
Congestion-Driven Regional Re-clustering for
Low-Cost FPGAs

Darius Chiu, Guy G.F. Lemieux, Steve Wilton

Electrical and Computer Engineering, University of British Columbia
British Columbia, Canada
dariusc@ece.ubc.ca
lemieux@ece.ubc.ca
stevew@ece.ubc.ca

Abstract—FPGA device area is dominated by a limited amount
of interconnect. CAD tools must meet a hard channel-width
constraint for a circuit to be successfully mapped to a device.
Previous work has shown that if a design cannot be mapped to
a device due to insufficient interconnect availability, it is possible
to identify regions of high interconnect demand and spread out
the logic in this area into surrounding regions. This is done by
re-packing logic in the affected regions into an increased number
of CLBs. This increases the effective amount of interconnect in
these high-demand areas. This methodology has been shown to
significantly reduce channel width, at the expense of CLB count
and runtime.

In this paper, we extend this previous algorithm in two
ways: we present novel region selection techniques to optimize
the selection of which regions should be depopulated, and we
introduce a local channel-width demand model which can be used
to more accurately determine the amount of white space insertion
at each iteration. Together, these techniques lead to significant
run-time improvements and reduce the area of the resulting
FPGA implementations. We were able to improve runtime by
a factor of up to 5.5 times while reducing area by up to 20%
when compared to previous methods.

I. INTRODUCTION

FPGA devices have limited routing and logic capacity. For
a similar number of logic elements (LEs), it is common for
manufacturers to offer routing-rich devices at a high cost, or
much less expensive devices with less routing. It is then much
more economical to try to meet the channel-width constraints
of the latter devices. In the situation where routing resources
are the limiting factor, CAD tools must be able meet a hard
channel-width constraint. Since local interconnect usage varies
spatially with placement, spreading LEs among an increased
number of configurable logic blocks (CLBs) will allow access
to more aggregate routing resources, thus spreading areas
of peak routing demand. Effectively, this creates a tradeoff
between peak channel-width demand and logic usage.

While effective, this tradeoff between logic and routing must
be performed for congested areas. That is, it is not economical
to globally fill each CLB with just a single LE to reduce inter-
connect demand as much as possible. Instead, tools addressing
this problem must take into consideration that routing resource
demands will vary between regions of the placement. CLBs
in different regions must be non-uniformly clustered to meet
local interconnect demands without excess CLB use. This is

especially relevant in large System-on-Chip designs, where
several tightly connected IP blocks are connected together
to form a larger circuit. A select few IP blocks may have
internal interconnect requirements that exceed channel-width
constraints, causing the entire circuit to be unroutable. Yet,
reducing congestion specifically for these few IP blocks will
allow the entire circuit to be routable without unnecessarily
inflating area by reclustering other regions.

Un/DoPack [1] presented a fully automated CAD flow
which algorithmically lowers the minimum routable channel-
width (MRCW) of a circuit by iteratively inserting whitespace,
in the form of empty LEs, into the design where local
interconnect requirements exceed channel-width constraints.
Congested regions are identified, CLBs in these regions are
fully unpacked into constituent LEs, and repacked into clusters
with smaller cluster-sizes. The process of re-clustering LEs
into smaller clusters is called depopulation. This framework is
the basis for the work presented in this paper.

While Un/DoPack demonstrated the effectiveness of depop-
ulating local regions to meet hard channel-width constraints,
this work introduces several congestion-driven methods which
include local congestion information to improve the depop-
ulation decision-making process. In particular, we improve
the basic Un/DoPack framework by better choosing which
areas of the design to depopulate. We use a local channel-
width demand model to calculate the amount of whitespace
insertion required and also integrate a congestion-driven place-
ment technique. Our goal is to reduce runtime and area of
Un/DoPack.

The remainder of this paper is organized as follows. Section
2 discusses background and related work. Section 3 outlines
the techniques used in this paper to improve to the Un/DoPack
flow. Section 4 presents the methodology used in this work.
Section 5 discusses our results and section 6 presents the
conclusion and future work.

