
Real-time Object Detection in Software with
Custom Vector Instructions and Algorithm Changes

Joe Edwards
University of British Columbia

VectorBlox Computing Inc.
jedwards@ece.ubc.ca

Guy G.F. Lemieux
University of British Columbia

VectorBlox Computing Inc.
lemieux@ece.ubc.ca

Abstract—Real-time vision applications place stringent per-
formance requirements on embedded systems. To meet perfor-
mance requirements, embedded systems often require hardware
implementations. This approach is unfavorable as hardware de-
velopment can be difficult to debug, time-consuming, and require
extensive skill. This paper presents a case study of accelerating
face detection, often part of a complex image processing pipeline,
using a software/hardware hybrid approach. As a baseline, the
algorithm is initially run on a scalar ARM Cortex-A9 application
processor found on a Xilinx Zynq device. Next, using a previously
designed vector engine implemented in the FPGA fabric, the
algorithm is vectorized, using only standard vector instructions,
to achieve a 25× speedup. Then, we accelerate the critical inner
loops by adding two hardware-assisted custom vector instructions
for an additional 10× speedup, yielding 248× speedup over the
initial Cortex-A9 baseline. Collectively, the custom instructions
require fewer than 800 lines of VHDL code, including comments
and blank lines. Compared to previous hardware-only face
detection systems, our work is 1.5 to 6.8 times faster. This
approach demonstrates that good performance can be obtained
from software-only vectorization, and a small amount of custom
hardware can provide a significant acceleration boost.

I. INTRODUCTION

Increasingly sophisticated image processing is required in
embedded systems. The algorithms in these image processing
pipelines often have both intensive computing requirements
and real-time constraints. A high degree of parallelization is
required. On a desktop machine, where cost and power are
not paramount, real-time performance can often be achieved
using SIMD instructions or GPGPU processing. In embedded
systems, custom hardware solutions are often required to meet
performance targets. FPGAs represent an ideal platform for
creating these system-on-chips (SoC), as they can be used
for computationally demanding processing as well as sensor
integration. To improve productivity and reduce design cost,
FPGA users should minimize RTL design.

In a system where many algorithms in the image processing
pipeline demand acceleration, the amount of custom hardware
quickly grows. This requires larger, more costly FPGAs and
increased development effort. Instead, software-based acceler-
ation adds flexibility to the design; with minimum development
effort, changes to algorithms and implementations are possible
as requirements change.

This paper demonstrates a hybrid hardware/software ap-
proach to developing a face detection system. It first uses a soft
vector accelerator to improve software performance as much
as possible. Then, it adds a small amount of hardware, in the

Fig. 1: Photo of video output showing 49 of 50 faces detected
on a 1080p image in 36ms

form of custom vector instructions, for a final performance
boost. The amount of custom hardware is kept small, allowing
most of the processing to be specified in software.

Previous efforts at implementing face detection on FPGAs
have produced good results [3], [4], [6]. However, these
solutions are single-use, fixed implementations that can be
difficult to maintain. Also, the developed hardware is only
useful for object detection and no other purpose. In contrast,
our approach results in faster detection rates than the hardware
systems, yet it is software-driven, meaning the same hardware
can easily can be modified to do pre-processing and post-
processing such as image enhancement.

In our solution, we also develop a novel approach for
representing AdaBoost cascades with reduced bitwidth fixed-
point values that match the exact decision-making logic de-
sired, without any chance of overflow or floating-point round-
off errors. We solve for these fixed-point values using integer
linear programing (ILP). To our knowledge, this approach has
never been done before.

Our face detection system produces the results shown in
Figure 1. It is fully implemented on a Xilinx ZC706 board
(XC7Z045 SoC device) and an Avnet HDMI I/O daugh-
terboard. With suitable settings, it performs real-time face
detection on 1080p60 video input, overlaying results live on
1080p60 output. The FPGA fabric contains a streaming HDMI
I/O system as well as the soft vector processor. Framebuffers
store 32-bit RGB pixels in HPS-attached DRAM. The software

(a) compute brightness (b) 8-way compare to
neighbours

(c) lookup pattern (d) add pass or fail

Fig. 2: Overview of MB-LBP feature detection. A search window traverses an image pyramid, and calculates multiple features
at each position. Each feature compares average brightness of the center of a 3×3 window against the 8 neighbours, producing
an 8-bit comparison bitfield. This 8-bit LBP value produces either a PASS or FAIL value, which is summed with all features in
the same stage. A stage passes, meaning a face might be present, if the sum exceeds a stage-threshold. A face may be detected
only if all stages pass.

runs on the ARM Cortex-A9 processor and VectorBlox MXP
FPGA-based vector accelerator.

