq[X]<N denote the ring of polynomials over Zq

of degree less than N . If x ∈ R, then we say that x modulo 1
is x (mod 1) = x− bxc ∈ [0, 1). Let T = R

/
Z be the Torus,

a ring which is isomorphic to [0, 1)1. We denote the rings of
polynomials over the Torus of degree less than N by TN [X].

A. TFHE Overview

TFHE evaluates an arbitrary function f by first decompos-
ing it into a Boolean circuit. TFHE then homomorphically
evaluates each logic gate in the circuit, composing them until
the entire function is evaluated. The output is the encrypted
(ciphertext) result of the function applied to the original
encrypted (ciphertext) input message. Plaintext inputs are
messages m1,m2 ∈ {0, 1/4}, which lie on the Torus.

TFHE employs Learning with Errors (LWE) Encryption
to encode plaintext messages (scalars) into a vector. LWE
Encryption’s semantic security derives from the conjectured
hardness of the LWE lattice problem [10], [26], [27].

Let χ be an error distribution on T with the property that
sample e ← χ has low norm2 with high probability. LWE
Encryption generates a symmetric key vector s← Zn

2 , where
n ∈ Z>0 is a security parameter. Message m ∈ T is encrypted
by randomly choosing a← Tn, e← χ and generating an LWE

1The ring operations in [0, 1) are addition and multiplication modulo 1.
2Typically, χ is a discrete Gaussian distribution on Tn.

TABLE I: Homomorphic logic gates under TFHE.

Gate Homomorphic Evaluation

NOT (0, 1/4)− c1

NAND Bootstrap((0, 5/8)− c1 − c2)

AND Bootstrap((0,−1/8) + c1 + c2)

OR Bootstrap((0, 1/8) + c1 + c2)

XOR Bootstrap(2 · (c1 − c2))

ciphertext (a vector) c = (a, b) ∈ Tn+1, where b = 〈a, s〉 +
e + m, to obscure m. To decrypt an LWE ciphertext c, the
secret key s must be known. Then z = b−〈a, s〉 = e+m ∈ T.
Recall that e was sampled from an error distribution χ such
that e has low norm. It follows that we can round off e and
decode e+m back to m; see [26], [27] for details.

Let c1 and c2 be LWE ciphertexts for m1 and m2. The
homomorphic addition operation computes c3 = c1 + c2 =
(a1 + a2, b3) ∈ Tn+1, where b3 = 〈a1 + a2, s〉+ (e1 + e2) +
(m1 +m2). c3 then decrypts to (e1 + e2) + (m1 +m2) ∈ T,
which, by using the low norm of e1, e2, we can round and
decode to (m1 +m2) ∈ T.

Homomorphic addition can implement basic logic gates (see
Table I); however, each operation increases the error (e1 +e2).
Eventually, this error will grow too large to be decrypted to the
correct value. As mentioned in the Introduction bootstrapping
can refresh the error to a tolerable level. Bootstrapping applies
encrypted ciphertexts of the secret key to homomorphically
evaluate the decryption algorithm of an FHE scheme, refresh-
ing the ciphertext of the encrypted gate output, so that the
resulting error depends on the depth of the decryption circuit.

The Appendix describes TFHE in greater detail.

IV. BOOTSTRAPPING ACCELERATOR ARCHITECTURE

We implemented an accelerator for the TFHE bootstrap
function using an FPGA-based programmable vector en-
gine [31] (MXP) that can be customized [30] with up to 16
application-specific instruction set extensions. TFHE involves
a mixture of vector-vector and matrix-vector operations; while
some of the matrices involved are sparse, they have a well-
defined structure with dense sub-matrices and other sub-
matrices where all values are 0. This lends itself to regular
access patterns and SIMD parallelism. While we employ an
FPGA for prototyping, and tuned the performance of the
system as-deployed, we anticipate that the design principles
of the vector accelerator will readily transfer to standard-cell
CMOS technology.

