
VEGAS: Soft Vector Processor with Scratchpad Memory

Christopher H. Chou
cchou@ece.ubc.ca

Aaron Severance
aaronsev@ece.ubc.ca

Alex D. Brant
alexb@ece.ubc.ca

Zhiduo Liu
zhiduol@ece.ubc.ca

Saurabh Sant
ssant@ece.ubc.ca

Dept. of Elec. and Comp. Eng.
Univ. of British Columbia

Vancouver, Canada

Guy Lemieux
lemieux@ece.ubc.ca

ABSTRACT
This paper presents VEGAS, a new soft vector architecture,
in which the vector processor reads and writes directly to
a scratchpad memory instead of a vector register file. The
scratchpad memory is a more efficient storage medium than
a vector register file, allowing up to 9× more data elements
to fit into on-chip memory. In addition, the use of frac-
turable ALUs in VEGAS allow efficient processing of bytes,
halfwords and words in the same processor instance, pro-
viding up to 4× the operations compared to existing fixed-
width soft vector ALUs. Benchmarks show the new VE-
GAS architecture is 10× to 208× faster than Nios II and has
1.7× to 3.1× better area-delay product than previous vec-
tor work, achieving much higher throughput per unit area.
To put this performance in perspective, VEGAS is faster
than a leading-edge Intel processor at integer matrix mul-
tiply. To ease programming effort and provide full debug
support, VEGAS uses a C macro API that outputs vector
instructions as standard NIOS II/f custom instructions.

Categories and Subject Descriptors
C.1.2 [Multiple Data Stream Architectures (Multi-
processors)]: Array and vector processors; C.3 [Special-
purpose and Application-based Systems]: Real-time
and Embedded systems

General Terms
Design, Experimentation, Measurement, Performance

Keywords
vector, SIMD, soft processors, scratchpad memory, FPGA

1. INTRODUCTION
FPGA-based embedded systems often use a soft pro-

cessor for control purposes, but they use RTL blocks for
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performance-critical processing. Transferring some of these
processing-intensive tasks onto a soft processor offers pro-
ductivity, cost, and time-to-market advantages by reducing
the amount of RTL design. In particular, soft processors
allow algorithms to be easily modified without changing the
FPGA bitstream, which could otherwise lead to convergence
issues such as timing closure.

Unfortunately, traditional soft processors are too slow for
most processing-intensive tasks. However, vector processing
is known to accelerate data-parallel tasks. The VIRAM ar-
chitecture [9] demonstrated that embedded tasks such as the
EEMBC benchmark suite [1] can be accelerated with vec-
tors. Embedded vector architectures SODA [12] and Ard-
beg [18] were developed for low-power wireless applications
which are also rich in data parallelism. VIRAM, SODA and
Ardbeg were all developed for ASIC implementation, but the
VESPA [20] and VIPERS [24, 23] processors demonstrate
that soft vector architectures can be implemented efficiently
and offer significant speedups on an FPGA as well.

This paper develops a new soft vector processor architec-
ture called VEGAS. The two key distinguishing features of
VEGAS are a cacheless scratchpad memory and the ability
to fracture a 32-bit ALU into two 16-bit or four 8-bit ALUs
at run-time. Combined, these two features make VEGAS
more efficient with limited on-chip memory resources, allow-
ing up to 9× more vector data elements to be stored on-chip
and 4× more ALU engines. Benchmark results demonstrate
that VEGAS offers up to 68% smaller area-delay product
than VIPERS and VESPA, meaning it provides up to 3.1×
the performance per unit area.

Scratchpads enable several performance enhancements.
Instead of using traditional RISC-like vector load/store in-
structions, direct memory-memory operations are executed
using the scratchpad. Source and destination operands are
specified by vector address registers, each of which holds a
scalar representing the starting address of the vector. To
reduce loop overhead, VEGAS supports very large vector
lengths, up to the full size of the scratchpad. Auto-increment
of the address registers make it efficient to iterate through
very long vectors or 2D arrays in a blocked fashion. Auto-
increment allows very compact loops to achieve the same
3–5× performance advantage as the loop-unrolled examples
in VIPERS, without the code bloat. Compact loops are also
easier to program than unrolled loops. Finally, the scratch-
pad and external memory can tranfer data asynchronously
with double-buffering to hide memory latency.

To conserve on-chip memory resources, VEGAS is cache-
less and double-clocks the scratchpad, providing four
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Figure 1: VEGAS (left) compared to VIPERS and VESPA (right)

read/write ports per cycle. Two read ports and one write
port are used for vector instruction execution, while the
fourth read/write port is used as a dedicated DMA chan-
nel between the scratchpad and off-chip memory. Efficient
use of on-chip memory reduces the need to spill vector data
to off-chip memory. This leads to significant performance
advantages in some applications.

The VEGAS soft vector processor is attached to a stan-
dard Nios II/f. We encode each vector instruction as a single
Nios II custom instruction by fitting the vector instruction
bits into the available fields. Vector instructions are dis-
patched by Nios to a vector instruction queue. Since many
vector instructions are multi-cycle, this allows Nios II to
run ahead and asynchronously execute scalar code, such as
loop bounds checking and control flow instructions. The
Nios also issues scratchpad DMA transfer requests asyn-
chronously as custom instructions. This means DMA trans-
fers, vector instructions, and Nios instructions can all ex-
ecute concurrently. A few special synchronization instruc-
tions cause Nios to wait, such as reading a scalar result from
the vector scratchpad. The use of a standard Nios II/f gives
users full debug capability using the Altera IDE as well.