The rest of this paper is organized as follows. Section 2
presents background material on object detection and vector
processing. Section 3 presents the software-only algorithm
changes that produce the initial 25× speedup. Section 4
presents the custom vector instructions that lead to a further
10× speedup. Section 5 presents results and a comparison to
prior work, while Section 6 concludes.

II. BACKGROUND

A. AdaBoost Object Detection

AdaBoost-based object detection, characterized by apply-
ing a series of weak filters, was popularized by Viola and
Jones’ seminal paper [11]. It is employed in a variety of com-
puter vision applications including face-based auto-focusing or
safety warnings when pedestrians are detected in the paths of
vehicles. OpenCV, a popular open source library for computer
vision, provides efficient implementations for both training and
detection routines for these classifiers and contains support for
various features [2].

An image pyramid is processed so all sizes of an object can
be found (scale-invariant). A sliding window is used to check
for objects at every location. A cascade of weak classifiers
is used to determine if the search window contains the target
object. Each weak classifier specifies a feature to check at
a given offset within the search window. For each feature,
a pass or fail score is summed to produce a stage total.
After all features in the stage are evaluated, this stage total
is checked against a required stage-threshold. If not met, the
search exits early, indicating that no object is found. Exiting
early allows for a minimum number of stages to be evaluated,
greatly improving runtime. A second key feature introduced

by Viola and Jones that greatly aids performance is the use of
integral images (sum area tables). Calculating features usually
requires summing regions inside the search window. Integral
images allow the sum of any rectangular region to be calculated
with only four lookups (one at each corner) and three simple
arithmetic operations.

1) Haar vs LBP Feature Types: Viola and Jones used Haar
features in their work. Haar features use the average intensity
of up to 4 rectangular regions and check to see if a specified
relationship is present between them. Integral images makes
computing these regions efficient. The variance of the search
window is also used in the calculation to make features more
robust to lighting, and therefore a squared version of the
integral image must also be generated.

Alternative feature types have been used successfully and
are more amenable to quick calculation. Local binary pattern
(LBP) features rely on generating a pattern based on comparing
a central region to its eight neighbouring regions. This 8-bit
pattern is then checked in a lookup table to see if it is among
the patterns that pass. The operations used in calculating
LBP features map well to embedded processors, using integer
operands and avoiding the division and square-root operations
required for calculating Haar features. Although more regions
need to be calculated for each feature, each LBP feature is
more expressive than Haar, resulting in cascades with fewer
features overall.

Liao et al. introduced multi-block LBP (MB-LBP) features,
where the block sizes used to generate the LBP pattern may be
larger than 1 pixel [7]. Figure 2 demonstrates how MB-LBPs
are calculated in an object detection system. Summed area
tables can again be used to calculate these regions faster. Multi-
block LBP features increased accuracy over single-pixel based
LBP patterns. Examples of typical Haar and MB-LBP features
are shown in Figure 3 as they would appear inside the search

(a) Haar (b) LBP

Fig. 3: Examples of typical features

window. MB-LBP features are used in our implementation due
to the computational advantages over Haar features.

B. Soft Vector Processor

The main reason for selecting a soft vector processor is
to minimize the development effort required to accelerate
algorithms. Software-based iterations greatly reduce compila-
tion time and enable rapid debugging with familiar software
development tools.

For this paper, we adopt a parameterizable and extensible
soft vector processor, the VectorBlox MXP [10], shown in Fig-
ure 4. A host processor controls the vector engine by sending
it sequences of 2-input, single-output, variable-length SIMD
instructions. The engine size is configured as the number of 32-
bit vector lanes. Subword-SIMD is supported, so 8-bit and 16-
bit data types have 4× and 2× more parallelism, respectively.

Vectors are divided into wavefronts that match the com-
bined width of all ALUs. A vector operation proceeds one
wavefront at a time, one cycle per wavefront, until the entire
vector has been computed.

