
Impact of Custom Interconnect Masks on Cost and

Performance of Structured ASICs

by

Usman Ahmed

B.Eng., National University of Sciences and Technology, 2001

M.A.Sc., Ryerson University, 2005

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE STUDIES

(Electrical and Computer Engineering)

The University Of British Columbia

(Vancouver)

April 2011

c© Usman Ahmed, 2011

Abstract

As process technology scales, the design effort and Non-Recurring Engineering

(NRE) costs associated with the development of Integrated Circuits (ICs) is be-

coming extremely high. One of the main reasons is the high cost of preparing and

processing IC fabrication masks. The design effort and cost can be reduced by

employing Structured Application-Specific ICs (Structured ASICs). Structured

ASICs are partially fabricated ICs that require only a subset of design-specific

custom masks for their completion.

In this dissertation, we investigate the impact of design-specific masks on the

area, delay, power, and die-cost of Structured ASICs. We divide Structured ASICs

into two categories depending on the types of masks (metal and/or via masks)

needed for customization: Metal-Programmable Structured ASICs (MPSAs) that

require custom metal and via masks; and Via-Programmable Structured ASICs

(VPSAs) that only require custom via masks. We define the metal layers used

for routing that can be configured by one or more via, or metal-and-via masks as

configurable layers. We then investigate the area, delay, power, and cost trends

for MPSAs and VPSAs as a function of configurable layers.

ii

The results show that the number of configurable layers has a significant im-

pact on die-cost. In small MPSAs (area < 100mm2), two configurable layers result

in the lowest cost, whereas the lowest cost in large MPSAs (area > 100mm2) is

achieved with three or four configurable layers. The lowest cost in VPSAs is also

obtained with four configurable layers. The best delay and power in MPSAs is

achieved with three or four configurable layers. In VPSAs, four configurable lay-

ers lead to lowest power and delay, except when logic blocks have a large layout

area. MPSAs have up to 5×, 10×, and 3.5× better area, delay, and power than

VPSAs, respectively. However, VPSAs can be up to 50% less expensive than

MPSAs. The results also demonstrate that VPSAs are very sensitive to the archi-

tecture of fixed-metal segments; VPSAs with different fixed-metal architectures

can have a gap of up to 60% in area, 89% in delay, 85% in power, and 36% in

die-cost.

iii

Preface

The research presented in this dissertation has also appeared in [28–30]. For each

of these papers, I performed the experiments, and the analysis of the results. The

manuscripts were also prepared by myself. My supervisors, Dr. Guy Lemieux

and Dr. Steve Wilton, provided advice on the methodology, and made editorial

changes to the manuscripts.

Parts of Chapters 3 and 4 have been included in [28–30]. Chapter 5 is based

on [28, 30], and Chapter 6 is based on [29].

[28] U. Ahmed, G. Lemieux, and S. Wilton. Area, delay, power, and cost trends for Metal-

Programmable Structured ASICs (MPSAs). In IEEE International Conference on Field Pro-

grammable Technology (ICFPT), pages 278-284, Dec. 2009.

[29] U. Ahmed, G. Lemieux, and S. Wilton. The impact of interconnect architecture on Via-

Programmed Structured ASICs (VPSAs). In Proceedings of ACM/SIGDA International Sym-

posium on Field-Programmable Gate Arrays (FPGA), pages 263-272, Feb. 2010.

[30] U. Ahmed, G. Lemieux, and S. Wilton. Performance and cost tradeoffs in Metal-

Programmable Structured ASICs (MPSAs). IEEE Transactions on VLSI Systems, Oct. 2010.

doi:10.1109/TVLSI.2010.2076841.

iv

Table of Contents

Abstract . ii

Preface . iv

Table of Contents . v

List of Tables . xi

List of Figures . xiii

Glossary . xvii

Acknowledgements . xix

1 Introduction . 1

1.1 Motivation . 1

1.2 Research Problem . 5

1.3 Research Approach . 7

1.4 Contributions . 8

2 Background and Related Work . 11

v

2.1 Overview . 11

2.2 Structured Application-Specific IC (ASIC) 12

2.2.1 Advantages . 14

2.2.2 Disadvantages . 18

2.2.3 Types . 18

2.3 Prior Work on Structured ASICs 23

2.3.1 Academic Efforts . 23

2.3.2 Commercial Efforts . 28

2.4 Yield Modeling . 28

2.5 CAD for FPGAs and CBICs . 31

2.5.1 Placement . 31

2.5.2 Routing . 33

2.5.3 Whitespace Insertion . 35

3 Cost Model for Structured ASICs 37

3.1 Overview . 37

3.2 Factors Affecting Structured ASIC Cost 38

3.2.1 Die-Yield . 38

3.2.2 Device Volume Requirements 38

3.2.3 Mask-set Cost . 39

3.2.4 Processing Costs . 39

3.3 Die-cost Formulation . 39

3.3.1 Base Cost . 40

vi

3.3.2 Customization Cost . 42

3.3.3 Prototyping Cost . 42

3.3.4 Good Dies per Wafer (Ngdpw) 43

3.3.5 Die-Cost Equation . 45

3.4 Cost Modeling for Different Structured ASICs 48

3.4.1 MPSA Die-Cost . 48

3.4.2 VPSA Die-Cost . 49

3.4.3 Die-Cost for VPSAs with Single-Via Configurability . . . 50

3.4.4 MPSA and VPSA Cost Trends 52

3.5 Summary . 55

4 Framework and CAD . 57

4.1 Overview . 57

4.2 Architecture Modeling . 58

4.2.1 Logic Fabric . 58

4.2.2 Routing Fabric . 58

4.3 Evaluation Metrics . 59

4.3.1 Area . 59

4.3.2 Delay . 60

4.3.3 Power . 60

4.3.4 Cost . 61

4.4 CAD Flow . 61

4.4.1 Placement and Whitespace Insertion 61

vii

4.4.2 Routing . 66

4.5 Summary . 69

5 Metal-Programmable Structured ASICs 70

5.1 Overview . 70

5.2 Homogeneous Circuits . 71

5.2.1 Technology Mapping . 72

5.2.2 Logic Block Dimensions 73

5.2.3 Performance and Cost Trends 74

5.3 Heterogeneous Circuits . 80

5.3.1 Device Architecture . 81

5.3.2 Technology Mapping . 81

5.3.3 Logic Block Dimensions 82

5.3.4 Performance and Cost Trends 83

5.4 Cost Sensitivity Analysis . 86

5.5 Impact of an Intelligent Whitespace Insertion Algorithm 88

5.6 Summary . 93

6 Via-Programmable Structured ASICs 97

6.1 Overview . 97

6.2 Experimental Setup . 98

6.2.1 Benchmark Circuits and Technology Mapping 98

6.2.2 Logic Block Types and Dimensions 99

6.3 Fixed-Metal Interconnect Fabrics 100

viii

6.3.1 Jumper Fabric . 100

6.3.2 Crossover Fabric . 102

6.3.3 SingleVia Fabric . 102

6.4 Impact of Logic Block Pin Positions 103

6.5 Performance and Cost Trends . 112

6.5.1 Power Results . 113

6.5.2 Delay Trends . 116

6.5.3 Area Trends . 120

6.5.4 Cost Trends . 122

6.6 Limitations of Detailed Routing 124

6.7 Summary . 125

7 Conclusions . 128

7.1 Research Observations . 128

7.2 Contributions . 131

7.3 Limitations . 133

7.4 Future Work . 135

References . 138

Appendices . 151

A Characteristics of MCNC Benchmarks 152

B Logic Fabrics and Pin Positions . 155

ix

B.1 Crossover Fabric . 155

B.2 Jumper20 Fabric . 155

B.3 SingleVia Fabric . 155

C Logic Block Dimensions . 161

D VPSA Performance and Cost Trends 163

x

List of Tables

Table 2.1 Cost comparison of 1M gate design in 130nm [108] 15

Table 2.2 Commercial Structured ASICs 29

Table 3.1 Architecture parameters used in the cost model 46

Table 3.2 Values of parameters used in the cost model 47

Table 3.3 Typical values for the cost model constants 52

Table 5.1 Logic blocks used in experiments 74

Table 5.2 Characteristics of eASIC benchmarks 83

Table 5.3 Characteristics of packed eASIC benchmarks 83

Table 6.1 Logic blocks used in experiments 100

Table 6.2 Pin position schemes used in the experiments 112

Table 7.1 Summary of MPSA and VPSA trends 130

Table A.1 MCNC benchmarks: primary inputs and primary outputs 153

Table A.2 MCNC benchmarks: number of logic blocks 154

Table A.3 MCNC benchmarks: number of nets 154

xi

Table C.1 Minimum block sizes . 162

Table C.2 Maximum block sizes . 162

xii

List of Figures

Figure 2.1 The Structured ASIC concept 13

Figure 2.2 Jumper-based interconnect fabric 20

Figure 2.3 Fine-grained logic block . 21

Figure 2.4 Different possibilities for medium-grained logic block 22

Figure 2.5 Impact of higher-level configuration-vias on routability 23

Figure 2.6 Logic block proposed by Ran and Sadowska [94] 24

Figure 2.7 Logic and interconnect architecture for VPEX [31] 27

Figure 3.1 Core, pad and scribe area . 44

Figure 3.2 Cost trends for MPSAs . 53

Figure 3.3 Cost trends for VPSAs . 53

Figure 3.4 Yield and die-cost (total CBIC volume = Vc) 55

Figure 4.1 Logic block modeling . 58

Figure 4.2 CAD flow . 62

Figure 4.3 FPGA and ASIC placers: wirelength and runtime comparison 64

Figure 4.4 FPGA and ASIC Placers: whitespace insertion 65

xiii

Figure 5.1 Area, delay, and power trends for MCNC circuits 76

Figure 5.2 MCNC circuits: trends for die-cost at 45nm 77

Figure 5.3 Cost advantage of MPSAs over Cell-based ICs (CBICs) at

90nm and 45nm . 79

Figure 5.4 Basic logic fabric group of the eASIC device 81

Figure 5.5 Packed eASIC circuits: area, delay and power trends 85

Figure 5.6 Die-cost trend for packed eASIC circuits 87

Figure 5.7 Die-cost sensitivity to volume requirements 88

Figure 5.8 Die-cost sensitivity to mask-set cost 89

Figure 5.9 Die-cost sensitivity to number of fixed masks (N f ml
) 89

Figure 5.10 Estimating die-area due to intelligent whitespace insertion . . 91

Figure 5.11 Impact of intelligent whitespace insertion on die-area 94

Figure 5.12 Impact of intelligent whitespace insertion on die-cost 95

Figure 6.1 Jumper-based routing fabric 101

Figure 6.2 Crossover routing fabric . 102

Figure 6.3 SingleVia routing fabric . 104

Figure 6.4 Different schemes for logic block pin positions 106

Figure 6.5 Impact of logic block pin positions on Crossover fabric 107

Figure 6.6 Impact of logic block pin positions on Jumper20 fabric 108

Figure 6.7 Impact of logic block pin positions on SingleVia fabric 109

Figure 6.8 VPSA power trends . 115

Figure 6.9 VPSA delay trends . 117

xiv

Figure 6.10 MPSA and VPSA delay comparison 119

Figure 6.11 VPSA area trends . 121

Figure 6.12 VPSA cost trends . 123

Figure B.1 Trends for 4-input, 2-output logic blocks with Crossover fabric 156

Figure B.2 Trends for 6-input, 3-output logic blocks with Crossover fabric 156

Figure B.3 Trends for 8-input, 4-output logic blocks with Crossover fabric 156

Figure B.4 Trends for 12-input, 6-output logic blocks with Crossover fabric157

Figure B.5 Trends for 14-input, 7-output logic blocks with Crossover fabric157

Figure B.6 Trends for 4-input, 2-output logic blocks with Jumper20 fabric 157

Figure B.7 Trends for 6-input, 3-output logic blocks with Jumper20 fabric 158

Figure B.8 Trends for 8-input, 4-output logic blocks with Jumper20 fabric 158

Figure B.9 Trends for 12-input, 6-output logic blocks with Jumper20 fabric158

Figure B.10 Trends for 14-input, 7-output logic blocks with Jumper20 fabric159

Figure B.11 Trends for 4-input, 2-output logic blocks with SingleVia fabric 159

Figure B.12 Trends for 6-input, 3-output logic blocks with SingleVia fabric 159

Figure B.13 Trends for 8-input, 4-output logic blocks with SingleVia fabric 160

Figure B.14 Trends for 12-input, 6-output logic blocks with SingleVia fabric 160

Figure B.15 Trends for 14-input, 7-output logic blocks with SingleVia fabric 160

Figure D.1 Power trends for 4-input, 2-output logic blocks 163

Figure D.2 Power trends for 6-input, 3-output logic blocks 164

Figure D.3 Power trends for 8-input, 4-output logic blocks 164

Figure D.4 Power trends for 12-input, 6-output logic blocks 164

xv

Figure D.5 Power trends for 14-input, 7-output logic blocks 165

Figure D.6 Delay trends for 4-input, 2-output logic blocks 165

Figure D.7 Delay trends for 6-input, 3-output logic blocks 165

Figure D.8 Delay trends for 8-input, 4-output logic blocks 166

Figure D.9 Delay trends for 12-input, 6-output logic blocks 166

Figure D.10 Delay trends for 14-input, 7-output logic blocks 166

Figure D.11 Area trends for 4-input, 2-output logic blocks 167

Figure D.12 Area trends for 6-input, 3-output logic blocks 167

Figure D.13 Area trends for 8-input, 4-output logic blocks 168

Figure D.14 Area trends for 12-input, 6-output logic blocks 168

Figure D.15 Area trends for 14-input, 7-output logic blocks 168

Figure D.16 Die-cost trends for 4-input, 2-output logic blocks 169

Figure D.17 Die-cost trends for 6-input, 3-output logic blocks 169

Figure D.18 Die-cost trends for 8-input, 4-output logic blocks 169

Figure D.19 Die-cost trends for 12-input, 6-output logic blocks 170

Figure D.20 Die-cost trends for 14-input, 7-output logic blocks 170

xvi

Glossary

ASIC Application-Specific IC

CAD Computer-Aided Design

CBIC Cell-based IC

DSM Deep-Submicron

DSP Digital Signal Processing

ECO Engineering Change Order

FPGA Field Programmable Gate Array

IC Integrated Circuit

IP Intellectual Property

ISPD International Symposium on Physical Design

LUT Look-Up Table

MCNC Microelectronics Centre of North Carolina

xvii

MPSA Metal-Programmable Structured ASIC

NRE Non-Recurring Engineering

OPC Optical Proximity Correction

PLA Programmable Logic Array

PSM Phase Shift Masks

RAM Random Access Memory

RDR Restricted Design Rule

RET Resolution Enhancement Technique

RMST Rectilinear Minimal Spanning Tree

RSMT Rectilinear Steiner Minimal Tree

SRAM Static RAM

SoC System-On-a-Chip

TSMC Taiwan Semiconductor Manufacturing Company

VLSI Very Large Scale Integration

VPSA Via-Programmable Structured ASIC

xviii

Acknowledgements

I would like to thank both of my research supervisors, Dr. Guy Lemieux and

Dr. Steve Wilton, for their guidance, dedication, technical insight, patience, and

encouragement. I consider myself very fortunate to have them as my mentors for

the Ph.D. research.

In addition, I would like to thank my external examiner, Dr. Herman Schmit,

and my university examiners, Dr. Alan Hu and Dr. Shahriar Mirabbasi, for pro-

viding valuable comments that helped improve the quality of this dissertation. I

am also thankful to Dr. Res Saleh and Dr. Andre Ivanov for being part of my

supervisory committee.

I would also like to thank Dr. Roberto Rosales and all the other members

of the SoC lab who made my stay at UBC very pleasant. I am thankful to Ali

Bakhoda, Assem Bsoul, Brad Quinton, Christian Grecu, David Grant, Dipanjan

Sengupta, Eddie Hung, Joydip Das, Reza Molavi, Samad Sheikhaei, Scott Chin,

Sohaib Majzoub, and Uthman Al-Saiari.

Finally, and most importantly, I am very grateful to my family—my parents,

my sister, my wife, and my newly arrived son—for their continuous support and

constant encouragement. Thank you all!

xix

Chapter 1

Introduction

1.1 Motivation

Design and implementation of modern Very Large Scale Integration (VLSI) cir-

cuits is a complex process. These circuits are traditionally fabricated using pho-

tolithographic techniques [60, 66, 82, 93]. Photolithography is a process in which

geometric patterns are transferred using ultraviolet light from a photographic mask

to a light-sensitive material placed on the target device. Many such masks are re-

quired to build layers of different materials. These layered geometric patterns

ultimately define the transistors and their interconnect structure. Technology scal-

ing has steadily reduced the sizes of transistors and interconnect wires, improving

performance of the resulting Integrated Circuits (ICs). Small transistors and wires

require smaller feature sizes on the masks. Technology scaling has now reached

a stage where the feature sizes on the masks are much smaller than the wave-

1

length of the light used to expose them. This process, known as subwavelength

lithography, has made the fabrication process even more challenging [67].

Technology scaling has also greatly magnified many of the physical semicon-

ductor imperfections and design challenges which had negligible impact in older

technology nodes. These include variation, leakage, and signal integrity issues

[37, 64, 115]. Variation occurs because the transistors and wires cannot be fabri-

cated to exact specifications; tolerances cannot be scaled as easily as dimensions.

The small transistors have higher leakage current and this increases the power

dissipation even when the device is idle. The signal integrity issues occur when

transition of one signal adds noise to another signal, or causes a transition on

an unrelated signal. Common signal integrity issues include noise coupling [63],

inductance effects [65], and IR drop [48]. All of these problems are commonly

known as Deep-Submicron (DSM) effects and these make the design process very

difficult.