MXP is implemented through extensions to a scalar pro-
cessor, which could be either a hard CPU integrated into the
FPGA fabric, or a soft CPU synthesized on programmable
logic. MXP has a dedicated scratchpad memory, whose size
ranges from roughly 4kB to 2MB, supported by specialized
DMA read and write options. Scalar, vector, and DMA op-
erations can execute concurrently. MXP executes multi-cycle
instructions on vectors of arbitrary length. The number of
vector lanes (m) in hardware is configurable and determines

Fig. 1: TFHE bootstrap accelerator; the numbers in the upper
left-hand corner of each module correspond to the vector
instruction set extensions listed in Table II.

the amount of parallelism; in software, the programmer in-
dependently chooses a vector length of convenience and lets
the hardware scheduler determine how many m-wide micro-
operations, aka wavefronts, to issue to complete each instruc-
tion. MXP is programmed in C/C++. Vector operations are
specified as non-blocking function calls initiated by the scalar
CPU. The hardware scheduler handles pipelining, interlocks,
and out-of-order execution of vector and DMA operations.

Figure 1 depicts an architectural specification for a TFHE
Bootstrap accelerator. The modules in Figure 1 correspond to
the specification in Algorithm 1. The input is a LWE ciphertext
(a, b), switching key KSs′→s, and a set of n bootstrapping keys
{BKi}ni=1. The output is a noise-reduced LWE ciphertext c′.

We implemented ten custom vector instructions for TFHE,
listed in Table II; some require multiple invocations to com-
plete larger-scale operations. We implemented each block in
Figure 1 using a mix of scalar and vector engine instructions;
this yields a more compact design than implementing each
block in RTL. Each module shown in Figure 1 lists the custom
vector instruction set extensions that it uses.

TFHE transforms the LWE ciphertext into a Torus LWE
(TLWE) ciphertext, in which vector elements are Torus poly-
nomials, whose coefficients lie in the range [0, 1). We represent
these values in a 32-bit fixed-point format, with a 1-bit
integer component and 31 fractional bits. The custom vector
instructions perform modulo-1 arithmetic operations, which
correspond to standard operations on the Torus ring.
Instructions 1-3 perform addition, subtraction, and 2’s com-
plement negation (modulo 1) on vectors of Torus coefficients.
Instructions 4-5 perform decomposition for the external
product and key switch functions. Decomposition extracts `
(external product) or t (key switch) MSBs from each value
in a length-N vector of scalars and, without loss of gener-
ality, writes each bit to a sequence of length-N bit-vectors,

TABLE II: Custom vector instruction set extensions for TFHE.

Instruction Short Description Mathematical Representation Invocations
Name to Complete

1 add mod1 Addition under modulo 1 (x+ y)(mod 1) 1
2 sub mod1 Subtraction under modulo 1 (x− y)(mod 1) 1
3 neg mod1 Two’s compliment under modulo 1 (∼ x+ 1)(mod 1) 1
4 Decompose ep Extract the ` MSBs from each vector element See Fig. 2 l
5 Decompose ks Extract the t MSBs from each vector element See Fig. 2 t
6 Round Isolate and round the (log2(2N) + 1) MSBs bx[n−1:n−(log2(2N)+1)]e 1
7 Gen. Poly. A Generate polynomial as per. Eq. (2) pāi,N (X) : Z2 → Z[X]/(XN + 1) 1

8 Gen. Poly. B Generate polynomial as per Eq. (3) pb̄,N (X) : Z2 → T[X]/(XN + 1) 1

9 Binary Poly. Mult Polynomial multiplication; one operand has binary coefficients (x ∗ y) ∈ T[X]/(XN + 1), xi ∈ {0, 1} N

10 Poly. Mult Polynomial multiplication; no operand restrictions (x ∗ y) ∈ T[X]/(XN + 1) N + 1

Fig. 2: Illustration of Decompose instruction for ` = 4

outn−1, . . . , outn−`, as shown in Figure 2. MXP supports
one output per vector lane, requiring repeated invocations
(` or t times) to obtain all of the bits: the input vector is
always the same, while each invocation extracts a different bit
position. Both instructions share the same datapath logic but
have slightly different control circuitry.
Instruction 6 isolates and rounds the log2(2N) + 1 highest-
order bits of an integer. If the log2(2N)+1st bit is 1, then the
remaining log2(2N) higher-order bits are incremented. The
rounded LWE ciphertext is denoted (ā, b̄).
Instruction 7 transforms a rounded integer into an integer
polynomial in Z[X]/(XN + 1); it is called once for each
rounded integer āi ∈ ā.
Instruction 8 transforms a rounded integer into a Torus
polynomial (T[X]/(XN + 1)); it is called once for b̄.
Instructions 9-10 compute the product of two Torus polyno-
mials x and y; the former is a special case where x satisfies
the property that the LSB of each coefficient xi is binary (0 or
1) and all higher-order bits are zero; in this case, multiplication
reduces to a bitwise-AND operation.