Both the inputs and the outputs are stored in a configurable
scratchpad memory, allowing for an efficient implementation
with variable vector lengths and unaligned accesses. A DMA
engine moves the vectors between main memory and the
internal scratchpad memory. This is handled by the program-
mer. Double buffering hides data transfer overhead through
prefetching. The processor supports instruction pipelining and
hazard detection. Long vectors help reduce pipeline stalls
created by hazards, keeping the engine fully utilized.

1) Custom Vector Instructions: The VectorBlox MXP al-
lows use of custom vector instructions or CVIs [9]. These CVIs
can be used by a programmer the same as any other vector
instruction, taking full advantage of the vector processor’s
pipelining and data marshalling. CVIs provide the ability to
leverage custom hardware while keeping the design effort to
a minimum.

2) Wavefront Skipping: A common problem that plagues
SIMD parallelism is control flow divergence. Branches in
SIMD engines are commonly handled by masked or predicated
instructions, but this requires all elements in the vector to
be processed even if masked. This wastes performance by
occupying potential execution slots with no-operations.

To reduce the impact of control flow divergence, the
VectorBlox MXP supports wavefront skipping [8], a form

Fig. 4: Overview of the VectorBlox MXP processor

of density time masking. This is beneficial when multiple
instructions are executed with the exact same mask. On a
first pass, the mask is analyzed to memorize those wavefronts
where all elements are masked. On subsequent passes, i.e.
during instruction execution, these ‘empty’ wavefronts can
then be skipped entirely and occupy 0 cycles of the ALUs.
This results in faster execution as a mask widens to enable
fewer and fewer elements. Custom vector instructions in MXP
can also be masked.

III. ALGORITHMIC OPTIMIZATION

In this section, we start with a scalar implementation,
and gradually optimize it for performance. We perform an
initial vectorization, then improve it using restricted block
sizes along with precomputation. Next, we use masked vector
operations to further improve performance. Finally, we use an
ILP formulation to generate fixed-point values for the cascade
computation of each stage, replacing 32-bit floating-point
computation, which is susceptible to rounding errors, with
robust 8-bit integers. The use of 8-bit calculations does not
improve software performance in this section, but they allow
for increased parallelism in the custom vector instructions
presented in Section IV.

In all cases, we have measured performance and verified
results using a Xilinx ZC706 board with 1080p HDMI input
and output. With this setup, we can use live camera input, and
visually see where faces are tagged on the output display.

A. Initial Vectorization

Our initial scalar implementation was compiled with gcc
-O3, running bare metal on the ARM Cortex-A9 processor
at 667 MHz. An object dump shows that the compiled code
contains NEON instructions (ARM’s native SIMD extensions),
but we did not try to optimize the scalar code to aid NEON
auto-vectorization.

Next, manual vectorization for MXP across rows is quickly
implemented and verified against the scalar implementation.
This initial vectorization gave us an understanding of which
functions are amenable to SIMD parallelization, and how
performance may scale as more ALUs are added. We did not

vectorize all of the code; we used profiling to identify and
vectorize only the most compute-intensive loops.

Vectorization of the innermost loop is done across a row of
pixels, thus testing many possible < x,y > starting positions in
parallel. The next two outer loops must test all stages, and then
test each feature within each stage. These outer loops cannot
be SIMD-vectorized because each feature and each stage have
unique properties. Furthermore, the early exit condition means
that as soon as a stage fails, no other stages need to be
tested at that position. This performs well in scalar or MIMD
implementations, but leads to low utilization in SIMD engines
as the early exit positions are masked off within the vector,
but they continue to use execution slots until all positions fail
or all stages are tested.

After vectorizing, the inner loop that computes each fea-
ture in the stage consumes the most runtime (93%). Other
components, including RGB to grayscale and downscaling
(bilinear interpolation) to create the image pyramid, consume
the second-most runtime (7%). We will optimize downscaling
later in Section IV. The appending and merging of features to
produce the final results consumes minimal runtime (< 1%)
when only a handful of faces are present, but it can potentially
be vectorized as well.

The innermost loop consists of two parts: computing the
LBP pattern at this feature’s specified location, and performing
a table-lookup with the pattern to determine its contribution
towards passing the stage.