These challenges are being mitigated using several approaches. Resolution

Enhancement Techniques (RETs) are used to cope with subwavelength lithogra-

phy problems [102, 120]. Optical Proximity Correction (OPC) [49, 79, 84, 103]

and the use of Phase Shift Masks (PSM) [75, 78, 80] are two of the commonly

used RETs. In these techniques, geometric layout shapes are transformed before

fabrication of the mask in such a way that the resulting distorted shapes produce

the intended layout shapes. However, these techniques are very time and mem-

ory intensive and significantly increase the cost of producing and inspecting each

mask. As an example, the cost of a 90nm mask-set is 6× the cost of a 180nm

2

mask-set [90].

DSM effects can also be mitigated by using more sophisticated manufacturing

and Computer-Aided Design (CAD) techniques. The manufacturing technology

can provide high- and low-leakage transistors.1 The total leakage current can be

reduced by utilizing low-leakage transistors for less critical parts of the design.

The CAD tools model the physical semiconductor effects at a very detailed level

to detect and reduce signal integrity issues. However, this significantly increases

the runtime and cost of the CAD tools. The use of complicated manufacturing

and CAD techniques have significantly increased the design time and cost; the

total cost to design and fabricate an IC at 90nm in 2005 was $25M, whereas it

was only $4M for 180nm [90]. As a result of these cost increases, access to the

latest process technologies is becoming limited and many designs are still being

implemented using older process technologies; advanced process technologies,

including 90nm and below, accounted for only 49% of Taiwan Semiconductor

Manufacturing Company (TSMC) revenue in 2009 [20].

Cell-based ICs (CBICs) (also known as standard cells) have been the dom-

inant choice for implementing digital circuits for high performance and/or high

volume applications [52, 107, 109]. Designs select cells from a standard cell li-

brary, which consists of pre-formed cells with different logic functions and various

drive strengths. In this way, a CBIC design contains transistors and wires that are

customized to a particular application. Applying RETs and accounting for DSM

1Most modern processes provide high-threshold voltage (Vt) and low-Vt transistors; high-Vt
transistors have low leakage, and vice versa.

3

effects is, therefore, very costly and time consuming.

Field Programmable Gate Arrays (FPGAs) [35, 38] provide one way of reduc-

ing the design time and cost. In FPGAs, all the transistors and wires are prefab-

ricated. This lowers the cost by averaging it across all the customers. Also, since

the device is completely prefabricated, the DSM issues have already been dealt

with by the FPGA vendor. However, there is a significant gap between the power,

delay, and area performance of FPGAs compared to CBICs [74]. Consequently,

FPGAs may not be suitable for applications which require low power, high vol-

ume or high performance. In particular, applications in the growing portable and

hand-held device market often require lower power than what is available in to-

day’s FPGAs, but faster turn-around time than what can be achieved using CBICs.

Structured Application-Specific ICs (ASICs) offer one solution to these prob-

lems [122]. In Structured ASICs, part of the device including transistors and a

few metal and/or via layers are prefabricated, and the remaining layers can be

customized to implement a particular application. This makes Structured ASICs a

good compromise between CBICs and FPGAs — the masks for the prefabricated

portion are shared across all the customers which lowers the cost compared to

CBICs, and the use of custom masks to fabricate the remaining portion improves

the performance relative to FPGAs.

Although Structured ASICs were commercially introduced several years ago,

they have not achieved the traction that many anticipated. There are many possible

reasons for this, including unfamiliar technology, immature CAD, and claimed

advantages which have not yet been concretely demonstrated. We believe that,

4

as technology scaling continues, the advantages of Structured ASICs will become

even more compelling, especially for low-power hand-held applications. When

that happens, we will need optimized architectures, CAD tools, and design flows.

In this research, we take a step in this direction and investigate the cost, area,

delay, and power trade-offs in Structured ASICs.

The key parameter that determines the cost and area of a Structured ASIC is

the number of custom masks required to implement a particular circuit. The cus-

tomization also affects the turn-around time, delay, and power of Structured ASIC

devices. In this dissertation, we focus on the amount of customization required in

Structured ASICs.

1.2 Research Problem

In this research, we seek to answer the following question:

How are the cost and performance of Structured ASICs affected by the number of

custom masks and the number of routing layers?

The custom masks refer to the design-specific metal and via masks, whereas

the routing layers are the metal and via layers in the device that are used to make

connections between different parts of the pre-fabricated portion. The number of

custom masks and the number of routing layers appear to be related; more routing

layers might imply more custom masks and vice versa. However, it is important to

make this distinction because a Structured ASIC device with many routing layers

5

may require only a few custom masks.2

Intuitively, the number of custom masks should be minimized, since this min-

imizes the cost to the designer, and may shorten the turn-around time. On the

other hand, if the device is not flexible enough, the implementation of a circuit on

the Structured ASIC will require more space and possibly be slower and consume

more power than is required. This conflicting criteria suggest that there is an op-

timum number of custom masks. Understanding this trade-off is key to creating

efficient and cost-effective Structured ASICs.

This work is significant for a number of reasons. To the best of our knowledge,

this is the first academic effort to study the custom masks in Structured ASICs

across a range of architectures. Past academic efforts have been limited to fixed

architectures with a fixed number of custom masks. The research is also valuable

to commercial Structured ASIC vendors as they decide the right amount of custom

masks for their Structured ASIC products. In particular, earlier Structured ASICs,

as described in Chapter 2, spanned a very wide range of custom masks from a

single via mask to six metal and six via masks. Therefore, it is very helpful to

validate whether these products offered too much or not enough flexibility for the

desired cost, area, speed, and power performance.

The goal of this dissertation is not to uncover the best specific Structured ASIC

architecture. As a side-effect of answering the above question across different ar-

chitectures, we will gain insight into what makes a good architecture and what

2For example, a device that uses four metal and four via layers for routing may require only a

single custom via mask. Section 6.3.3 describes this in detail.

6

makes a bad architecture. However, the primary focus of this research is to inves-

tigate the impact of the number of custom masks on the cost and performance of

Structured ASICs architectures.

1.3 Research Approach

To answer the research question described in Section 1.2, we employ an experi-

mental approach. Using a CAD flow and a set of benchmarks containing different

types of circuits, we study how the performance and cost of a Structured ASIC is

affected by a change in the number of custom masks and routing layers. Unlike

previous studies, we do not focus on a single Structured ASIC architecture; rather,

we consider a range of potential Structured ASIC architectures. The architecture

space we explore is defined by different types of logic blocks and routing fabrics.

We create abstract models to represent each architecture at a suitable level of de-

tail. Custom CAD tools are then used to map a set of benchmark circuits to each

architecture under consideration. Detailed area, delay, power, and cost models

are then used to evaluate each implementation on each architecture. From these

results, the efficiency of each potential architecture is assessed. Although this

experimental approach relies on models rather than measured device results, it al-

lows us to consider a wider range of architectures than would be possible unless

each potential architecture is laid out and/or manufactured.

An important part of the experimental framework is a detailed cost model

which relates the area and the number of custom masks and routing layers of a

Structured ASIC device to its dollar-cost. The cost model considers the manu-

7

facturing cost of each device, the mask-set cost for a design, and device volume

requirements. The cost model is described in Chapter 3.

Another important part of this research is a CAD flow that allows the com-

parison of architectures with different custom mask requirements. The metrics

used for the comparison include die-cost, area, delay and power. For each poten-

tial architecture, we will use the CAD flow to estimate the cost, area, delay and

power metrics for different possibilities of customization. Chapter 4 describes the

experimental framework and CAD flow in detail.

We then divide Structured ASICs into two categories: one that requires both

custom metal and custom via masks; and the other in which all the metal masks are

fixed and only custom via masks are needed. We define the former class as Metal-

Programmable Structured ASICs (MPSAs), and the latter as Via-Programmable

Structured ASICs (VPSAs). The results for MPSAs and VPSAs are shown sepa-

rately in Chapters 5 and 6, respectively.

1.4 Contributions

The key contributions of the research are as follows:

• A cost model that relates die-area and number of routing layers to Structured

ASIC die-cost. The cost model takes into account mask-set cost, wafer pro-

cessing costs, device volume requirements, die-yield, die-area, and number

of custom masks. It estimates the dollar-cost of a single Structured ASIC

die. Traditionally, for CBICs and FPGAs the area has been used as a proxy

to estimate the cost of the device. However, because of the large mask-set

8

costs, the number of custom masks in a Structured ASIC have a significant

impact on its cost. The cost model allows us to demonstrate that in most

cases, contrary to the popular belief, the area savings due to the availability

of more routing layers does not translate into a cost savings.

• A sensitivity analysis of the Structured ASIC die-cost to various parame-

ters such as device volume requirements and mask-set costs. In terms of

volume requirement, the MPSA die-cost is more sensitive to per-customer

volume (Vc) than total device volume (Vtot); a smaller Vc makes MPSAs

more cost-effective than CBICs. Similarly, increasing mask-set costs also

make MPSAs more economical than CBICs.

• A CAD flow that places and routes a benchmark circuit for a variety of

Structured ASIC architectures. The CAD flow makes use of open-source

CBIC global placement and global routing tools. It includes a custom de-

tailed placer to perform legalization of different types of logic blocks. It also

includes a custom detailed router to perform detail routing on fixed-metal

routing fabrics found in VPSAs. The CAD flow provides area, delay, and

power estimates for a benchmark circuit when implemented on a particular

Structured ASIC architecture.

• Dollar-cost, area, delay and power trends for MPSAs, and VPSAs as a func-

tion of the number of routing layers. The area, delay, and power improve as

the number of routing layers increases for both MPSAs and VPSAs. How-

ever, as the layout area of the logic block increases, the improvement dimin-

9

ishes. In terms of die-cost, small MPSA dies (die-area less than 100mm2)

have the lowest cost with 2 routing layers; the lowest cost in large MPSA

dies (die-area greater than 100mm2) is obtained with 3 to 4 routing layers.

The lowest cost in VPSAs is achieved with 4 routing layers using a single

custom via mask, except when sparse logic blocks (large layout area) are

used. MPSAs are up to 10×, 3.5×, and 5× better than VPSAs in terms of

delay, power, and area respectively. However, in terms of die-cost, VPSAs

are up to 50% less expensive.

These contributions are an important step towards the development of im-

proved Structured ASIC architectures and CAD algorithms. To the best of our

knowledge, the Structured ASIC die-cost has not been directly used as a perfor-

mance metric in the past. The proposed cost model will help to compare the

different architectural choices in future Structured ASICs by considering their

dollar-cost. The CAD flow that has been set up as part of this research can be in-

strumental in the future research related to Structured ASICs. The flow provides

a mechanism to analyze different architectures and different CAD algorithms. In

this way, it will facilitate the development of new Structured ASIC architectures

and more efficient CAD algorithms. Finally, the performance and cost trends that

have been presented in this dissertation provide an insight into various trade-offs

involved in Structured ASIC design. These results can also serve as a baseline

result for future Structured ASIC studies.

10

Chapter 2

Background and Related Work

2.1 Overview

In this chapter, we describe the Structured ASIC concept in detail. We identify two

different methods for configuring these devices and explain some of their advan-

tages in relation to FPGAs and CBICs. We also review prior academic research

and commercial efforts on Structured ASICs.

The Structured ASIC die-cost model described in Chapter 3 makes use of a

die-yield model. We review the basics of this die-yield model in this chapter.

Finally, we review existing open source placement and routing tools. Several

of these tools are a part of the experimental CAD flow used in this work.

11

2.2 Structured ASIC

ICs are multilevel structures with transistors at the bottom and the interconnect

layers on top of the transistors. The interconnect layers are made up of metal

wire segments and vias. Each layer in the IC structure is fabricated using one

or more photo-lithographic masks. Two of the most common IC implementation

technologies are CBICs and FPGAs. In CBICs, all the transistors and intercon-

nect layers are specific for a single circuit implementation. In FPGAs, all the

layers are prefabricated, and the chip is customized in the field by either setting

the state of internal Static RAM (SRAM), flash memory bits, or programmable

fuses/antifuses.

Structured ASICs aim to combine the good features of CBICs and FPGAs. A

Structured ASIC is a generic IC which can be customized to implement any digital

circuit by adding one or more metal layers and/or via layers. A Structured ASIC

vendor produces many such generic ICs and may establish an inventory of chips

in a partially fabricated state, where the top metal and via layers have not yet been

fabricated. A designer who wants to implement a circuit on a Structured ASIC

then provides design information to the Structured ASIC vendor, who customizes

the pre-fabricated chips by adding the extra layers. Some of the extra layers may

be designed by the vendor, while the others may be user-defined. The Structured

ASIC concept is illustrated in Figure 2.1.

Structured ASICs are often seen as a compromise between CBICs and FPGAs,

combining advantages and disadvantages of each design style. CBICs generally

12

IP Blocks (e.g., memories,
multipliers, microprocessors)

I/O Cores Logic Fabric

- All mask layers are customized for a design

Standard-cell ASIC/Cell-based IC

- Most layers are prefabricated, shared by all designs
- User design obtained by customizing only a few
 interconnect layers

Structured ASIC

- All mask layers are prefabricated, shared by all designs
- User design obtained by programming memory cells

FPGA

Interconnect
Layers

Transistor
Layers

Cross-section

Masks are
Used to

Fabricate
Each Layer

Figure 2.1: The Structured ASIC concept

have the best area, delay and power performance. However, there is a large Non-

Recurring Engineering (NRE) cost of $1–3M associated with CBIC design to pay

for a complete set of masks [121]. Thus, despite the small area, they are cost-

effective only when the devices have to be produced in very large numbers (e.g.,

500k units or more [108]). SRAM-programmable FPGAs, on the other hand,

have negligible NRE cost, but they are 3–4× slower, consume 14× more dynamic

power, and are 35× larger than CBICs [73, 74]. The large die-area increases per-

device cost, making them suitable only for applications which have small volume

requirements (e.g., less than 5k units [108]). Many applications have moderate

volume requirements, but they demand better performance and lower per-device

cost than FPGAs. An example is the emerging portable and handheld devices.

Such applications can be addressed by Structured ASICs. Structured ASICs are

1.5–2× slower, and their area overhead is 1.5–3× that of CBICs [87, 121, 122].

13

Just as in the case of modern FPGAs [16–18, 23–25], Intellectual Property (IP)

blocks such as embedded memory, Digital Signal Processing (DSP) blocks and

microprocessors can also be included in a Structured ASIC to improve the perfor-

mance, density and power dissipation.

Structured ASICs are closely related to a previous technology called Gate Ar-

ray technology [36, 57]. Like Structured ASICs, Gate Arrays can be customized

by implementing one or more metal layers. The primary difference is that Gate

Arrays prefabricate only the transistors, whereas Structured ASICs prefabricate

some of the interconnect layers as well. This partial fabrication of the device im-

proves the cost and turnaround time and makes Structured ASICs very attractive

for many applications, especially for the low-power, hand-held devices. In the

following, we examine some of the advantages and disadvantages of Structured

ASICs relative to FPGAs and CBICs in more detail.

2.2.1 Advantages

Low Cost

The most important advantage of Structured ASICs is the low development and

fabrication cost. A cost comparison of FPGAs, Structured ASICs, and CBICs for

a one million gate design in 130nm process is shown in Table 2.1. It can be seen

that FPGAs have a very low NRE cost. However, this only benefits applications

that require small volumes of less than 5000 units (e.g., medical instruments).

For applications that require relatively large volume, FPGAs can be too expensive

because of high per-device cost. On the other hand, the NRE cost for CBICs is

14

Table 2.1: Cost comparison of 1M gate design in 130nm [108]

FPGA Structured ASIC CBIC

Total Design Cost ∼ $165k ∼ $500k ∼ $5.5M

Vendor NRE None ∼ $100k−$200k ∼ $1M−$3M

#Tools Required 2 to 3 2 to 3 6 to 10

Cost of Tools ∼ $30k ∼ $120k−$250k > $300k

#Engineers 1 to 2 2 to 3 5 to 7

Price per chip $220−$1k ∼$30 to $150 ∼ $ 30

Total Unit Cost

(Qty: 1k) ∼ $1000(’03) ∼ $500−$650 $55k

Total Unit Cost

(Qty: 5k) ∼ $220(4Q’04) ∼ $100−$150 $1.1k

Total Unit Cost

(Qty: 500k) ∼ $40(4Q’04) > $21 $11−$20

in the range of $1–3M. This is mainly due to the cost of generating a full mask

set; the average cost of a mask set for a 90nm process when it was introduced was

$2 million [90]. The mask set costs are increasing at a rapid rate, and this makes

the development of a CBIC infeasible for many companies. A Structured ASIC

solution requires the masks for only the top metal layers to be generated. This

significantly reduces the mask cost, which lowers the NRE costs. For the example

design of Table 2.1, the NRE cost for a Structured ASIC implementation is only

10% of a CBIC implementation. Thus, for moderate volume requirements (e.g.,

less than 500k units), Structured ASICs are more cost-effective than both FPGAs

and CBICs.

15

Regularity

Another major advantage of Structured ASICs is their regular structure. The ir-

regular structure of CBICs makes them highly prone to process variation. Process

variation causes chip failures which reduce the yield and increase the per-chip

cost. The main cause of these variations is the use of deep sub-wavelength lithog-

raphy to print the transistor and interconnect layout features which causes distor-

tion in the printed features. This distortion depends not only on the layout of the

feature being printed but also on other features in its neighborhood [120]. OPC is

a commonly-used technique to reduce these distortions. In OPC, geometric lay-

out shapes are transformed before fabrication so that the resulting distorted shapes

are closer to the intended layout shapes [77, 119]. Initially, these transformations

were rule-based, but now OPC is performed using simulation models of lithog-

raphy. This is a very time-consuming and memory-intensive process. The large

number of layout patterns in a typical CBIC makes this very difficult. A Struc-

tured ASIC fabric is built by repeating the same basic logic block design. Thus,

the number of unique features that need to be printed are very limited and OPC

and other RETs can then be efficiently applied.

