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ABSTRACT 

Embedding field-programmable gate array (eFPGA) cores in System-on-Chip (SoC) designs 

provides an attractive option due to potential cost savings afforded by the ability to make post-

fabrication changes.  eFPGAs are available in two forms: as hard IP cores and as soft IP or 

“synthesizable” cores. The hard IP form is limiting because only a small number of fixed-size 

and fixed-architecture cores are available, none of which may be optimal in terms of area, power 

or delay for a given SoC application. A purely soft IP form of programmable logic would 

remove this restriction and enable significant opportunities for architecture customization. 

Previous research has described a Soft eFPGA methodology which uses the ASIC design flow to 

create small amounts of programmable logic using standard cells. Although highly flexible and 

easy to use, this approach incurs significant penalties in layout area, power and delay due to its 

use of generic standard cells.  This paper illustrates that it is possible to stay within the ASIC 

flow and still reduce a significant portion of this overhead by: (1) using a structured layout, (2) 

adopting a tile-based architecture, and (3) employing architecture-specific tactical standard cells.  

We call this the Soft++ eFPGA methodology. Using this approach, we achieved area and delay 

improvements averaging  58% and  40%,  respectively, over  the original Soft eFPGA approach. 
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I. INTRODUCTION 

The increasing density and complexity of integrated circuit (IC) designs in deep submicron 

(DSM) technology has led to the emergence of System-on-Chip (SoC) methodologies [1].  The 

primary driver of this paradigm shift is productivity improvement through Intellectual Property 

(IP) reuse, where pre-designed and pre-verified IP blocks are used to construct large complex 

chips. Unfortunately, this has also resulted in significant increases in the cost of ICs due to 

corresponding increases in engineering and mask costs on the order of tens of millions of dollars 

[2]. As a result, designers are pursuing software and hardware methods to build programmable 

SoCs and avoid the extra cost of chip re-spins. For example, a programmable SoC can be used to 

implement feature enhancements, functionality improvements, standards updates or perhaps to 

fix design errors that are caught after chip tape-out [3]. Such flexibility can help to amortize chip 

development costs over several design derivatives. 

Embedded FPGAs (eFPGAs) have emerged as a natural hardware solution to this growing 

challenge because they allow logic functionality to be changed after fabrication. Such cores are 

generally suitable for small and medium embedded functions such as processor accelerator 

functions to speed up embedded software, data encryption circuits that may need to be updated 

from time to time for security, and also I/O interface protocols for data communication [4]. 

Despite the potential applications and cost benefits of eFPGAs in SoC design, their 

commercial success has been limited by a number of issues. The biggest issue is the high area, 

power, and delay overhead that programmable logic architectures generally incur. Although the 

same issues exist in stand-alone FPGA chips, the implications for eFPGAs are more troublesome 

because their intended applications are generally in high-performance SoCs with stringent area, 

speed, and power budgets. There is also an additional source of inefficiency due to the limited 

 2 



offerings in size (logic, interconnect, and embedded memory capacity) and architecture (e.g., 

logic resources based on lookup tables or product terms) of such cores.  Furthermore, vendors 

typically include excess resources in each core to accommodate a broad range of targeted 

applications.  Unfortunately, this “one-size-fits-all” philosophy introduces the likelihood that 

resources will be left unused (or under-utilized) by an application. Unused resources effectively 

increase the area, speed, and power overhead of using eFPGAs in SoCs. 

Recent work [5][6][7] has focused on ways to make eFPGA customization relatively 

inexpensive. Using the Soft eFPGA approach described in previous work [6], it is possible to use 

the ASIC flow and standard cells for on-demand creation of programmable logic cores tailored 

to a specific application. Although this new approach makes it possible to significantly cut logic 

and routing overcapacity, its exclusive use of CMOS standard cells incurs a significant area, 

power and delay penalty that offsets any benefits. For example, the wide fan-in multiplexers in 

Soft eFPGAs are implemented using static CMOS logic gates [6][8] which are inefficient for this 

purpose. Furthermore, the configuration memory within these cores (which accounts for almost 

half the programmable logic core area [8]) is implemented using standard cell flip-flops rather 

than more area-efficient SRAM cells. 