Using a 320x240 test image, we perform a dense scan
(scaling factor = 1.1, stride = 1) to compare with previous
work [3]. The scalar core takes 1.9 seconds to complete. Our
initial vectorized version of the code, running on 16 vector
lanes, processes the test image in 0.83 seconds, a improvement
of nearly 2.3×. The vector processing is done at 166MHz,
which is 1/4 of the rate of the scalar engine.

B. Restricting LBP Block Sizes

Multi-block LBP patterns allow any block size to be used
for a feature. Using OpenCV’s frontal face detector as an
example, the distribution of block sizes across all features is
shown in Figure 5(a). This graph indicates that smaller block
sizes are used more often. Also, blocks typically have similar
width and height.

By restricting the block sizes, two things occur. First, by us-
ing only powers of two, the computation better fits SIMD-style
execution. Second, we notice that adopting the same block
size across many features leads to computational efficiency
due to aliasing which allows us to memoize these patterns.
Given a specific < x0,y0 > position, each feature uses a
different offset, so there is no aliasing and all computations are
necessary. However, across two different starting positions, the
computation for some feature i may be aliased to a feature j
with the same block size. Thus, we can transform the innermost
computation, which performs redundant work due to aliasing,
into a lookup operation, where the work is done just once as a
precomputation. We must precompute an entire image worth of
results, once for each block size. Hence, reducing the number
of block sizes is of great importance.

Cascade True + False + PPV
haarcascade frontalface default.xml 451 55 0.89

haarcascade frontalface alt.xml 451 10 0.97
haarcascade frontalface alt2.xml 455 9 0.98

lbpcascade frontalface.xml 396 27 0.94
unrestricted lbp frontalface.xml 385 9 0.98

restricted lbp frontalface.xml 381 12 0.97
restricted2 lbp frontalface.xml 386 17 0.96

TABLE I: Accuracy of frontal face cascades on MIT-CMU,
showing true/false positives and positive predictive value

When restricting the block width or height to a power of
two, we get the distribution shown in Figure 5(b). If we also
restrict the width to equal the height, we get the distribution
shown in Figure 5(c).

Recent work by Bilaniuk et al. [1] has made similar
observations: restricting block sizes to powers of two is better
for SIMD engines, and using just three block sizes (1×1, 2×2,
and 4 × 4) makes it more efficient to use precomputation. In
their results, these restrictions did not significantly change true
positive detection rates, but it did increase false positives from
below 1% to above 5%.

To measure the tradeoff in accuracy versus number of
block sizes, we created three versions of the cascade. We used
OpenCV’s traincascade program to train the new cascade. By
modifying lbpfeatures.cpp, we can exclude unwanted
features sizes from the training process. Three versions were
generated with traincascade: (1) an unmodified, unrestricted
version, (2) a restricted version, where width and height must
be powers of two, (3) and a restricted2 version, where width
and height are equal and must be a power of two. This requires
minimal changes to the source code.

Each of the cascades produced are valid and can be verified
and used outside of our embedded implementation. Like Viola
and Jones, we use the MIT-CMU test set (sets A, B, C)
to quantify the trade off in accuracy and restricted features.
The results for OpenCV’s default frontal face cascades and
new trained classifiers are presented in Table I. The unre-
stricted and restricted classifiers perform more accurately than
OpenCV’s default Haar and LBP frontal face cascades. Like
Bilaniuk’s result, our false positives also increase by a small
amount.

The initial switch to restricted square features with pre-
computed features produces a speedup of 1.8× over the initial
vectorized solution with 16 lanes.

C. Applying Wavefront Skipping

Long vector lengths, often good for performance, can work
against the benefit of exiting early. This is seen in Figure 6.
The sub-image (b) shows the amount of computation done by
a scalar CPU (without SIMD) at each location in the image;
bright pixels indicate highly probable locations for a face,
whereas black pixels indicate an exit-early condition. Row-
based vectorization shown in sub-image (c) shows the extra
work done across the entire row, because the whole row must
compute until the last pixel is done. Finally, sub-image (d)
shows how some work can be skipped when using VectorBlox

(a) Unrestricted (b) Restricted (c) Restricted Square

Fig. 5: Distribution of block sizes of LBP features in the trained classifiers

(a) Input image (b) Scalar

(c) Simple rows (d) Masked rows

Fig. 6: The number of features calculated at every location
is shown. The bottom demonstrate parallelizing across a row,
with the latter taking advantage of masked instructions

MXP masks: entire wavefronts within a vector that are masked
off can be skipped entirely and do not consume execution slots.

