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Abstract—This paper describes PGR, an architectural tech-
nique to reduce dynamic power via GlitchLess or to improve
performance via clock skew scheduling (CSS) and delay padding
(DP). It is integrated into VPR 5.0, and is invoked after the
routing stage. We use programmable delay elements (PDEs) as a
novel architecture modification to insert delay on FF clock inputs,
enabling all optimization steps to share it, avoiding multiple
architecture modifications. The central theme of this paper is
considering the trade-off between power and performance, and
finding an appropriate compromise considering process variation
and timing uncertainties. Overall, an average of 15% speedup
can be achieved via CSS alone, or up to 37% for individual
circuits. Although delay padding only benefits several circuits,
the average improvement of those circuits is an additional 10%
of the original period, or up to 23% for individual circuits. In
addition, a new model to estimate glitching power is proposed,
taking into account the analog behavior of glitch pulse width
reduction as it travels along FPGA routing tracks. We show that
the original glitch estimation method can underestimate glitching
power by up to 48%, and overestimate by up to 15%. GlitchLess
is performed on both the original VPR and post-CSS solutions.
We are able to eliminate on average 16% of glitching power, and
up to 63% for individual circuits.

I. INTRODUCTION

Power and performance are two very important issues in
FPGA design. FPGA applications typically consume more
power per operation, and run at slower speeds than their ASIC
counterparts, due to circuitry needed for programmability.

There is much research effort addressing these two topics.
On the performance front, two popular techniques are retiming
and clock skew scheduling (CSS). The former method changes
the positions of sequential elements (SEs) to shorten effective
critical path while maintaining functionality [1], and has been
applied to FPGAs ([2], [3], [4]). CSS achieves the same goal
by assigning intentional clock skews to SEs instead of moving
them physically ([5], [6]), and has also been applied to FPGAs
([7], [8], [9]).

On the power front, dynamic power consumption is signifi-
cant due to large capacitive loading on the interconnect. Recent
advances in process technology have seen a decreasing trend
in the rate of increase of dynamic power versus static power.
However, total dynamic power still accounts for about 50%
of total power [10]. In this paper, “dynamic power” excludes
clock network power. Dynamic power arises from two kinds
of logic transitions produced by combinational look-up tables
(LUTs), functional and glitch. The former causes the data to
be different at the end of a clock period, a result of user logic

functions. The latter results from input data signals arriving
at different times during the period, causing the output to
fluctuate before settling down. Several existing examples to
reduce glitching power include techniques at the architecture
level [11], or at the CAD level during technology mapping
[12] and routing [13].

This paper makes the following contributions:

1) The programmable delay element (PDE) proposed in
[11] is used to provide discrete delays on flip-flop (FF)
clock inputs. This unified architecture change, shared
by CSS, DP and glitch reduction, avoids the need for
multiple architecture modifications. For glitch reduction,
we use the concept of GlitchLess (GL) [11], but with
a different implementation. Previously, delay elements
needed to be very precise to eliminate glitching. This
can be difficult with increasing process variations. The
new approach is much more resistant to variation.

2) Integrated delay padding scheme with CSS to further
optimize performance. Past work ([14], [15], [16], [17])
uses either LP or graph theory to solve CSS. However,
these techniques apply only to ASICs, and assume
padded delays are continuous. However, a PDE can only
provide discrete delays. We adapt the algorithms to use
discrete delays as well as margin for process variation.

3) An integrated tool flow that uses the same physically
realizable architectural change to reduce power and
increase performance. CSS, delay padding and Glitch-
Less are combined with VPR 5.0 [18] into a single
framework. This is important for getting a final result
that considers both delay and power at the same time.

4) Improvement on vector based activity estimation [19],
which used a threshold to determine whether a glitch
does not propagate at all or propagates indefinitely. Our
work models the analog behavior of the gradual decrease
in width of a narrow glitch as it travels along FPGA
interconnect, and calculates glitch power accordingly.