In this work, we investigate improvements to automatic generation of programmable logic 

fabrics using the ASIC flow. Our initial work in this area [17][22] demonstrated the viability of 

the approach. Here, we provide details on the methodology, circuit and layout aspects to support 

the approach. Specifically, we report the effectiveness of tactical standard cells [9] in the design 

of eFPGAs. Additionally, we describe a modified ASIC flow approach for the design and 

implementation of such fabrics. We define our use of tactical cells and a structured (tile-based) 

layout as the Soft++ eFPGA approach.  This leads to a much more efficient way of generating 
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programmable fabrics, yet still retains the strengths and familiarity of a traditional ASIC-based 

design flow. 

This paper is organized as follows: Section II describes the hard and soft approaches in 

further detail. Section III details the architecture, circuit techniques, and ASIC flow that are used 

to implement Soft++ eFPGAs. Section IV presents key results and comparisons with other 

approaches including Soft eFPGA.  Conclusions are provided in Section V. 

II. BACKGROUND AND RELATED WORK 

While eFPGAs can potentially afford designers a tremendous amount of flexibility, the 

significant overhead associated with this approach makes them unattractive. For example, the 

area of FPGAs can be 40X higher, critical path delays can be 3X to 4X slower, and power 

dissipation is roughly 12X higher compared to an equivalent ASIC [11]. Consequently, there has 

been a recent increase in research [5][6][7][12][13] to improve the quality of automatically 

generated eFPGA layouts. These efforts attempt to use domain-specific knowledge to build 

customized FPGA architectures and layouts that are optimized for a given application. It is 

important to note that manual generation of such programmable fabrics is prohibitively time-

consuming, making auto-generation essential. In one research effort [13], a new custom CAD 

flow and toolset were developed to generate FPGA layouts. Our belief is that if the generation 

process uses existing FPGA and ASIC design flows, rather than new custom flows, eFPGAs 

would be more accessible to mainstream SoC designers. 

There are two main phases in the design and implementation of an embedded FPGA: 

architecture determination and architecture generation. The first phase, which is not the focus of 

this work, involves evaluating a wide range of possible eFPGA architectures to meet the 

area/delay/power requirements when implementing user logic circuits. This second phase 
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involves creating a layout implementation from the architecture parameters determined in the 

first stage. It is this latter phase that is the focus of this paper. 

In the IC industry, Hard eFPGAs are available from some vendors in the form of a final hard 

layout as IP [14][15]. In this case, for practical reasons, the vendors offer a fixed inventory of 

architectures which are determined to be suitable for a very wide range of possible applications.  

For example, Actel’s Varicore [14] is offered only in sizes of 512, 1024, 2048, and 4096 four-

input LUTs. While the vendor focuses effort on producing extremely dense layouts, it is likely 

that the limited architecture inventory contains significant overcapacity in logic and/or routing 

for specific applications. 

More recently, a new approach for Soft eFPGA design was proposed [6][16] where the user 

can generate their own eFPGA using a high-level parameterized description of the architecture, 

from which a final layout is generated. In this case, there are a wide range of possible 

architecture instances and the most suitable one can be selected. This eliminates overcapacity 

problems, but it is inefficient because the synthesized architecture must be implemented in 

standard cells. 

It is also possible for a Custom eFPGA design to be pursued. In this case, similar to Soft 

eFPGA, the user also generates a tailored eFPGA architecture instance. However, the user must 

employ additional custom layout effort or specialized layout tools such as [13] to obtain a more 

dense layout. This requires the expenditure of additional resources, which may or may not be 

worth the effort and expense. 

In this paper, we detail the Soft++ eFPGA design flow. This improves upon the Soft eFPGA 

design flow by selectively employing one strength of the Custom eFPGA flow, namely the use of 

custom layout in the limited form of tactical standard cells, but avoiding its weakness by 
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avoiding the need for new layout tools or extended layout effort. Although the use of tactical 

cells to improve the quality of ASIC designs is fairly well-known [9], there have been few 

attempts to apply these same techniques to programmable logic fabrics. The improved flow also 

addresses a weakness of the Soft eFPGA flow described [8], which is the unpredictability of 

timing paths when there is no structure in the eFPGA layout. 