After setting up a mask for the vector, we iterate through
stages and update the mask after every stage. When all
locations within a wavefront exit early, the vector engine skips
that wavefront. The speedup from using masked instructions
is 6× versus the non-masked version.

D. Reducing Data Size with ILP Formulation

By supporting subword-SIMD, the VectorBlox MXP pro-
vides increased performance with smaller data sizes. Our
vector code generally uses the minimum possible data size
for maximum performance.

In most AdaBoost implementations, to determine whether
a stage passes or fails, a series of 32-bit floating-point values
(representing pass or fail for each feature) are added together

and compared to a 32-bit floating-point threshold. This uses
more data bits than necessary, and may even be susceptible to
round-off errors since floating-point addition is not commuta-
tive or associative.

For increased performance on MXP, this computation can
use 8-bit integers instead. Also, integer computation will not
be susceptible to round-off errors. However, the number of
features per stage must be limited, and the pass/fail values for
each feature must be carefully chosen to avoid overflows.

In training, the AdaBoost algorithm determines which
features in a stage must pass for the stage to pass. Some
features are deemed more important, and given larger weight
in the form of increased values in their pass or fail scores.
Ultimately, however, this decision logic is encoded into a
summation and comparison to a determined threshold.

In our implementation, we use the exact same decision
logic to write out a series of constraints for an ILP solver (Mi-
crosoft Research’s Z3 theorem prover [5]). These constraints
allow the ILP solver to assign 8-bit pass and fail score values,
pi and fi, for each feature i, thus preserving the original logic.
We are also able to assign a threshold of 0, so a positive stage
total passes and a negative stage score fails.

For example, for a stage with 5 features, there are 25

constraints representing all combinations of each feature either
passing or failing. Each constraint is given one clause to pass
the stage (result ≥ 0) or fail the stage (result < 0). However,
a complementary second clause is also necessary to avoid
overflows (result ≤ 127 or result ≥ −128). An additional
2× 5 = 10 constraints force all of the pi and fi values within
the 8-bit signed integer range. Z3 is used to solve for these 10
values. An example of these constraints is shown in Figure 7.

One challenge with this approach is that Z3 starts having
trouble with stages that have too many features (eg, 15 or
more) using these 8-bit constraints. We avoided this in practise
by limiting the number of features per stage. Our final trained
cascade uses 98 features across 12 stages, with at most 9
features per stage.

Note that the vectorized version presented thus far is
bottlenecked on the LUT computations. Hence, there is little
performance advantage in switching from 32-bit weights to

Subject To
C00a: f0+f1+f2+f3+f4 <= -1 // fail
C00b: f0+f1+f2+f3+f4 >=-128 // fail
C01a: f0+f1+f2+f3+p4 >= 0 // pass p4
C01b: f0+f1+f2+f3+p4 <= 127 // pass p4
C02a: f0+f1+f2+p3+f4 <= -1 // fail p3
C02b: f0+f1+f2+p3+f4 >=-128 // fail p3
C03a: f0+f1+f2+p3+p4 >= 0 // pass p3+p4
C03b: f0+f1+f2+p3+p4 <= 127 // pass p3+p4
...
C31a: p0+p1+p2+p3+p4 >= 0 // pass all
C31b: p0+p1+p2+p3+p4 <= 127 // pass all
Bounds
-128 <= f0 <= 127
-128 <= f1 <= 127
...
-128 <= p4 <= 127

Fig. 7: Sample ILP constraints for a stage with 5 features

#define VLUT VCUSTOM0
for (f = 0; f < cascade[stage].n; f+=2) {

// sz = MB-LBP size, w = image_width
fa = cascade[stage].feats[f];
fb = cascade[stage].feats[f+1];
v_a = v_lbp[fa.sz] + fa.dy*w + fa.dx;
v_b = v_lbp[fb.sz] + fb.dy*w + fb.dx;
vbx_masked(VVB, VLUT, v_t, v_a, v_b);
vbx_masked(VVB, VADD, v_s, v_s, v_t);

}

Fig. 8: The inner loop using a custom vector instruction

8-bit weights in software at this point. However, in the next
section, we will add a custom vector instruction to directly
support the LUT operation. At that point, using an 8-bit output
weight is far better for reducing hardware and improving
performance. This is an example of a hardware-motivated
software change.