The regularity also helps with technology scaling. Each cell in the standard

cell library is tuned for a specific speed and power requirement. The cells de-

signed for an old process cannot be used with a new process because of a new set

of design rules. As a result, whenever technology scales, the entire cell library

needs to be rebuilt. This is known as library migration. Building a new library

requires the custom layout of each cell and a careful characterization of each cell’s

16

behavior. This can be a very time-consuming process. Regular circuit structures

simplify this process, since there are only a few basic cells to be designed and

characterized [85].

The regularity of Structured ASICs can thus improve the yield, and reduce the

design effort and design cost compared to CBICs.

Low Power

Leakage in the SRAM cells and interconnect buffers makes it very hard for SRAM-

based FPGAs to meet the power requirements of low-power applications such as

portable and hand-held devices. Also, these devices tend to spend most of their

time in “idle” state, thus they demand extremely low static power dissipation in

addition to low dynamic power [68]. Flash-based FPGAs have been introduced by

Actel to reduce the static power dissipation [8, 15]. However, these FPGAs still

have Flash cells, multiplexers and buffers that are required for re-configurability.

This extra circuitry is not required by Structured ASICs. Although FPGAs con-

sume 14× more power than CBICs [73, 74], Structured ASICs consume much

less, only 2–3× of a CBIC [122]. Thus, low-power applications can potentially

be better implemented on a Structured ASIC.

Fast Turn-around Time

The typical turn-around time (time to fabricate the device once the design has been

completed) for a CBIC is 20 to 24 weeks [87]. Often, CBIC designers require one

or more re-spins before volume production which increases the cost and also af-

fects the time to market. This long period poses a risk of a lost market opportunity.

17

According to International Business Strategies, 3 to 12 months of delay can affect

the sales by 27% to 91% [47]. Structured ASICs, on the other hand, have a much

smaller turnaround time because most of the chip is already fabricated and only

a few masks need to be generated. Also, many of the DSM and signal integrity

issues, which take a significant amount of time to reach closure in standard cell

ASICs, have already been taken care of. Because of these characteristics, Struc-

tured ASICs can improve the time to market by 4 to 6 months [121].

2.2.2 Disadvantages

Structured ASICs have a few disadvantages. Structured ASICs cannot be cus-

tomized in the field. Structured ASICs cannot be reconfigured at zero cost because

of an associated NRE cost. Also, many ICs are developed using pre-designed IP

blocks (e.g., embedded memory, DSP/communication blocks, microprocessors

etc.). In this domain, a Structured ASIC device cannot be used if it does not have

the right mix of IP blocks for a particular application [13]. Finally, the infrastruc-

ture and CAD tools for Structured ASICs are less mature than those for FPGAs

and CBICs.

2.2.3 Types

Structured ASICs can be broadly categorized based on which mask layers need to

be customized. We divide Structured ASICs into two classes:

1. Metal-Programmable Structured ASICs (MPSAs)

2. Via-Programmable Structured ASICs (VPSAs)

18

MPSAs can be customized using metal and via layers, whereas in VPSAs,

all the metal layers are fixed, and the device can only be configured through one

or more via layers. There are different architectural decisions that a Structured

ASIC vendor can make regarding the interconnect and logic fabric of MPSAs

and VPSAs. In the following, we describe some of the possibilities for these

architectural decisions.

Interconnect Fabric

An interconnect fabric is used to make connections between different logic blocks.

In an MPSA interconnect fabric, selected metal and via layers can be customized

to implement a user circuit. This scheme offers most flexibility for routing but

increases the customization time and cost because, in addition to the via masks,

it requires custom masks for each configurable metal layer to be processed (PSM,

OPC etc.), created, and verified. Metal layers are more complex than via layers.

In VPSAs, all metal layers are fixed and only via layers are customizable to

implement a given user circuit. One way to implement such an architecture is

to position the fixed metal segments in different layers orthogonal to each other

to form a crossbar structure. The crossbar is configured by inserting vias at sites

where metal segments in adjacent layers intersect.

There are different ways of designing a fixed-metal fabric for VPSAs. All the

metal segments can either have the same length, or the fabric can contain a mix

of long and short segments. If fully utilized, long segments can improve perfor-

mance; however, if the entire length of the segment is not utilized, the capacitance

19

of the unused portion can result in power and delay degradation. Selecting the

length for the long segments is an important architectural decision for VPSAs.

Similarly, the mechanism for connecting wire segments to adjacent wire seg-

ments in the same layer has different possibilities. The fabric can either use a seg-

ment from an adjacent layer, or use small, dedicated segments known as jumpers

to connect adjacent wires in the same layer. Jumpers can be implemented either

above or below the wires they connect. Figure 2.2 illustrates a jumper-based in-

terconnect fabric. In Chapter 6, the interconnect fabrics used in our experiments

are described in detail.

Routing wires

Jumpers that connects
routing wires above or
below the current layer

Layer 1

Underlying
Logic Blocks

Layer 2

Layer 2 overlaid on Layer 1
Each intersection of
Layer 1 and Layer 2
is a potential via site

Figure 2.2: Jumper-based interconnect fabric

20

It is also possible to fix some of the via layers, in addition to the fixed metal

layers. This makes the fabric more restrictive which could degrade the perfor-

mance of the device. However, such a fabric reduces the device cost since fewer

custom masks are required. We describe one such fabric in Chapter 6.

Logic Fabric

The logic functionality of a particular design is implemented by the logic blocks.

Depending on the granularity of the basic logic cell, there are different possi-

bilities for the logic blocks. One possibility is to design logic blocks using fine-

grained basic gates such as NAND, XOR, flip-flop, buffers, etc. Such logic blocks

have the advantage that they do not need to be configured in any way; all the con-

figuration is done in the interconnect fabric. An example of such a logic block

is shown in Figure 2.3. The highlighted points in the figure represent pins that

connect to the routing fabric and basic gates are drawn instead of actual layout

shapes for clarity.

Figure 2.3: Fine-grained logic block

The use of medium-grained blocks such as Look-Up Tables (LUTs) is another

possibility for building the logic fabric. Unlike fine-grained gates, LUTs need to

be configured to implement a particular logic function. This configurability can

be implemented by connecting the configuration inputs of the LUT to ground or

21

Vdd . There are three different possible ways of configuring these logic blocks: (1)

to use a lower layer via (e.g., between metal-1 and metal-2) to connect the LUT

configuration inputs to ground or Vdd ; (2) to connect the configuration inputs of

the LUT to SRAM cells; or (3) to use higher-level vias (connections between

upper metal layers) to connect the LUT configuration inputs to ground or Vdd .

Each possibility has its own advantages and disadvantages. In the first case, there

are fewer I/Os at the higher levels, however, manufacturing the device only up to

the first few layers may increase both the manufacturing cost and manufacturing

time. The use of SRAM cells in the second case increases the area of logic block.

In the third case, the presence of tall via-stacks can create routability problems

since the metal segments cannot pass through these via stacks. The three different

possibilities for the medium-grained logic blocks are shown in Figure 2.4. The

routability problem posed by using higher-level vias is illustrated in Figure 2.5.

Via Configurable 3-LUT
(with buffered and registered outputs)

Configured using vias in lower layers

SRAM Configurable 3-LUT

Extra Area for SRAM cells

Via Configurable 3-LUT
 (with vias going to top layers)

Configuration pins

Figure 2.4: Different possibilities for medium-grained logic block

A third way of creating logic blocks is to use coarse-grained blocks such as

Programmable Logic Arrays (PLAs). The number of inputs, outputs, and product

terms for the PLA are architectural parameters that are fixed during initial fabrica-

tion. The connections between the AND and OR plane, as well as the connections

22

Via-stacks to Configure
the Logic Block; Metal
segments cannot pass

through these sites

Logic Block I/Os

Figure 2.5: Impact of higher-level configuration-vias on routability

between the PLA and the interconnect fabric can be configured either by making

the connections using lower-level vias or by bringing the configuration points to

higher layers.

2.3 Prior Work on Structured ASICs

2.3.1 Academic Efforts

There has been only a moderate amount of academic research related to Structured

ASICs. In each case, specific logic blocks and routing fabrics have been proposed

and evaluated.

Ran and Sadowska have proposed a VPSA [94–97]. Their proposed logic

block is shown in Figure 2.6. The logic block is made up of Via-Configurable

Cells (VCC), which are composed of vertically aligned transistor pairs and n-/p-

diffusion strips [94]. Metal 1 (M1), M2, and via 1 (V1) layers are used to define

the cell. The M1 and M2 layers are fixed whereas V1 is customizable. Placing

vias at various intersections of M1 and M2 segments allows VCC to implement

23

combinational gates, sequential gates, SRAM cells and different arithmetic units

such as adders and multipliers. Four VCCs are grouped to form a via-configurable

logic block (VCB). The routing fabric is a crossbar structure that is laid on top of

the VCB using M3 and above. All the metal is fixed and only the vias between

the intersecting wires of the crossbar are used to route the circuits. They show

that when a crossbar structure with only M3 and M4 is used for routing, the area

increase is 4x and the delay increase is 1.5x, relative to a standard cell implemen-

tation. They also consider a routing fabric with four metal layers (M3, M4, M5,

and M6) and show that if the configurability is reduced to only V3 (the via layer

between M3 and M4), an area and delay penalty is incurred. This is because some

of the metal in M4 is now dedicated to provide a connection between M3 and

M5/M6, reducing the number of M4 segments available for routing. This results

in an area increase up to 46% and delay penalty up to 25%, compared to the case

when all the via layers (V1–V5) are configurable.

C1

F1

F2

C2

B C EA

A B C D E

D

V C C

Vdd

A B C D E

EDCBA

Gnd

W2

W8

W1

W3
W4
W5

W6
W7

F1

F2
C1 C2

C1 C2

M1
M2
p-diff

n-diff

Contac
t

Via

Poly

(a)

Vdd

Gnd

F1
F2
F3

A B DC

(b)

VCB

BLE

VCC

VCC

V
C

C

V
C

C

t

Figure 2.6: Logic block proposed by Ran and Sadowska [94]

In [92], Pileggi et al. compare a VPSA using LUTs to standard cell designs.

24

Each basic cell in the VPSA fabric consists of a via-programmable LUT, two

input-invertable three-input NAND gates, seven inverters and one flip-flop. This

fabric is improved for enhanced performance and better density by Koorapaty et

al. who proposed a logic block consisting of a XOR gate, a three-input NAND

gate, 2-to-1 MUXes and inverters [71]. The logic block is configured using only

lower-layer vias.

Kheterpal et al. have explored different routing architectures that can be used

with a VPSA [69]. They compared the performance of structured routing and

a via-configurable routing fabric to ASIC routing. In structured routing, metal

segments can be customized but they conform to a strict grid whereas in the via-

configurable routing, the metal segments are fixed and form a crossbar structure.

Experiments were conducted for a process with 6 metal layers where four metal

layers are available for routing. They show that structured routing degrades the

performance by 5% and 6% relative to the ASIC routing solution for a datapath

circuit and a network switch circuit, respectively. In contrast, the performance

loss for via-configurable routing was 24% and 21%, respectively, for the same

two circuits.

Veredas et al. have proposed a MPSA called Zelix [116, 117]. Their goal

is to reduce the large area overhead of FPGAs and not to improve the perfor-

mance. Zelix is based on mask-configurable look-up tables and a regular routing

fabric. The logic architecture has the same topology and gate-level logic elements

as a CLB in the Xilinx Virtex-II Pro FPGA. The switch blocks and connection

blocks utilize fully populated crossbars and are configured by vias. Internal sig-

25

nals, clocks and flip-flop control signals are routed using M1, M2 and M3 layers.

The power grid is implemented in M5. The configuration of Zelix is done by cus-

tomizing M3, M4 and the vias between these layers. The interconnect is based

on length-1 wires and there is a buffer for every wire. It is reported that, with 30

tracks per channel, the Zelix area is 82% smaller than a Xilinx Virtex-II Pro.

Nakamura et al. have proposed a VPSA known as VPEX, which is designed

for electron-beam (EB) direct writing [31, 88]. The VPEX logic block consists of

an exclusive OR and an inverter. The XOR is implemented as NOR and a AOI

(AND-OR-INV) gate. The logic block can implement all the 2-input functions

and some 3-input functions. All the metal layers in VPEX are fixed and the logic

block is configured by the via layer between M1 and M2. The routing is done

using M3 and M4 layers and the via layer between M3 and M4 is used to configure

the routing fabric. Figure 2.7 illustrates the logic and interconnect architecture for

VPEX. The architecture is evaluated against a standard cell implementation for

small circuits such as a full adder and a 4-bit multiplier.

Finally, Chau et al. have proposed a via-programmable logic cell called CULG

[46]. The CULG consists of two complementary NMOS pull-down networks, two

cross-coupled PMOS transistors, and two inverters. The logic block can imple-

ment all 3-input functions and some 4 or 5 input functions. The logic block is

configured using the via between M3 and M4. The performance of CULG is

evaluated against a transmission gate (TG) based logic block and a differential

cascode voltage switch with pass gate (DCVSPG) logic block. CULG requires

fewer transistors than TG and DCVSPG to implement lookup tables with 3 or

26

GND

Vias can be placed at M3
and M4 intersections

NOT
Gate

XOR
Gate

VDD

GND

Long horizontal wires

Long vertical wires

Via-configurable
connections

NOT
Gate

XOR
Gate

NOT
Gate

NOT
Gate

XOR
Gate

XOR
Gate

Figure 2.7: Logic and interconnect architecture for VPEX [31]

more inputs. The power consumption of CULG is shown to be better than TG

and DCVSPG, but the delay is worse than DCVSPG. CULG was evaluated using

small circuits such as full adder, 8-bit multiplier, flip-flop, and a 3-input NAND. It

is not clear whether CULG was intended for MPSAs or VPSAs, since the authors

do not describe the interconnect architecture in detail.

Our work is different in that all of these previous efforts focus on point solu-

tions. They consider a certain type of logic block with a routing fabric that has a

fixed amount of configurability, and compare it against standard cell implementa-

tion or another architecture. In our work, we do not consider a fixed amount of

customization. We vary the customization and study the effect it has on the overall

performance of a Structured ASIC.

27

2.3.2 Commercial Efforts

There are a number of commercial vendors who have offered Structured ASIC

products, including both MPSAs and VPSAs. Some of these products provide

a migration path for existing FPGA designs to improve power dissipation and

unit cost while others are designed for general System-On-a-Chip (SoC) based

designs. Table 2.2 shows several of these products. Unfortunately, detailed in-

formation about most of these products is not published. We have categorized

these products into three classes: products that are currently available at the cur-

rent process node (Active), products that can be seen at the company’s web-page

but are not offered in the latest process technology (Semi-Active), and products

that have been completely discontinued (Defunct). It can be seen that most of

the commercial products are MPSAs, whereas the academic work has focussed

mainly on VPSAs. The commercial products have a wide range of configurability

that varies from single-via to six-metal and six-vias. Interestingly, the products

that had a high amount of configurability have been discontinued.

2.4 Yield Modeling

Noise or defects in the IC manufacturing process lead to chips that do not work.

The percentage of fault-free chips produced by a given fabrication process is

known as yield. Depending on the nature of the defects, the yield can be cate-

gorized into two classes: random defect yield, and systematic yield.

The random defect yield is due to the defects in the manufacturing materials

or unwanted chemical and airborne particles being deposited during the various

28

Table 2.2: Commercial Structured ASICs

State Company Product Type
Custom
Layers

(M: metal, V: via)

Comments

Active

Altera
Hardcopy

Series
MPSA 2M Aimed at FPGA-to-ASIC

conversion [1]

eASIC
Nextreme

Series
VPSA 1V 4-6 week turnaround time

[4]

Semi-

Active

ChipX CX6200 MPSA 2–4M [2]

Faraday MPCA MPSA 3M + 2V
Targets SoC based commu-

nication systems [5]

ON Semi-

conductor

Xpress

Array-II
MPSA ?

150nm Structured ASIC

aimed at FPGA-to-ASIC

migration [14]; formerly

AMI Semiconductor

ViASIC
ViaMask,

DuoMask
VPSA 1–2V Targets SoC systems [21]

Virage

Logic
ASAP MPSA 3–4M Metal programmable cell li-

braries [22]

Defunct

Fujitsu AccelArray MPSA 3–4M [7]

Lightspeed - MPSA
2M+2V to

6M+6V
[11]

LSI Logic RapidChip MPSA all-M + all-V

Only the transistors are fab-

ricated, all the remaining

layers can be customised

[12]

NEC ISSP MPSA 2M Targets SoC systems [89]

Tier Logic - - -

Essentially a 3D FPGA in

which the configuration

memory was placed on top

of the device. The device

could be converted into

an ASIC by replacing the

configuration memory with

a metal layer [19]

29

steps of IC fabrication [72]. These defects are usually local and are random in

nature. It has been shown that a negative binomial distribution provides a good fit

for these random defects [110]. For a defect i, if λi and αi denote number of faults

per chip and the spread of the defect respectively, then the yield due to defect i, Yi,

can be expressed as [110]:

Yi =

(

1+
λi

αi

)−αi

(2.1)

The total random defect yield, YR, can then be expressed as [110]:

YR =
m

∏
i=1

(

1+
λi

αi

)−αi

≃
(

1+
λ

α

)−α

(2.2)

where α is defined as the clustering parameter and λ is the average number of

faults per chip. The clustering parameter is a measure of the degree to which the

defects are clustered together. The average number of faults per chip is related to

the area of the chip (Adie) and the defect density (Do); it can be modeled as:

λ = Adie×Do (2.3)

Systematic yield occurs due to systematic defects. The systematic defects in-

volve processing problems such as scratches on wafers due to mishandling, mask

misalignments, over- and under-etching, excessive variation in temperatures etc.