A. Operation Schedule

All n+ 1 integers in the LWE ciphertext (a, b) are rounded
upfront. Within the Bootstrap Main Loop, the polynomials
derived from a (denoted pāi,N (X)) are processed indepen-
dently; however, the scratchpad memory is not large enough
to store all of the polynomials. To avoid excess DMA traffic,
the scheduler generates the polynomials on-the-fly as needed,
noting that the size of the polynomial pāi,N (X) is much larger
than that of the rounded integer value āi.

B. Polynomial Multiplication

Within the Bootstrapping Main Loop (Fig. 1), each external
product invocation executes polynomial addition and multipli-
cation `(k+1)2 times, where ` and k are security parameters;
this dominates the execution time of bootstrapping.

In TLWE, each polynomial has degree N − 1. The product
of two (N − 1)-degree polynomials is a 2(N − 1)-degree
polynomial; however, the Torus polynomial ring is defined
modulo-(XN + 1), so a modular reduction is necessary.

Let x and y be the coefficient vectors of two degree N − 1
polynomials and let z = xy be the coefficient vector of their
product. One way to perform the reduction is to first compute
a 2(N − 1) degree polynomial, z′, and then compute z as
follows: zi = z′i − z′i+N , 0 ≤ i ≤ N − 1. An alternative is to
compute the coefficients of z directly:

zr =
∑

i+j=r

xi ∗ yj −
∑

i+j=r+N

xi ∗ yj , 0 ≤ r ≤ N − 1 (1)

Table III and Figure 3 show an example multiplying two
degree-3 (N = 4) polynomials. Each row of Table III repre-
sents the scalar multiplication of coefficient xi with the full
coefficient vector (y0, y1, y2, y3) of y. In Figure 3, coefficients
of x are stored in flip-flops, coefficients for y and z are in
vectors, and a sequence of add/subtract control signals is stored
in a shift register. The first invocation loads the values of x into
the flip-flops; a copy of y is appended to itself (in software)
and loaded into the scratchpad memory. The rotation pattern
shown in Table III is implemented by first calling the custom
instruction with starting index N , and decrementing the index
prior to each subsequent invocation. The shift register to
control add/subtract operations is initialized to 1: between
invocations, it shifts left by 1, shifting a zero into the LSB.
Polynomial multiplication completes after N invocations.

For Binary Polynomial Multiplication, each coefficient of x
can be represented with a single bit: the LSB is either 0 or 1,

TABLE III: Polynomial multiplication reordered.

z0 z1 z2 z3
x0 ∗ y0 x0 ∗ y1 x0 ∗ y2 x0 ∗ y3

x1 ∗ y3 x1 ∗ y0 x1 ∗ y1 x1 ∗ y2

x2 ∗ y2 x2 ∗ y3 x2 ∗ y0 x2 ∗ y1

x3 ∗ y1 x3 ∗ y2 x3 ∗ y3 x3 ∗ y0

Fig. 3: Polynomial multiplication for N = 4

Fig. 4: Merge two inputs and save 1-bit vector in BPM’s FFs
for N = 3

and all higher-order bits are zero. Since each coefficient yi of y
is in the range [0, 1), the MSB of yi is always zero. As shown
in Figure 4, the two inputs can be merged by packing the
binary value into the MSB of yi; the updated vector of packed
coefficients is denoted y′. The packed MSBs are copied to
the flip-flops used in the polynomial multiplier unit, prior to
performing the operation; a bitwise-AND operation on the 31
least significant bits of y′i implements the one-bit multiply;
the highest-order (packed) bit is forced to 0. The more general
polynomial multiplication instruction is used exclusively in the
Bootstrap Main Loop to compute pāi,N (X)× BKi.

V. EXPERIMENTS

This section evaluates the performance of the TFHE vector
engine [30], [31] (MXP) which we implemented on a Digilent
ZedBoard Zynq-7000 ARM/FPGA SoC Development Board.
The TFHE software runs on one ARM Cortex-A9 core in the
FPGA, leveraging the programmable MXP vector engine for
acceleration; MXP and ten TFHE-specific custom instructions
(Table II) are synthesized on the programmable logic of the
FPGA. We configured the vector engine to use 8 parallel lanes
for computation and 64kB of scratchpad memory; a wider
vector engine would obtain higher performance, but would
require a larger and more expensive FPGA.