IV. CUSTOM VECTOR INSTRUCTIONS

In this section, we accelerate the computation with two
key custom vector instructions (CVIs). After the algorithmic
refinements above, profiling reveals that the table lookup oper-
ation dominates runtime. This operation is an ideal candidate
for implementation as a custom vector instruction. Once accel-
erated, we find the image pyramid (downscaling) and the LBP
precomputations become the bottlenecks. The downscaling is
resolved by vectorizing the software (details omitted due to
space), and the LBP precomputation requires its own custom
vector instruction. These two custom vector instructions, for
table lookup and LBP precomputation, are described below.

A. LBP Table Lookup Instruction

The LBP table lookup operation is accelerated with the
first custom instruction. Algorithmically, this instruction imple-
ments the two steps shown in Figure 2(c) and (d), representing
the lookup followed by an addition. The input is an 8-bit value

corresponding to the LBP pattern, shown as the value 56 in
the figure, which is the result of the 8-way LBP comparison.
(Further details about the LBP comparison are given in the
next section.) The output is an 8-bit value, produced by the
second step where two table lookup results are added together.

For each feature, the first step is a table lookup into a 256-
entry table with 1 output bit. The output bit selects one of
two 8-bit values for the feature (aptly named PASS or FAIL).
Thus, each feature requires 272 bits of storage.

For performance, we can perform two table lookups in
parallel using the two 8-bit input operands of the custom
instruction. Since the custom instruction can only provide a
single output, the second step adds the PASS or FAIL results
for these two features into an 8-bit partial stage total named
STAGE.

To determine whether a stage passes or fails, the results of
all features in the stage need to be accumulated. This is done
using regular 8-bit vector add instructions, accumulating all
partial stage totals into the final stage total. After processing
all features, this final stage total is compared to a threshold of
zero to determine whether the stage passes.

As mentioned, the custom instruction invokes two table
lookups in parallel in each lane. This is done by reading two
different 8-bit LBP patterns and presenting them to the CVI as
operands A and B, respectively. This requires a 544-bit wide
memory. However, since all 8-bit vector lanes are processing
the same feature, this memory is shared across the entire vector
engine. Back-to-back custom instructions that perform table
lookups automatically increment a feature counter, which is
used to address into the 544-bit wide memory. This memory
must be large enough for all features across all stages; the
starting address is determined by the stage number. This face
detection cascade contains a total of 12 stages and 98 features.
With 2 features per row, and 8 stages having an odd number of
features, a total of 53 rows of memory are required (less than
32kB in total). The memory itself is initialized using another
custom instruction (details omitted due to space).

Four of these dual-8-bit-lookups can fit into a 32-bit lane
of a custom vector instruction. For example, in a 16-lane
configuration, 128 table lookups are done every cycle.

Without the CVI, this table lookup requires approximately
15 regular vector instructions, several of which operate on 32-
bit operands. The majority of the runtime was originally spent
computing and checking the features of each stage. Even after
restricting LBP block sizes and transforming this work into a
precomputation, the LBP feature lookup table operation and
stage pass/fail computation still occupies 57% of the runtime.
Two of these table lookups (30 regular vector instructions)
are reduced into a single custom vector instruction (CVI).
Since the CVI operates only on 8-bit data, more parallelism is
available than regular 32-bit vector instructions.

Due to the ILP formulation, the summation of 8-bit values
is guaranteed to be sufficient without risk of overflow or
rounding. This allows each 8-bit input pattern to produce an
8-bit output.

The final code of the innermost loop is presented in
Figure 8. The scalar housekeeping is done in parallel with
two vector operations: vector table-lookup, and vector add.

Since the LUT contents are not hardcoded, but loaded at
runtime, this system can be used to detect different types of
objects beyond faces. It can also be used in detection chains,
e.g. first detect a face, then detect eyes within a face.

Adding the custom LBP LUT instruction to the masked
vectorized algorithm results in an additional 4.2× speedup.

B. LBP Pattern Computation

After the table lookup is sped up with the first custom
vector instruction, computation of the LBP patterns becomes
the bottleneck. This is the process of computing the 8-bit
comparison result for the center block in each 3×3 windowed
region of the source image. This must be repeated for 1 × 1,
2 × 2 and 4 × 4 block sizes, producing three separate 8-bit
arrays as output. Due to feature reuse at different offsets, this
can be done once as a precomputation rather than on-the-fly
as needed. Restricting the variety of LBP features (in terms
of block sizes used) increases the frequency of reuse, and
improves the advantage of the precomputation.