[72, 110]. These defects are large, and result in parts of wafers, or entire wafers to

30

be faulty. The systematic yield is usually modeled by a constant factor that is mul-

tiplied with the random defect yield to obtain total yield [32, 72]. The systematic

yield improves as the process matures.

If Yo represents systematic yield, the total die-yield Ydie can be expressed as:

Ydie =Yo×
(

1+
Adie×Do

α

)−α

(2.4)

2.5 CAD for FPGAs and CBICs

Structured ASICs have many similarities to FPGAs and CBICs. The CAD for

Structured ASICs would therefore also share some of the techniques from FPGA

and CBIC CAD. In this section, we review three of the most important CAD

stages; namely Placement, Routing, and Whitespace Insertion. We highlight the

important differences between FPGAs and CBICs for these steps and review the

techniques used in some of the open-source CAD tools.

2.5.1 Placement

The placement problem involves assigning physical locations to the logic blocks

while minimizing certain objectives such as wirelength, delay etc. In CBICs, the

logic blocks are fine-grained basic cells that have the same height (hence, called

standard cells) and are arranged in rows. The cells have different widths, depend-

ing on the output drive strength and the logic function. A standard cell can be

placed anywhere within the row. In contrast, the FPGA logic blocks are clustered

31

LUTs that are arranged in a grid on the FPGA die. As a result, there are two im-

portant differences between the FPGA and CBIC placement problems. First, the

number of placeable blocks in CBICs is much larger compared to FPGAs. Sec-

ond, the fixed grid locations in an FPGA make the placement more constrained. In

addition to the basic logic blocks, large macro blocks such as embedded memories

and other IP blocks for datapath or DSP operations are included both in FPGAs

and CBICs which makes the placement problem more challenging.

The most commonly used academic placement tool for FPGAs is VPR [34,

35]. The placement algorithm in VPR is based on simulated annealing [70]. The

annealing schedule is adaptive in that the initial temperature, exit criterion, and

the temperature update scheme are calculated from circuit parameters. The cost

function is based on total wirelength and timing cost.

There are a number of available CBIC placers [44, 50, 81, 99, 111, 118].

These placers incorporate different types of algorithms to perform the placement

while optimizing for wirelength. The techniques used in most of these placers

are described in [56]. We used CAPO [99] in our experiments. CAPO com-

bines recursive min-cut bi-partitioning and floorplanning to perform placements

for mixed-size net-lists. Depending on the size of the partitioning instance, three

different min-cut partitioners are used: (1) an optimal branch-and-bound parti-

tioner for small partitioning instances [39]; (2) a heuristic based, middle range

Fiduccia-Mattheyses partitioner [40]; and (3) a multilevel Fiduccia-Mattheyses

partitioner [41]. To handle large-sized IP blocks during placement, CAPO uses a

fixed outline floorplanner called Parquet [26]. When the size of the partitioning

32

bin is close to the size of a macro block, Parquet is invoked instead of partitioning.

2.5.2 Routing

The routing problem involves making non-overlapping connections between the

placed logic blocks while minimizing the wirelength. Additional objectives such

as delay and/or power minimization can also be included in the optimization. In

CBICs, routing is typically divided in two steps. The first step finds approximate

routes, or regions through which the route for each net would pass. This step

is known as global routing. It limits the search space for the next step, known

as detailed routing. The detailed routing step accounts for the complex design

rules and assigns metal tracks for each net inside a global route. It also makes

connections to the logic block inputs and outputs.

On the other hand, in FPGAs all the wires are prefabricated and the connec-

tions between the logic blocks are made simply by configuring the switch-boxes

and the connection-boxes. Because the switch-boxes and the connection-boxes

have limited connectivity, it is difficult to correctly model the routing capacities

for a global router. Hence, the routing process in FPGAs is typically a single step,

detailed routing.

VPR is the most widely used academic FPGA routing tool. It uses A∗ maze-

search [55] along with PathFinder algorithm [83] to remove congestion. The

PathFinder algorithm is an iterative rip-up and re-route technique that starts with

shortest possible routes allowing overuse of routing resources, and then gradually

increases the congestion penalty for each routing iteration. The cost function used

33

in the PathFinder algorithm is:

cn = (bn +hn)∗ pn (2.5)

where cn is the congestion cost for a routing resource n, bn is the base cost, hn

reflects congestion history, and pn is the congestion penalty for current congestion.

VPR uses the following slightly modified form of the cost function:

cn = bn ∗hn ∗ pn (2.6)

This is done to avoid normalization of bn and hn to the same range. VPR routes

multi-sink nets by finding the path for each sink separately. The route to the first

sink is found usingA∗ search; then for each additional sink, A∗ search is performed

around the currently routed portion.

In CBICs, the success and quality of final routes is mostly determined by

global routing [98]. The main goal of detailed routing is to satisfy the design

rules of the process. Thus, despite some of the research efforts on detailed routing

[33, 45, 62, 114], most of the recent research on CBIC routing has focused on

the global routing problem [54, 58, 86, 91, 98]. The global router we use in our

experiments is known as FGR [98]. FGR builds a Rectilinear Minimal Spanning

Tree (RMST) or a Rectilinear Steiner Minimal Tree (RSMT) for each net and then

rips-up and re-routes congested, two-point portions of these trees. The technique

used to remove congestion is very similar to the PathFinder algorithm, and utilizes

34

the following cost function:

cn = bn +(hn ∗ pn) (2.7)

2.5.3 Whitespace Insertion

Producing placements in which the logic blocks are very tightly packed often

makes the design un-routable. It is therefore desirable to leave some unused space

in the placement. This is known as whitespace. In CBICs, there are several other

reasons for including whitespace [27]:

1. To reach timing closure, some of the placed gates may need to be resized,

some of the nets might require additional buffering resources, or some local

portion of the circuit might need to be re-synthesized

2. Tightly packing gates in a given region can violate power density and tem-

perature constraints

3. It may be desirable to use a previously designed and rigorously simulated

power grid. Such a power grid would determine the die size, which may be

larger than the area needed by the logic

The whitespace insertion process has been studied previously, both for CBICs

[27, 76, 100, 105] and for FPGAs [53, 106, 112, 113]. However, it still remains

an active area of research [9].

There are different approaches to handle whitespace insertion in CBICs. Cells

in the congested regions can be artificially bloated [105]; congestion estimates can

35

be used to change partition sizes in min-cut partitioning [76]; unconnected fake-

cells can be added to the net-list to handle large amounts of whitespace [27]; or,

the available whitespace can be recursively divided as part of min-cut partitioning

to uniformly distribute it [27]. CAPO, the placer we use in our experiments, per-

forms whitespace insertion by using fake cells and recursive division of available

whitespace during min-cut partitioning.

In CBICs, the whitespace can be inserted anywhere within a standard-cell

row, but in FPGAs it must be inserted at fixed grid locations, and in units of logic

blocks. This makes the problem particularly hard for FPGAs. Inserting whites-

pace by leaving entirely empty logic blocks, requires a very accurate congestion

estimate. The only successful approach to insert whitespace in this fashion is

[106], which used a router in the inner most loop of simulated annealing. This

makes this approach impractically slow. Most of the other FPGA techniques

achieve whitespace insertion at the clustering stage by de-populating the logic

blocks [53, 112, 113]. In these techniques, the logic block is not fully packed and

some of its inputs and outputs remain unused. This helps to reduce the routing

demand in the congested regions.

36

Chapter 3

Cost Model for Structured ASICs

3.1 Overview

In this chapter we describe a cost model to estimate the manufacturing cost for a

Structured ASIC die. The model expresses the cost as a function of die-area and

the number of routing layers that can be configured by one or more metal and/or

via masks. We identify different parameters that affect the cost and then derive

detailed equations in terms of these parameters. We then use typical values of

these parameters to assess per-die cost of Structured ASICs.

As described in Section 2.2.3, a Structured ASIC can either be configured by

metal-and-via layers (MPSA), or only by via layers (VPSA). We provide cost

equations for both MPSAs and VPSAs and study how MPSAs and VPSAs com-

pare in terms of cost.

37

3.2 Factors Affecting Structured ASIC Cost

In most FPGA and ASIC research, it is common to use die area as a proxy to

the cost of a device. However, this is not sufficient for Structured ASICs. In

Structured ASICs, the cost per die depends on the number of routing layers in

addition to the die area; a larger die with fewer routing layers can be less expensive

than a smaller die with more configurable layers.

There are a number of other factors that affect the cost of Structured ASICs.

These factors are described below.

3.2.1 Die-Yield

The number of good dies obtained from a wafer depends on the yield of the fab-

rication process. A high-yield process would produce more working chips. Since

the cost to process a wafer is fixed, high yield lowers the cost per chip and vice

versa.

3.2.2 Device Volume Requirements

The volume in which a Structured ASIC device is produced is a very important

factor that affects the per-die cost. There are two types of volumes associated with

a Structured ASIC device. One is the total device volume, which is the number of

partially fabricated, un-configured Structured ASIC devices of a particular family.

These Structured ASICs can be used for implementing many different designs.

The other type of volume is the per-customer volume, which is the number of

Structured ASICs that have been configured to implement one particular design

38

for a given customer.

3.2.3 Mask-set Cost

The cost of producing the masks for each layer of the Structured ASIC device

impacts the die-cost. The mask-set cost can be divided into two components. One

component is for the masks of layers that are fixed; this component of cost is

amortized over the total device volume (total among all customers). The other

component deals with preparing masks that are configurable; this component is

amortized over the volume per customer.

3.2.4 Processing Costs

The cost to process a wafer is another component that affects the die-cost. Like

mask-set cost, this cost has two components: one for processing the wafer up

to the first configurable routing layer, and the other for processing the remaining

portion of the device.

In the following section, we describe a detailed cost model that uses these

factors to express Structured ASIC cost as a function of die-area and number of

routing layers.

3.3 Die-cost Formulation

The cost per die, Cdie, can be expressed as:

Cdie =Cbase +Ccustom +Cproto +Cpkg +Ctest (3.1)

39

whereCbase is the cost of the partially fabricated device (i.e., the cost shared across

all the customers),Ccustom is the cost to customize the pre-fabricated chip to imple-

ment a particular circuit, Cproto is the prototyping cost to manufacture test wafers

before the final spin, Cpkg is the packaging cost, and Ctest is the testing cost.

In this dissertation, our main goal is to expressCdie as a function of number of

routing layers and die area. In this regard,Cpkg andCtest are independent of user’s

design and do not vary when we consider a range of different Structured ASIC

architectures. Therefore, we consider them as constant and do not use them in our

cost calculations.

The base, customization, and prototyping costs can be subdivided into three

components:

1. a non-recurring cost of preparing the mask sets;

2. the cost associated with processing a wafer; and,

3. the cost of setting up the fab line.

In the following subsections, we provide equations for Cbase, Ccustom, and Cproto.

3.3.1 Base Cost

The base cost (Cbase) is associated with the portion of Structured ASIC that will

not be customized. It includes costs of preparing masks for fixed layers and pro-

cessing the wafers up to, but not including, the first configurable layer. This cost

is amortized over the total volume of all the different customers. Cbase can be

40

expressed as:

Cbase =

(

Csml
N f ml

+Csmu
N′
up f ix

Vtot

)

︸ ︷︷ ︸

Mask costs

+

(

CwpmN
′
f ab1 +Csw

Ngdpw

)

︸ ︷︷ ︸

Wafer costs

+

(
C f s1

Vtot

)

︸ ︷︷ ︸

Fab setup cost
(3.2)

where N f ml
is the number of lower fixed masks, N′

up f ix is the number of fixed

upper-level masks, Csml
is the average cost for a single lower-level mask (e.g.,

polysilicon mask, M1 mask),Csmu
is the average cost for a single upper-level mask

(e.g., M4 mask), Vtot is the expected total volume, Cwpm is the wafer processing

cost for a single mask, N′
f ab1 is the number of layers up to which the wafer has

been processed, Csw is cost of single unprocessed wafer, Ngdpw is the number of

good dies per wafer, and C f s1
is the fab setup cost of the Structured ASIC device

for all customers.

The fixed upper-level masks (N′
up f ix) can include fixed masks that are required

for power grid etc. It can also include masks for some of the routing layers that

are fixed in the case of VPSAs.

Lower-level masks (e.g., diffusion and polysilicon masks) have higher costs

than higher-level masks. Acquiring cost values for each individual mask is not

always possible and using a different cost value for every mask would also com-

plicate the cost model. Therefore, we decided to use one average cost number for

lower masks, Csml
, and a lower average cost value for higher masks,Csmu

.

41

3.3.2 Customization Cost

The customization cost (Ccustom) is the cost that is associated with the portion of a

Structured ASIC that is customized for a particular application. It includes costs

for preparing the custom masks and processing the wafer from the first config-

urable layer onwards. Ccustom can be calculated as:

Ccustom =

(

Csmu
N′
con f ig

Vc

)

︸ ︷︷ ︸

Mask costs

+

(

CwpmN
′
f ab2

Ngdpw

)

︸ ︷︷ ︸

Wafer costs

+

(
C f s2

Vc

)

︸ ︷︷ ︸

Fab setup cost

(3.3)

where N′
con f ig is the number of custom masks needed to configure the device,Vc is

the volume per customer, N′
f ab2 is the number of layers that need to be processed

during the second, customer-specific phase of fabrication, andC f s2
is the fab setup

cost for customization phase.

3.3.3 Prototyping Cost

Due to the complexity of large hardware designs, it is usually necessary to man-

ufacture a number of spins, where each spin requires a new set of custom masks.

Assuming Ns is the total number of customer silicon spins including the final ver-

sion and C f s3
is the fab setup cost for prototyping phase, the prototyping costs

42

(excluding the final spin) are calculated as:

Cproto =(Ns−1)

(

Csmu
N′
con f ig

Vc

)

︸ ︷︷ ︸

Mask costs

+

(
Ns−1

Vc

)(

Cwpm

(

N′
f ab1 +N′

f ab2

)

+Csw

)

︸ ︷︷ ︸

Wafer cost

+(Ns−1)

(
C f s3

Vc

)

︸ ︷︷ ︸

Fab setup cost

(3.4)

In Cproto, we include the cost to manufacture one complete wafer for every

prototype spin, excluding the final spin. Although minimum lot sizes required by

the foundry may require several wafers to be manufactured at once, a Structured

ASIC vendor should be able to mix wafers from several customers to fill a sin-

gle lot. Furthermore, a Structured ASIC vendor may offer a multi-project wafer,

where each customer uses less than a full wafer. This could reduce the wafer cost

component of the prototype even further than assumed here.

3.3.4 Good Dies per Wafer (Ngdpw)

The number of good-dies-per-wafer (Ngdpw) depends on number of dies per wafer

(Ndpw) and die yield (Ydie). It can be expressed as:

Ngdpw = Ndpw×Ydie (3.5)

The number of dies per wafer (Ndpw) depends on the area taken up by a die on

the silicon wafer. There are three types of areas associated with each die; namely,

43

core area, pad area, and scribe area. The core area is the area of the Structured

ASIC fabric. The pad area surrounds the core area with input and output pads.

The scribe area is a ring around the die reserved for wafer testing and die-cutting;

it mostly influences the area of very small dies. The three components of die-area

are illustrated in Figure 3.1.

Pad Ring

CORE

Scribe Area

Sw

A
c
o

re

Sw

Sw

Sw Acore

Pw

Pw

Pw Pw

Figure 3.1: Core, pad and scribe area

If Pw and Sw represent the pad width and scribe width, respectively, then the

pad area (Aio) and scribe area (Ascribe) can be calculated as:

Aio = 4Pw

(

Pw+
√

Acore

)

Ascribe = 4Sw

(

Sw +2Pw+
√

Acore

)

The number of dies per wafer can then be approximated as [61]:

Ndpw =
π ×

(
Dwa f

2

)2

Acore +Aio +Ascribe

− π ×Dwa f
√

2(Acore +Aio +Ascribe)
(3.6)

44

where Acore is the core area, and Dwa f is the wafer diameter. The first term in this

equation counts the number of dies that can fit a diameter of Dwa f , and the second

term subtracts the clipped dies that fall along the circumference.

We use Eq. 2.4 to calculate die-yield:

Ydie = Y0 ×
(

1+
(Acore +Aio)×D0

α

)−α

(3.7)

where Y0 is the multiplier to account for material and systematic yield, D0 is the

defect density, and α is the cluster factor.

The yield may be affected by the number of routing layers. It is possible that

every additional layer may reduce the yield. On the other hand, the regularity in

fixed layers of Structured ASICs can help to improve the yield. It is not known

which of these conflicting effects would be significant. We currently assume both

of these to have negligible effect on Ydie.

3.3.5 Die-Cost Equation

Most of the parameters in Eqs. 3.2 to 3.4 are specific to a particular manufac-

turing process. The only architecture-dependent parameters are N′
up f ix, N

′
con f ig,

N′
f ab1, and N′

f ab2. These parameters are either constants or depend on the num-

ber of routing layers and the number of custom masks. Table 3.1 describes these

parameters.