Our evaluation compares four different implementations.
We executed a GPU-based implementation of TFHE on an
Nvidia GeForce RTX 2080 Ti (cuFHE) [1], the TFHE C/C++
reference implementation [15] on one core of an Intel Core

TABLE IV: Runtime of all architectures.

Arch. Bootstrap Cost (USD)
cuFHE 0.16 ms $1199 (GPU only)

TFHE-x86 34.9 ms $395 (CPU only)
TFHE-ARM 1.73 s $449 (Dev. board)
MXP-VL8 17.64 s $449 (Dev. board)

TABLE V: Single polynomial multiplication runtime.

Implementation-Architecture Runtime (ms)
TFHE-Naive-x86 0.312

TFHE-Karatsuba-x86 0.143
TFHE-FFTW-x86 0.018

TFHE-FFT-AVX-x86 0.007
TFHE-Naive-ARM 6.734

TFHE-Karatsuba-ARM 2.255
TFHE-FFT-ARM 0.330

MXP-VL4 2.636
MXP-VL8 1.324

MXP-VL16 0.668

i7-8750H @2.20GHz CPU (TFHE-x86) and on one ARM
Cortex-A9 core on the FPGA (TFHE-ARM), and lastly us-
ing the 8-lane MXP vector accelerator with the ten custom
instructions (MXP-VL8). Table IV reports the runtime of the
TFHE bootstrap algorithm on all four implementations. These
results indicate orders of magnitude performance difference
between the four implementations, with the cuFHE achieving
the highest performance and MXP-VL8 achieving the lowest.
While our current MXP implementation is not yet competitive
with software, we believe that future work can narrow the gap
by switching to an FFT-based polynomial multiplier within the
external product (Instruction 10) and transitioning to a higher-
capacity FPGA device to accommodate more vector lanes and,
if needed, a larger scratchpad memory.

Table IV also reports the cost of each of the platforms;
for cuFHE and TFHE-x86, we only report the cost of the
GPU and CPU parts respectively, omitting the full system (e.g.,
memory, storage, motherboard, chassis, etc.); for TFHE-ARM
and MXP-VL8, we report the cost of the Zedboard, which is
fully integrated and requires no additional hardware. Looking
at the costs underscores the point that the MXP-VL8 results
are reported for a relatively low-cost and low-capacity FPGA
part, and that additional performance gains are expected after
it becomes possible to port to a higher-capacity FPGA.

Table V reports the runtime of different implementations
of TFHE polynomial multiplication based on the reference
software [15]. The implementations labeled Naive perform
polynomial multiplication as described in Eq. (1); those
labeled Karatsuba and FFT employ divide-and-conquer to
accelerate polynomial multiplication. The highest performance
on the x86 CPU is achieved using a non-portable FFT library
written to use AVX instructions. The FFT libraries that TFHE
employs were not easily portable to the ARM CPU, so we
implemented our own FFT software routine, which ran faster
than Karatsuba. Implementing MXP with a single custom
instruction for polynomial multiplication enabled us to scale
the number of vector lanes as high as 16. Doubling the

TABLE VI: Custom instruction resource utilization.

Custom Instruction LUT FF
Generate Polynomial A 5,055 33
Generate Polynomial B 3,941 32
Binary Polynomial Mult. 1,965 2,093
Polynomial Mult. 2,491 3,123
All Other Instructions 944 19

number of vector lanes approximately halves the execution
time, indicating that our current implementation is compute-
bound for these vector widths.

Table VI reports the resource utilization of the custom
instructions added to the MXP configured with 8 parallel
vector lanes. None of the instructions require BRAMs beyond
those already allocated to the MXP’s scratchpad. The poly-
nomial generation and multiplication instructions dominate
the resource requirements of the other six instructions. Alto-
gether, the vector engine (including custom instructions) uses
36,373 LUT slices (68%), 23,815 FFs (22%), 82.5 BRAMs
(59%), and 40 DSP blocks (18%). Greater performance can
be obtained by increasing the number of vector lanes (and
the widths of the custom instructions), but doing so would
require a larger FPGA device. There is ample room for growth,
as the largest Zynq UltraScale+ device (ZU19EG) is about
10 times larger than the one we used. Additionally, an FFT-
based implementation of polynomial multiplication may have
considerably different implementation requirements.