A common concern for soft vector processors is compiler
support. VESPA and VIPERS require hand-written or in-
line assembly code, translating vector instructions with a
modified GNU assembler (gasm). Researchers have investi-
gated the autovectorizing capability of gcc, but have not yet
used it successfully [21]. Instead of an autovectorizing com-
piler, VEGAS uses C macros exclusively to emit Nios cus-
tom instructions on demand without modifying gcc or gasm.
The macros are more readable, and the system is much sim-
pler to program because the user doesn’t need to track the
scalar (control flow) values as register numbers. Instead,
users track only vector scratchpad addresses stored in the
vector address registers, and initiate DMA transfers explic-
itly. We also provide some convenience routines to simplify
allocating and deallocating scratchpad memory. The macros
are easier to program than pure assembly, and still gives ex-
plicit control over the hardware for maximum performance.

2. BACKGROUND AND RELATED WORK
Vector processing has been applied in supercomputers on

scientific and engineering workloads for decades. It exploits
the data-level parallelism readily available in scientific and
engineering applications by performing the same operation
over all elements in a vector or matrix.

2.1 Vector Processing Overview
Classically, execution of a vector instruction is done by

sending a stream of values into a pipelined ALU at a rate of
one element per clock cycle. Parallelism is obtained through
pipelining, allowing high clock issue rates. Additional par-
allelism is obtained by vector chaining, where the output
of one ALU is passed directly to the input of another ALU
which is executing a separate vector instruction. Chaining
requires complex register files with multiple write ports to
support writeback by several ALUs each clock cycle, and
multiple read ports to feed several ALUs each cycle.

Alternatively, several ALUs can operate in lockstep SIMD
mode to execute the same vector instruction, thus shortening
the time to process a long vector. In this mode, multiple
ALUs each write back to their own independent partition
of the vector register file, so parallelism can be achieved
without the multiple write ports required by chaining.

Modern microprocessors are augmented with SIMD pro-
cessing instructions to accelerate data-parallel workloads.
These operate on short, fixed-length vectors (e.g., only four
32-bit words). Significant overhead comes from instructions
to load/pack/unpack these short vectors and looping.

There are two key distinguishing traits of vector proces-
sors that set them apart from SIMD processing instruc-
tions. First is the use of the vector length (VL) con-
trol register, which can be changed at run-time to pro-
cess arbitrary-length vectors up to a certain maximum vec-
tor length (MVL). Second is the use of complex addressing
modes, such as walking through memory in strides instead
of complex pack/unpack instructions. For example, strided
access simplifies columnwise traversal of a 2D array.



2.2 Soft Vector Architectures
The VIPERS soft vector architecture [23, 24] demon-

strated that programmers can explore the area-performance
tradeoffs of data-parallel workloads without any hardware
design expertise. Based on results from three benchmark
kernels, VIPERS provides a scalable speedup of 3–30×
over the scalar Nios II processor. Moreover, an additional
speedup factor of 3–5× can be achieved by fully unrolling the
vector assembly code. VIPERS uses a Nios II-compatible
multithreaded processor called UT-IIe [7], but control flow
execution is hindered by the multithreaded pipeline. The
UT-IIe is also cacheless; it contains a small, fast on-chip
instruction memory and accesses all data through the vec-
tor read/write crossbars to fast, on-chip memory. VIPERS
instructions are largely based on VIRAM [9].

The VESPA soft vector architecture [20, 21] is a MIPS-
compatible scalar core with a VIRAM [9] compatible vector
coprocessor. The original VESPA at 16 lanes can acheive
an average speedup of 6.3× over six EEMBC benchmarks.
Furthermore, VESPA demonstrated improved performance
by adding support for vector chaining with a banked register
file and heterogeneous vector lanes [22]. Over the 9 bench-
marks tested, the improved VESPA averages a speedup of
10× at 16 lanes and 14× at 32 lanes. The MIPS core uses a
4kB instruction cache, and shares a data cache with the vec-
tor coprocessor. Smaller (1- or 2-lane) vector coprocessors
use an 8kB data cache, while larger ones use 32kB.

Both VIPERS and VESPA offer a wide range of configura-
bility. For example, the parallel vector lanes can be specified
at FPGA compile-time to be 8, 16 or 32 bits wide. How-
ever, when mixed-width data is required, the vector engine
must be built to the widest data. Therefore, when process-
ing smaller data, load instructions will zero-extend or sign-
extend to the full width, and store instructions will truncate
the upper bits. Since the vector register file must store all
data (even byte-sized data) at the widest width, VIPERS
and VESPA can be very inefficient: byte-wide data is stored
in the on-chip main memory or data cache, then expanded
to word-wide inside the registerfile. On top of that, to im-
plement dual read ports, VIPERS and VESPA duplicate the
vector register file. Hence, a single byte of data may occupy
up to 9 bytes of on-chip storage.

Both VIPERS and VESPA also share a similar design for
striding through memory. The vector register file is con-
nected to an on-chip memory (VIPERS) or on-chip data
cache (VESPA) through separate read and write cross-
bars. These crossbars are used when striding through
memory during vector loads and stores; they must shuf-
fle bytes/halfwords/words from their byte-offset in memory
into word size at a new byte-offset in the vector register file.
The size of the crossbars are constrained on one end by the
overall width of the vector register file, and on the other side
by the overall width of the on-chip memory/cache. As the
vector processor is scaled to contain more lanes, one end of
the crossbars increases in size while the other end is fixed by
the memory width. To quickly load a large register file, the
on-chip memory/cache width must be similarly increased to
match. The area to implement these crossbars is significant,
and grows as the product of the two widths.