III. SOFT++ eFPGA DESIGN APPROACH 

In this work, two key areas were identified to improve Soft eFPGAs. First, circuit level 

optimizations are used to reduce the area, power and delay overhead that results from the 

widespread use of ASIC standard cells. Second, a structured layout strategy is used whereby a 

single eFPGA tile layout is created using the ASIC flow and then replicated to form the fabric. 

We define the improved approach which embodies both these two features as the Soft++ eFPGA 

approach. 

A.  The eFPGA Architecture 

To implement the improvements listed above, it was necessary to select an architecture that 

is amenable to tactical cells and a structured layout. In prior work [7] [8][16], it was noted that 

the ASIC tools had some difficulty with the extremely large number of combinational loops that 

naturally exist in FPGA architectures. To avoid these problems, new directional architectures 

[7][16] were introduced to prevent such loops from ever occurring. In these architectures, signals 

could only travel in one direction with absolutely no chance for feedback loops. As a result of 

missing loop-back paths, these architectures were unable to implement sequential circuits. 

However, these loops are artificial; they only exist if the FPGA contains an invalid program. 

Once a valid programming configuration is loaded, these loops should not exist.  
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Our recent work [20] has shown that it is possible to overcome the difficulties of using ASIC 

tools with architectures that contain combinational loops. This allowed us to revert back to the 

popular island-style FPGA architecture and still use the standard ASIC flow for eFPGA 

generation. The freedom to implement any architecture in an eFPGA is significant: it allows one 

to choose the most efficient architecture available for the intended application or applications 

without any constraints. For example, it provides the ability to leverage the numerous 

architectural studies and CAD tools available for island-style FPGAs, to customize and 

depopulate these architectures as needed, or to invent completely new ones which are highly 

tuned to the application. 

Figure 2(a) shows the island-style architecture [9] as a 2 × 2 array of tiles surrounded by a set 

of W vertical and W horizontal routing tracks. The 4 tiles highlighted in Figure 2(a) are 

comprised of a configurable logic block (CLB) and a switch block (SBK).  Figure 2(b) shows 

logic and routing details of one such tile. The highlighted rectangular regions in Fig. 2(b) are the 

CLB and SBK, respectively. 

W

W

 

      (a) Portion of eFPGA fabric    (b) Single eFPGA tile 

Figure 2: A 2 × 2 island-style eFPGA 
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Each tile also contains one buffer per track, called track buffers, to drive signals from the 

switch block into two adjacent CLBs (above and below, or left and right) via the input 

multiplexers labeled G in Figure 2(b). Within the CLB are basic logic elements (BLEs). The 

BLEs are mainly comprised of a LUT, a flip-flop and output multiplexer H. Multiplexer M is 

used to select which CLB input or BLE output (output of H) drives a LUT input. Some key 

parameters for this architecture are: array size (D × D), LUT input size K, the number of LUTs 

per CLB N, and routing channel width W.  

The type of architecture and parameters just described are easily modeled in the VPR 

toolset developed for FPGA research [10]. The tools accept as input a user circuit and an 

architecture file. The user circuit is technology-mapped into K-input LUTs, packed into CLBs 

containing N LUTs, placed on a D × D array of CLBs, and then routed. The architecture file 

includes the above parameters, plus additional process-related information used to compute 

delays. The output of VPR consists of a fully placed and routed solution, the channel width 

required to complete routing W, the estimated layout area of the architecture, the critical-path 

delay of the user circuit, and a listing of the critical paths. This information can be used to select 

the best architecture for the user logic circuit. 

B. Suitable Locations for Tactical Cells  

A tactical cell is simply a hand-crafted cell to be stored in the standard cell library and used for 

specialized applications. An area breakdown of a Soft eFPGA is shown in Figure 3. The largest 

contributors to area are configuration memory (flip-flops) and multiplexers. They comprise 88% 

of the total area and are not efficiently built using the Soft approach, making them ideal for 

tactical standard cell substitution. The remaining area of 12%, labeled “Other”, includes tristate 

buffers, track buffers, and switch block buffers. Figure 3(b) shows that LUTs and their input 
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selectors dominate multiplexing area. It is also expected that optimizing generic standard cell 

multiplexers will have a large impact on delay, since they appear in significant numbers along 

most signal paths. 