VI. CONCLUSION AND FUTURE WORK

This paper presented a preliminary architecture to accel-
erate TFHE bootstrapping. The architecture is based on a
customizable vector engine (MXP) that can be augmented with
application-specific custom instructions. The custom instruc-
tions that we provided perform modular arithmetic operations
on Torus polynomials, and benefit from fast access to the
MXP’s scratchpad memory which is filled through DMA
transfers from off-chip memory.

There are several immediate directions for future work.
The first is to replace our current polynomial multipliers with
FFT-based designs; the second is to port MXP to a larger
FPGA so that we can increase the number of vector lanes; the
third is to build an FPGA-based TFHE server, so that we can
measure the performance of the accelerator in the context of
network latencies, including all requisite data transfers (LWE
ciphertexts, secret key material, etc.). Another direction is to
specify each module in Figure 1 in RTL, rather than relying
on a programmable solution. Lastly, we plan to implement
a compiler to enable TFHE evaluation of multi-gate logic
circuits and measure their performance.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referees for
their detailed reviews and suggestions. This material is based
upon work supported by the National Science Foundation
under Grant No. 1528181, Grant No. 1545097, Grant No.
1763795 and an NSERC Discovery Grant.

REFERENCES

[1] Cuda-accelerated fully homomorphic encryption library. [Online].
Available: https://github.com/vernamlab/cuFHE

[2] J. Alperin-Sheriff and C. Peikert, “Faster bootstrapping with polynomial
error,” in Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part I, ser. Lecture Notes in Computer Science, J. A.
Garay and R. Gennaro, Eds., vol. 8616. Springer, 2014, pp. 297–314.
[Online]. Available: https://doi.org/10.1007/978-3-662-44371-2\ 17

[3] A. A. Badawi, Y. Polyakov, K. M. M. Aung, B. Veeravalli,
and K. Rohloff, “Implementation and performance evaluation of
RNS variants of the BFV homomorphic encryption scheme,” IACR
Cryptol. ePrint Arch., vol. 2018, p. 589, 2018. [Online]. Available:
https://eprint.iacr.org/2018/589

[4] M. Blatt, A. Gusev, Y. Polyakov, and S. Goldwasser, “Secure large-scale
genome-wide association studies using homomorphic encryption,” IACR
Cryptol. ePrint Arch., vol. 2020, p. 563, 2020. [Online]. Available:
https://eprint.iacr.org/2020/563

[5] C. Boura, N. Gama, M. Georgieva, and D. Jetchev, “Simulating
homomorphic evaluation of deep learning predictions,” in Cyber Security
Cryptography and Machine Learning - Third International Symposium,
CSCML 2019, Beer-Sheva, Israel, June 27-28, 2019, Proceedings, ser.
Lecture Notes in Computer Science, S. Dolev, D. Hendler, S. Lodha,
and M. Yung, Eds., vol. 11527. Springer, 2019, pp. 212–230. [Online].
Available: https://doi.org/10.1007/978-3-030-20951-3\ 20

[6] F. Bourse, M. Minelli, M. Minihold, and P. Paillier, “Fast homomorphic
evaluation of deep discretized neural networks,” in Advances in
Cryptology - CRYPTO 2018 - 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings,
Part III, ser. Lecture Notes in Computer Science, H. Shacham and
A. Boldyreva, Eds., vol. 10993. Springer, 2018, pp. 483–512. [Online].
Available: https://doi.org/10.1007/978-3-319-96878-0\ 17

[7] Z. Brakerski, “Fully homomorphic encryption without modulus
switching from classical gapsvp,” in Advances in Cryptology
- CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2012. Proceedings, ser. Lecture
Notes in Computer Science, R. Safavi-Naini and R. Canetti, Eds.,
vol. 7417. Springer, 2012, pp. 868–886. [Online]. Available:
https://doi.org/10.1007/978-3-642-32009-5\ 50

[8] Z. Brakerski, “Fully homomorphic encryption without modulus
switching from classical gapsvp,” in Advances in Cryptology
- CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2012. Proceedings, ser. Lecture
Notes in Computer Science, R. Safavi-Naini and R. Canetti, Eds.,
vol. 7417. Springer, 2012, pp. 868–886. [Online]. Available:
https://doi.org/10.1007/978-3-642-32009-5\ 50

[9] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “Fully homomorphic
encryption without bootstrapping,” IACR Cryptol. ePrint Arch., vol.
2011, p. 277, 2011. [Online]. Available: http://eprint.iacr.org/2011/277