II. BACKGROUND AND RELATED WORK

We assume an island-style architecture containing an array
of logic blocks separated by horizontal and vertical rows of
routing tracks. The logic capacity of this architecture is defined
as the number of configurable logic blocks (CLBs), each
containing a fixed number of logic elements (LEs). Each LE

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

Circuit Description
Architecture Description

Channel-width Constraint
Array Size Constraint

Synthesize and
Technology Map
(SIS/Flowmap)

Cluster (iRAC
Replica)

Placement
(VPR)

Incremental Cluster
(DoPack)

Fast Placement
(Incremental or VPR)

Routing
(VPR)

Congestion
Calculator
(UnPack)

Success!

Failure

Array Size
Limits Reached?

Channel Width
Constraint Met?

Channel Width
Constraint Met?

No No

Yes

YesYes

Fig. 1. Complete Un/DoPack CAD Flow [1]

consists of a lookup table and flip-flop. The minimum routable
channel-width (MRCW) is defined as the minimum number of
routing tracks needed to successfully map a circuit to the target
architecture. The maximum MRCW is defined as the minimum
number of routing tracks needed to successfully map a circuit
to the target architecture without any depopulation. The in-
terconnect demand near a CLB is captured with a congestion
label. The congestion label of a CLB is the maximum number
of signals routed from both the X or Y directions.

While clustering tools exist which maximize logic utiliza-
tion by fully packing CLBs, various authors [2][3] have shown
that the best performance may result from a balance between
logic utilization and interconnect demand. Work by [1][4][5]
showed that overall area could be reduced by packing CLBs
to less than 100% capacity. Since FPGA area is dominated by
interconnect, reducing the overall interconnect requirements
by balancing local routing demand with logic utilization can
produce a net decrease in FPGA area.

In [3], a clustering tool is presented which performs depopu-
lation uniformly across the design. However, this also leads to
depopulation of uncongested regions. Un/DoPack [1] performs
depopulation for local regions across the design. Un/DoPack
reduces interconnect in localized regions of the FPGA by
iteratively reclustering regional LEs into an increased number
of CLBs. Whitespace insertion limited to a local region is espe-
cially important in the case of circuits with large interconnect
variation, such as system-on-chip circuits. These circuits may
consist of many different subcircuits, each having significantly
different interconnect demands.

While Un/DoPack was shown to be very effective in re-
ducing the channel-width, runtime and area expansion can be
reduced through the use of better congestion-driven region
selection and cluster-size calculation techniques. The basic
Un/DoPack flow is described in detail in the next section.

A. Un/DoPack CAD Flow

The Un/DoPack Flow, shown in Figure 1, iteratively reduces
the MRCW of a circuit by spreading local areas of high
congestion until the MRCW of the circuit meets a user
specified channel-width constraint. The user provides the fol-
lowing inputs to Un/DoPack: a circuit description, architecture
description, target channel-width constraint, and an array size
constraint.

Initially, a traditional CAD flow using SIS/Flowmap [6] and
VPR [7] is run. Any packing and placement algorithm can
be used; we use our iRAC replica and VPR. If it meets the
specified target channel-width constraint on the first pass, it
is done. This is shown inside the dashed outline in Figure
1. If the channel-width constraint cannot be met, the iterative
portion of the Un/DoPack flow is invoked, which consists of
the steps described below.

The first step of the iterative portion, the UnPack step,
determines which regions to depopulate. A region should be
depopulated if the local interconnect demands of the region
exceed the specified channel-width constraints. Previous work
presented two depopulation schemes: a single and multiple
region depopulation scheme. These schemes select regions of a
fixed radius, and calculate a new cluster-size. The new cluster-
size is calculated such that enough whitespace is introduced to
expand the number of CLBs in the region by a pre-determined
amount. Regions are selected based on the highest congestion
label in the congestion map first, closest to the center of
the array. The single region version of Un/DoPack adds an
amount of CLBs equal to the number of CLBs in a row and
column of the array. The multiregion version of Un/DoPack
inserted whitespace proportional to the peak congestion and
an empirically determined scaling factor.