Flip-flops
46% Multiplexers

42%

LUTs
13%

LUT
Inputs
17%Interconnect

Switches
7% CLB

Inputs
5%Other

12%

Flip-flops
46% Multiplexers

42%

LUTs
13%

LUT
Inputs
17%Interconnect

Switches
7% CLB

Inputs
5%Other

12%

 

                  (a) Overall area distribution     (b) Multiplexer area distribution 

Figure 3: Area breakdown of Soft eFPGAs 

B.1 Details of Tactical Cell Design 

Pass transistor logic is the most area-efficient way to implement large multiplexers. For 

example, Figure 4 shows the implementation of a 4-input multiplexer using (a) standard CMOS 

gates, and (b) pass transistors. The CMOS gate implementation uses 36 transistors while the 

other uses 11 transistors. Hence, there is significant opportunity for area reduction. Also, pass 

transistors should result in lower power and delay because the total switched capacitance is 

reduced. This is why they are routinely used in stand-alone FPGAs. 

We have designed and implemented pass tree multiplexers of various sizes. The pass 

transistors of Figure 4(b) were set to the minimum size for 180nm TSMC process since this 

provided the best area and delay trade-off. The ratio of PMOS to NMOS transistor size in the 

inverter at the output was set to 1:1 for minimum area. In the cases where repeaters were needed 

in the pass tree, we determined analytically (and with SPICE) that a PMOS to NMOS ratio of 
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roughly 1.5 gave the best area, speed and power trade-off. We also determined, in the same 

manner, that repeaters are needed every 4 stages of pass transistors within the multiplexer tree. 

The use of pass transistors results in a degraded output voltage of Vdd – VT. The reduced noise 

margins make the multiplexer cell slightly more susceptible to crosstalk or power supply noise, 

but these can be avoided by careful cell design, e.g., by keeping multiplexer signals in metal 1 

and adding shielding, if necessary. The level restoring PMOS transistor in Figure 4(b) is used to 

ensure a strong high input (Vdd) to the output driver. A weak PMOS device of minimum width 

and twice the minimum length (to prevent node contention) was used. 

 

(a) Static CMOS logic gates   (b) Pass transistor logic 

Figure 4:  Comparison of 4:1 multiplexer implementations  

Multiplexers are used in two different ways in FPGAs. For the majority of multiplexers (such 

as G shown earlier in Figure 2(b)), the select inputs do not need to switch in functional mode 

because they are controlled by program bits (SRAMs). These multiplexers, shown in Figure 5(a), 

do not need large buffers on the select inputs for low delay. However, the select lines of the 

multiplexer used to implement a LUT do switch in functional mode and are timing-critical. For 

this type of multiplexer, shown in Figure 5(b), buffers are needed to ensure that these inputs 

switch quickly. We used logical effort [19][20] and SPICE simulations to size these buffers 

appropriately. 
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      (a) “Regular” multiplexer   (b) LUT multiplexer 

Figure 5:  Critical delay paths for the different multiplexing circuits in an eFPGA 

To reduce flip-flop area, we use standard 6-transistor SRAM cells for eFPGA program 

memory. In FPGAs, SRAMs are unidirectional in that distinct “ports” are used for reading and 

writing to a cell. This is shown in Figure 6, where the input couples through a pass transistor to 

store a new bit value via the write port. The complement value is stored at bitb and serves as 

input to the feedback inverter named charge keeper. The sense inverter is larger since it is the 

input driver in the LUT function table.  

input output

 

Figure 6: SRAM cell transistor sizing for embedded FPGA program memory 

B.2 Details of Circuit Layout 

Multiplexers built from NMOS pass transistor logic require very few PMOS transistors. 

However, in typical standard cell layouts, NMOS transistors are constrained to the lower half of 
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the cell and PMOS transistors to the top half. Since the PMOS area would be mostly empty, we 

create larger p-well regions by reducing the n-well regions in the upper half of the layout 

template. This is illustrated in Figure 7.  