2.3 Scratchpad Memory
Many recent embedded processors in academia and indus-

try supoprt private scratchpad memories. The CELL pro-

cessor [16, 5, 6] from IBM, which is designed for streaming
multimedia computations, features 8 synergistic processor
elements (SPEs), each operating on fixed-width (128-bit)
vectors with private SRAM scratchpads which are filled us-
ing DMA operations. The Signal-processing On-Demand
Architecture (SODA) [11, 12] for 3G wireless protocols has
a global scratchpad memory and local scratchpad memory
for each of its 4 SIMD processors. ARM, Nios II and Mi-
croBlaze processors also support both cache and scratchpad
memory, so users can tune the system design based on the
needs of a specific application.

As an architectural feature, researchers have also inves-
tigated ways to automatically utilize scratchpad memories.
For a joint cache and scratchpad system, [14] presents a
scheme for partitioning the scalar and array variables to
minimize cache misses. In [3], a technique for static data
allocation to heterogeneous memory units at compile-time
is presented. Dynamic allocation approaches are also dis-
cussed in [8, 13].

2.4 Address Registers
Address registers have long been used in processors for in-

direct accessing of memories, where the effective address of
an operand is computed based on the address register con-
tent and the addressing mode. Indirect access of memory via
address registers can also be found in vector processors. The
Cray-1 [17] uses eight dedicated address registers for mem-
ory accesses. The Torrent-0 [2] supports unit-stride (with
auto-increment) and strided memory accesses by computing
the effective address from its scalar registers, and indexed
memory accesses by computing the effective address from
its vector registers. The VIRAM [9, 10] also supports unit-
stride, strided, and indexed accesses, but the base addresses
and stride values are stored in a separate register file to com-
ply with the MIPS ISA. In all of these cases, the address reg-
isters are dedicated for use with load or store instructions.

The register pointer architecture (RPA) [15] proposed us-
ing register pointers to indirectly access a larger register file
without modifying the instruction set architecture. It also
demonstrated that by changing the register pointer contents
dynamically, the need for loop unrolling can be reduced. The
same technique is exploited by the vector address registers
in VEGAS.

3. VEGAS ARCHITECTURE
Similar to VESPA and VIPERS, the new VEGAS archi-

tecture offers scalable performance and area. Without any
RTL design effort, users can configure the high-level design
parameters to tune the VEGAS soft processor for a given ap-
plication, providing productivity, cost, and time-to-market
advantages. Moreover, VEGAS achieves better performance
per unit area over the existing soft vector designs from its
major design features:

1. Decoupled vector architecture,

2. Vector scratchpad memory,

3. Address registers,

4. Fracturable ALUs,

5. Data alignment crossbar network (DACN), and

6. Simplified C-macro programming.

The subsequent sections provide details on each feature.
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Figure 2: VEGAS Architecture (gray vertical bars indicate pipeline registers)

3.1 Decoupled Vector Architecture
VEGAS evolved from three key observations concerning

VESPA and VIPERS: Nios II is small and fast and has
plenty of debug support; the soft vector processors run about
half the speed of Nios II/f; and vector data register files are
huge while on-chip memory capacity in FPGAs is strictly
limited. We wanted to design a vector processor that could
scale to fill the entire FPGA, e.g. use all of the FPGA mul-
tipliers while still leaving memory blocks left over, or use all
memory efficiently for applications with large datasets. We
also looked at the loop-unrolled code examples presented in
VIPERS and thought there must be a way to capture the
performance without unrolling.

Figure 1 provides a high-level comparison of VEGAS,
VIPERS and VESPA. A more detailed view of VEGAS is
provided in Figure 2. VEGAS consists of a standard Nios
II/f processor, a vector core, a DDR2 controller plus exter-
nal memory, and a DMA engine. All of these blocks are
capable of running concurrently.

The vector core does not access the Nios II instruction
memory directly; vector and DMA instructions are imple-
mented as custom instructions in the regular Nios II in-
struction stream. When ‘executed’ by Nios, these instruc-
tions are typically deposited into an appropriate queue for
later asynchronous execution by the other core; if the target
queue is full, the Nios II processor stalls until there is space.
There are two separate 16-entry queues: one for vector in-
structions, and another for DMA block-transfer operations.
Since vector and DMA operations usually take multiple cy-
cles, this allows Nios II to run ahead to enqueue several in-
structions. This usually allows the overhead of control flow
instructions to be hidden.

Some vector instructions include a scalar operand, which
is deposited into a separate scalar data queue. Likewise,

some vector instructions demand a response word from the
vector core, such as reading a scalar value from the scratch-
pad memory or querying the current DMA queue length.
Currently, instructions that demand a response block the
Nios II, resulting in a flushed vector instruction queue. In
the future, we plan to implement a non-blocking version,
where the response is deposited into a vector data queue
to be picked up by a later ‘read vector queue’ instruction.
This pipelining avoids instruction queue flushes and hides
the latency of crossing clock domain boundaries twice (two
directions), but there is a risk of deadlock if the vector data
queue fills up.

The DMA engine processes block transfers by issuing read
or write operations between the DDR2 controller and the
fourth port of the scratchpad memory; data movement be-
tween the scratchpad and DDR2 controller uses Altera’s
Avalon system fabric.