[10] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé,
“Classical hardness of learning with errors,” in Symposium on Theory of
Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013,
D. Boneh, T. Roughgarden, and J. Feigenbaum, Eds. ACM, 2013, pp.
575–584. [Online]. Available: https://doi.org/10.1145/2488608.2488680

[11] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) LWE,” in IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA,
October 22-25, 2011, R. Ostrovsky, Ed. IEEE Computer Society, 2011,
pp. 97–106. [Online]. Available: https://doi.org/10.1109/FOCS.2011.12

[12] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption
from ring-lwe and security for key dependent messages,” in Advances
in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, ser. Lecture
Notes in Computer Science, P. Rogaway, Ed., vol. 6841. Springer,
2011, pp. 505–524. [Online]. Available: https://doi.org/10.1007/978-3-
642-22792-9\ 29

[13] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song, “Homomorphic
encryption for arithmetic of approximate numbers,” in Advances in
Cryptology - ASIACRYPT 2017 - 23rd International Conference on
the Theory and Applications of Cryptology and Information Security,
Hong Kong, China, December 3-7, 2017, Proceedings, Part I, ser.
Lecture Notes in Computer Science, T. Takagi and T. Peyrin,

Eds., vol. 10624. Springer, 2017, pp. 409–437. [Online]. Available:
https://doi.org/10.1007/978-3-319-70694-8\ 15

[14] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster
fully homomorphic encryption: Bootstrapping in less than 0.1
seconds,” in Advances in Cryptology - ASIACRYPT 2016 - 22nd
International Conference on the Theory and Application of Cryptology
and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I, ser. Lecture Notes in Computer Science, J. H.
Cheon and T. Takagi, Eds., vol. 10031, 2016, pp. 3–33. [Online].
Available: https://doi.org/10.1007/978-3-662-53887-6\ 1

[15] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE:
Fast fully homomorphic encryption library,” August 2016,
https://tfhe.github.io/tfhe/.

[16] I. Chillotti, M. Joye, and P. Paillier, “Programmable bootstrapping
enables efficient homomorphic inference of deep neural networks,”
IACR Cryptol. ePrint Arch., vol. 2021, p. 91, 2021. [Online]. Available:
https://eprint.iacr.org/2021/091

[17] A. Cilardo and D. Argenziano, “Securing the cloud with reconfigurable
computing: An FPGA accelerator for homomorphic encryption,” in
2016 Design, Automation & Test in Europe Conference & Exhibition,
DATE 2016, Dresden, Germany, March 14-18, 2016, L. Fanucci and
J. Teich, Eds. IEEE, 2016, pp. 1622–1627. [Online]. Available:
http://ieeexplore.ieee.org/document/7459572/

[18] D. B. Cousins, K. Rohloff, and D. Sumorok, “Designing an fpga-
accelerated homomorphic encryption co-processor,” IEEE Trans. Emerg.
Top. Comput., vol. 5, no. 2, pp. 193–206, 2017. [Online]. Available:
https://doi.org/10.1109/TETC.2016.2619669

[19] L. Ducas and D. Micciancio, “FHEW: bootstrapping homomorphic
encryption in less than a second,” in Advances in Cryptology
- EUROCRYPT 2015 - 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I, ser. Lecture
Notes in Computer Science, E. Oswald and M. Fischlin, Eds.,
vol. 9056. Springer, 2015, pp. 617–640. [Online]. Available:
https://doi.org/10.1007/978-3-662-46800-5\ 24

[20] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” IACR Cryptol. ePrint Arch., vol. 2012, p. 144, 2012.
[Online]. Available: http://eprint.iacr.org/2012/144

[21] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009,
M. Mitzenmacher, Ed. ACM, 2009, pp. 169–178. [Online]. Available:
https://doi.org/10.1145/1536414.1536440

[22] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based,” in Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2013. Proceedings, Part I, ser. Lecture Notes in Computer Science,
R. Canetti and J. A. Garay, Eds., vol. 8042. Springer, 2013, pp. 75–92.
[Online]. Available: https://doi.org/10.1007/978-3-642-40041-4\ 5

[23] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig,
and J. Wernsing, “Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy,” in Proceedings of the
33nd International Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016, ser. JMLR Workshop
and Conference Proceedings, M. Balcan and K. Q. Weinberger,
Eds., vol. 48. JMLR.org, 2016, pp. 201–210. [Online]. Available:
http://proceedings.mlr.press/v48/gilad-bachrach16.html