We define Nml as the number of metal layers used for routing and use it as a

measure for the number of routing layers in a Structured ASIC architecture. These

45

Table 3.1: Architecture parameters used in the cost model

Parameter Description

N′
up f ix Number of fixed upper level masks

N′
con f ig Number of configurable masks

N′
f ab1 Number of layers fabricated in phase 1 (pre-fabrication)

N′
f ab2 Number of layers fabricated in phase 2 (customization)

metal layers can be configured by one or more via, or metal-and-via masks.

By substituting the values of Cbase, Ccustom, Cproto from Eqs. 3.2 to 3.4 into

Eq. 3.1, Cdie can be expressed in the following form:

Cdie =
K0

Ngdpw

+Nml

(
K1

Ngdpw

+K2

)

+K3 +Cpkg +Ctest (3.8)

where K0, K1, K2, and K3 are constants that depend on the volume requirements,

Structured ASIC types, and various foundry costs.

Most of the constant parameters in Eqs. 3.2–3.4, 3.6, and 3.7 are confidential

information of a foundry. The cost numbers (such as Csml
, Csmu

and Cwpm) can

also vary from one foundry to another. The values used for these parameters in

our experiments are shown in Table 3.2. We obtained and confirmed this data

from various sources, including several news articles and contacts in industry.

In Chapter 5, we provide a detailed sensitivity analysis of the die-cost model to

various parameters of Table 3.2.

46

Table 3.2: Values of parameters used in the cost model

Param. Value Comments

N f ml
18 Fixed masks below the configurable masks

(1) A 10-metal, 90nm process requires 34 masks [90]; we

assume 45nm also requires 34 masksa

(2) Device fabricated up to M2, and subsequent layers

require single mask

Csml
$107k Average single mask cost for lower layers

(1) 45nm mask set costs $2.5M [6]

(2) Lower-level mask cost = 3× Upper-level mask cost

Csmu
$36k Average single mask cost for upper layers [90]

Vtot 2M Total volume

Cwpm $220 Wafer processing cost per mask

Cost to process a 45nm wafer = $8000; Total masks= 34

Dwa f 300mm Wafer diameter

Pw 150µm Pad width

Sw 100µm Scribe width

Ns 2 Number of silicon spins

One prototype plus one re-spin

Vc 100k Per customer volume

N f mu
2 Fixed masks above the configurable masks (e.g., for

power grid)

Y0 0.9 Material and systematic yield [10]

Nm,Nv 1 Number of masks per routing layer

One mask each for metal and via

D0 1395

per m2
Defect rate [10]

α 2.0 Cluster factor [10]
C f s1

Vtot
,
C f s2

Vc
,
C f s3

Vc
$0 C f s1

, C f s2
, C f s3

: Fab line setup costs

These can be ignored, esp. when divided over the volume

Csw $0 Cost of a single, unprocessed wafer

Assumption: Cost of an unprocessed wafer is negligible

compared to the processing cost

Cpkg, Ctest $0 Packaging cost, Testing cost

Not considered because these are independent of die area

and Nrl

a Even with N f ml
as high as 36 (52 total masks), the results are not significantly

different.

47

3.4 Cost Modeling for Different Structured ASICs

In this section, we derive equations for K0–K3 for different types of Structured

ASICs and compare their cost trends.

3.4.1 MPSA Die-Cost

In MPSAs, the fixed upper masks are usually the masks that define the power grid;

let N f mu
denote the number of such masks. The routing is done using using one or

more upper-level masks for each configurable metal and via layer; let Nm and Nv

denote the number of masks needed for each metal and via layer respectively, and

Nml denote the number of metal layers as described in Section 3.3.5. Finally, the

MPSA device can only be fabricated up to, and not including, the first configurable

layer. Thus, for MPSAs, the architecture-dependent parameters N′
up f ix, N

′
con f ig,

N′
f ab1, and N′

f ab2 can be written as:

N′
up f ix = N f mu

N′
con f ig = Nml × (Nm+Nv)

N′
f ab1 = N f ml

N′
f ab2 = Nml× (Nm +Nv)+N f mu

48

Using the above values, the constants K0–K3 in Eq. 3.8, can be expressed as:

K0 =Cwpm(N f ml
+N f mu

)+Csw

K1 =Cwpm (Nm +Nv)

K2 =
NsCsmu

(Nm +Nv)

Vc
+

(
Ns−1

Vc

)

Cwpm (Nm +Nv)

K3 =
Csml

N f ml
+Csmu

N f mu

Vtot
+

(
Ns−1

Vc

)
(
Cwpm(N f ml

+N f mu
)+Csw

)

+
C f s1

Vtot
+
C f s2

+(Ns−1)C f s3

Vc

3.4.2 VPSA Die-Cost

In VPSAs, all the metal-masks are fixed and only the via-masks need to be gen-

erated for a particular customer. In the VPSA architectures that we consider in

our experiments, we assume that the via layer that connects the logic block inputs

and outputs to the first routing layer is also fixed. This allows the device to be

fabricated up to the first routing layer. The values of the architecture-dependent

49

parameters for VPSAs are given as:

N′
up f ix = NmlNm +Nv +N f mu

N′
con f ig = Nv (Nml −1)

N′
f ab1 = N f ml

+Nm +Nv

N′
f ab2 = (Nml −1)(Nm +Nv)+N f mu

The constants K0–K3 in Eq. 3.8 can then be written as:

K0 =Cwpm(N f ml
+N f mu

)+Csw

K1 =Cwpm(Nm+Nv)







Same as MPSA

K2 =
Csmu

Nm

Vtot
+

NsCsmu
Nv

Vc
+

(
Ns−1

Vc

)

Cwpm(Nm +Nv)

K3 =
Csml

N f ml
+Csmu

(Nv+N f mu
)

Vtot
− NsCsmu

Nv

Vc

+

(
Ns−1

Vc

)
(
Cwpm(N f ml

+N f mu
)+Csw

)

+
C f s1

Vtot
+
C f s2

+(Ns−1)C f s3

Vc

3.4.3 Die-Cost for VPSAs with Single-Via Configurability

It is possible that the routing fabric of a VPSAs can be configured by only a single

via layer. In this case, only the mask(s) for a single via layer need to be generated

50

to configure the device. The location of the configurable via layer determines what

proportion of the device can be pre-fabricated.

Depending on the routing fabric architecture, the die-cost can also be affected

by the number of metal layers used for routing. The cost to process a wafer in-

creases with the number of routing metal layers. For example, although there is

only one configurable via layer, each metal layer on top used for routing requires

processing and must be paid for.

In the single-via configurable fabric used in our experiments, the via layer

above the first routing metal layer is configurable. The values of the architecture

dependent parameters are:

N′
up f ix = NmlNm+(Nml −1)Nv +N f mu

N′
con f ig = Nv

N′
f ab1 = N f ml

+Nm +Nv

N′
f ab2 = (Nml−1)(Nm +Nv)+N f mu

The values of K0–K3 in Eq. 3.8 are as follows.

51

K0 =Cwpm(N f ml
+N f mu

)+Csw

K1 =Cwpm(Nm +Nv)







Same as MPSA

K2 =
Csmu

(Nm +Nv)

Vtot
+

(
Ns−1

Vc

)

Cwpm(Nm+Nv)

K3 =
Csml

N f ml
+Csmu

(N f mu
−Nv)

Vtot
+

NsCsmu
Nv

Vc

+

(
Ns−1

Vc

)
(
Cwpm(N f ml

+N f mu
)+Csw

)

+
C f s1

Vtot
+
C f s2

+(Ns−1)C f s3

Vc

3.4.4 MPSA and VPSA Cost Trends

Using the parameter values from Table 3.2, the typical values of constants K0–

K3 to be used with Eq. 3.8 for different types of Structured ASICs are shown in

Table 3.3.

Table 3.3: Typical values for the cost model constants

Type K0 K1 K2 K3

MPSA

$4400 $440

$1.4444 $1.0430

VPSA $0.7424 $0.341

VPSA-SV $0.0404 $1.745

The impact of the differences of these constants on die-cost is illustrated in

Figs. 3.2 and 3.3, where the output of the cost model is shown for a range of

values of Acore and Nml . The figure shows that a considerable reduction in die-

52

2 3 4 5 6

40

80

120

160

200

No. of Metal Layers used for Routing

C
o

re
 A

re
a

 (
m

m
2
)

Cost: $38
Cost: $30
Cost: $22
Cost: $15
Cost: $10
Cost: $ 6

Figure 3.2: Cost trends for MPSAs

2 3 4 5 6

40

80

120

160

200

No. of Metal Layers used for Routing

C
o

re
 A

re
a

 (
m

m
2
)

Cost: $38
Cost: $30
Cost: $22
Cost: $15
Cost: $10
Cost: $ 6
Cost: $ 3

(a) Custom vias between routing layers

2 3 4 5 6

40

80

120

160

200

No. of Metal Layers used for Routing

C
o

re
 A

re
a

 (
m

m
2
)

Cost: $38
Cost: $30
Cost: $22
Cost: $15
Cost: $10
Cost: $ 6
Cost: $ 3

(b) Single custom-via layer

Figure 3.3: Cost trends for VPSAs

53

area is required for an additional routing layer to be cost effective, especially for

MPSAs and for VPSAs with all custom vias. For example, to maintain a constant

cost of $15, each additional metal routing layer in a MPSA and a VPSA must save

15mm2 and 10mm2 of die-area, respectively. This is because of the large mask and

wafer processing costs associated with each additional layer. However, it is less

expensive (in terms of die-area) to add an extra metal routing layer in VPSAs with

single-via configurability, where a reduction of only 6mm2 per additional layer is

needed to maintain a constant cost of $15. This is because VPSAs with single

custom-via layer amortize the cost across the much larger total device volume

(Vtot) rather than the per-customer volume (Vc).

The die-yield and die-cost of CBICs and different types of Structured ASICs

is shown in Figure 3.4 for 100k dies. In calculating the CBIC cost, we assumed

six routing layers and every mask to be custom. We also assume that a CBIC

requires a re-spin where all the CBIC masks are changed, whereas a Structured

ASIC requires a re-spin where only the configurable masks (N′
con f ig) are changed.

It is possible that a CBIC re-spin can be completed without modifying all the

masks by employing some of the Engineering Change Order (ECO) techniques

[59]. However, we do not take this into account.

In Fig. 3.4, it is better to compare the area values of Structured ASICs and

CBICs for a given cost, rather than comparing the cost values for a given area since

the areas will generally be different for a given design. As an example, at a cost of

$45, a CBIC can use only 10mm2, whereas a Structured ASIC implementation can

use more than 200mm2. However, this difference becomes smaller as the die-cost

54

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Core Area (mm
2
)

D
ie

 Y
ie

ld

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

D
ie

−
C

o
s
t

($
)

Die Yield

CBIC Cost
MPSA Cost (N

ml
=6)

MPSA Cost (N
ml

=4)

VPSA Cost (N
ml

=4)

VPSA Cost (N
ml

=4; Single custom−via layer)

MPSA Cost (N
ml

=2)

VPSA Cost (N
ml

=2)

Figure 3.4: Yield and die-cost (total CBIC volume = Vc)

increases. Thus, for large die-sizes, Structured ASICs must be very area efficient

to compete with CBICs.

3.5 Summary

In this chapter, we described the Structured ASIC die-cost model. The cost model

expresses the die-cost as a function of the number of configurable routing layers

and die-area of Structured ASICs. We used the cost model to study the die-cost

trends for MPSAs and two different types of VPSAs for a range of configurable

layers and die-area values. Using specific assumptions about volume (100k units),

55

we have shown that VPSAs with single-via configurability are most cost effec-

tive per mm2 and CBICs are least cost effective. Although not shown here, we

have also studied the sensitivity of die-cost to various cost model parameters (Ta-

ble 3.2). This analysis is presented in Chapter 5.

56

Chapter 4

Framework and CAD

4.1 Overview

This chapter describes the experimental framework used to conduct the experi-

ments for this thesis. We start by describing how the logic and interconnect fabrics

are modeled. This defines the architecture space that our experiments can cover.

This is followed by a description of the metrics used to evaluate potential archi-

tectures. Finally, we explain the CAD flow used in the experiments. We describe

the placement and routing steps and explain the differences in the CAD flow for

MPSAs and VPSAs.

57

4.2 Architecture Modeling

4.2.1 Logic Fabric

As described in Sec. 2.2.3, the Structured ASIC logic blocks can vary in granu-

larity. This affects their physical size and the number of inputs and outputs. In

our framework, we model each logic block as a rectangular region with a given

number of pins. The logic block size (height and width) and the position of pins

are specified in terms of wire half-pitches. This high-level abstraction allows us

to model a large architecture space without worrying about the low-level, layout-

related details. The modeling process for a simple 2-input logic block is illustrated

in Figure 4.1.

BLK MODEL
{

SizeX: 8
SizeY: 8
Inputs: 2
InLoc: (0,0) (2,2)
Outputs: 1
OutLoc: (4,6)

}

0 2 4 6

SizeY

SizeX

Logic Block
Inputs

Logic Block
Output

Metal
Segments

Logic Block

1 3 5 7

0

1

2

3

4

5

6

7

Figure 4.1: Logic block modeling

4.2.2 Routing Fabric

The routing fabric in a Structured ASIC can be metal-and-via programmable

(MPSA), or via-only programmable (VPSA). Each routing layer in an MPSA is

58

modeled as a set of equally-wide and equally-spaced horizontal or vertical wires.

We use the minimum width and minimum spacing possible in our technology to

calculate the total number of wires that can pass through a given region. This

number is used to determine the routing capacities for the global router.

The VPSAs are modeled by first identifying a basic routing tile. The basic

routing tile is the smallest unit of the routing fabric that repeats itself both in

the x- and y-directions. For each routing layer in the basic routing tile, the start

and end location for each metal segment and the sites for the underlying fixed

or configurable vias is specified. This scheme allows us to model the different

routing fabrics described in Sec. 2.2.3.

4.3 Evaluation Metrics

In this section, we describe the evaluation metrics used to compare different con-

figurability choices and different architectures. The configurability here refers to

the number of custom metal and/or via masks that are required to implement a par-

ticular application on a Structured ASIC. The evaluation metrics we use are core

area, delay, power and manufacturing cost. Each of these metrics is described

below.

4.3.1 Area

We use the core area (Acore) as the area metric. If the logic block size (in units of

half wire-pitches) is Lx×Ly, the wire width and wire spacing are denoted by ww

and ws, respectively, and the placement grid size is Nx×Ny, then the core area is

59

calculated as:

Acore =

[

Nx×
Lx

2
× (ww +ws)

]

×
[

Ny×
Ly

2
× (ww +ws)

]

4.3.2 Delay

We use the Elmore delay model to estimate the delay of an implementation [101].

For each net, we calculate the delay to each sink and average these values to ob-

tain a net delay value. We then average all the net delays to obtain average net

delay and use it as our delay metric. We use the average net delay, as opposed to

critical path delay, for three reasons. First, the number of routing layers affects

only the interconnect and this effect is captured in the average net delay. Second,

it allows us to compare different configurability choices without knowing the in-

ternal details of the logic blocks such as the input-to-output delays or the location

of flip-flops. Third, our CAD flow is not timing driven.

4.3.3 Power

For the power metric, we use the dynamic power dissipated in the interconnect

since this is the primary component of power that would change as we vary the

number of routing layers. We assume that a change in the number of routing layers

has a negligible impact on glitching activity. We use the total interconnect (metal

and via) capacitance as a first order estimate for power.

60

4.3.4 Cost

The manufacturing cost of the die is used to calculate the cost metric. The core

area and the number of routing layers are used to estimate the manufacturing cost

using the cost model described in Chapter 3.

4.4 CAD Flow

The CAD flow used to conduct the experiments is shown in Figure 4.2. The flow

starts by reading in a technology-mapped circuit. The first step is to initialize the

placement by reading in the physical size (height and width) of a logic block, the

location of logic block inputs and outputs, and location of I/O pads of the circuit.

The placement grid is set to a minimum square (i.e., if the technology mapped

circuit has N blocks, then the initial grid size would be ⌈
√
N⌉× ⌈

√
N⌉). After

initialization, the placement is performed where each circuit block is assigned a

location on the placement grid. We then route the placed circuit. If there is any

congestion, rendering the circuit unroutable, the placement grid size is increased

to create whitespace and the circuit is re-placed and re-routed. These steps are

repeated until all the congestion is removed. The placement and routing steps are

described in the following subsections.

4.4.1 Placement and Whitespace Insertion

To choose the most appropriate placer for our framework, we investigated two

state-of-the-art standard-cell placers, CAPO [99] and NTUPlace [50], and an

FPGA placer, VPR [34, 35]. The two important factors we used to decide which

61

Placement
 - Using Standard Cell Placer: CAPO

- No Initial Whitespace
 - Options: Uniform Whitespace

Global Routing
 - Using Standard Cell Global Router: FGR

Input Circuit
(Technology Mapping)

Any
Congestion ?

Insert Whitespace
- Increase Grid Size

Area/Delay/Power/Cost Estimate

Initialize
 -Read I/O Pad Locations
 -No Initial Whitespace
 -Grid Size: Smallest Square

- Logic Block Size
- Logic Block I/Os Location

- #Routing Layers
- Routing Grid Resolution
- Routing Grid Capacity

Reduce Global
Routing Capacity

Any
Congestion ?

Detailed Routing
 - Custom Router based on PathFinder

Yes

No

Calculate Area, Delay, Power, Cost

No

Only for
VPSAs

Global Routing

Any
Congestion?

Yes

Yes

No

Figure 4.2: CAD flow

62

placement tool was appropriate for our experiments were runtime and the ability

to insert whitespace to remove congestion. Runtime is important because Struc-

tured ASICs can have in excess of one million placeable blocks [104], especially

if the logic blocks are fine grained. The whitespace insertion is crucial because

with small logic blocks (compared to FPGAs), and the routing being done on top

of them, Structured ASICs are more likely than FPGAs to experience congestion.