The central theme of this paper highlights the major differ-
ence of this work: previous research has focused purely on
either performance or power. Our work shows performance
optimization adds to power, while 100% glitch reduction is
not possible without impacting performance. Therefore it is
important to achieve an appropriate compromise between the
two. Furthermore, we motivate better PDE designs by putting
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PDE power overhead in perspective with total dynamic power
consumption before and after glitch reduction. We show that
while there is potential for good savings, a power-efficient
PDE is crucial to the attractiveness of both period reduction
and glitch reduction.

The rest of the paper is organized as follows. Section 2
introduces basic concepts. Section 3 describes architecture
changes and its adaptation by the optimization steps. Section 4
details the modification to glitch estimation. Section 5 outlines
our algorithm. Section 6 provides results and discussion, and
section 7 concludes our work.

II. BACKGROUND AND PAST WORK

A. Clock Skew Scheduling

Clock networks suffer from clock skew due to variation
[20]. CSS uses it as a resource for improving performance,
instead of treating it as an unavoidable burden. In the following
example, Fig. 1, a zero-skew clock network means the circuit
has a minimum period of 14ns assuming zero setup/hold times.
If a skew of 4ns is applied to FFB , the circuit is able to operate
at a minimum period of 10ns. This effect can be viewed as
time borrowing: shortening the effective delay of long paths,
at the expense of increased delay for short paths. Indeed, the
path from FFB to FFC now has an effective delay of 10ns.

Fig. 1. Intentional Clock Skew

The relative skew assigned to two neighboring FFs is bound
by a setup time (Ts) constraint (Eq. 1) and a hold time (Th)
constraint (Eq. 2) to avoid zero-clocking and double-clocking
conditions, respectively. Ti and Tj are clock arrival time at
FFs i and j, Dmax(i, j) and Dmin(i, j) is the maximum and
minimum combinational delay (due to variation or reconver-
gence) between FFs i and j, respectively [5]. Delay M is a
user-defined safety margin to compensate for process variation,
and allows Ti, Tj and the path delays to vary up to M without
violating the constraints [6].

Tj − Ti ≥ Ts +Dmax(i, j)− P +M (1)

Ti − Tj ≥ Th −Dmin(i, j) +M (2)

The above system of equations is an optimization problem
for period P subject to |Ti| < P , and can be solved by
Linear Programming (LP). A more efficient method [6] uses
graph theory [21] and binary search to find the optimum P
between upper and lower bounds (Eq. 3), where G(V,E) is
the graph constructed with a set of constraints, with vertex vi

corresponding to Ti.

Pmax =
max

G(V,E)
(Ts +Dmax(i, j) +M)

Pmin =
max

G(V,E)
(Ts + Th +Dmax(i, j)−Dmin(i, j) + 2M)

(3)
Architecture changes required to implement intentional

clock skew varies. One way is to use multiple global clock
lines available in the FPGA to implement different skews [7].
An alternative approach [8] uses a single global H-tree with
ribs on the H-tree for local routing. PDEs are inserted into
branching points of the clock tree. The clock goes through
a trail of PDEs before arriving at each FF node, and there
are more choices for skew values because of this levelized
structure. In [9], 4 PDEs are inserted at each rib of the H-tree,
producing 4 skewed version of the global clock for each row.
A statistical model is used to model process variation. All of
the above approaches focus on CSS only. Our delay padding
scheme requires extra skews to be available in the clock line in
addition to those for CSS. While our method may sometimes
use more power than previous work, it allows extra flexibility
for delay padding (further performance gains), and also for
GlitchLess (power reduction).

B. Delay Padding
The setup/hold constraints can limit the range of skews that

can be assigned to SEs, and therefore the smallest obtainable
period. In Eq. 1 and 2, larger Dmax and smaller Dmin

will decrease the permissible range of assigned skews [22].
Nothing can be done to decrease Dmax(i, j), but an increase
in Dmin(i, j) will widen the permissible range, allowing skew
assignment to be more flexible. This short path optimization
effectively reduces hold time violations, allowing a smaller
period. We call this step delay padding.

C. Glitch Reduction
GlitchLess reduces glitching by delaying early arriving sig-

nals to prevent the output from fluctuating [11]. To realize this,
PDEs are added to LUT inputs. In [11], only combinational
circuits are included. In this paper, we extend this work to
sequential circuits as well so CSS can be applied. Other work
done to reduce glitching includes [13], which uses routing
techniques, and [12], which proposes a new glitch-driven
technology-mapping tool.