Since regular ALU operations have two inputs and one
output, computing LBP patterns with 9-inputs and 1-output
for a 3×3 window is not straight-forward. The fan-in is larger
still for the larger block sizes.

To solve this, we use a stateful pipeline that processes
columns of data, one vertical stripe at a time. The output stripe
width is a set of 8-bit values that match the wavefront width
of the SIMD execution unit. The output values on the left or
right edges of the stripe must read pixels past the left edge
or right edge. To accomplish this, the custom instruction is
supplied with two overlapping rows as input operands: one
operand includes the pixels past the left edge of the output
stripe, while the other operand is offset enough to include
pixels past the right edge of the output stripe. The custom
vector instruction iterates one row at a time down the image.
The custom instruction has three modes, one for each of the
block sizes, and therefore requires three passes, before moving
over to the next column. When starting the next column, a 2D
DMA is performed to convert the vertical stripe in the source
image into a packed image array in the internal scratchpad.

The custom vector operation can be separated into two
stages. The first stage reduces (adds) the rows and columns
of byte-sized image data according to the LBP block size.
The second stage compares the center and 8 neighbours rows,
separated by a specific stride, to produce the 8-bit LBP
patterns.

Adding the CVI to precompute the LBP patterns results in
an additional 2.4× speedup.

V. RESULTS

A. Experimental setup

FPGA builds use Vivado 14.2. All designs are synthesized
for 200MHz, with the reported worst-case negative slack used
to compute Fmax.

Processing time is reported for one 320x240 image, pro-
ducing an image pyramid with scale factor of 1.1, and stride of
1 to produce a dense scan. These default settings match those
of Brousseau [3]. Generally, however, 1080p60 video can be

consumed and produced, and processing can be sped up with
larger scale factors and strides.

A full face-detection system was implemented with a
1080p HDMI video camera, FPGA board, and display. A photo
of the display output is shown in Figure 1, where a test image
is presented to the camera using an iPhone. In this case, 49
of 50 faces are detected in 36ms, despite the small face sizes
and the angle of presentation.

B. Performance

Table II compares our performance, in frames per second,
to prior work. Our performance is 1.5× to 6.8× faster than
these pure hardware implementations. The last row of this table
is a fixed-width SIMD CPU implemented as an ASIC. In these
cases, we were able to set the image resolution, scaling factor,
and stride to match the prior work.

The contributions of each optimization to performance
are shown in Figure 9. Wavefront skipping and the LUT
custom vector instruction boost performance the most. With
all optimizations in place, diminishing returns with respect
to vector length become apparent, showing a limit to our
SIMD approach. For additional performance gains, a multi-
core implementation would be required.

The FPGA resources required for the base system (contain-
ing only HDMI I/O) and vector engine are shown in Table III.
As a rough comparison, the hardware face detection system
developed by Brousseau [3] runs at 125MHz on a Stratix
IV 530 (the largest available) and uses similar area to our
largest configuration, but our work is 2.6 times faster, offers a
complete end-to-end (camera to display) system, and the face
detection is written in software.

Prior Feature Image Prior This Speedup
Work Type Platform Res. (fps) (fps)

Brousseau [3] Haar FPGA 320x240 50 159 2.6
Cho [4] Haar FPGA 320x240 61 159 2.2

640x480 16 41 2.1
Gao [6] Haar FPGA 256x192 98 175 1.5

Bilaniuk [1] LBP ASIC 640x480 5 41 6.8

TABLE II: Results comparison

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we achieve a speedup of 248× over an ARM
Cortex-A9 software implementation of LBP-based face detec-
tion. This gain can be decomposed into 25× speedup using
software-only transformations that vectorize the application
so it can run on a soft vector engine with 16 parallel 32-bit
ALUs. Furthermore, an additional 10× speedup was updated
by implementing just two custom vector instructions (CVIs):
one for quickly computing the 8-way comparison, producing
the 8-bit LBP, and another for the table-lookup operation.