In Structured ASICs, the pre-fabricated logic blocks are similar to each other

and are arranged on a grid. This is very similar to FPGAs, and implies that

an FPGA placer may be suitable. However, even with circuits containing less

than 15000 logic elements, we found VPR to be both slow, and unable to insert

whitespace to remove routing congestion. The wirelength and runtime compar-

ison of the three placers for nineteen largest Microelectronics Centre of North

Carolina (MCNC) benchmarks is shown in Fig. 4.3. Compared to VPR, the stan-

dard cell placers, CAPO and NTUPlace result in 10% and 4% larger wirelength,

respectively. However, they are faster than VPR by factors of 12× and 14×, re-

spectively.

The comparison for whitespace insertion is shown in Fig. 4.4. The figure

shows the placed blocks for the largest circuit (clma). The placement grid is dou-

ble the minimum size. It can be seen that the wirelength-based cost function of

VPR keeps all the logic blocks together. Although NTUPlace spreads out the logic

blocks, it still has large clusters of tightly packed logic blocks towards the center

of the placement grid. Thus, VPR and NTUPlace would not be able to remove

congestion. Therefore, we use CAPO to perform placement in our CAD flow.

63

CAPO has different options for whitespace insertion; we use the uniform

whitespace distribution. To eliminate congestion, we increase the grid size, thus

creating whitespace, and then re-place the circuit, resulting in a better distribution

of whitespace. Some circuits require a large amount of whitespace, therefore, to

speed up the flow we use a binary search to find the minimum routable grid size.

alu4
apex2

apex4
bigkey

clma
des

diffeq
dsip

elliptic
ex1010

ex5p
frisc

misex3
pdc

s298
s38417

seq
spla

tseng

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

VPR
CAPO
NTUPlace

P
in

-p
in

 H
P

W
L

(a) Half-perimeter wirelength comparison

alu4
apex2

apex4
bigkey

clma
des

diffeq
dsip

elliptic
ex1010

ex5p
frisc

misex3
pdc

s298
s38417

seq
spla

tseng

0

500

1000

1500

2000

2500

VPR
CAPO
NTUPlace

R
un

tim
e

(s
ec

on
ds

)

(b) Runtime comparison

Figure 4.3: FPGA and ASIC placers: wirelength and runtime comparison

64

 0

 200

 400

 600

 800

 1000

 1200

 1400

(a) VPR

 0

 200

 400

 600

 800

 1000

 1200

 1400

(b) CAPO

 0

 200

 400

 600

 800

 1000

 1200

 1400

(c) NTUPlace

Figure 4.4: FPGA and ASIC Placers: whitespace insertion

We use multiple passes of the placer for circuits with hard macro blocks such

as memories and register files. In the first pass, we perform the placement without

imposing any constraints on the positions of the different blocks. This global

placement is then legalized by moving each macro block to its nearest, empty

legal site in the MPSA device architecture. The block’s position is then locked

and not modified in the next pass. In the second pass, with all the hard macro

blocks locked to a legal position, we re-place the logic blocks.

If the logic fabric has dedicated flip-flops, a third pass can substantially im-

prove wirelength. We consider these flip-flops as hard macro blocks and do not

change their position in the second pass. The second pass only changes the posi-

tion of logic blocks. Then, in the third pass, we fix the logic blocks and other hard

macros, and re-place the flip-flops. Alternative approaches, e.g., placing flops be-

fore logic, were found to give inferior results. Additional passes (e.g., repeating

passes 2 and 3) were found to improve the wirelength by 10%, but this roughly

doubles runtime.

65

Recently, a new open-source structured ASIC placer, RegPlace, has been re-

leased [43]. RegPlace attempts to assign hard macro blocks to their legal sites

and it also takes into account multiple clock domains. However, RegPlace is not

directly applicable in our case because of its inability to insert whitespace. In fact,

in its “Wirelength Recovery” step, it explicitly tries to bring connected cells closer

to each other which is likely to cause more routing congestion.

4.4.2 Routing

After placement, the next step is to route all the nets in order to estimate the wire-

length. In our flow, we use the FGR global router [98]. In addition to the list of

nets to route, the inputs to the router include the number of available layers for

routing, the resolution of the global routing grid (number of logic blocks encap-

sulated in a global routing tile), and the grid capacity (number of metal wires that

can pass through the global routing tile). We use different approaches to perform

detailed routing for MPSAs and VPSAs. These are described below.

MPSA Detailed Routing

The MPSA routing problem is very similar to the ASIC routing problem. Detailed

routing for ASICs confines the connections to the given global routing path and

deals mainly with meeting the design rules [33]; in general, the quality of the

routing results is dictated mostly by the global route. Therefore, to simplify the

flow we do not perform detailed routing for MPSAs. We constrain the global

router so that it can only use up to 85% of the available tracks. We assume that

66

this accounts for the overhead of satisfying the design rules. As is typical with

ASICs, we assume that a successful global routing result can always be detail

routed with negligible wirelength overhead.

VPSA Detailed Routing

In VPSAs, the nets have to be routed on pre-designed metal segments. During

routing, when a portion of a net needs to switch from one track position to another

on the same layer (e.g., due to congestion, or to a reach a specific logic block pin)

it consumes a metal segment from the above or below layer. This can result in two

problems: (1) the number of segments available for routing on the adjacent layers

is reduced, which can make a circuit unroutable despite a successful global routing

solution, and (2) the length of each net could be much larger than the length of

its global route. Therefore, to ensure a valid routing solution, and to accurately

estimate the wirelength and delay of a circuit implementation, we perform detailed

routing for VPSAs in our CAD flow.

The detailed routing problem in VPSAs is very similar to FPGAs — the rout-

ing resources (metal segments) are fixed and the connections can be made between

these resources by selectively inserting or removing a via. However, there are two

issues in directly using the FPGA router built into VPR [35]. First, the VPSA

routing fabric is very flexible compared to FPGAs; a via can be placed/removed

from any intersection of the metal segments, making it a fully connected crossbar.

Using a single routing resource graph to represent the entire routing fabric, as is

67

done in VPR, can have a huge memory footprint.1 Second, the high flexibility of

the routing fabric implies a large search space for the router, which can affect the

runtime of the router. Therefore, we have developed our own router to perform

detailed routing.

The routing algorithm used by our router is similar to the one used by VPR.

However, there are some enhancements to reduce memory footprint and improve

runtime. To reduce memory footprint, we only create a graph for one basic rout-

ing tile [51]; during the shortest path search, only this small graph is used. The

runtime is improved by only expanding along the global route. It is possible to

restrict the search path to the global route because of the high flexibility of the

VPSA routing fabric.

The inputs to the router include the global routes, and the position of the fixed

metal segments that repeat over the die. We use this specification to create the

routing resource graph of the basic routing tile. We use large penalties for nego-

tiating congestion; a value of 4000 is used for present congestion cost, and 0.5

is used for history congestion cost. With smaller penalties, the runtime increases

significantly without improving the routing quality. Using large penalties allows

us to find a valid routing within 8 iterations. If the congestion is not eliminated

completely by then, we terminate the detailed routing, insert more whitespace,

and then start with the placement phase again.

1A possible connection between two routing segments is represented by an edge in the routing

resource graph. With a fully connected crossbar, a routing resource graph for a circuit with only

2000 logic elements can contain more than 30M edges. This would require about 1GB of memory

only to store the edges.

68

4.5 Summary

In this chapter we described our experimental CAD flow and the architecture

space it can cover. The CAD flow makes use of open-source CBIC global place-

ment and global routing tools. It includes a custom detailed placer to perform

legalization for Structured ASIC architectures containing different types of logic

blocks. It also includes a custom detailed router to perform detailed routing for

VPSAs. The CAD flow provides area, delay, and power estimates for a benchmark

circuit when implemented on a particular Structured ASIC architecture.

69

Chapter 5

Metal-Programmable Structured

ASICs

5.1 Overview

In this chapter, the experimental results for MPSAs are presented. The experi-

ments were conducted on two different suites of benchmark circuits. The first

benchmark suite consists of circuits that contain only one type of logic block. We

define this suite as homogeneous circuits. The second benchmark suite consists of

circuits that contain embedded IP blocks (block Random Access Memory (RAM),

register files, etc.) in addition to the logic cells. We define these circuits as hetero-

geneous circuits. For each circuit in these benchmark suites, we vary the number

of routing layers, and use the CAD flow described in Chapter 4 to collect area,

delay, power, and cost statistics. Using these statistics, we study how the number

70

of routing layers impacts the cost and performance of an MPSA.

We also study how sensitive the MPSA cost results are to the various constants

used in the cost model. To analyze this sensitivity, we compare the MPSA and

CBIC costs for a range of values of various parameters given in Table 3.2.

Finally, we study the impact of the whitespace insertion algorithm on MPSA

die-cost results. The CAD flow employs uniform whitespace distribution. This

can result in large die-areas. We estimate the die-area and die-cost savings in

MPSAs due to the use of an intelligent whitespace insertion algorithm that inserts

whitespace only in the congested regions.

5.2 Homogeneous Circuits

We use circuits from the MCNC benchmark suite as homogeneous circuits. The

twenty largest MCNC benchmark circuits have commonly been used in the re-

search on FPGAs [35] and Structured ASICs [97]. We use the nineteen largest

circuits.1 One of the circuits, s38584.1, contains a net with more than 3000 pins

which was too large for the global router; we chose to exclude the benchmark

rather than modify it or the CAD flow.2

To study the performance and cost trends, we consider a range of logic block

architectures. The logic blocks have different number of inputs and outputs, and

they also vary in their physical sizes. In the following subsections, we describe

our approach for technology mapping, the method used to calculate the physical

1Characteristics of these benchmarks are shown in Appendix A.
2For such high-fanout nets, a different type of a router (e.g., a clock router) would typically be

used, or the generating logic would be duplicated.

71

sizes of the logic blocks, and the performance and cost trends.

5.2.1 Technology Mapping

The input to our CAD flow is a technology-mapped circuit. The technology map-

ping depends on the internal structure of each logic block in the MPSA. In order

to focus our attention on the interconnect architecture, we abstract the contents

of the block by representing only its input and output pins, and the block area.

This means that an exact technology mapping is impossible. Instead, we per-

form a clustering step to produce an interconnect netlist that approximates a real

technology-mapped netlist. Our benchmark circuits are expressed in terms of 2-

input gates. We cluster these basic gates such that each cluster has a specific

number of inputs and outputs that matches the number of inputs and outputs of a

particular logic block architecture. Such a clustered netlist has many of the prop-

erties (such as fan-in and fan-out distributions, Rent parameter, etc.) of a real

technology-mapped circuit. We use T-VPack ([35]), an FPGA clustering algo-

rithm, for this purpose.

Because we avoid real technology mapping, we must be careful not to com-

pare the results obtained using two different logic blocks (I/O counts) directly.

Hence, we do not draw any conclusions about which logic block is better. Instead,

we average results across logic blocks and only compare the results for different

layout areas.

72

5.2.2 Logic Block Dimensions

Our experimental methodology requires the pin locations and the layout area

(height and width) for each logic block. We randomly assign pin locations within

each cell such that all the logic blocks that have the same number of inputs and

outputs have the same pin locations.

The layout area for a particular logic block depends upon the contents (num-

ber of gates) and the effort of the layout artist, both of which are hard to esti-

mate precisely. Instead, we determine the minimum and maximum area values

for each logic block architecture and sweep through five equally spaced points in

that range. The minimum cell area represents a very dense layout. We use the

number of logic block pins (p) to calculate the minimum cell area. The minimum

area (in units of wire half-pitches) to fit p pins is 2⌈√p⌉×2⌈√p⌉. However, we

have seen that it is not possible to connect to such a dense arrangement of pins.

Therefore, we assume the minimum layout area to be 4⌈√p⌉×4⌈√p⌉.

For maximum layout area, we find an area number (A) for an “average” gate by

averaging the areas of different basic standard cells such as NAND, NOR, MUX,

etc. If the logic block has o outputs, then we assume the maximum area to be

⌈
√
A·o⌉×⌈

√
A·o⌉ = A ·o.

Table 5.1 shows the different logic block types (I/O counts) and the corre-

sponding layout area values used in our experiments.

73

Table 5.1: Logic blocks used in experiments

Type
Block Layout Area in Half-Pitches (Width×Height)

High Density · · · Low Density

IN OUT Min. Small Medium Large Max.

2 1 8×8 12×12 15×15 19×19 22×22

4 2 12×12 17×17 22×22 27×27 32×32

6 3 12×12 19×19 26×26 33×33 39×39

8 4 16×16 23×23 30×30 37×37 44×44

10 5 16×16 25×25 33×33 42×42 50×50

12 6 20×20 29×29 37×37 46×46 54×54

14 7 20×20 30×30 40×40 50×50 59×59

16 8 20×20 31×31 42×42 53×53 63×63

5.2.3 Performance and Cost Trends

The trends for area, delay and power as a function of the number of routing lay-

ers, averaged over all the MCNC circuits, are shown in Figure 5.1. We study

the trends for 2–6 routing layers. With an odd number of layers, there are more

metal segments along one direction (horizontal or vertical) than the other direc-

tion. However, despite the asymmetry, such fabrics help in reducing congestion

(e.g., see Figure 5.5).

The plots show averaged (geometric mean) data of all the different logic block

types for all the circuits. The plots are normalized to the values of minimum

block layout area with two routing layers. We define the nominal area to be

the geometric mean of the core area of the minimum block layout area with two

routing layers. The nominal area in these plots is 0.008mm2. There are four

important observations. First, for larger block layouts, the area, delay, and power

does not change as we increase the number of routing layers. This is because the

74

blocks are so large that even with two layers there is no congestion, therefore,

there is no effect of adding subsequent routing layers. Second, for smaller block

layouts, the improvements in area, delay and power are quite small after four

routing layers. Third, in some cases, given the same number of routing layers, the

core area with larger blocks can be smaller than the core area with small blocks

(e.g., core areas for “Medium” and “Small” blocks with two routing layers in

Figure 5.1(a)). This is primarily because of the uniform whitespace distribution

scheme used during placement. The total whitespace required for small blocks

is more than the whitespace inserted for larger blocks, which increases the core

area. The use of an intelligent whitespace insertion algorithm (one that inserts

whitespace only at the congested areas) could alleviate this problem. Finally, area

is the most sensitive to the addition of extra routing layers, while power is the least

sensitive. These trends are similar when the averaged data shown in Figure 5.1

is examined for individual logic block types (I/O counts), but these data are not

shown due to space constraints.

Next, we estimated the die-cost by applying the cost model described in Chap-

ter 3. However, the homogeneous circuits we used are quite small. Such small

circuits are not realistic; this artificially increases (Ngdpw) significantly, reducing

Equation 3.8 to NmlK2 +K3. Because of this, we scaled the core area to a realistic

value before applying the cost model.3 To do this scaling, we multiplied the core

areas by a common factor such that the nominal core area matches a desired area

value. We considered three desired values for the nominal core area. These values

3In section 5.3, we show results on larger circuits that do not require any scaling.

75

2 3 4 5 6
0

0.5

1

1.5

No. of Routing Layers

N
o

rm
a

liz
e

d
 C

o
re

 A
re

a

Min. Block
Small Block
Medium Block
Large Block
Max. Block

(a) Area

2 3 4 5 6
0

0.5

1

1.5

No. of Routing Layers

N
o

rm
a

liz
e

d
 I

n
te

rc
o

n
n

e
c
t

D
e

la
y

Min. Block
Small Block
Medium Block
Large Block
Max. Block

(b) Delay

2 3 4 5 6
0

0.5

1

1.5

No. of Routing Layers

N
o

rm
a

liz
e

d
 I

n
te

rc
o

n
n

e
c
t

P
o

w
e

r

Min. Block
Small Block
Medium Block
Large Block
Max. Block

(c) Power

Figure 5.1: Area, delay, and power trends for MCNC circuits. The nominal

core area (core area of Min. Block with 2 routing layers) at 45nm is

only 0.008mm2

76

2 3 4 5 6

0.5

1

1.5

2

9.5

10

No. of Routing Layers

N
o

rm
a

liz
e

d
 C

o
s
t

Cell based IC
Max. Block
Large Block
Medium Block
Small Block
Min. Block

Dollar cost = $5.05

(a) Nominal core area = 10mm2

2 3 4 5 6

0.5

1

1.5

2

5

5.5

No. of Routing Layers

N
o

rm
a

liz
e

d
 C

o
s
t

Cell based IC
Max. Block
Large Block
Medium Block
Small Block
Min. Block

Dollar cost = $9.40

(b) Nominal core area = 50mm2

2 3 4 5 6

0.5

1

1.5

2

2.5

3

3.5

No. of Routing Layers

N
o

rm
a

liz
e

d
 C

o
s
t

Cell based IC
Max. Block
Large Block
Medium Block
Small Block
Min. Block

Dollar cost = $15.61

(c) Nominal core area = 100mm2

Figure 5.2: MCNC circuits: trends for die-cost at 45nm

77

are 10mm2, 50mm2, and 100mm2. The resulting cost plots are shown in Figure 5.2.

It can also be seen from Figure 5.2 that, for small die sizes, the minimum cost is

achieved with only two routing layers; the cost of adding an extra layer is almost

always greater than any cost savings due to area reduction. However, for large

die sizes, additional routing layers reduce cost modestly for only the most dense

block layouts.