The second step repacks the LEs in the selected regions.
The clusters are packed less than 100% full using new cluster-
sizes determined by the UnPack step. LEs from each region
are reclustered with other LEs from the same region. Any
clustering algorithm can be used; for this work we will be
using a replica of iRAC [4] as our clustering algorithm.

The final step is to perform placement and routing.
Un/DoPack uses the incremental placer, RePlace [8], which
preserves the placement stability in each iteration. Because
Un/DoPack is creating additional CLBs at each iteration, these
will need to be placed somewhere in the array. RePlace creates
an initial placement where CLBs are placed in approximately
the same regions as in the previous placement. A low tem-
perature anneal is then performed to optimize the placement.
Since Un/DoPack is modifying only small localized regions of
the FPGA, the incremental placement has the combined effect
of significantly reducing runtime, when compared to a full
VPR placement. Incremental placement also preserves relative

2

placement for CLBs in uncongested regions. After the routing
step, if the circuit remains unroutable at the specified channel-
width constraint, Un/DoPack will iteratively depopulate the
remaining congested areas using the UnPack and DoPack
steps. The complete Un/DoPack CAD flow is illustrated in
Figure 1.

B. Baseline Un/DoPack

The baseline version of Un/DoPack, depopulates a large,
single region of the device. In each iteration, the number of
CLBs created is equal to the number of CLBs in a row and
column of the array.

C. Fine-Grained Un/DoPack

As one of the main observations in [9], authors noted that
adding very small amounts of whitespace at each iteration
produced superior area results in spite of a large increase in
runtime. They referred to this as the Fine-Grained approach.
At each iteration, a single region is selected. The number of
CLBs in the region is determined using Equation 1.

new region CLBs =

num region LEs

num CLBs in region+
√
num CLBs in region) ∗ 2 + 1

(1)

D. Multiregion Un/DoPack

The multiple region approach presented in [1], referred to
as Multiregion Un/DoPack, improved runtime by depopulating
multiple regions simultaneously. In this approach, there is no
restriction on how many CLBs are created in each iteration.
Each region in the Multiregion depopulation scheme grows
proportionally to the peak congestion in each region and an
empirically determined scaling factor. This method produces
much better runtime results than Fine-Grained Un/DoPack, but
area inflation is increased.

III. MULTIPLE REGION DEPOPULATION WITH
CONGESTION-DRIVEN METRICS

This section describes the improvements to Un/DoPack.
We introduce congestion-driven techniques that utilize local
congestion metrics, to reduce runtime and area inflation.

A. Region Selection

We first introduce techniques to optimize the region se-
lection process. Whereas [9] depopulates regions centered on
CLBs with the largest congestion labels which are closest to
the center of the array, we introduce the following procedure
which attempts to select the most congested region to depop-
ulate.

The first congestion region is selected by finding the CLB
with the highest congestion label, closest to the center of the
array. This forms an initial x,y center location for a rectangular
windowed region of size W × H which will be marked for
depopulation. In this work, these window sizes are chosen
to match those of previous work [1] [9]. Next, the window
center is adjusted slightly (up to ±W

2 or ±H
2) by using force

directed shifting. The congestion label for each CLB in the
window and the position relative to the region center is used to
create vectors which lead away from the center of the region.
The sum of these vectors produces a net direction in which to
move the window. A search in this direction is then used to
determine the window location that encompasses the largest
average congestion. The furthest that the window can shift is a
distance of up to ±W

2 or ±H
2 away from the original window

center.
Subsequent regions are marked in this way until all CLBs

with a congestion label larger than the target channel-width
constraint are marked. The force-directed move ensures the
depopulation window region is repositioned so the CLB label
peak value is still captured, but it will also capture as many
other CLBs as possible that need depopulation. A list of
all such regions is then sorted such that the regions with
the highest average congestion are depopulated first. CLBs
from overlapping regions will belong to the region which is
depopulated first. At each depopulation step, we determine
the number of CLBs which will be added. The regions are
depopulated in sorted order until all congested regions are
marked for depopulation.