D. Power Calculation
Dynamic power is defined by P = α×C×V 2

dd× f , where
α is switching activity, C is capacitance, Vdd is supply voltage
and f is operating frequency. For 65nm technology, Vdd is 1V.
The power figure we will refer to in this work is the power
per operation, namely Pop = α × C. We define a power unit
Pop as 1 femto-Farad of capacitance switching once per clock
cycle (α = 1).

III. ARCHITECTURE

A major contribution of this work is the proposal of a unified
architecture change that can be shared by CSS, delay padding
and GlitchLess. This section will detail this architecture as
well as its adaptation by each of the 3 optimization steps. We
assume that newer FPGAs such as the Stratix III and Virtex 6,
have 2 flip flops per LUT.
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Fig. 2. Unified Architecture Modification

TABLE I
SEQUENTIAL CIRCUIT CHARACTERISTICS AND GLITCHING POWER

circuit depth %FF pre-CSS % post-CSS %
bigkey 5 42.5 1.9 4.2
clma 18 2.8 6.2 11.5
diffeq 16 52.4 3.4 2.7
dsip 5 48.9 1.3 1.7

elliptic 20 59.3 21.0 24.0
frisc 25 51.0 13.0 15.1
s298 17 1.7 21.7 29.5

s38417 13 46.0 26.8 28.3
s38584.1 11 43.4 7.8 9.4

tseng 15 66.7 15.3 16.1
average 11.8 14.2

A. CSS and Delay Padding

Architecture changes are highlighted in Fig. 2 with legends
shown to distinguish optimization steps. CSS can be done by
adding delay δA to FFA. For delay padding, we use local
rerouting within CLBs. The CLB input (solid arrow line) in
Fig. 2 goes to LUTB originally. We reroute it (dash-dotted
line) to unused FFC in another BLE, then back to the original
LUT. Properly adjusting the skew assigned to δC , any desired
delay can be achieved provided there is enough slack for it.

B. Motivation for Glitch Reduction

Glitching can account for a large portion of dynamic power.
CSS perturbs glitching. All SEs have the same signal departure
time in zero-skew circuits, but skew assigned to SEs effectively
delays that time, changing the amount of glitching created
downstream. In Table I, the pre-CSS and post-CSS columns
show the amount of dynamic power due to glitching before and
after CSS and delay padding has been performed, respectively.
An architecture with 4-input (k=4) LUTs, 10-LUT clusters
with 22 inputs per cluster is used. In general, the amount of
glitching increases by a fair margin after CSS. This further
motivates the need for glitch reduction.

C. Architecture for Glitch Reduction

To eliminate glitching on a combinational node, we use a
circuit-level architecture change different from that analyzed
in [11]. Instead of inserting a PDE at LUT inputs, we achieve
glitch reduction by intentional clock skew (Fig. 2). The LUT
output is directed to FFD, whose clock skew δD will be set
to the latest arrival time of all LUT inputs plus setup time
and safety margin. The LUT output fluctuates, but the FF will
block all glitches until the final functional evaluation is known.
Our approach requires only one PDE to eliminate the glitching
for each LUT, compared to at least k-1 PDEs for each LUT
used in [11]. One disadvantage of this approach is the fact
that clock has an activity of 1. Compared to PDEs inserted
into the data lines with relatively low activity, this approach
may introduce a significant power overhead. We will show
how this affects the results in section VI.

IV. IMPROVED GLITCH ESTIMATION

The ACE tool [19] filters out fluctuations of short pulse
widths since the routing resource can damp them out. Orig-
inally, simulation determined this maximum pulse width that
can be filtered out by a single stage of length-4 routing
segment. A glitch longer than this threshold is assumed to go
on indefinitely, otherwise it is assumed to consume no power.
Neither of these assumptions is true in reality: as long as the
pulse width of a glitch is below a different threshold (short
glitch), it will be gradually filtered out after propagating down
a certain number of wire segments. All glitches longer than
the threshold can propagate indefinitely.