In our implementation, the Nios II/f uses a 4kB instruc-
tion cache and a 4kB data cache. The Nios II, Avalon fab-
ric, and DMA engine run at 200MHz, and the vector core
runs at 100MHz. The clock ratios need not be strictly 2:1,
as dual-clock FIFOs are used to cross clock domain bound-
aries. Timing analysis reports indicate that VEGAS can run
up to 130MHz. VIPERS and VESPA achieve similar clock
rates, but they lock the scalar processor clock to the vector
clock. To avoid ambiguity, we report performance results by
measuring wall-clock time and reporting this elapsed time in
terms of 100MHz cycles.

VEGAS encodes register values, auto-increment, and
operand size in the upper 16 bits of the Nios II custom in-
struction. It uses 6 bits of the 8-bit N field for encoding the
function to be performed, allowing up to 4 VEGAS vector
cores to share a Nios II, or allowing VEGAS to coexist with
other coprocessors.



3.2 Vector Scratchpad Memory
Instead of a traditional vector register file, VEGAS uses a

scratchpad memory to store the working set of vector data.
Eight vector address registers are used to access the scratch-
pad memory. Data read from vector scratchpad memory are
sent directly to the vector lanes for processing, and the re-
sults are written back into the same memory. This direct
coupling of the scratchpad memory and vector lanes is very
efficient when the vector data operands are aligned to the
lane structure. When vectors are not aligned, a data align-
ment crossbar network is used to correct the situation. The
scratchpad enhances the VEGAS design in terms of perfor-
mance, memory efficiency, and flexibility.

3.2.1 Performance
The traditional vector register file requires explicit

load/store operations to transfer the data from/to memory
before any vector operations can be performed. These data
transfers can be time consuming. A 3–5× speedup over the
original vector code is possible by fitting the primary work-
ing set into the 64-entry vector register file. As demon-
strated in the VIPERS median filter example [23], this was
only possible by fully unrolling two nested loops, leading to
225 unrolled iterations.

In VEGAS, data vectors are stored in the scratchpad
memory and accessed via address registers. Most vector
instructions specify 3 address registers: 2 source, and 1 des-
tination. Each register specifies the starting location of a
vector in the scratchpad. The number of elements in the
vector is determined by a separate dedicated vector length
register, VL.

When data needs to be loaded from the external DDR2
memory, the DMA engine will transfer the data into the
vector scratchpad memory. This is done in parallel with
vector operations, usually in a double-buffered fashion, so
memory transfer latency is often completely hidden from
the vector core. The programmer must explicitly ensure
the DMA transfer is complete by polling or blocking before
issuing any dependant vector instructions.

Performance gained by the elimination of load/store op-
erations is maximized when the vector sources and desti-
nation reside in aligned locations and the working set fits
entirely in the scratchpad memory. If the working set does
not fit, vectors must be spilled to memory, degrading per-
formance. Also, if the vectors are not aligned, additional
data movement using the data alignment crossbar network
(Section 3.5) is necessary to temporarily restore alignment.
If unaligned accesses are predictable and occur more than
once, an explicit vector move instruction to bring the data
into alignment helps restore performance.

3.2.2 Memory Efficiency
In typical soft processor implementations, the register file

is duplicated to provide dual read ports. However, for a vec-
tor processor, the vector data store is much larger, making
the cost of duplication extremely high in terms of memory
usage. In the VEGAS architecture, we take advantage of the
high speed memory that is readily available in modern FP-
GAs and operate the memory at twice the clock frequency of
the vector processor to provide the dual read ports. There-
fore, the VEGAS vector processor needs just one set of data
to reside in the on-chip memory, resulting in improved stor-
age efficiency.

Moreover, instead of zero/sign-extending the vector ele-
ments to match the vector lane width, VEGAS stores vector
data in the scratchpad memory at their natural length of 8
bits, 16 bits, or 32 bits. This maximizes the utilization of
limited on-chip memory. As these smaller data elements are
fetched directly from the scratchpad, fracturable ALUs are
used to operate on elements with varying sizes. Details on
the fracturable ALUs are presented in Section 3.4.

3.2.3 Flexibility
The scratchpad memory is also a more flexible form of

storage than traditional vector register files. A typical vec-
tor register file is fixed in size, limiting both the number
of vectors and the maximum vector length. In VEGAS,
there is greater flexibility in dividing the scratchpad up into
different vector lengths and the number of vectors stored.
The maximum vector length is limited only by the avail-
ablity of scratchpad memory. Although there are only eight
address registers, reloading an address register is far faster
than reloading an entire vector of data. Hence, the number
of vectors resident in the scratchpad is not artificially lim-
ited by the instruction set architecture bit encoding. This
flexibility allows the use of long vectors, or many vectors,
depending upon the needs of the application.

It should be noted that using long vectors is encouraged: it
requires fewer iterations to compute a given task, lowers loop
overhead, and prepares an application for scalable execution
on wider vector processor instances. The configurability of
the FPGA allows the scratchpad memory to be scaled up
to provide as much storage space as allowed by the device
without changing the instruction set. Since there is little
waste, it is easy for users to predict the total storage capacity
of VEGAS for each FPGA device. If the required scratchpad
memory size does not fit in a particular FPGA device, there
is the option to migrate to a device with higher capacity.
The flexibility of the vector scratchpad memory allows the
VEGAS architecture to tackle many different applications.