B. Whitespace Insertion

We experimented with using a channel-width demand model
to improve the accuracy of the whitespace insertion. We will
term this scheme the Congestion-Model Multiregion (CMR)
Un/DoPack. Of the interconnect models available in previous
work, the most applicable to this work consist of those models
which predict wire length and channel-width demands[10][11].
Recently, authors in [11] extended available models to consider
the routing inflexibility inherent in FPGAs. The advantage of
this model is that we can use it to predict outcomes in inter-
connect demand based on decisions made during clustering.
Since this model assumes its application to an entire FPGA,
we will be making some simple assumptions to apply it to a
local region.

1) Modeling Regional Interconnect Demand: While most
channel-width demand models predict the interconnect de-
mand at a global level, we are interested in determining, on
a region-by-region basis, how much whitespace insertion is
necessary for each congested region to become routable. Thus
we create the following simple model of local interconnect
demand to allow the application of a global model.

total region demand =

region internal demand+ region external demand (2)

Interconnect demand for a region of CLBs can be generally
categorized in two types: internal interconnect, which is the
interconnect needed to route to any CLB located inside a
region, and external interconnect, which consists of routing
that connects CLBs outside the region, but pass through the
region without connecting to any CLBs inside the region.

While depopulation directly affects the internal interconnect
demand through whitespace insertion, we cannot directly re-

3

duce interconnect demand from external routing by whitespace
insertion into a region. Instead we must account for its effects
by identifying the contribution to the channel-width demand
inside a region caused by these external nets. This is shown
in Equation 2. Our goal is to reduce total region demand to
meet our channel-width constraint.

We apply a congestion estimation model, Wirelength-per-
Area [12], to the internal and external nets separately. This
gives an indication of the relative amount of interconnect
demand from each type, in each region.

For simplicity, we assume that subsequent iterations will
produce relatively the same amount of external-net conges-
tion in the next iteration. Although this is a simplification,
interconnect demand from external nets are typically less than
interconnect from internal nets. This is intuitive since local
routing should mostly originate in local logic. We leave the
influence of inter-region effects on congestion to future work.
The channel-width estimation model using Equation 3 [11], is
the used to determine the amount of whitespace to insert for
the next reclustering step.

2) Modeling Internal Demand: The interconnect model
presented in [11] is shown in Equation 3.

W = Wabs min

+
1

β

(
Wabs min

Fs

)(
Wabs min

FCin

)αin(Wabs min

FCin

)αout
+

λ(L− 1)

4

(
1 +

1

FαinCin

)
(3)

where

Wabs min = p
λR̄

2
= ρλ (4)

In Equations 3 and 4, W is the channel width, λ is the
average number of used inputs per CLB, R is the average
point-to-point distance for two terminal nets, Fs is switch
block flexibility, FCin and FCout denote connection block
flexibilities for inputs and outputs, and L is wire segment
length. αin, αout, and p are empirically determined constants.
We use the values for constants presented in [11]. As in [11],
we assume that R remains constant across different cluster
sizes.

Applied to the CLBs in a local region, we can use this model
to predict the internal channel-width demand for a region.
We wish to determine the amount of whitespace insertion
required for a region to become routable. We note that the
channel-width required depends on two factors: properties of
the architecture, shown as the constant terms in Equation 3,
and properties of the region, shown as ρ in Equation 4.

After routing, we measure the peak channel-width value
and average number of used inputs per CLB to solve for the
ρ in Equation 4 for each region. We then substitute our target
internal channel-width value and solve for λ. The resulting
value for λ allows us to set a target for the clustering step. In
our implementation, the clustering tool iteratively reclusters a
region with a progressively lower cluster-size until the average
number of used inputs constraint is met. Since the clustering

step runtime is very small, the increase to overall runtime
is negligible. In addition, we retain the flexibility of the
clustering tool to use different clustering methods.

C. Congestion-Aware Placement

A second goal of this work is to show that a congestion-
aware placement tool improves the quality of the Un/DoPack
flow. While several simulated annealing based congestion-
aware placement tools exist [13][14][15], work presented in
[13] follows a philosophy complimentary to Un/DoPack by
optimizing placement to reduce local congestion.