Our hybrid software/hardware system is 1.6 to 6.8 times
faster than previously published face detection systems im-
plemented purely in hardware. Furthermore, our system uses
only about 800 lines of VHDL code. Keeping the majority
of the system in software makes overall development easier,
permits easy integration with other processing algorithms,

Software Only With Custom Instructions
Vector Cumulative optimizations
Lanes Scalar +Vector +Restrict +Masked +CVI:LUT +CVI:Pattern

4 1,885.4 (1.0×) 1,731.8 1,646.6 125.2 (15.1×) 28.0 10.3 (183.9×)
8 1,885.4 (1.0×) 1,150.4 823.6 88.5 (21.3×) 21.0 8.5 (222.9×)

16 1,885.4 (1.0×) 831.4 452.5 75.6 (24.9×) 18.0 7.6 (248.4×)

Fig. 9: Performance in milliseconds (speedup) on 320x240 image pyramid, 1.1 scale factor, unit stride

Mem. Mem. # Fmax
FF # LUTs (LUTs) (BRAM) DSP (MHz)

ZC706 Max. 437,200 218,600 70,400 545 900 -
video only 8,873 7,028 514 12 8 236

Lanes CVIs
4 no 16,843 16,437 869 54.5 36 197

yes 25,679 25,237 1,194 88.5 36 199
8 no 22,235 23,223 1,123 47 64 198

yes 37,856 39,377 1,651 81 64 175
16 no 36,165 36,672 1,672 48 120 183

yes 65,430 68,444 2,629 82 120 166

TABLE III: Resource usage and Fmax

and generally makes the platform more flexible and easier to
maintain. It also allows the same hardware to be re-used for
other types of image processing.

A novel contribution made in this work is the ILP formula-
tion used to replace 32-bit floating-point or fixed-point compu-
tation with 8-bit integers. This simplifies hardware, produces a
speedup, and provides an accuracy guarantee. With block sizes
restricted to be square powers of two, we transformed the LBP
computation into a precomputation problem. Although this has
been reported before on fixed-width SIMD systems [1], we
found that it works for variable-length vector systems as well.

A multi-core system should to be explored to further
increase performance. Each core can work on a tile of an
image, or at a separate level in the image pyramid.

We have only assessed our algorithmic changes using
frontal face detection. For generality, we should validate with
detection of other objects.

ACKNOWLEDGMENT

The authors would like to thank Aaron Severance and Joel
Vandergriendt for their assistance and feedback, Xilinx for
donating research licenses, and NSERC for funding this work.

REFERENCES

[1] O. Bilaniuk, E. Fazl-Ersi, R. Laganiere, C. Xu, D. Laroche, and
C. Moulder. Fast LBP face detection on low-power SIMD architectures.
In IEEE Computer Vision and Pattern Recognition Workshops, pages
630–636, 2014.

[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools, 2000.

[3] B. Brousseau and J. Rose. An energy-efficient, fast FPGA hardware
architecture for OpenCV-compatible object detection. In ICFPT, pages
166–173, 2012.

[4] J. Cho, B. Benson, S. Mirzaei, and R. Kastner. Parallelized architecture
of multiple classifiers for face detection. In IEEE ASAP, pages 75–82,
2009.

[5] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools
and Alg. for the Construction and Analysis of Systems, pages 337–340.
Springer, 2008.

[6] C. Gao and S.-L. Lu. Novel FPGA based Haar classifier face detection
algorithm acceleration. In FPL, pages 373–378, 2008.

[7] S. Liao, X. Zhu, Z. Lei, L. Zhang, and S. Z. Li. Learning multi-scale
block local binary patterns for face recognition. Advances in Biometrics,
pages 828–837, 2007.

[8] A. Severance, J. Edwards, and G. Lemieux. Wavefront skipping using
BRAMs for conditional algorithms on vector processors. In FPGA,
pages 171–180, 2015.

[9] A. Severance, J. Edwards, H. Omidian, and G. Lemieux. Soft vector
processors with streaming pipelines. In FPGA, pages 117–126, 2014.

[10] A. Severance and G. Lemieux. Embedded supercomputing in FPGAs
with the VectorBlox MXP matrix processor. In CODES+ISSS, pages
1–10, 2013.

[11] P. Viola and M. Jones. Rapid object detection using a boosted cascade
of simple features. In IEEE Computer Vision and Pattern Recognition,
volume 1, pages 511–518, 2001.