[24] M. Kim, A. Harmanci, J.-P. Bossuat, S. Carpov, J. H. Cheon,
I. Chillotti, W. Cho, D. Froelicher, N. Gama, M. Georgieva,
S. Hong, J.-P. Hubaux, D. Kim, K. Lauter, Y. Ma, L. Ohno-
Machado, H. Sofia, Y. Son, Y. Song, J. Troncoso-Pastoriza, and
X. Jiang, “Ultra-fast homomorphic encryption models enable secure
outsourcing of genotype imputation,” bioRxiv, 2020. [Online]. Available:
https://www.biorxiv.org/content/early/2020/07/04/2020.07.02.183459

[25] M. Kim, Y. Song, B. Li, and D. Micciancio, “Semi-parallel
logistic regression for GWAS on encrypted data,” IACR Cryptol.
ePrint Arch., vol. 2019, p. 294, 2019. [Online]. Available: https:
//eprint.iacr.org/2019/294

[26] C. Peikert, “Public-key cryptosystems from the worst-case shortest
vector problem: extended abstract,” in Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD,
USA, May 31 - June 2, 2009, M. Mitzenmacher, Ed. ACM, 2009, pp.
333–342. [Online]. Available: https://doi.org/10.1145/1536414.1536461

[27] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” in Proceedings of the 37th Annual ACM Symposium
on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005,
H. N. Gabow and R. Fagin, Eds. ACM, 2005, pp. 84–93. [Online].
Available: https://doi.org/10.1145/1060590.1060603

[28] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “HEAX: an
architecture for computing on encrypted data,” in ASPLOS ’20:
Architectural Support for Programming Languages and Operating
Systems, Lausanne, Switzerland, March 16-20, 2020, J. R. Larus,
L. Ceze, and K. Strauss, Eds. ACM, 2020, pp. 1295–1309. [Online].
Available: https://doi.org/10.1145/3373376.3378523

[29] S. S. Roy, F. Turan, K. Järvinen, F. Vercauteren, and I. Verbauwhede,
“Fpga-based high-performance parallel architecture for homomorphic
computing on encrypted data,” in 25th IEEE International Symposium
on High Performance Computer Architecture, HPCA 2019, Washington,
DC, USA, February 16-20, 2019. IEEE, 2019, pp. 387–398. [Online].
Available: https://doi.org/10.1109/HPCA.2019.00052

[30] A. Severance, J. Edwards, H. Omidian, and G. Lemieux, “Soft
vector processors with streaming pipelines,” in Proceedings of the
2014 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 117–126. [Online]. Available:
https://doi.org/10.1145/2554688.2554774

[31] A. Severance and G. G. Lemieux, “Embedded supercomputing in
fpgas with the vectorblox mxp matrix processor,” in 2013 Interna-
tional Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2013, pp. 1–10.

[32] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption with
relatively small key and ciphertext sizes,” in Public Key Cryptography
- PKC 2010, 13th International Conference on Practice and Theory
in Public Key Cryptography, Paris, France, May 26-28, 2010.
Proceedings, ser. Lecture Notes in Computer Science, P. Q. Nguyen
and D. Pointcheval, Eds., vol. 6056. Springer, 2010, pp. 420–443.
[Online]. Available: https://doi.org/10.1007/978-3-642-13013-7\ 25

[33] F. Turan, S. S. Roy, and I. Verbauwhede, “HEAWS: an accelerator for
homomorphic encryption on the amazon AWS FPGA,” IEEE Trans.
Computers, vol. 69, no. 8, pp. 1185–1196, 2020. [Online]. Available:
https://doi.org/10.1109/TC.2020.2988765

APPENDIX

Notation: Let k, ` ∈ Z>0. We denote the (k + 1) ×
(k + 1) identity matrix by Ik+1 and the gadget matrix
(1/2, 1/4, . . . , 1/2`)⊗ Ik+1 ∈ TN [X](k+1)`×(k+1) by G [2].
The gadget matrix G induces a function G−1 : TN [X]k+1 →
TN [X](k+1)` which is similar to bit decomposition; see [14]
for details. We define the function g : T → {0, 1/4} by
g(x) = 1/4 if x ∈ [1/4, 3/4], and 0 otherwise.