Cost = coeff ∗
Nnets∑
i=1

q[i](bbx(i) + bby(i)) (5)

The placement approach in [13], uses a congestion estima-
tion map to create a coefficient. This coefficient is multiplied
with the bounding box cost function in the VPR placement
tool to penalize swaps which lead to congested placements.
The modified cost function is shown in Equation 5. For each
net i, the horizontal and vertical span are added and multiplied
with the q(i) factor which compensates for the fanout of the
net. This is summed over all nets and multiplied with the
coefficient calculated from the congestion map. The coefficient
is calculated using Equation 6.

coeff =

(
Σi,jU2

i,j

nx · ny
/

(
Σi,jU2

i,j

nx · ny

)2)
(6)

In Equation 6, Ui,j is a CLB label in the congestion
estimation map used. The congestion estimation map in [12]
uses an approach referred to as Bounding Box Overlap. The
congestion estimation map indicates how many bounding
boxes overlap each CLB. Since we are able to use any method
to generate a congestion estimation map, we also took the
opportunity to explore a slight variation to the Bounding Box
Overlap heuristic. In [12], authors explained that a related
heuristic, Wirelength per Area, produces a congestion map
which better indicates relative local amounts of interconnect
demand when compared to Bounding Box Overlap. We created
congestion maps using the Wirelength per Area method and
applied this to the congestion-aware placement tool.

Table I illustrates the effect of congestion-aware placement
on the maximum MRCW of our benchmark suite. While much
slower in runtime (Table II), results show that the number of
routing tracks needed is reduced consistently.

In Table I and Table II, results were obtained by per-
forming a typical VPR CAD flow using various placement
methods. VPR Default uses the default VPR placement al-
gorithm which combines timing-driven and wirelength-driven
placement. VPR BB utilizes VPR wirelength-driven placement
only. BB Overlap utilizes the Bounding Box Overlap conges-
tion map cost function, as mentioned previously. Similarly,
Wirelength per Area placement utilizes the Wirelength per
Area congestion cost function in the placer. For each entry
in Table I and Table II, a place and route is performed for
each benchmark circuit. Routing is performed with the binary

4

search and verify binary search option enabled. This allows
VPR to determine the minimum channel width required to
successfully route each circuit using each of the mentioned
placement methods.

The runtime and maximum MRCW results are compared
in Table I and Table II. We note that the Wirelength per Area
method indeed performs slightly better in reducing the maxi-
mum MRCW, although both produce consistently good results.
Our experiments combine our Congestion-Model Multiregion
version of Un/DoPack with the congestion-aware placement,
using the Wirelength per Area method. We will term this
scheme CMR + CAP. The congestion-aware placement is
integrated with the incremental placement tool.

TABLE I
MAX MRCW COMPARISON OF PLACEMENT SCHEMES

Circuit VPR VPR BB Wirelength
Default BB Overlap per Area
(tracks) (tracks) (tracks) (tracks)

stdev0 96 95 92 93
stdev002 96 93 94 86
stdev004 101 97 98 92
stdev006 89 89 90 86
stdev008 119 116 115 106
stdev010 153 150 152 139
stdev012 145 145 141 138

TABLE II
RUNTIME COMPARISON OF PLACEMENT SCHEMES

Circuit VPR VPR BB Wirelength
Default BB Overlap per Area

(seconds) (seconds) (seconds) (seconds)
stdev0 2406 783 10063 10918

stdev002 2207 882 10226 10639
stdev004 2170 831 8792 9694
stdev006 1704 692 8794 9803
stdev008 1810 776 9602 10204
stdev010 2279 1037 10394 11942
stdev012 1875 1063 12126 13808

IV. METHODOLOGY

This section discusses the experimental framework to eval-
uate our algorithmic improvements.