We try to address the above issue by first modifying ACE to
group glitches of different pulse widths into bins (for example,
glitches ranging from 15ps to 20ps is bin #1, etc), and this
histogram is printed for each net into an output file.

Cadence (Spectre) simulations are done for glitches of
varying pulse widths, propagating down a routing track of
n wires or stages. A short glitch of a particular pulse width,
travelling down a routing track of n stages and being gradually
filtered out, will consume a certain amount of power. This
power can be expressed as a percentage normalized to the
power consumed by a long glitch propagating down the same
n stages. Simulation results are summarized in Fig. 3. A
converging trend is observed as the lines get closer together
for increasing number of stages. Therefore it is assumed that
any net longer than 10 stages (wire segments) will behave the
same as a 10-stage net.

To calculate total dynamic power consumption, ACE output
and Cadence simulation results are read into VPR as separate
input files. For a glitch generated at the source node of a
net in the circuit, the length and capacitance of the routing
track for that net is determined with the VPR routing graph,
the glitch activity for each bin is read from ACE, and the
amount of glitching power can be calculated by multiplication
of capacitance, glitch activity, and the percentage found in
Fig 3 via indexing by net length and bin #. There are
other components that consume dynamic power, namely intra-
CLB routing and MOSFETs that make up LUTs and SEs.
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Fig. 3. Segment Length to Power Lookup (65nm Technology)

TABLE II
GLITCH POWER (Pop) OF ORIGINAL ACE AND ACE WITH BINNING

circuit k = 4 k = 6
Bins Original % diff Bins Original % diff

bigkey 913 471 48.4 560 629 -12.4
clma 3794 3407 10.2 2955 3303 -11.8
diffeq 136 129 4.9 63 58 6.7
dsip 698 512 26.6 574 557 3.2

elliptic 11607 10462 9.9 6408 6944 -8.3
frisc 1185 1096 7.5 1045 1088 -4.1
s298 5350 3906 27.0 4956 5585 -12.7

s38417 29292 19195 34.5 7036 8111 -15.3
s38584.1 10455 9246 11.6 4052 4395 -8.5

tseng 1334 1326 0.6 590 608 -3.2

The former is dominant because a feedback wire from LUT
output to LUT input MUXes in the same CLB carries much
more capacitance than the latter, which we neglect in our
calculations.

The results from the original ACE, and those obtained
from binning, are compared in Table II for circuits produced
by VPR (all pre-CSS). Units are Pop described in section
II-D. All circuits are simulated using 5000 pseudo-random
input vectors. A positive percentage difference means the
original ACE underestimates glitching. The original ACE can
underestimate glitching power as much as 48%, for k=4, and
overestimate as much as 15% for k=6. Generally, original
ACE underestimates glitch power for k=4 because arrival time
differences for a small LUT tend to be smaller and get dropped
(below threshold).

Although our glitch power modelling is improved, there is
still work to be done, such as comparing ACE results against
HSPICE power simulations. In addition, glitch filtering creates
two issues: glitch generation and propagation. The former is
created at the output of a gate generated by the combined effect
of its logic function and different input arrival times. The latter
addresses the fact that a short glitch becomes narrower as it
travels along a routing path, including its possible elimination.
Our work better estimates the effect of pulse narrowing on
power consumed in the interconnect immediately following
glitch generation. However, it does not propagate the narrowed
glitch through each LUT sink; instead, it propagates the orig-
inal pulse width. For a complete analysis, we need to account
for the change of glitching activity on downstream LUTs
caused by glitch narrowing. This requires tight integration of
VPR and ACE so that logic evaluation (ACE) and routing RC

Fig. 4. Top Level Algorithm

trees (VPR) can be obtained concurrently.

V. ALGORITHM

The overall approach is illustrated in Fig. 4. It offers three
approaches to glitch reduction. The first (route “1”) uses the
original VPR placement and routing solution to generate a net
delay file for ACE, which produces an activity file for PGR to
do glitch reduction only. The resulting net delays are analyzed
by ACE again to produce final activities, and the power
analysis routine of PGR is used to determine power savings.
Alternatively, the P&R solution can be used directly by PGR
to do CSS and DP, followed either by activity simulation to
determine power (route “2”), or by ACE simulation, a full run
of PGR that includes CSS, DP and GL, and final analysis by
ACE to get power results (route “3”). CSS and DP are done
twice since the delays affect ACE output.