We also show the estimated CBIC cost in Figure 5.2, produced using the core

area of a “Min” block layout area, six routing layers, and all custom masks. It can

be seen that, despite the small area of CBICs, there is a significant gap between

the cost of an MPSA and a CBIC for smaller dies. This difference, however,

diminishes as the die sizes grow, suggesting that CBICs may be cost-effective for

extremely large designs (i.e., greater than 100mm2).

Finally, we compare the cost of implementing a design in an MPSA and a

CBIC using different process technologies. We consider 90nm and 45nm process

technologies. The area of the 90nm implementation is 4× the area of 45nm imple-

mentation. For MPSA costs we assumed a “Medium” block layout area whereas

for CBIC we assumed “Min” block layout area. With these assumptions, the

MPSA implementation of a design requires 3.5× more area than the CBIC imple-

mentation in the same process technology. The ratio of CBIC costs to MPSA costs

are then shown in Figure 5.3. It can be seen that, for smaller dies, the MPSAs are

more cost effective than CBICs despite a 3.5× area penalty. The cost effective-

ness improves as we scale to finer process geometries. The figure also shows the

comparison of a 90nm CBIC implementation versus a 45nm MPSA implementa-

78

2 3 4 5 6

2

4

6

8

10

No. of Routing Layers

C
B

I
C

C
o
s
t

M
P

S
A

C
o
s
t

45nm CBIC(2.8mm
2
) vs 45nm MPSA (10mm

2
)

90nm CBIC(11.4mm
2
) vs 90nm MPSA (40mm

2
)

90nm CBIC (11.4mm
2
) vs 45nm MPSA (10mm

2
)

(a) 45nm MPSA Core Area=10mm2; 90nm

MPSA Core Area=40mm2

2 3 4 5 6

2

4

6

8

10

No. of Routing Layers

C
B

I
C

C
o
s
t

M
P

S
A

C
o
s
t

45nm CBIC (14.3mm
2
) vs 45nm MPSA (50mm

2
)

90nm CBIC (57mm
2
) vs 90nm MPSA (200mm

2
)

90nm CBIC (57mm
2
) vs 45nm MPSA (50mm

2
)

(b) 45nm MPSA Core Area=50mm2; 90nm

MPSA Core Area=200mm2

2 3 4 5 6

2

4

6

8

10

No. of Routing Layers

C
B

I
C

C
o
s
t

M
P

S
A

C
o
s
t

45nm CBIC (28.6mm
2
) vs 45nm MPSA (100mm

2
)

90nm CBIC (114.3mm
2
) vs 90nm MPSA (400mm

2
)

90nm CBIC (114.3mm
2
) vs 45nm MPSA (100mm

2
)

(c) 45nm MPSA Core Area=100mm2; 90nm

MPSA Core Area=400mm2

Figure 5.3: Cost advantage of MPSAs over CBICs at 90nm and 45nm

(higher value means MPSA is lower cost)

79

tion. Again, MPSAs are much cheaper than a CBIC implementation, especially

for small die sizes. This suggests that the MPSAs can make modern technologies

more affordable than older CBIC technologies. Interestingly, we can also see that

MPSAs are not cost-effective against CBICs for large dies when both are imple-

mented in 90nm; this may partly explain the slower than anticipated adoption rate

of Structured ASICs to date.

5.3 Heterogeneous Circuits

For heterogeneous circuits, we used circuits that were released by eASIC as part

of a placement contest [3]. These circuits are modified versions of large industrial

designs and contain up to approximately one million logic blocks. The circuits

utilize four different types of logic elements: ecells (logic block), flip-flops, block

RAMs, and register files. The circuits have been technology mapped to an archi-

tecture (described below) that contains these different types of logic blocks. The

internal architecture of the different blocks is not disclosed. There are multiple

clock domains in these circuits, however, for our experiments we only assume a

single clock domain.

In the following subsections, we describe the eASIC device architecture, our

approach for technology mapping and logic block area calculation, and the per-

formance and cost trade-offs.

80

B
lo

c
k
 R

A
M

R
e

g
is

te
r

F
ile

R
e

g
is

te
r

F
ile

Not Used by Logic Fabric

Logic Blocks Flip-Flops

Figure 5.4: Basic logic fabric group of the eASIC device

5.3.1 Device Architecture

The architecture of the eASIC device is similar to a column-based FPGA. The

basic building block is called a “group” which consists of columns of logic blocks

and flip-flops, block RAMs, and register files. There is a fixed site for each block

type in a group and a group can have four different clocks. The chip is made

up of an array of groups and can have 32 different clocks. Figure 5.4 shows the

organization of the eASIC group.

5.3.2 Technology Mapping

The benchmark circuits are mapped to the eASIC device, however, the original

technology mapping of the circuits is very sparse. Table 5.2 shows the charac-

teristics of the original eASIC benchmark circuits. The logic block has 9 pins (7

input pins and 2 output pins), but the circuits, on average, are only using 3 pins.

81

Because of such a sparse technology mapping, there is no congestion and all the

circuits were routable with only two layers. In this case, the results were similar

to the results of MCNC benchmarks with “Max” block layout area (Figure 5.1).

Therefore, we modified the circuits by clustering the logic blocks to make the

mapping more dense. We used the T-VPack algorithm ([35]) for clustering. The

characteristics of the clustered circuits are shown in Table 5.3. On average, ap-

proximately three blocks are clustered together without violating the input and

output constraints of the eASIC logic block (7 inputs and 2 outputs). In some

cases, the number of blocks clustered together is as high as twenty. The result-

ing packed netlists are fairly dense where circuits on average use six out of nine

available pins of the logic block. We use these packed netlists for our experiments.

5.3.3 Logic Block Dimensions

To conduct the experiments, we need an estimate of the layout area for different

circuit elements in the eASIC architecture. The smallest circuit element is the

logic block and the area of the other blocks can be expressed in terms of the logic

block area. The relative area of different circuit components can be found from

the benchmark files. We estimated the block RAM layout area from its size (36kb

dual-port memory), and used that to determine the layout area of a logic block.

We defined this logic block as “Medium Block” and it has a layout area (in units

of wire half-pitches) of 69×69. We also consider two other logic blocks: one

with a 0.5× layout area and the other with a 2× layout area of “Medium Block”.

We define these as “Small Block” and “Large Block” respectively. The layout

82

Table 5.2: Characteristics of eASIC benchmarks
Logic Flip Block Register Avg. Used Pins

Circuit Inputs Outputs Nets Blocks Flops RAM File per Logic Block

(Total Pins: 9)

easic1 151 311 930,116 832,824 87,052 110 172 3.18

easic2 83 28 873,483 812,200 45,478 175 686 3.08

easic3 421 1 1,016,364 961,063 52,780 192 0 2.99

easic4 123 292 126,224 102,038 23,330 0 44 3.06

easic5 26 149 1,010,422 913,853 84,505 145 262 3.14

Table 5.3: Characteristics of packed eASIC benchmarks (modified technol-

ogy mapping)

Circuit Nets Logic Max. Blocks Avg. Blocks Avg. Used Pins

Blocks per Cluster per Cluster per Cluster

easic1 packed 723,455 318,448 14 2.64 5.99

easic2 packed 658,846 304,520 14 2.67 5.87

easic3 packed 533,161 261,366 19 3.68 6.41

easic4 packed 82,822 31,746 13 3.22 6.27

easic5 packed 738,587 332,341 20 2.77 5.99

area values of these blocks, in terms of wire half-pitches, are 50×50, and 96×96,

respectively.

5.3.4 Performance and Cost Trends

We pass four of the circuits through the CAD flow. The placement grid for the

smallest circuit, easic4, is limited by the register files rather than the logic blocks,

so we do not use this circuit in our experiments. We collect area, delay, and power

statistics for different numbers of routing layers and use the cost model described

in Chapter 3 to calculate the die-cost. The plots for the average (geometric) area,

delay, and power trends are shown in Figures 5.5 (a), (b), and (c) respectively. All

the plots are normalized to the values for “Small Block” with two routing layers.

83

There are four major observations. First, the area, delay, and power performance

improves with more routing layers. The bulk of the improvement occurs in going

from 2 to 4 layers; for example, Small Block area and delay reduces by 75% and

power reduces by 50%. For the same block size, the improvement in area, delay,

and power from 4 to 6 layers is only 12%, 11%, and 13% respectively. The trends

for other block sizes are similar.

Second, with fewer routing layers, the difference between the different block

sizes is small but it grows with more routing layers. With two routing layers,

the difference in area, delay, and power of a Structured ASIC containing Small

Blocks and one containing Large Blocks is 2%, 1%, and 0%, respectively. The

same difference with 4 layers is 15%, 20%, and 13% respectively; with 6 layers,

the difference grows to 27%, 31%, and 26%, respectively.

Third, area is most sensitive to the number of routing layers, whereas power is

least sensitive. The reduction in area and power in going from 2 to 6 layers with

Small Blocks is 90% and 60%, respectively.

Finally, we see that with 2 routing layers, the area, delay and power with Small

Blocks are more than the Medium Block. We also see that in going from 2 to 3

layers, there is a significant performance improvement. The reason for both these

observations is related to the use of uniform whitespace insertion algorithm in our

CAD flow. The available whitespace gets distributed across the core rather than

just at the congested regions. As a result, a large amount of whitespace needs

to be inserted to successfully route highly congested designs, which is the case

with a small number of routing layers and/or small block sizes. In Section 5.5, we

84

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

No. of Routing Layers

N
o

rm
a

liz
e

d
 C

o
re

 A
re

a

Small Block
Medium Block
Large Block

(a) Area

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

No. of Routing Layers

N
o

rm
a

liz
e

d
 I

n
te

rc
o

n
n

e
c
t

D
e

la
y

Small Block
Medium Block
Large Block

(b) Delay

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

No. of Routing Layers

N
o

rm
a

liz
e

d
 I

n
te

rc
o

n
n

e
c
t

P
o

w
e

r

Small Block
Medium Block
Large Block

(c) Power

Figure 5.5: Packed eASIC circuits: area, delay and power trends (core area

with Small Block and two routing layers = 162mm2)

85

provide an insight into the improvement that might be obtained from the use of an

intelligent whitespace insertion algorithm.

Next, we estimate the die-cost using the area values of Figure 5.5a. The re-

sulting plot is shown in Figure 5.6. The plot shows that the decrease in core area

with more routing layers does not reduce the die-cost by the same proportion. It

can be seen that the reduction in die-cost obtained by having more than 3 routing

layers is very small and there is almost no cost advantage of having more than 4

routing layers. The reason for this behavior is the large cost associated with the

mask-set; cost savings resulting from smaller die sizes are offset by the increase

in cost due to the use of additional custom masks.

We also compare the MPSA die-cost of heterogeneous circuits to the corre-

sponding CBIC cost. We estimated the CBIC cost using the MPSA area value

(with Small Block and 6 routing layers) and consider all masks as custom. The

resulting cost is also shown in Figure 5.6. It can be seen that 2-layer MPSAs have

a 2× cost advantage over CBICs, and with 4 routing layers it grows to about 4×.

5.4 Cost Sensitivity Analysis

In this section we study the sensitivity of the die-cost to some of the parameters

of Table 3.2. In particular, we look at the effect of different volume requirements

(Vc and Vtot), mask-set prices (Csml
and Csmu

), and number of fixed lower masks

(N f ml
). We have noticed that the trends for different MPSAs (different logic block

sizes and different number of routing layers) are largely insensitive to these pa-

rameters. However, the cost of MPSAs relative to CBICs does change. Therefore,

86

2 3 4 5 6

0.5

1

1.5

2

No. of Routing Layers

N
o

rm
a

liz
e

d
 C

o
s
t

Cell based IC

Large. Block

Medium Block

Small. Block

Dollar cost = $24.80

Figure 5.6: Die-cost trend for packed eASIC circuits (normalized to cost val-

ues for “Small Block”)

we only compare the die-cost of 45nm CBICs against the 45nm MPSA with Small

Block and 2 routing layers and show the results for heterogeneous circuits.

The sensitivity of die-cost to volume requirements is shown in Figure 5.7. We

considered a range of values for customer volume (Vc) and total device volume

(Vtot). The results show that the die-cost is much more sensitive to Vc than Vtot .

This is because CBIC mask-set cost is amortized over the customer volume only.

For small volumes, MPSAs are therefore very cost effective.

Next, we look at the impact of mask-set cost. There are two factors in the

mask-set cost: (1) the total mask-set cost, and (2) the ratio of the cost of the

lower and upper masks (Csml
and Csmu

, respectively). We considered these two

factors and also considered different device volumes. The results are shown in

Figure 5.8. It can be seen that the higher mask-set costs favor MPSAs, especially

for smaller volumes. Additionally, the current trend shows that as technology

scales, Csml
: Csmu

ratio becomes larger [90]. Figure 5.8 shows that these trends

87

20k 40k 60k 80k 100k 120k
1

2

3

4

5

6

7

Volume per Customer (V
c
)

C
B

I
C

C
o
s
t

M
P

S
A

C
o
s
t

(S
m

a
ll

B
lo

c
k
,N

m
l
=

2
)

V
tot

 = 2.5M

V
tot

 = 2M

V
tot

 = 1M

V
tot

 = 500k

V
tot

 = 250k

Figure 5.7: Die-cost sensitivity to volume requirements

also favor MPSAs.

Finally, we also modeled different processes in which the number of masks

needed to manufacture the fixed portion of the device (N f ml
) may differ. The

results, shown in Figure 5.9, illustrate that a larger value of N f ml
would favor

MPSAs over CBICs. This is because, with large N f ml
, a larger portion of the

cost of the mask-set is amortized over total device volume (Vtot). This lowers the

per-die cost of MPSAs.

5.5 Impact of an Intelligent Whitespace Insertion

Algorithm

We use uniform whitespace insertion in our CAD flow. As described in Section

5.3, one of the problems with this approach is that a significant amount of whites-

pace needs to be inserted before all congestion is removed. This results in a large

die-area and increased wirelength which degrades delay and power.

The nature of the whitespace insertion problem in MPSAs is similar to that

88

1M 1.5M 2M 2.5M

1

1.2

1.4

1.6

1.8

2

2.2

Maskset Cost ($)

C
B

I
C

C
o
s
t

M
P

S
A

C
o
s
t

(S
m

a
ll

B
lo

c
k
,N

m
l
=

2
)

C
sm

l

:C
sm

u

=4:1

C
sm

l

:C
sm

u

=3:1

C
sm

l

:C
sm

u

=2:1

(a) Vc = 100k,Vtot = 2M

1M 1.5M 2M 2.5M
3

4

5

6

7

Maskset Cost ($)

C
B

I
C

C
o
s
t

M
P

S
A

C
o
s
t

(S
m

a
ll

B
lo

c
k
,N

m
l
=

2
)

C
sm

l

:C
sm

u

=4:1

C
sm

l

:C
sm

u

=3:1

C
sm

l

:C
sm

u

=2:1

(b) Vc = 20k,Vtot = 500k

Figure 5.8: Die-cost sensitivity to mask-set cost

9 14 18 27 36
1.9

2

2.1

2.2

2.3

Number of Fixed Lower Masks (N
fm

l

)

C
B

I
C

C
o
s
t

M
P

S
A

C
o
s
t

(S
m

a
ll

B
lo

c
k
,N

m
l
=

2
)

Figure 5.9: Die-cost sensitivity to number of fixed masks (N f ml
)

89

of FPGAs. As described in Chapter 2, the use of empty CLBs as whitespace has

not been very successful in FPGAs. Instead, most published techniques rely on

depopulating the logic blocks (using fewer LUTs than are available in each logic

block) [112][113][53]. In our MPSA logic block model, we are assuming a fully

packed logic block. Therefore, this technique is not directly applicable. In our

experiments we have noted that some of the congestion-aware placement options

available in the existing academic placers were not able to produce routable place-

ments, especially when there are few metal layers available for routing. Develop-

ing a new suitable whitespace allocation algorithm is beyond the scope of this

dissertation. Instead, in this section, we estimate the impact that an intelligent,

congestion-aware whitespace insertion algorithm would have on our results.

Our approach for this estimation is as follows. Assume that the minimum

number of routing layers for which a given circuit can be routed without any

whitespace insertion is L. For architectures with fewer than L routing layers, not

all nets can be routed due to congestion. To remove this congestion, an intelligent

whitespace insertion algorithm would leave selected logic blocks empty; if this is

done correctly, then the circuit can be routed using fewer than L routing layers,

since each empty logic block is accompanied by a set of routing tracks, and these

tracks can be used to route nets in the circuit. For an architecture with L′ routing

layers, where L′ < L, our approach is to estimate the number of logic blocks N that

need to be left empty such that the total number of available routing tracks in the

new architecture with L′ routing layers is same as the total number of available

routing tracks in the architecture containing L routing layers. The die area and

90

 - Placement Grid: 5x5

 - Routing Layers: 4

 - Routing Tracks Over Logic Block: 4

Total Routing Capacity = 5x5x4x4
 = 400

Original Grid
Capacity with 3 layers = 5x5x4x3

 = 300

Blocks Added to Increase
Routing Capacity

 - Placement Grid: 6x6

 - Routing Layers: 3

 - Routing Tracks Over Logic Block: 4

Total Routing Capacity = 6x6x4x3
 = 432

Figure 5.10: Estimating die-area with use of an intelligent whitespace inser-

tion algorithm

dollar cost of an architecture with N additional logic blocks but only L′ routing

layers can then be computed using our previous techniques.

To calculate N, we do the following. Consider a placement grid of X×Y logic

blocks that is routable without any whitespace using L routing layers. If the size

of a logic block is such that t (= tx = ty) routing tracks can pass over it in one

layer, then the total routing capacity T is T = X ×Y × t × L. If the number of

routing layers is reduced by ∆L, then the total reduction, R, in the routing capacity

91

is R = X×Y × t×∆L. We then use R to calculate N as follows:

N =
R

(L−∆L)t
= X×Y × L−L′

L′

and consequently the new placement grid size is: ⌈
√

(X×Y)+N⌉×⌈
√

(X×Y)+N⌉.