The results in this work are compared with baseline
Un/DoPack flow presented in [8]. Baseline Un/DoPack has
the following characteristics:

• Congestion calculator with single region depopulation
• Clustering algorithm which is a replica of iRAC [4]
• Incremental Placer presented in [8], using default VPR

placement (timing and wirelength-driven placement)
• VPR flags: pres fac mult 1.3, max router iterations 100
• FPGA architecture with LUT size k = 6, cluster-size N

= 16, inputs per cluster I = 51, and a wire length of L =
4

The experiments were conducted on a single core of a
Xeon 2.6 GHz processor with 2.5GB of RAM. The maximum
MRCW of each circuit, was determined from VPR with the
binary search option set. The verify binary search option in

VPR was used to ensure that the lowest routable channel width
was measured. All versions of Un/DoPack were run on our
servers including the following Un/DoPack schemes: Baseline,
Fine-Grained, and Congestion Model Multiregion. All VPR
simulations used an overuse penalty factor growth factor,
pres fac mult, of 1.3 and the maximum number of router
iterations, max router iterations, set at 100. The channel-
width constraints are the same as those presented in [9] using
the benchmark circuits described below.

We used the benchmark circuits from [1]; architectural pa-
rameters were chosen to match [1]. Each of the five benchmark
circuits have the following characteristics: 40013 LUTs, 241
inputs, 120 outputs, and approximately 52000 nets. These
circuits are designed to help examine the performance of CAD
tools for large, system-on-chip designs which are composed of
subcircuits with varying amounts of interconnect demand. The
benchmark circuits created in [1] were generated by using the
synthetic benchmark generator GNL. GNL allows the user to
specify the overall Rent parameter of the circuit, and also the
Rent parameter of individual subcircuits. The average Rent
parameter is 0.65 for each benchmark circuit, but the Rent
exponents for each of the subcircuits are chosen to set a desired
standard deviation in the Rent exponent. In this work, these
subcircuits are created to match the characteristics of MCNC
benchmark circuits [16]. The result is a set of benchmark
circuits where some have uniform local interconnect demand
across the circuit, while others have regions of high local
interconnect demand.

A separate set of experiments were performed to examine
the effect of combining a congestion-aware placement tool
with the Congestion-Model Multiregion Un/DoPack approach.
All parameters for this set of experiments are identical to those
mentioned above, with the exception of the inclusion of the
congestion-aware placement cost function in the incremental
placer.

V. RESULTS

We compared the runtime and area performance of Base-
line Un/DoPack to the following strategies: Multiregion
Un/DoPack, Fine-Grained Un/DoPack, and the Congestion-
Model Multiregion Un/DoPack. We also performed exper-
iments which combined the Congestion-Model Multiregion
Un/DoPack approach with a congestion-aware placement tool.

A. Previous Methods

Our results show that of all the methods tested, the Fine-
Grained approach produces the best results in terms of area
growth; the increase in area is reduced by 30%, when com-
pared to Baseline Un/DoPack. However, this had a large
runtime penalty; due to the small number of CLBs inserted
at every iteration, many iterations are needed, especially for
lower target channel-width constraints. The runtime increases
accordingly. Multiregion Un/DoPack, attempted to reduce run-
time by depopulating multiple regions simultaneously, while
inserting whitespace proportional to the peak congestion value
of a region. As expected, Multiregion Un/DoPack was able

5

to outperform the runtime of Baseline Un/DoPack, improving
runtime by up to 6x. Area performance was also improved in
general. Total area was improved by up to 17.5% over Baseline
Un/DoPack. However, unlike Fine-Grained Un/DoPack, which
consistently improved area results, the Multregion version also
produced worse area results, inflating area up to 32% more
than Baseline Un/DoPack.

B. Multiple Region Depopulation with Congestion-Model
Driven Whitespace Insertion

Figures 2 and 3 show examples of typical results. Shown is
the area and runtime of other methods compared to Baseline
Un/DoPack. Area is measured as the total transistor area of the
logic and routing of the CLBs used. This captures the effect of
successfully reducing the channel width as well as the effect
of using more CLBs after depopulating. Area is calculated
in the same way as VPR [7], where the layout area of an
individual transistor is expressed in units of minimum-width
transistor areas. Runtime figures presented are normalized the
the maximum MRCW for the circuit. A value of 0.6 on the
x-axis means that the final routed channel width is reduced by
40%.