A. CSS and Delay Padding

Our post-CSS delay padding algorithm offers the following
novelties. While the traditional approach [15] considers an
ASIC environment where any arbitrary delay is realizable,
our algorithm targets FPGAs, is aware of discrete delay steps,
process variation margins that limit both the minimum and
maximum delay that can be assigned to a node, and the
possibility that delay padding may fail due to these margins.
To our knowledge, this is the first time delay padding has been
applied to FPGAs. Our algorithm is outlined in Fig. 5.

In each iteration of assign skew(), the optimum period and
skews determined with the approach in [6] are stored in a
solution array, and all critical hold time edges are appended
into a list of currently deleted edges [15]. In each iteration,
the combinational LUTs on each critical edge are identified
and put into arrays with find deleted edge nodes(). When
the lowest possible period is attained, the algorithm attempts
to pad delays for all deleted critical edges from the most
current iteration. In case delay padding is not successful,
additional attempts will be made for earlier iterations until
a valid padding solution is achieved.

The detailed delay padding algorithm is shown in Fig. 6.
For each deleted edge, the algorithm attempts to pad delays for
each combinational node on the critical hold time short path,
starting with the LUT immediately following the source node.
Timing analysis is done to safeguard the setup time constraint.
On lines 6 to 8 of Fig. 6, the skew is first set to the arrival time
of the fanin signal plus the setup time and variation margin,
rounded up to the nearest discrete time unit specified by the
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1: iteration = 0;
2: initialization();
3: solution[iteration] = assign skews(Pmax, Pmin);
4: num edges = find crit hold edges(edges[iteration]);
5: while num edges > 0 do
6: find deleted edge nodes();
7: recalc binary bounds(Pmax, Pmin);
8: iteration++;
9: solution[iteration] = assign skews(Pmax, Pmin);

10: num edges = find crit hold edges(edges[iteration]);
11: end while
12: while iteration > 0 do
13: success = pad delay(edges[iteration],solution[iteration]);
14: if success then
15: break;
16: end if
17: iteration−−;
18: end while

Fig. 5. CSS and Delay Padding Algorithm

1: success = 1;
2: for all edge ”iedge” in deleted edges list do
3: needed delay = calculate needed delay(iedge);
4: for all node ”n” on deleted edge ”iedge” do
5: analyze timing();
6: max padding = get max possible padding(n);
7: skew = roundup(fanin→arrival + Ts + MARGIN
8: + fanin delay(n, fanin), PRECISION);
9: delay = skew − fanin→arrival

10: − fanin delay(n, fanin);
11: while delay<(needed delay && max padding) do
12: increment skew and delay by PRECISION
13: end while
14: needed delay −= delay;
15: if needed delay ≤ 0 then
16: edge done = 1; break;
17: end if
18: end for
19: if edge done == 1 then
20: check other paths();
21: else
22: success = 0;
23: end if
24: end for
25: if !success then
26: roll back delays();
27: end if
28: return success;

Fig. 6. Detailed Delay Padding Algorithm, pad delay()

1: for all levels in timing graph do
2: rank nodes(&list, threshold);
3: for all node ”n” in list do
4: skew = roundup(n→arrival
5: + Ts + MARGIN, PRECISION);
6: needed slack = skew − n→arrival + MARGIN;
7: if needed slack < n→slack then
8: for all fanin ”f” of node ”n” do
9: needed delay = n→arrival − f→arrival

10: − fanin delay(n, f);
11: fanin delay(n, f) +=
12: needed delay + needed slack;
13: end for
14: analyze timing();
15: end if
16: end for
17: end for

Fig. 7. Glitch Reduction Algorithm

parameter “PRECISION”. It is then incremented in quantized
steps (lines 9 to 11), until either the node’s slack runs out, or
the needed delay is satisfied. When delay padding for an edge
finishes, check other paths() is used to check whether other
short delay paths (with the same source and sink) are violated.
If found, a recursive call to pad delay() will be invoked until
setup and hold time constraints for all combinational paths
with the same source and sink are satisfied.