3.3 Address Registers
VEGAS contains 8 vector address registers. Each of these

registers points an address in the scratchpad which holds
the beginning of a vector (element 0). We found 8 address
registers to be sufficient for all of our benchmarks. If more
than 8 vectors are needed, a new value can be written to an
existing address register very quickly (one clock cycle).

In addition, address registers have an auto-increment fea-
ture. Encoded in each instruction is a bit for each source and
the destination operand which indicates whether the regis-
ter should be incremented after use. The increment amount
is determined by a set of 8 increment registers, one for each
address register. If the same register specifier appears in
multiple operand fields, it is only incremented once after
the instruction completes.

The use of auto-increment helps lower loop overhead in
tight vector code. The ability to specify arbitrary increment
amounts is useful because the amount of increment can vary:
for example, it may equal 1 element, turning the vector into
a shift register, or it may equal VL elements to iterate over
a long sequence of data VL elements at a time, or it may
equal the row length of a 2-dimensional array to traverse
the array columnwise. Although the incremented address
can be computed by Nios II, this adds loop overhead (e.g.,
several address registers are incremented in a tight loop).
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When used with auto-increment, it is possible to obtain
the equivalent performance of fully unrolled code without
unrolling the loop. Our rolled-up median filter kernel is
shown in Figure 6. In comparison, the original VIPERS
code examples unrolled these nested loops and used 25 vec-
tor registers to hold the entire filter window. While this
avoided all loads and stores in the innermost loop, the 225
loop iterations had to be fully unrolled (not partially) be-
cause the vector data can only be addressed by static reg-
ister names. In VEGAS, unrolling is not necessary. The
entire filter window is stored in the scratchpad, and data
is addressed dynamically by address register. In the exam-
ple, the address register V2 is auto-incremented to the next
vector of data in each inner loop iteration.

The VIPERS unrolling approach is limited by the number
of iterations required, the number of vector registers in the
ISA, the size of the vector register file, and the amount of
instruction memory available. In contrast, using address
registers with auto-increment, VEGAS can automatically
cycle through the data in the scratchpad with a loop with-
out any unrolling or reloading of the address register. Only
scratchpad capacity limits the length and number of vectors
that can be stored. The added efficiency of natively storing
bytes or halfwords without extending them to 32-bits in the
scratchpad magnifies this advantage.

3.4 Fracturable ALUs
To execute on input data of different sizes, each lane must

be subdivided into sub-lanes of appropriate width. This
requires a fracturable ALU which can be subdivided to op-
erate on four bytes, two halfwords, or one word for every 32
bits of data. Furthermore, each instruction must specify the
operand size so the ALUs can be configured to an appropri-
ate width. With fracturing, a 4-lane VEGAS processor of-
fers the performance potential of a 16-lane VIPERS/VESPA
processor when operating on byte-size vector elements.

Fracturing works together with the scratchpad to help it
preserve limited on-chip memory. In VIPERS, an imple-
mentation capable of operating on all three data sizes would
require each lane to have a 32-bit register file and 32-bit
ALU, so both the storage efficiency and processing power is
wasted when operating on vectors of halfwords or bytes. In
VEGAS, the fracturable ALUs allow vectors to be stored at
their natural lengths, so memory efficiency remains high.

The fracturable ALUs require a fracturable adder and
fracturable multiplier. A fracturable adder is four 8-bit
adders which can dynamically cascade their carry chains for
wider operation. While the interrupted carry chain does
cause some area overhead, the implementation is simple. In
contrast, a fracturable multiplier is more complex and must
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support both signed and unsigned modes. In Stratix III,
the embedded multiplier blocks cannot be dynamically re-
sized or reconfigured for signed/unsigned operation. In
VEGAS, we designed a fracturable multiplier around four
18×18 hardware multiplier blocks which fit nicely into a
single DSP block plus additional logic. The basic design is
shown in Figure 3. With careful input multiplexing, as well
as output selection, this design becomes a signed/unsigned
fracturable multiplier. With additional input selection logic,
these multipliers are turned into fracturable shifters as well.

The ALUs support absolute-difference and sum-of-
absolute-difference instructions. Also, we have an accumu-
late function like VIPERS, but our implementation is signif-
icantly different. Instead of instantiating more DSP blocks
and using the built-in accumulators, we build our own frac-
turable accumulators in logic placed near the write-back port
of the scratchpad.

3.5 Data Alignment Crossbar Network
Since the scratchpad memory couples directly to the vec-

tor lanes in VEGAS as shown in Figure 2, all vectors in-
volved in a single vector instruction (two sources and one
destination) must reside in aligned locations. When vectors
are not aligned, the input to the vector lanes is mismatched
and would produce an incorrect result. When misalignment
occurs, an extra instruction is necessary to move the data
into alignment as shown in Figure 4.

To help lower the learning curve in software development,
misalignment detection and auto-correction logic is imple-
mented in VEGAS. If two source vectors are misaligned, a
vector move instruction is automatically inserted into the
pipeline. The automatic-move makes use of the data align-
ment crossbar network to align the one operand, and stores
the result at a reserved location determined by vector ad-
dress register V0. Then the original instruction is re-issued,
using V0 to replace the misaligned source. If the destination
is also misaligned, the result is re-aligned on the fly prior to
writing back the result in the correct location.

Although the auto-correction is convenient, it represents
lost performance. To help tune software, performance coun-
ters are implemented for each of three misalignment cases
that occur while running the vectorized code. The user can
retrieve the counter values via control registers, and utilize
this information to optimize their application.