Results for other circuits were similar to circuit stdev004.
In situations where the maximum MRCW is large (close to
1.0), the performance of all approaches will be similar. This is
because only a small number of regions need to be depopulated
for the circuit to become routable. Therefore at these large
channel width constraints, the number of iterations required for
each approach is similar, and so the runtime is also similar. As
the maximum MRCW is lowered, Baseline and Fine-Grained
Un/DoPack perform less depopulation at each iteration than
the Multiregion or Congestion-Model Multiregion approaches.
This allows our approach to have a significant speedup at
lower maximum MRCWs. In addition, our Congestion-Model
Multiregion approach reduces the over-depopulation of regions
and area performance is improved even at low target channel
widths.

Overall, results show that with CMR Un/DoPack, runtime is
reduced significantly while area performance is also favorable.
Our runtime results are comparable to Multiregion Un/DoPack
and we are able to outperform the runtime of the Multiregion
approach in some instances. More importantly, the area per-
formance of the Congestion Model Multiregion version are
better than Multiregion Un/DoPack on a consistent basis. Area
performance, was worse than Baseline Un/DoPack in a very
few instances, up to 6.3%. Using this approach, we are able
to obtain up to 5.5x speedup over baseline Un/DoPack and an
area reduction of up to 20% over baseline Un/DoPack.

Figure 4 illustrates the area increase and runtime increase
of different schemes when compared to Baseline Un/DoPack.
Each data-point compares the runtime and area of a particular
scheme for a circuit and channel width constraint, normalized
to Baseline Un/DoPack. Data points for all five benchmark
circuits at all channel-width constraints [9] are shown in
Figure 4. We note that CMR Un/DoPack improves both
runtime and area simultaneously, unlike Fine-Grained and

Fig. 2. Stdev004 - Area Comparison with Baseline Un/DoPack - circuit
stdev004

Fig. 3. Runtime Comparison with Baseline Un/DoPack - circuit stdev004

Multiregion Un/DoPack. Fine-Grained Un/DoPack achieves
the best area at the expense of runtime while Multiregion
Un/DoPack improves runtime at the expense of area. In some
situations, CMR Un/DoPack may perform worse than Baseline
Un/DoPack in runtime and area. This is because at larger
channel-width constraints, the number of Un/DoPack iterations
and the amount of whitespace insertion needed is similar for
different schemes. Therefore, noise in the results can account
for the performance difference in these cases.

C. Congestion-Aware Placer

Results show that the inclusion of a congestion-driven
placement tool can further improve the Un/DoPack approach.
Figures 5 to 7 illustrate that combining CMR Un/DoPack
with a congestion-aware placer, consistently improves area.
The CMR Un/DoPack curves shown in Figures 5 to 7 are

6

Fig. 4. Area and Runtime Tradeoff Comparison Across all Benchmark
Circuits and Channel-Width Constraints

the same as that shown in Figures 2 and 3. Although the
congestion-aware placement tool cannot by itself reduce the
channel-width more than is possible with the Un/DoPack
flow, when congestion-aware placement is combined with the
CMR Un/DoPack approach, we are able to further obtain area
improvement. This improvement can be significant, up to 25%,
as shown in Figure 6. This illustrates that the inclusion of
local congestion-driven techniques can further improve the
Un/DoPack approach. In this work, the chosen congestion-
aware placement method increased runtime significantly. We
leave the implementation of a faster congestion-aware place-
ment approach for future work.

VI. CONCLUSION AND FUTURE WORK

In this paper we show that we are able to effectively improve
the performance of the Un/DoPack flow in area and runtime,
by effectively utilizing congestion information. This work
presented methods to better select congested regions on an
FPGA and calculate the amount of depopulation required at
each iteration. Our Congestion-Model Multiregion approach
is shown to improve runtime by a factor of 5.5 times and
reduce area by up to 20%, compared to Baseline Un/DoPack.
In our work, we reduced channel width up to 55%. We
also showed that this CAD flow is complementary to using
a congestion-aware placement method. The addition of a
congestion-aware placement tool had positive effects on the
overall area performance of Un/DoPack.

This work shows that an approach which utilizes spatial
congestion information can be effective at determining how
to depopulate. This work can be extended by considering the
effects in subsequent iterations such as the influence of neigh-
boring regions. Further consideration of other congestion-
aware techniques should yield additional benefits.