 

              (a) Before n-well cutout   (b) After n-well cutout 

Figure 7: Standard cell layout structure before and after n-well cutout region 

 

 

Figure 8: Double height standard cell layout of a 32:1 multiplexer (2 metal layers) 

 
The resulting area cut-out from the n-well is added to the p-well area, making room for many 

more NMOS transistors.  A small n-well region is still retained for buffer implementation and 

level-restoring transistors. In addition, the n-well region is left along the edges as a guard-band 

to ensure that layout design rules are satisfied with neighboring standard cells [20]. An analysis 

showed that this n-well cutout approach saves an additional 25% in area for multiplexers with 16 
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or fewer inputs. For larger multiplexers, we obtained comparable savings by combining this 

approach with double-height cells, as shown in Figure 8. 

The layout template of a flip-flop and a detailed SRAM layout are shown in Figure 9.  An 

area improvement factor of 2.5X was obtained for this case. For our SRAM layouts, we did not 

employ any special SRAM-specific design rules to further reduce area, but that is certainly 

possible. For compatibility, we also strictly followed our commercial library rules regarding pin 

placement, and the width of power and ground rails, etc. 

 

      (a) Flip-flop (routing only)                (b) SRAM (Detailed) 

Figure 9:  Standard cell flip-flop compared to a tactical cell SRAM 

Table I compares the layouts of our tactical standard cells with functionally equivalent 

structures created from the standard cell library. As mentioned above, the layout of a flip-flop 

from the library is 2.5X larger than our tactical SRAM cell.  An area savings of 3.5X to 7.6X 

was also achieved for pass-transistor multiplexers. In this table, the LUT area includes SRAM 

bits and the multiplexer together, for an overall area improvement close to 4X. Delay 

improvements will be presented later in the context of benchmark circuits. 
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Table I: Layout area and delay savings with tactical cells vs. standard cells 

Cell Total Standard 
Cell Area (μm2)

Tactical Cell 
Area (μm2) 

Area 
Improvement 

Factor 
SRAM bit 61 24 2.5 
8:1 MUX 267 77 3.5 

16:1 MUX 899 146 6.1 
32:1 MUX 2230 293 7.6 

4-LUT 1880 530 3.5 
5-LUT 4180 1060 3.9 

 

C.  Structured Layout Approach 

In previous work [7][16], it was assumed that we could forego the benefits of a structured 

eFPGA design approach for greater architectural and layout flexibility. Consequently, a tile-

based structure was not imposed on the specially-developed directional architectures for Soft 

eFPGA.  As a result, a mismatch existed between the unstructured physical layout obtained from 

the ASIC back-end tools and the structured architectural model assumed by the FPGA CAD 

tools. Because the physical layout dictates the actual RC characteristics of eFPGA resources, it is 

important for the FPGA CAD tools to accurately model this internally during placement and 

routing. Moreover, if assumptions made by FPGA CAD tools about the RC characteristics of one 

resource relative to another do not correspond to the actual layout, the tools may inadvertently 

make suboptimal decisions during resource allocation. This could increase the path delays and 

impact timing negatively.  

The second issue concerns ASIC CAD tool runtime. With our previous unstructured Soft 

eFPGA methodology, we found that the runtime of ASIC tools increased significantly as the size 

of the fabric grew. This happens because eFPGAs (especially those implemented with generic 

standard cells) contain a significantly larger number of nets and logic gates compared to a typical 
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ASIC of the same size. Further, an unprogrammed eFPGA contains an extremely large number 

of uncommitted timing paths (with loops!) that the tools must consider. This unduly stresses the 

tools and causes them to run out of memory rather quickly at certain points in the ASIC flow. 

For example, using a 32-bit version of the CAD tools and a compute server with 5 GB of 

memory, we could only carry out logic synthesis on circuits having a logic capacity of only 400 

equivalent ASIC gates using the Soft eFPGA approach. 