In addition to alignment, variations of the move instruc-
tion called scatter and gather provide strided access through



#include "vegas.h"

int dotprod( int *v1, int *v2,
int const1, int const2, int vec_len)

{
int result;
int *vegas_v1,*vegas_v2,*vegas_result;

//Allocate two vectors in scratchpad
vegas_v1 = vegas_malloc( vec_len*sizeof(int) );
vegas_v2 = vegas_malloc( vec_len*sizeof(int) );
vegas_result = vegas_malloc( sizeof(int) );

//Start the DMA transfers to VEGAS
vegas_dma_to_vector(vegas_v1,v1,vec_len*sizeof(int));
vegas_dma_to_vector(vegas_v2,v2,vec_len*sizeof(int));

//Set VEGAS VL and set address registers
vegas_set( VCTRL, VL, vec_len );
vegas_set( VADDR, V1, vegas_v1 );
vegas_set( VADDR, V2, vegas_v2 );
vegas_set( VADDR, V3, vegas_result );

//Zero the accumulators before using them; whatever was
//in them will be written to V3 which will be overwritten
//with the result later
vegas_vvw( VCCZACC, V3, VUNUSED, VUNUSED );

//Wait for memory transfer to complete before computation
vegas_wait_for_dma();

//Multiply vector by scalar words
vegas_vsw( VMULLO, V1, V1, const1 );
vegas_vsw( VMULLO, V2, V2, const2 );

//Multiply the two vectors together and accumulate the
//result of the multiply will be written back to V2 while
//the accumulation happens in the external accumulators
vegas_vvw( VMAC, V2, V2, V1 );

//Store result in first word of V3 and zero the accumulators
vegas_vvw( VCCZACC, V3, VUNUSED, VUNUSED );

//Extract the result. This also syncs Nios II and VEGAS
vegas_vsw( VEXT, result, V3, VUNUSED );

//Free all scratchpad memory
vegas_free();

return result;
}

Figure 5: Example Dot Product

//Bubble sort up to halfway
for( j = 0; j < FILTER_SIZE/2; j++ ) {
vegas_set( VADDR, V1, v_temp+j*IMAGE_WIDTH );
vegas_set( VADDR, V2, v_temp+(j+1)*IMAGE_WIDTH );

for( i = j+1; i < FILTER_SIZE; i++ ) {
vegas_vvb( VMAXU, V4, V1, V2 );
vegas_vvb( VMINU, V1, V1, V2 );
vegas_vvb( VMOVA, V2INC, V4, V4 );

}
}

Figure 6: Example Median Filter Kernel

the scratchpad. Scatter takes a densely packed vector as the
source, and writes a new vector with elements separated by
gaps of n− 1 elements, where n is called the stride. Gather
works in the opposite direction. Furthermore, both scatter
and gather are capable of converting elements of one data
size into any other data size (words, halfwords, and bytes)
through sign-extension, zero-extension, or truncation.

The alignment, scatter, and gather operations are
achieved using a data alignment corssbar network (DACN).
Instead of using a full crossbar, which is costly in resource
usage, VEGAS employs a Benes network [4]. This network
can realize all of the required permutations, but requires
only O(N logN) instead of O(N2) logic in the switching
network. However, the multistage nature of this network
requires complex control algorithms. The control must first
generate the output ports for each input data element, then
the control values for each layer of the switch. Our current
control logic is inefficient for scatter and gather operations
with certain strides, and this limits the speedup achieved
with certain applications.

3.6 Programming VEGAS
VEGAS is programmed in a manner similar to inline as-

sembly in C. However, C macros are used to simplify pro-
gramming and make VEGAS instructions look like C func-
tions without any run time overhead. The sample code in
Figure 5 multiplies two vectors by separate scalars and then
computes their dot product.

To add byte vectors pointed by address registers V2 to V1,
increment V1 and store the result in V3 the required macro
would be vegas_vvb(VADD,V3,V1INC,V2). Vector register
specifiers can take on any value V0 through V7, but spe-
cial register V0 is also used by the system for temporary
storage during automatic alignment operations. A register
specifier written as V7INC, for example, post-increments the
register by a signed amount previously stored in its respec-
tive increment register. A placeholder value VUNUSED can be
used with certain instructions. In the function name, the
vvb suffix refers to ‘vector-vector’ operation (vv) on byte-
size data (b). Other combinations are scalar-vector (sv) or
vector-scalar (vs), where the first or second source operand
is a scalar value provided by Nios instead of a vector ad-
dress register. These may be combined with data sizes of
bytes (b), halfwords (h) and words (w). For example, com-
puting a vector of halfwords in V7 by subtracting a vector
V2 from the integer scalar variable k would be written as
vegas_svh(VSUB,V7,k,V2). In addition, conditional execu-
tion of individual vector elements is achieved via a vector
mask, where a mask is a vector of 1-bit results from a vector
comparison.

Data can be allocated in vector scratchpad memory using
special vegas_malloc(num_bytes) which returns an aligned
pointer. By default, V0 tracks the end of the allocated
scratchpad memory, allowing the use of all remaining space
as an alignment buffer. The vegas_free() call simply frees
all previous scrachpad allocations. DMA transfers and in-
struction synchronization are handled by macros as well.

While this approach requires programmers to manually
manage vector address registers, it should be straightfor-
ward to create a compiler to manage register allocation and
allow the programmer to deal with pointers directly. Such
a compiler could also infer data size from the pointer type.