A. TFHE Bootstrapping Procedure

TFHE employs a generalized version of Regev Encryption
that uses Torus LWE (TLWE) ciphertexts. A TLWE ciphertext
c′ ∈ TN [X]k+1 differs from an LWE ciphertext c ∈ Tn+1 in
that the plaintext space is TN [X] as opposed to T, and the
symmetric key space is (Z2[X]<N)k as opposed to Zn

2 .
TFHE bootstrapping relies on the following functions, op-

erators, and subroutines (see Ref. [14] for details):

• TFHE defines a polynomial pāi,N (X) ∈ Z[X]
/

(XN +1)
in terms of parameters āi, N ∈ Z>0:

pāi,N (X) =

0 āi ∈ {0, 2N}
−XN−āi − 1 0 < āi < N

−2 āi = N

X2N−āi − 1 N < āi < 2N

(2)

As an abuse of notation for convenience, pāi,N (X) can
represent either the polynomial itself or a function that
transforms the pair (āi, N) ∈ Z2

>0 into the polynomial.
• TFHE defines a polynomial pb̄,N (X) ∈ TN [X] in terms

of parameters b̄, N ∈ Z>0:

pb̄,N (X) =
XbN/2c+b̄ b̄− bN/2c < 0

X b̄−bN/2c 0 ≤ b̄− bN/2c < N

−X b̄−bN/2c−N N ≤ b̄− bN/2c ≤ 2N

(3)

As an abuse of notation for convenience, pb̄,N (X) can
represent either the polynomial itself or a function that
transforms the pair (b̄, N) ∈ Z2

>0 into the polynomial.
• TFHE defines a function qb̄,N (X) ∈ TN [X] as the

product of pb̄,N (X) and another polynomial

qb̄,N (X) = (−1/8)pb̄,N (X) ·
N−1∑
i=0

Xi. (4)

• TFHE defines M(ā, N,B) ∈ TN [X](k+1)`×(k+1), a
function applied to integers ā, N ∈ Z>0 and a matrix
B ∈ TN [X](k+1)`×(k+1):

M(ā, N,B) = G + pā,N (X) ·B. (5)

• TFHE defines the external product operator � of a matrix
C ∈ TN [X](k+1)`×(k+1) and vector z ∈ TN [X]k+1 as:

C� z = G−1(z) ·C ∈ TN [X]k+1. (6)

• TFHE defines a subroutine, SampleExtract, which trans-
forms a TLWE ciphertext v ∈ TN [X]k+1 of a message
m(X) ∈ TN [X] into an LWE ciphertext c ∈ TkN+1 of
the constant term of m(X). The input ciphertext v is
encrypted under secret key s′′ ∈ TN [X]k, and the output
ciphertext c is encrypted under secret key s′ ∈ ZkN :

• TFHE defines a subroutine, KeySwitch, which trans-
forms a switching key KSs′→s ∈ (Tn+1)(kN)t (s′ ∈
ZkN

2 , s ∈ Zn
2 , t ∈ Z>0 is a precision parameter) and

an LWE ciphertext c ∈ TkN+1 of message m ∈ T under
s′ into an LWE ciphertext c′ ∈ Tn+1 of m ∈ T under
secret key s.

Algorithm 1 summarizes the TFHE bootstrapping procedure
in terms of the functions, operators, and subroutines described
above (see Ref. [14] for correctness proofs).

Algorithm 1 TFHE Bootstrap
Input: Security parameters N,n ∈ Z>0; LWE ciphertext
(a, b) ∈ Tn+1 of message m ∈ T under secret key s ∈ Zn

2 ;
bootstrapping key {BKi}ni=1 ∈ (TN [X](k+1)`×(k+1))n;
KeySwitch key KSs′→s ∈ (Tn+1)(kN)t, where s′ ∈ ZkN .
Output: LWE ciphertext c′ = (a′, b′) ∈ Tn+1 of message
g(m) ∈ T under secret key s ∈ Zn

2 .

1: Round the input:
āi ← b2Naie ∈ Z,∀i ∈ [n]
b̄← b2Nbe ∈ Z

2: Initialize the accumulator:
v← (0, qb̄,N (X)) ∈ TN [X]k+1.

3: Main loop:
For i = 1, . . . , n:

v←M(āi, N,BKi) � v
4: SampleExtract:

c← SampleExtract(v)
5: KeySwitch:

c′ ← KeySwitch(KSs′→s, (0, 1/8) + c)
6: Output: c′ ∈ Tn+1