We resolved these issues in the Soft++ eFPGA design flow, as shown in Figure 10, by 

leveraging the regularity and structure that accompanies the island-style architecture.  There are 

two phases in the flow: the first phase, shown in Figure 10(a), generates the architectural 

parameters for the fabric while the second phase, in Figure 10(b), generates the physical layout 

of the fabric. Architecture parameter generation process starts with the RTL description of the 

application circuit(s) to be implemented and uses the VPR flow to estimate area and delay for 

various N, K, W and D of the fabric. VPR’s internal area and delay calculations are known for 

their good fidelity at ranking these parameter settings [10]. These parameters are passed to the 

template of the RTL architectural description of the eFPGA tile. The next step is to carry out 

logic synthesis on a single tile, which can easily be handled by the tools. To size the gates in 

each tile, the timing goals are iteratively tightened in a loop until the fastest results are obtained. 

The tile netlist is now ready for the second phase. 

In the second phase, the top level netlist is constructed using a D × D array of such tiles. This 

array is placed as a structured layout by the floorplanner, followed by the standard steps of clock 

tree routing and power routing. When the final layout is produced for each tile, care is taken at 

the tile boundaries so that the array can be constructed by abutting one tile to another, both 

horizontally and vertically (see Figure 2(a)). The last step is to generate the GDS-II layout for 
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the entire array. 
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       Figure 10:  A Soft++ eFPGA flow based on a structured physical design strategy  

The result of layout synthesis of a 14 × 14 array using the Soft++ flow is shown in Figure 11. 

Each tile in the array has an identical layout, except for the edge tiles. This is in stark contrast to 

the original Soft flow where one tile can be scattered over a region of the layout. One such 

fragmented tile is shown in Figure 12 in the shaded area (light). Clearly the timing of such a tile 

is difficult to predict in advance and may lead to longer delays. In fact, we observed an average 

critical-path delay savings of 7% across a subset of our benchmark circuits “programmed” into 

the fabric due to the structured layout strategy of Figure 11 over the unstructured layout of 

Figure 12. In some benchmarks, the location of the critical path was the same in both fabrics, 

implying the delay improvement was entirely due to physical layout differences. 
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      Figure 11 : Structured layout  (14x14)            Figure 12 : Unstructured  layout (1 tile) 

Compared to the flat synthesis approach used in the Soft flow, our “bottom-up” hierarchical 

approach also increases the capacity of fabrics that can be synthesized by at least an order of 

magnitude (from 400 equivalent ASIC gates to over 4000). This is possible because synthesis is 

divided into more manageable portions, which ultimately cuts the demand on memory and run-

time. The structured layout approach used in the Soft++ flow also reduced CAD runtime 

significantly for physical design. For example, the layout generation for the 14 × 14 array shown 

in Figure 11 took roughly 3 hours. The layout of the same circuit required approximately 6X 

longer (17.5 hours) to complete using the original Soft flow. Runtime results were measured on a 

Sun Blade 1000 containing a 900MHz UltraSPARC-III processor and 5GB of memory. 

IV. EXPERIMENTAL RESULTS 

In this section, the area and delay improvements from the use of structure and tactical cells is 

presented across several benchmark logic circuits. We determined a suitable eFPGA architecture 

for each one in VPR and processed the architecture through the Soft++ eFPGA design flow. For 

the eFPGA designs, the 180nm (TSMC) node was used to perform comparisons, but the results 

were also validated using STMicroelectronics 90nm technology [22]. 
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In total, we used 17 benchmark circuits. First, to compare against the Soft eFPGA and 

custom flows, we used the 9 MCNC [18] benchmarks shown in Table I.  Seven of these nine 

circuits range in size from 56 to 200 4-LUTs while the two largest ones, ex5p and apex4, are 

comprised of 1112 and 1340 4-LUTs, respectively. Second, to compare against a Hard eFPGA 

library, we added several more circuits that were slightly larger, including two encryption 

circuits (Rijndael and Twofish) from [12], five circuits from OpenCores.org [21], and FHK, a 

proprietary circuit from a Bluetooth core [1]. 

A.  Soft++ versus Soft and Custom eFPGAs 

To evaluate the impact of our tactical cells on area, we first implemented an island-style 

fabric using the Soft eFPGA flow and generic standard cells, and monitored the total layout area. 