Num. VEGAS VIPERS VESPA
Lane ALM DSP M9K Fmax ALM DSP M9K Fmax ALM DSP M9K Fmax

1 3,831 8 40 131 5,556 10 46 133
2 4,881 12 40 131 6,218 14 48 130
4 6,976 20 40 130 5,825 25 16 106 7,362 22 76 128
8 11,824 36 40 125 7,501 46 25 110 12,565 39 98 124
16 19,843 68 40 122 10,995 86 41 105 20,179 79 98 113
32 36,611 132 40 116 34,471 175 196 98

Table 1: Resource Usage Comparison
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4. RESULTS
In this section, the resource usage, performance, and area-

delay product of the new VEGAS soft vector architecture is
compared against existing soft vector architectures VESPA
and VIPERS.

4.1 Resource Usage
Different configurations of the VEGAS architecture are

compiled using Quartus II to measure their resource usage
and compare them against the equivalent VESPA/VIPERS
designs. VEGAS is compiled targeting the Stratix III
EP3SL150F1152C3ES device that is found on the Altera
DE3-150 development board. Since all three architectures
target Altera’s Stratix III devices on a DE3 platform, com-
parisons are easy.

The logic usage is summarized by the number of adap-
tive logic modules (ALMs) and DSP 18x18 elements, while
memory usage is summarized by the number of M9K blocks.
Table 1 lists the ALM/DSP/M9K usage for all three archi-
tectures with various number of lanes, as well as the maxi-
mum clock frequency of the design. The V1, V2, V4 labels
indicate 1, 2, 4 vector lanes (each lane is 32 bits in width),
respectively. For VEGAS, this means V4 can run instruc-
tions on byte-wide data using 16 vector sub-lanes. For these
results, VEGAS was configured to use a 32kB scratchpad.

In terms of logic resources, the ALM usage of VEGAS typ-
ically settles between VIPERS and VESPA, except VEGAS
surpasses VESPA in the 32-lane configuration. The break-
down of ALM usage in Figure 7 shows that ALUs account
for the majority of ALM use. This is partly explained by the
complexity of the fracturable ALUs, and partly by the com-
plex min/max/absolute-difference instructions. The multi-
plier also requires significant ALM resources for its many

modes and shifting operations. Future work should reduce
ALM usage in the ALUs.

In terms of multiplier resources, the fracturable ALUs
were carefully designed to limit use of DSP blocks, and
we avoided using multipliers in address calculations. As
a result, VEGAS is slighty better than both VIPERS and
VESPA in DSP usage.

In terms of memory, the number of M9K memory blocks
consumed by VEGAS is similar to that of both VIPERS
and VESPA. However, it is much more efficient, allowing up
to 8× more vector data elements to be stored in the same
number of M9K blocks.

4.2 Performance
For performance comparisons, we adopted benchmarks

from VIPERS (motion estimation, median filter), VESPA
(EEMBC benchmarks autocor, conven, fbital plus VIRAM
benchmarks imgblend and filt3x3), and also added a classic
fir filter with 16 taps on 4096 halfword samples.

We compiled all applications using gcc with -O3 optimiza-
tion and ran them on the Nios II/f processor at 200MHz
to establish the baseline performance. Next, we recoded
the benchmarks by hand using the VEGAS C macros and
attempted to maximize the vector lengths, use the small-
est data elements needed by each benchmark, and overlap
DMA with computation. We compiled VEGAS vector core
instances ranging from 1 to 16 lanes with 256kB, and 32
lanes with 128kB scratchpad memory.1 The vector core
was run at 100MHz. Performance was then measured us-
ing hardware timestamp counters running at 100MHz. The
number of 100MHz clock cycles required for each configura-
tion is shown in Table 2. For VEGAS, we also calculated
the highest speedup over Nios II on these benchmarks. For
VIPERS and VESPA results, we extracted cycle counts from
published works [19, 23].

Compared to VIPERS, VEGAS matches it on the me-
dian filter benchmark, and beats it by 2× on motion esti-
mation. However, we also see that VEGAS achieves peak
performance with fewer lanes than VIPERS because of the
fracturable ALUs. This gives VEGAS an area advantage.
Also, the VIPERS results were achieved through aggressive
loop unrolling in both benchmarks, but VEGAS does not
use any loop unrolling.

Compared to VESPA, VEGAS matches it on imgblend
and filt3x3, beats it on autocor and fbital, but runs more
slowly on conven. The slower performance of conven is due
to strided scatter/gather operations which do not yet exe-
cute at full speed in VEGAS due to complex DACN control.
We are actively working to address this limitation. How-
ever, we note that VEGAS always achieves better perfor-

1The fbital benchmark requires a 256kB scratchpad for a
lookup table, so we could not collect V32 performance data.