ACKNOWLEDGMENT

The authors would like to acknowledge Altera Corporation
and the Natural Sciences and Engineering Research Council of
Canada (NSERC) for funding this work. They would also like
to thank David Grant and Usman Ahmed for their assistance
and feedback.

REFERENCES

[1] M. Tom, D. Leong, and G. Lemieux, “Un/DoPack: re-clustering of
large system-on-chip designs with interconnect variation for low-cost
FPGAs,” in IEEE/ACM International Conference on Computer-Aided
Design. San Jose, California: ACM, 2006, pp. 680–687.

[2] A. DeHon, “Balancing interconnect and computation in a reconfigurable
computing array (or, why you don’t really want 100% LUT utilization),”
in ACM/SIGDA International Symposium on Field Programmable Gate
Arrays. Monterey, California, United States: ACM, 1999, pp. 69–78.

[3] R. Tessier and H. Giza, “Balancing logic utilization and area efficiency
in FPGAs,” in International Conference on Field-Programmable Logic
and Applications. Springer-Verlag, 2000, pp. 535–544.

[4] A. Singh and M. Marek-Sadowska, “Efficient circuit clustering for
area and power reduction in FPGAs,” in ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. Monterey, California,
USA: ACM, 2002, pp. 59–66.

[5] E. Bozorgzadeh, S. Ogrenci-Memik, and M. Sarrafzadeh, “RPack:
routability-driven packing for cluster-based FPGAs,” in Asia and South
Pacific Design Automation Conference. Yokohama, Japan: ACM, 2001,
pp. 629–634.

[6] J. Cong and Y. Ding, “FlowMap: an optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 13, no. 1, pp. 1–12, 1994.

[7] V. Betz, J. Rose, and A. Marquardt, Eds., Architecture and CAD for
Deep-Submicron FPGAs. Kluwer Academic Publishers, 1999.

[8] D. Leong and G. Lemieux, “RePlace: an incremental placement algo-
rithm for field-programmable gate arrays,” in International Conference
on Field Programmable Logic and Applications, 2009.

[9] M. Tom, “Channel width reduction techniques for System-on-Chip
circuits in field-programmable gate arrays,” Master’s thesis, University
of British Columbia, April 2006.

[10] A. Gamal, “Two-dimensional stochastic model for interconnections in
master slice integrated circuits,” IEEE Transactions on Circuits and
Systems, vol. 28, no. 2, pp. 127–138, 1981.

[11] W. M. Fang and J. Rose, “Modeling routing demand for early-stage
FPGA architecture development,” in ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays. Monterey, California, USA:
ACM, 2008, pp. 139–148.

[12] D. Yeager, D. Chiu, and G. Lemieux, “Congestion estimation and
localization in FPGAs: a visual tool for interconnect prediction,” in In-
ternational Workshop on System Level Interconnect Prediction. Austin,
Texas, USA: ACM, 2007, pp. 33–40.

[13] Y. Zhuo, H. Li, and S. Mohanty, “A congestion driven placement
algorithm for FPGA synthesis,” in International Conference on Field
Programmable Logic and Applications, 2006, pp. 1–4.

[14] G. Parthasarathy, M. Marek-Sadowska, A. Mukherjee, and A. Singh,
“Interconnect complexity-aware FPGA placement using Rent’s rule,”
in International Workshop on System-Level Interconnect Prediction.
Sonoma, California, United States: ACM, 2001, pp. 115–121.

[15] U. Brenner and A. Rohe, “An effective congestion driven placement
framework,” in International Symposium on Physical Design. San
Diego, CA, USA: ACM, 2002, pp. 6–11.

[16] MCNC, “LGSynth93 benchmark suite,” Microelectronics Centre of
North Carolina, Tech. Rep., 1993.

7

Fig. 5. Comparison of CMR Un/DoPack and CMR + CAP - Circuit Stdev0

Fig. 6. Comparison of CMR Un/DoPack and CMR + CAP - Circuit Stdev006

Fig. 7. Comparison of CMR Un/DoPack and CMR + CAP - Circuit Stdev012

8

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