In this work, “PRECISION” and “MARGIN” in Fig. 6 are
chosen to be 0.1ns, or 1 discrete step. Combined with rounding
up (line 7), each PDE has at least 0.1ns of uncorrelated
variation tolerance between its assigned skew and path delay,
for early clock signals. An additional 0.1ns is added to the
needed slack (line 6 in Fig. 7) for both delay padding and
GlitchLess to account for late clock signals. It is omitted in
Fig. 6 to save space. The margin M for CSS is 0.2ns, e.g.,
allowing Ti and Tj (Eqs. 1,2) to each shift 0.1ns away from
each other in the worst case. For larger delays, this margin may
be too small, and future work will investigate performance
impact of different margins.

B. Glitch Reduction

One significant difference of this work compared to [11]
is added consideration of process variation. In [11], all added
delays are shortened by an amount d so that variation will not
increase the critical path. This may result in increased glitching
power in practise, since narrow pulses are not “zero power”
as assumed previously. Our approach eliminates this issue by
stopping all glitching at the FF input, and only clocks through
the data when the last signal has arrived. The algorithm is
shown in Fig. 7.

The circuit is traversed in a breadth first fashion so that
the extra delays assigned upstream do not invalidate those
assigned downstream. For each node, GlitchLess delay is
assigned based on calculated slack (lines 6 to 13). A threshold
parameter is specified to filter out nodes with small glitch
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activity. In each level (line 1), all combinational nodes are
ranked according to their glitching power, so that nodes with
high loading get priority during PDE delay assignment. Care
is taken to give each PDE extra margin for process variation
in addition to setup time.

VI. RESULTS AND DISCUSSION

The largest 10 MCNC sequential circuits are used as
benchmarks, and they are simulated for k = 4 and 6, N =
10, and I = 22 and 33, respectively. 65nm technology is
used. All results are normalized with respect to the original
solution found using VPR 5.0. Architecture files are from
the iFAR repository [23], and routing resource capacitance
and resistance values are calculated from the PTM website
[24] assuming CLBs are 125µm squares. All circuits are
simulated using timing-driven placement and routing, with a
channel width of 100. Activity estimation is produced with the
modified ACE described in section IV, simulated with 5000
input vectors. CSS+DP runtime ranges from a few seconds to
minutes for each circuit, and GlitchLess requires a few seconds
for each circuit. A Xeon X5355 2.66GHz CPU is used. ACE
is run on a UltraSPARC-III CPU at 900MHz, and it needs
about 45 minutes to run 10 circuits.

A. CSS Only Results and Power Overhead Estimation

In Table III, we demonstrate the period reduction (as a
percentage of original critical path) we were able to obtain
from CSS and delay padding, the increase in power as a
result, and the impact of PDE power overhead. An average
speedup of 13% and 16% are obtained for k=4 and 6, for
CSS alone. Delay padding further improves 4 circuits (bold
results). For elliptic, frisc and tseng, delay padding is very
helpful. Combined CSS and delay padding reduces period by
up to 37.7% for individual circuits.

The percentage power normalized to pre-CSS results is
shown in the “no PDE” column. The increase averages 3-4%
for both LUT sizes. In fact, the total dynamic power increase
is much larger due to the PDEs, and this is shown in the total
dynamic power, “PDE” column. We used the PDE designed in
[11], extending it to 6 stages. As a result of more FETs as well
as progressively larger FETs needed to provide large delays,
each PDE adds roughly 45 units of power (45fF, activity of
1).