Benchmark Name
CPU Name fir motest median autocor conven fbital imgblend filt3x3

Nios II/f 509,919 1,668,869 1,388 124,338 48,988 240,849 1,231,172 6,556,592

VIPERS VESPA
V1 125,376 17,610 358,070 1,127,965 2,754,216
V2 64,791 9,821 191,054 677,856 1,432,396
V4 157,792 189 32,556 4,479 106,911 229,014 608,222
V8 88,288 95 16,896 2,103 69,186 112,937 271,252
V16 55,328 48 10,287 1,638 47,303 64,176 145,729
V32 7,062 984 39,372 33,953 72,966

VEGAS
data size halfword byte byte word byte halfword halfword halfword

VL dynamic 256 dynamic 1024 512 256 320 317
V1 85,549 82,515 185 45,027 3,462 165,839 175,890 813,471
V2 47,443 47,249 93 26,512 2,690 90,114 99,666 419,589
V4 25,346 30,243 47 14,470 2,154 52,278 61,169 219,816
V8 13,536 29,643 24 7,941 1,976 33,166 40,231 122,072
V16 7,690 27,344 12 4,563 1,924 23,999 35,656 75,776
V32 4,693 24,717 7 2,822 1,897 – 35,485 75,349

Speedup 108× 67× 208× 44× 25× 10× 34× 87×

Table 2: Performance Comparison (100MHz clock cycles)

Benchmark Name
CPU Name fir motest median autocor conven fbital imgblend filt3x3

Nios II/f 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VIPERS (V16) 0.31 (V16) 0.41
VESPA (V16) 1.37 (V8) 0.44 (V8) 2.95 (V32) 0.78 (V32) 0.31
VEGAS (V16) 0.24 (V4) 0.10 (V16) 0.14 (V16) 0.60 (V2) 0.22 (V4) 1.24 (V4) 0.28 (V8) 0.18

Improvement 3.1× 2.9× 2.3× 2× 2.4× 2.8× 1.7×

Table 3: Best Area-Delay Product (Normalized to Nios II/f, lower=better)
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Figure 8: Performance of imgblend Benchmark

mance when using a smaller number of lanes (V1 to V8, and
often V16). In particular, VEGAS-V2 is 6.8× faster than
VESPA-V2 on imgblend.

Table 3 reports the best area-delay product achieved by
each vector processor. For VEGAS, this is often at a
small number of lanes. A lower area-delay is better, as
greater throughput performance can be obtained by repli-
cating these vector cores across the chip. The VEGAS area-
delay product is up to 68% lower than VIPERS and up to
64% lower than VESPA, giving it up to 3.1× better through-
put per unit area.

The ability to run DMA operations concurrently in a
double-buffered fashion often allows all memory latency to

Clock speed 1024×1024 4096×4096

Nios II/f 200MHz 77.78 5406.81
Intel Core 2 2.66GHz 1.09 71.66
VEGAS 100MHz 0.72 43.77

Table 4: Integer Matrix Multiply Runtime (seconds)

be hidden. To demonstrate this, we ran the imgblend ap-
plication in three modes: synchronous DMA, asynchronous
DMA, and no DMA. The runtime of these three modes is
shown in Figure 8. With synchronous DMA, we block wait-
ing for each DMA operation to finish before performing any
computation. With no DMA, we skipped the DMA trans-
fer entirely, so runtime is entirely computational (and uses
incorrect data). The asynchronous DMA result allows com-
putation to occur while the DMA operates in parallel. The
figure shows that most of the transfer latency is successfully
hidden up to V8. Hiding the latency at V16 and V32 is
difficult because the computation is so fast.

Finally, using integer matrix multiply, Table 4 shows that
VEGAS outperforms a 2.66GHz Intel Xeon X5355 proces-
sor. We believe this is the first time a soft processor has out-
performed a leading-edge hard processor in similar (65nm)
technology. The Nios II and Intel versions ran individually
tuned single-threaded C programs that used various loop
orderings and tile sizes compiled with gcc -O3. Note that
Intel SSE instructions were not used. The VEGAS version
was the fastest code written among a graduate class of 10
students; the slowest code was roughly 2× slower.



5. CONCLUSIONS
Previous work on VIPERS and VESPA have demon-

strated that soft vector processors can scale and acceler-
ate data-parallel embedded applications on FPGAs. Vec-
tor processoring offers an easier way to explore the area-
performance tradeoffs than designing custom logic accelera-
tor in VHDL or Verilog.

This paper introduces VEGAS, a new soft vector architec-
ture that optimizes use of limited on-chip memory in mod-
ern FPGAs. An on-chip scratchpad memory serves as the
vector data storage medium and is accessed using vector ad-
dress registers. This eliminates traditional restrictions on
the maximum vector length and number of vectors. Instead
of traditional vector load/store operations, double-buffered
asynchronous DMA can potentially hide all memory latency.
Better storage efficiency (up to 9×) allows more vector data
to reside on-chip, avoiding the need to spill vector data. Ad-
ditional performance enhancement is achieved by fracturable
ALUs, which increases processing power up to 4× on byte-
size data.

The VEGAS architecture supports very long vector
lengths. Together with the auto-increment feature of the
address registers, this can reduce overhead in tight loops.
The address registers achieve the performance of unrolled
code without doing any unrolling, making it easier to pro-
gram and debug and reducing code bloat.

Using area-delay product on selected benchmarks, VE-
GAS provides up to 3.1× higher throughput per unit area
than VIPERS, and up to 2.8× higher than VESPA. In raw
performance, VEGAS is 10× to 208× faster than Nios II
on the same benchmarks. Using integer matrix multiply,
VEGAS is faster than a 2.66GHz Intel X5355 (Clovertown)
processor. This may be the first time a soft processor has
surpassed a leading-edge hard processor in performance.

Finally, the C-based macro system is easier to program
than assembly language. While not offering the full con-
venience of an autovectorizing compiler, it relieves the pro-
grammer of scalar assembly instructions yet still allows ex-
plicitly scheduled data movement and vector instructions.
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