The area contribution of each cell and/or cell group was calculated. Next, we replaced these cells 

with their tactical standard cell equivalents and then recalculated the eFPGA area based on these 

substitutions. This produced the area required to implement the same circuit using the Soft++ 

eFPGA flow. 

A per-circuit breakdown of results is given in Figure 13. The results in this figure are 

normalized relative to the area of a Custom eFPGA that implements the same architecture. The 

custom areas were obtained from VPR, which produces area estimates in units of number of 

minimum-sized transistor area equivalents. We obtained a physical area by multiplying this 

number with the size of a minimum-size transistor in our target technology; this produces an 

extremely optimistic layout area estimate for Custom eFPGAs since it assumes transistors are 

placed as densely as possible with no “layout overhead”.  The Soft++ flow provides an average 

area reduction of 58% (2.4X improvement), although it is still roughly 2.8X more expensive than 

the custom layout approach.  
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Soft   eFPGA Fabric                    Soft++   eFPGA Fabric                 

 

Figure 13: Area comparison of Soft, Soft++ and Custom eFPGAs  

 There are ways to further close the gap between Custom and Soft++. For example, the 

SRAM cell used in our Soft++ flow uses standard logic design rules and requires a layout area of 

24μm2. Aggressive SRAM cell layout would produce single-cell sizes between 9.7μm2 [19] and 

5.7μm2 [9], or 2.5X to 4X smaller than ours. Therefore, if we assume a 2X improvement to our 

SRAM cell layouts and carefully compute area, the Soft++ eFPGA improves to 1.6X larger than 

full-custom layouts. Furthermore, our experience has suggested the VPR area estimates are 

somewhat optimistic so Soft++ may be competitive with custom if a detailed comparison is 

carried out. 

 We should also note that enormous manual layout efforts are required to produce a Custom 

or Hard eFPGA, making them less attractive. On the other hand, our proposed approach makes it 

possible to use standard ASIC tools to automate most of the flow while producing reasonably 

efficient results. In Section IV.B, we will present results showing that Soft++ fabrics can be 

more efficient than Hard eFPGAs due to a limited selection of available Hard eFPGA cores. 

To measure critical path delay, netlists for Soft and Soft++ eFPGAs were “programmed” 

using bitstreams computed from VPR. This programming information was applied in PrimeTime 
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using timing path exceptions. Detailed analysis has shown that the critical path locations 

reported by PrimeTime after programming are often identical to VPR timing reports [20]. 

Furthermore, the critical path delays were also very similar, despite VPR assuming a custom 

eFPGA layout.  

Soft   eFPGA Fabric                                        Soft++   eFPGA Fabric                

 
Figure 14: Delay comparison of Soft, Soft++ and full-custom eFPGAs 

Figure 14 provides a comparison of the three approaches. It shows an average delay 

reduction of 40% due to the use of tactical standard cells alone. Combined with the savings from 

structured layout, this result places Soft++ eFPGA delays within 7% of full-custom.  This is a 

significant result as it demonstrates that the ASIC flow can be used to generate programmable 

fabrics that are competitive with custom designed fabrics. 

B.  Soft++ versus Hard eFPGAs 

While the area penalty of Soft++ fabrics is still troublesome, we now demonstrate that 

they can be more area efficient than Hard eFPGAs depending on the application and the Hard 

eFPGA library. We use a representative Hard eFPGA library shown in Table II, which is based 
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on data in [14] and [15]. The first column provides a label that will be used to reference the 

corresponding hard IP core. The remaining columns list the attributes of each core. 

Table II:  Available Hard eFPGA library in 180nm technology 

eFPGA 
Device 

Fabric 
Parameters
N, K, Size 

Equivalent 
ASIC Gates 

Equivalent 
FPGA 4-LUTs 

Available 
I/O 

V18L2X1 4, 4, 2 x 1 5,000 512 448 
V18L2X2 4, 4, 2 x 2 10,000 1024 640 
V18L4X1 4, 4, 4 x 1 10,000 1024 704 
V18L4X2 4, 4, 4 x 2 20,000 2048 896 
V18L4X4 4, 4, 4 X 4 40,000 4096 1280 

 

For the selected benchmarks to follow, we first used the VPR flow to obtain the number of 

CLBs needed to implement each circuit in an island-style eFPGA with N=4 (cluster size) and 

K=4 (LUT size).  Based on the number of CLBs required by VPR to implement each application 

circuit (usually less than the total number of CLBs), we selected the smallest hard eFPGA in 

Table II that would accommodate each circuit by itself.  