We compare the power overhead due to CSS for our
approach with that used in [7], which used 4 phase-shifted
global clocks. The power due to an extra global clock is
estimated as follows. The placement size (rows × columns
of CLBs) is obtained from VPR, and we assume these CLBs
are laid over a spine-and-ribs clock network. For example, if a
circuit is 10×10 CLBs, then the power due to an extra clock
is Cclk = 10 · Crib + Cspine + Cclb, and Crib = 10 · Cint,
Cspine = 10 · Cglobal, and Cclb = 10 × 10 · Clocal · %FF .
Cglobal, Cint and Clocal are the capacitance of the wire that
spans the length of 1 CLB for global, intermediate and local
type routing wire, calculated from [24]. %FF is the percent
of the CLBs that contain a flip flop. The power overhead of
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3 extra global clocks is then 3 · Cclk. This is shown in the
4-clk column. Circuits with lower density of user FFs incur
less overhead with our approach, while a higher density of
FFs favors the approach in [7].

We can decrease power overhead by decreasing the number
of PDEs, e.g., by limiting each CLB to 1 PDE. In addition,
there are certain nodes in the CSS solution that require zero
skew. However, due to the nature of the PDE, zero skew cannot
be achieved, so the entire schedule is shifted by the min-skew
to maintain functionality. We can limit the CSS algorithm to
use only skews higher than the min-skew, therefore avoiding
the need to provide zero-skew nodes with PDEs. We may also
decrease the power used by each PDE, using a more power
efficient circuit design. In the PDEimp column, we show the
power overhead of our approach if we can decrease the number
of PDEs by 10%, and the power used by each PDE by 10%.
With these minor improvements, our approach usually uses
less power than [7].

A histogram of the total number of PDEs used at each
discrete delay for all circuits is shown in Fig. 8. The data
is relatively spread out, indicating it is beneficial to use PDEs
that can provide a large range of delays. This provides greater
flexibility for CSS and delay padding beyond what is available
with just 4 global clock lines. Area calculation is done with
the model used in [11]. With 1 PDE assigned to each FF, 20
PDEs are needed per CLB, and the overhead is 11.7% for
k=4 and 7.6% for k=6. This is the maximum area overhead
with our approach. Future work will investigate PDE reduction
techniques to achieve lower overhead.

B. GlitchLess Only Results

Next, we show that 100% glitch reduction is not possible
without impacting performance. In Fig. 9, we show glitch
power reduction vs. threshold. The y-axis is the normalized
glitching power, and the x-axis is the ranking threshold per-
centage with respect to the node with the maximum glitching
power in each circuit. The lines represent power savings as
threshold is gradually decreased and more nets are de-glitched.
The trend is rather gradual for threshold values larger than
20%, and it makes sense since there are only a few nodes with
high glitching power consumption. As the threshold is lowered
below 20%, more nodes became eligible for skew assignment

6



TABLE III
CSS PERFORMANCE GAINS AND POWER OVERHEAD

circuit k = 4 k = 6
clock period (%) dynamic power (%) clock period (%) dynamic power (%)
CSS CSS+DP no PDE PDE 4-clk PDEimp CSS CSS+DP no PDE PDE 4-clk PDEimp

bigkey 92.2 92.2 103 162 287 150.4 65.6 65.6 101 182 348 166.8
clma 91.2 91.2 106 119 206 116.5 96.9 96.9 101 118 191 114.7
diffeq 78.3 78.3 99.3 636 567 533.6 84.8 83.3 99.6 812 475 675.6
dsip 73.6 72.5 100 153 264 142.9 62.3 62.3 100 172 316 158.0

elliptic 91.1 68.1 104 235 193 212.1 88.6 74.5 108 275 209 243.3
frisc 78.6 74.4 105 618 557 515.3 81.3 68.3 103 736 571 620.4
s298 99.7 99.7 111 114 168 113.6 100 100 107 111 156 109.8

s38417 97.6 97.6 102 168 167 155.3 97.9 97.9 113 261 199 232.5
s38584.1 87.7 87.7 102 156 165 145.5 88.1 88.1 102 174 178 159.8

tseng 78.3 67.9 99.8 391 332 337.3 76.6 73.1 104 463 384 393.7
geomean 86.5 82.2 103 224 261 204.3 83.2 80.0 104 260 276 234.1
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Fig. 9. Glitch Power Reduction Excluding PDE Overhead

and the rate of savings increases more dramatically. The square
and circle lines show that even at a threshold of 0, total glitch
elimination is not possible because critical and near-critical
paths do not tolerate PDEs. All glitching can be eliminated
only if an increase of the critical path is allowed, as the triangle
and cross lines point out.