In the Soft++ approach, it is possible to determine a priori the best eFPGA values for 

parameters N, K and D for a target application. Using these parameters and the Soft++ ASIC 

flow in Figure 10, we generated customized eFPGA fabrics using our tactical standard cells. This 

fabric size was compared against the size selected for the hard core implementation. The results 

are shown in Table III.  

The first column lists each of the benchmark circuits. The second column shows that the best 

set of architectural parameters (using the area-delay product as a metric) varies depending on the 

application. The next column provides the area of the Soft++ fabric that fits the benchmark. 

Next, the smallest hard core that accommodates the same benchmark is provided using the labels 
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from Table II. In the last column, we compute the area ratio of the generated Soft++ eFPGA 

fabric and the most suitable Hard eFPGA core. 

Table III: Area comparison of our Soft++ approach versus a Hard eFPGA library 

Application 
Circuits 

“Best” Soft++
N, K, DxD 

Soft++ 
180nm Core 
Area (um2) 

“Best” 
180nm Hard 

eFPGA 
fromTable II 

Soft++ 
Area / 

Hard Area 

FHK 5, 5, 6x6 1.74E+06 V18L2X1 0.3  
Cordic CLA 10, 4, 7x7 4.48E+06 V18L2X1 0.7  
I2C master 8, 5, 7x7 4.34E+06 V18L2X1 0.7  

Cordic RCA 4,4,12x12 4.64E+06 V18L2X2 0.4  
UART 7, 5,14x14 1.73E+07 V18L4X2 0.8  
SPI 6, 4,18x18 2.37E+07 V18L4X2 1.1  

Twofish 2, 5, 30x30 2.58E+07 N/A 0.4  
Rijndael 2, 5, 33x33 2.05E+07 V18L4X4 0.7  

 

Based on this analysis, the Soft++ approach outperforms the Hard eFPGA approach on 

all but one circuit, namely, the Serial Peripheral Interface (SPI). This is an important result since 

it provides evidence that Soft++ cores can indeed be as efficient as hard cores and often even 

more efficient, if the application and the limited hard core selection are taken into account. Note 

that there was no allowance given in the Soft++ results for further increases in size of the 

application circuits. In practice, a margin of safety would be added to the fabric for future 

growth. On the other hand, none of the Hard eFPGAs in the library were large enough to 

accommodate the “twofish” encryption circuit, even though it contains far fewer than 40,000 

equivalent ASIC gates (the capacity of the largest Hard eFPGA core reported in Table II). In this 

case, a larger core is needed from the vendor. However, our approach was able to handle this 

benchmark quite easily. 

V. CONCLUSIONS 

To summarize, the improved Soft++ approach uses a structured layout, tactical cells and an 

island-style architecture to provide significant improvements over the original Soft approach. An 
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average area improvement of 2.4X and average delay improvement of 1.6X were obtained on a 

set of benchmark circuits (using the same architecture). The Soft++ approach described here 

makes practical the synthesis of eFPGAs that are at least an order of magnitude larger in capacity 

than the original Soft eFPGA approach. These Soft++ eFPGAs were shown to be within a factor 

of 3 in layout area to a Custom eFPGA, and had comparable delays. Furthermore, the final 

Soft++ fabrics were shown to be competitive with the Hard eFPGA cores available in industry in 

terms of area.  While it may be possible to make these fabrics even more efficient with a custom 

CAD flow, we believe that it is important to maintain consistency with standard ASIC flows in 

use today. Since the Soft++ approach relies heavily on existing FGPA and ASIC design flows, it 

makes the use of programmable logic much more attractive for future SoC designs, especially as 

designs scale below 90nm CMOS technology. 
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