The impact of increasing critical path is shown in Fig. 10,
where the y-axis is the normalized product between power
and period. It’s clear that the extra glitch power savings is not
worth the increase in critical path, as the power-period product
goes above 1.0, and is never better than the case where critical
path is not allowed to increase. Note that since the period
stays the same for the square and circle lines, they basically
represent the power savings.

Also noteworthy is the number of PDEs necessary to
achieve glitch reduction, and power overhead implications. In
Fig. 11 the number of PDEs used is plotted on a log scale
against threshold. Referring to Fig. 9, it is interesting to see
that roughly a third of the savings can be obtained using less
than 10 PDEs on average, for both k=4 and 6. When increasing
the critical path, more PDEs are needed. As the threshold
is lowered below 20%, the number of PDEs used increases
dramatically, and the savings from the diminishing rate of
return of each added PDE is over-compensated by the PDE’s
own power overhead. As a result, savings at low thresholds
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Fig. 10. GlitchLess Only Power Plot with PDE Overhead

are gone, as was shown earlier in Fig. 10.
The best savings (Pfinal) for each circuit, where period

is not allowed to increase, is presented in Table IV. The limit
(Plim) refers to the best possible savings achievable (assuming
100% glitch elimination with no PDE overhead), and the
percentage of the limit achieved is also shown (%). While
some circuits cannot be improved, their limiting case is close
to 100% because glitching is only a small fraction of total
dynamic power. Overall, the technique is able to remove on
average 13% to 20% of glitching power, or up to 63% for
individual circuits.

VII. CONCLUSION AND FUTURE WORK

This paper proposed an architecture change and associated
tool flow to consider both power and performance optimiza-
tion. A programmable delay element (PDE) added to each
flip-flop clock input can be used to satisfy CSS, delay padding
and GlitchLess simultaneously. The results are summarized in
Fig. 12. CSS is able to improve performance by an average
of 15%, or up to 37% for individual circuits. Some circuits
can further benefit from delay padding, and their period can
be reduced by 10% of the original period, or up to 23%
of the original period for individual circuits, in addition to
CSS improvements. We then discussed an improved method to
estimate power due to glitching, and showed that the original
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TABLE IV
DYNAMIC POWER AFTER GLITCHLESS

circuit k = 4 k = 6
Pfinal Plim % Pfinal Plim %

bigkey 100 98.2 0 100 98.4 0
clma 98.0 93.8 32.3 98.6 93.9 23.0
diffeq 100 96.6 0 100 97.9 0
dsip 100 98.8 0 100 98.6 0

elliptic 86.7 79.0 63.3 92.2 84.1 49.1
frisc 94.6 87.0 41.5 95.1 86.6 36.6
s298 100 78.3 0 98.3 76.8 7.3

s38417 85.7 73.2 53.4 98.8 85.6 8.3
s38584.1 99.5 92.2 6.4 99.6 96.0 10.0

tseng 99.6 84.8 2.6 100 91.6 0
average 20.0 13.4

geomean 96.3 87.8 98.2 90.7
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Fig. 11. Number of GlitchLess PDEs Used

method can underestimate glitching by as much as 48% while
overestimating by 15%. The power overhead due to PDEs are
compared to adding 3 extra global clocks, and our method is
estimated to be 45% more power efficient on average. Lastly,
we investigate the effect of glitch reduction on dynamic power.
We were able to eliminate on average 16% of glitching power,
and up to 63% for individual circuits.

As future work, it is important to evaluate the performance
trade-off of using fewer PDEs to save power. Architecturally,
moving PDEs up the clock distribution network saves both
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Fig. 12. Summarized Results

power and area ([8], [9]), but the restriction this imposes
on performance (with delay padding) is not clear. Instead,
algorithmically penalizing each PDE instance saves power as
well, but retains flexibility for performance when needed. In
addition, integration with retiming, with CSS added as fine
tuning, can be done to exploit power overhead benefits.
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