This process is illustrated in Figure 5.10 for X =Y = 5, L = 4, t = 4, and ∆L = 1.

This estimation technique is optimistic in that it shows the “best case” benefit that

might be achieved. In practice, the benefit will likely be less.

The die-area values obtained by using the above technique for heterogeneous

circuits are shown in Figure 5.11 along with the original area values. To gather

these results, we found the minimum L for which the circuit can be routed, and

iterated for all values L′ < L, each time calculating the area as above. For each

point, if the estimated area turns out to be more than the area obtained from the

CAD flow, we use the CAD-area instead for the current and subsequent area cal-

culations. It can be seen from the graph that an intelligent whitespace insertion

algorithm has the potential to provide significant savings in die-area, especially

when there are few layers available for routing. The most potential for area sav-

ings is with an architecture containing a Small Block where the estimated die-area

for 2 routing layers is 60% less than what was obtained using uniform whitespace

allocation. This difference reduces to 7% if 4 routing layers are available.

The die-cost values corresponding to the estimated area values are shown in

Figure 5.12. As the graph shows, the 60% area saving (due to improved whites-

pace insertion) for the Small Block with 2 layers, translates to a 55% cost reduc-

92

tion. However, the area reduction in going from 2 to 4 layers does not translate

into any cost advantage. Another observation is that the layout area of the logic

block now has an impact on the die-cost when there are only two layers in the rout-

ing fabric. There is 12% difference between the die-cost of Small and Medium

Blocks, and a difference of 20% between Medium blocks and Large Blocks. Fi-

nally, it can also be seen that the minimum cost point for Small and Medium

Blocks has moved from 5 or 4 layers, respectively, to 3 layers.

From Figure 5.5, we see that the trends for delay and power are similar to area,

therefore we expect the impact of the whitespace insertion algorithm on delay and

power to be similar to that of area.

These results show that a significant reduction in the die-area and die-cost

can be made by improving the CAD flow. With the current whitespace insertion

techniques, there is very little advantage of having a small, densely laid out logic

block, especially with few routing layers. In the future, however, as better CAD

techniques evolve, densely laid-out logic blocks will become advantageous.

5.6 Summary

Area, delay, power and cost trends for MPSAs were presented in this chapter.

Area is the most sensitive, whereas the power is the least sensitive to the number

of routing layers. The sensitivity also varies with logic block layout density; high-

density layouts have greater sensitivity than low-density layouts.

We experimented with two different suites of benchmark circuits that con-

sisted of homogeneous and heterogeneous circuits. In case of homogeneous cir-

93

2 3 4 5 6

0.2

0.4

0.6

0.8

1

No. of Customizable Routing Layers (N
ml
)

N
o
rm

a
liz

e
d
 A

re
a

Original Area
Estimated Area

(a) Small Block

2 3 4 5 6

0.2

0.4

0.6

0.8

1

No. of Customizable Routing Layers (N
ml
)

N
o
rm

a
liz

e
d
 A

re
a

Original Area
Estimated Area

(b) Medium Block

2 3 4 5 6

0.2

0.4

0.6

0.8

1

No. of Customizable Routing Layers (N
ml
)

N
o
rm

a
liz

e
d
 A

re
a

Original Area
Estimated Area

(c) Large Block

Figure 5.11: Estimated die-area with use of an intelligent whitespace inser-

tion algorithm (packed eASIC benchmarks)

94

2 3 4 5 6

0.2

0.4

0.6

0.8

1

No. of Customizable Routing Layers (N
ml
)

N
o
rm

a
liz

e
d
 C

o
s
t

With Original Area
With Estimated Area

(a) Small Block

2 3 4 5 6

0.2

0.4

0.6

0.8

1

No. of Customizable Routing Layers (N
ml
)

N
o
rm

a
liz

e
d
 C

o
s
t

With Original Area
With Estimated Area

(b) Medium Block

2 3 4 5 6

0.2

0.4

0.6

0.8

1

No. of Customizable Routing Layers (N
ml
)

N
o
rm

a
liz

e
d
 C

o
s
t

With Original Area
With Estimated Area

(c) Large Block

Figure 5.12: Estimated die-cost with use of an intelligent whitespace inser-

tion algorithm (packed eASIC benchmarks)

95

cuits, minimum cost is achieved with the minimum number of routing layers.

The minimum number of routing layers also lead to the minimum cost in hetero-

geneous circuits if the technology mapping is sparse. With a dense technology

mapping, the minimum cost is achieved with three or four routing layers. The

delay and power for both the homogeneous and heterogeneous circuits improve

with additional routing layers. However, the improvement with more than four

routing layers is not significant. The maximum improvement occurs in heteroge-

neous circuits with Small Blocks. In this case, 90% of the delay reduction, and

80% of the power reduction occurs with four routing layers.

The die-cost of MPSAs was compared against CBICs. Small circuits with

a core area of up to 10mm2 in a 2-layer 45nm MPSA can be 10× cheaper than

a corresponding 2.8mm2 45nm CBIC. For large designs with embedded macro

blocks, the cost difference (between a 2-layer 45nm MPSA and a corresponding

CBIC) is 2×. This cost advantage grows to 4× for a 4-layer MPSA.

The CAD flow currently uses uniform whitespace insertion. This inflates area

and cost when there are few routing layers. With the use of an intelligent whites-

pace insertion algorithm, the MPSA cost advantage with two routing layers can be

improved by more than 50%. This would also make the difference between 45nm

CBIC and 2-layer MPSA grow to 4×, and there would be little or no additional

cost advantage to increase the MPSA from 2 layers to 4 layers.

96

Chapter 6

Via-Programmable Structured

ASICs

6.1 Overview

In this chapter, we present experimental results for Structured ASICs in which all

the metal masks are fixed and only the custom via masks are needed to config-

ure the device (VPSAs). We conducted experiments using three different types

of via-programmable routing fabrics: one of the fabric uses crossover wiring, an-

other uses jumper wiring, and the third type of fabric employs multiple metal

routing layers but only uses a single via layer for customization. We also studied

the impact of the logic block pin positions on the performance of VPSAs. We

explored three different schemes for pin positions. These include assigning pins

at the periphery of logic blocks, on two intersecting diagonals across the logic

97

block, and on a single diagonal across the logic block. Using the best pin position

scheme for each routing fabric, we study the power, delay, area, and cost trends

for VPSAs. We also compare these trends to MPSAs. Finally, we outline some

of the limitations of our detailed router when routing large heterogeneous circuits

and mention some of the techniques that we explored to improve its performance.

6.2 Experimental Setup

We use the CAD flow described in Chapter 4 to conduct the experiments. In the

following subsections, we describe the benchmarks and our approach for tech-

nology mapping, and the method used to calculate the physical sizes of the logic

blocks.

6.2.1 Benchmark Circuits and Technology Mapping

We conducted the experiments for VPSAs using nineteen largest homogeneous

circuits from the MCNC benchmark suite.1 As described in Chapter 5, one of the

circuits, s38584.1, contains a net with more than 3000 pins which was too large for

the global router. We chose to exclude the benchmark rather than modify it or the

CAD flow. We could not use heterogeneous circuits from the eASIC benchmark

suite ([3]) for VPSA experiments. This limitation is discussed in Section 6.6.

We perform technology mapping as described in Section 5.2.1.

1Characteristics of these benchmarks are shown in Appendix A.

98

6.2.2 Logic Block Types and Dimensions

We used the same types of logic blocks (number of I/O pins) that were used in the

MPSA experiments with homogeneous circuits (Table 5.1).

The layout area for a particular logic block depends upon the contents (num-

ber of gates) and the effort of the layout artist, both of which are hard to estimate

precisely. Instead, we sweep the area across a range of values. We determine min-

imum and maximum area and use three equally spaced points within that range.

The maximum cell area corresponds to a logic block that is laid out with little

effort, and therefore has a sparse layout. We define this logic block as “Sparse”.

The minimum cell area corresponds to a hand-crafted cell that has a dense lay-

out. We define this as “Dense”. Between these values, we define the mid-point as

“Medium”.

We determine maximum and minimum cell area values for each logic block

type (I/O count). To estimate the area of a “Sparse” implementation, we find

the smallest logic block size that can be routed with a two-layer Crossover fabric

without any whitespace. We determine this value for each benchmark circuit and

then select the largest value of the set. Similarly, we estimate the area of “Dense”

implementation by calculating the smallest logic block size that is routable (using

whitespace) with a two-layer Crossover fabric. In Table 6.1, we show the layout

area values (in units of half metal pitches) used in our experiments for different

logic block types. The minimum and maximum cell areas for each individual

MCNC benchmark circuit are shown in Appendix C.

99

Table 6.1: Logic blocks used in experiments

Type Block Layout Area(Width×Height)

IN OUT Dense Medium Sparse

2 1 12×12 20×20 28×28

4 2 20×20 36×36 50×50

6 3 22×22 42×42 62×62

8 4 26×26 50×50 72×72

10 5 30×30 56×56 82×82

12 6 32×32 62×62 92×92

14 7 38×38 72×72 104×104

16 8 40×40 74×74 106×106

6.3 Fixed-Metal Interconnect Fabrics

In VPSAs, all the metal segments in the routing layers are pre-designed. Thus,

the metal masks are fixed and only the via masks need to be generated to cus-

tomize the device. This reduces the device cost, but may increase the delay and

power consumption since the device is not as flexible as an MPSA. We conduct

our experiments using three different types of fixed-metal fabrics that have been

proposed in [96, 97]. We define these fabrics as Jumper, Crossover, and SingleVia

fabrics. Each of these fabrics is described in detail below.

6.3.1 Jumper Fabric

The Jumper fabric is a simple interconnect fabric containing routing segments and

jumpers on each layer. The routing segments span the entire logic block whereas

the jumpers are small segments that are orthogonal to the routing segments and

are used to extend routing segments in adjacent layers. The routing segments (and

jumpers) of two adjacent layers are orthogonal to each other and form a crossbar

100

structure. The fabric is configured by placing vias at desired points between inter-

secting segments (routing segments or jumpers) in adjacent layers. It is possible

to include long routing segments in the fabric that span more than one logic block.

The metal architecture for two adjacent layers of a jumper-based fabric for a tile

of 2×2 logic blocks is shown in Figure 6.1.

The jumper fabrics used in our experiment contain two types of routing seg-

ments: regular segments that span a single logic block, and long segments that

span four logic blocks. The long segments are staggered across the tile. Based on

the ratio of regular and long segments, the following two variants of the jumper-

based fabric are used in the experiments:

1. Jumper20: 20% routing segments are long segments

2. Jumper40: 40% routing segments are long segments

Layer2i+1 (i=0, 1, …) Layer2i+2 (i=0, 1, …)

Regular

Segments

Long

Segments

Jumpers not required

due to long segments

Figure 6.1: Jumper-based routing fabric

101

6.3.2 Crossover Fabric

Crossover fabric is a routing structure which does not contain any dedicated jumpers

and only contains routing segments. In one layer, all the routing segments passing

over a logic block are orthogonal to the segments passing over the neighboring

logic blocks. The segments in two adjacent layers are also orthogonal to each

other and form a crossbar structure. Figure 6.2 illustrates the Crossover fabric.

Layer2i+1 (i=0, 1, …) Layer2i+2 (i=0, 1, …)

Figure 6.2: Crossover routing fabric

The Crossover fabric has certain advantages over the Jumper fabric [96, 97].

First, since there are no dedicated jumpers, it can accommodate an additional rout-

ing segment in the same area. Second, extending a segment along the same direc-

tion in a Jumper-based fabric requires the signal to go through two vias (jumper

ends), whereas in Crossover fabric it only goes through a single via.

6.3.3 SingleVia Fabric

In both Jumper and Crossover fabrics, all the metal masks are fixed and all the

via masks are customizable. The SingleVia fabric has been proposed to further

reduce the VPSA cost by making only a single via layer configurable and fixing

102

all the other via masks [96, 97].

The basic structure of the SingleVia fabric is as follows. The metal segments

in Layer 1 and Layer 2, the first two routing layers of the fabric, form a Crossover

structure.The via layer between Layer 1 and Layer 2 is configurable. Each ad-

ditional layer consists of staggered long segments that connects to the second

routing layer with fixed vias at each end. All the long segments in a layer have

the same orientation (horizontal or vertical), and segments in adjacent layers are

orthogonal. Not all the segments on second routing layer can be used for routing;

some of these segments, known as accessing segments, are only used to provide

a connecting path for segments from layer three onwards to the configurable via

layer. The number of accessing segments depends on the number of routing layers

above layer two, the length of segments in these layers, and the orientation of long

segments relative to the corresponding accessing segment.2 Figure 6.3 illustrates

the SingleVia fabric with four routing layers (Layer 1 is not shownl it is similar

but orthogonal to Layer 2).

As illustrated in Figure 6.3, the SingleVia fabric used in our experiments uses

long segments that span four logic blocks.

6.4 Impact of Logic Block Pin Positions

The logic block pins (inputs or outputs of a logic block) connect to the first layer

of the routing fabric. The VPSA performance can be affected by the logic block

2If a long segment is parallel to layer-2 segments and the long segment spans n logic blocks,

then every nth segment per logic block is an accessing segment. If a long segment is perpendicular

to the accessing segment, then only two segments per logic block act as accessing segments.

103

Layer 2

The broken segments are

connected to Layers 3 or 4

through fixed vias; such

segments reduce the number

of available tracks in Layer 2,

that can be used for routing

Layer 4 connects

to Layer 2 in these

regions

Layer 3

Layer 4 connection

channel; no Layer 3

segment in this region,

if the routing fabric has

more than 3 layers

Fixed vias at the ends of

every segment connect it to

Layer 2; length of Layer 3

segments determines how

frequently the connections

are made to Layer 2

Underlying Layer 2

segment is parallel to Layer

3 segment; extending these

segments further will only

add extra capacitance

Layer 4

Connections to

Layer 2 are made

in this region

Each segment connects to Layer

2 with fixed, stacked vias at both

ends; the segment length

determines how frequently the

connections are made to Layer 2

Figure 6.3: SingleVia routing fabric

104

pin positions. Depending on the pin organization, a number of tracks that connect

to the pins cannot be used for routing any other signal. On one extreme, all the

pins can be assigned on to a single track by dividing the track into sub-segments

such that every sub-segment connects to only one pin. The other extreme is to

assign one pin per track. In the first case, although most of the tracks can be used

for routing, each pin can only connect to a small number of tracks of the second

routing layer. This can lead to reduced routability. In the second case, connecting

to the pins can occupy many tracks of the first layer, which can create routability

problems. It is not clear which scheme is better.

To study the impact of the pin positions on the performance of VPSAs, we

investigated three different pin position schemes, which we refer to as PinsPer,

PinsX, and PinsDiag. In the PinsPer scheme, the pins are assigned at the pe-

riphery of the logic block such that each side of the block has approximately the

same number of pins. Pins are distributed uniformly on each side and the routing

segments with more than one pin are subdivided into smaller sub-segments such

that each subsegment connects with only one pin. In the PinsX scheme, pins are

assigned on two intersecting diagonals (in the shape of the letter X). A maximum

of two pins are assigned per track in the PinsX scheme, which again requires

subdividing the segment. Finally, in the PinsDiag scheme, pins are assigned on

a diagonal with one pin occupying an entire routing track. These pin position

schemes are illustrated in Figure 6.4 for a logic block with 12 pins.

To find the best pin position scheme, we evaluated each pin position schemes

described above with Crossover, Jumper20, and SingleVia fabrics. We looked at

105

(a) PinsPer (b) PinsX (c) PinsDiag

Figure 6.4: Different schemes for logic block pin positions

different logic block types (number of I/O pins), as shown in Table 6.1. We an-

alyzed each logic block type with a range of logic block sizes (layout area) and

with routing fabrics consisting of two, three, and four routing layers. The result-

ing trends3 for the most congested MCNC benchmark circuit (pdc) are shown in

Figures 6.5, 6.6, and 6.7 for Crossover, Jumper20, and SingleVia fabrics respec-

tively. In each plot, the horizontal axis shows logic block width (in units of wire

half-pitches) and the vertical axis represent the width of the square VPSA device

that is obtained after performing place and route (logic block width × placement

grid-x). Each plot shows the performance of three pin position schemes. For com-

parison, we also include the minimum width (no whitespace) and the width of an

MPSA device. The MPSA device width indicates the lower bound for the width

of VPSA devices.

There are three main observations. First, there is a significant difference be-

tween the performance of different pin position schemes, especially when the

routing fabric consists of only two layers. When there are more routing layers

3The trends for only three logic blocks types (2-input, 1-output; 10-input, 5-output; and, 16-

input,8-output) are shown here. The results for remaining types are shown in Appendix B.

106

16 18 20 22 24 26 28

2000

3000

4000

5000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

16 18 20 22 24 26 28
Logic Block Width

No. of Routing Layers = 3

16 18 20 22 24 26 28
Logic Block Width

No. of Routing Layers = 4

Min. Width
MPSA
PinsPer
PinsX
PinsDiag

(a) 2-input, 1-output Logic Block

50 60 70 80
2000

4000

6000

8000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

50 60 70 80
Logic Block Width

No. of Routing Layers = 3

50 60 70 80
Logic Block Width

No. of Routing Layers = 4

Min. Width
MPSA
PinsPer
PinsX
PinsDiag

(b) 10-input, 5-output Logic Block

60 70 80 90 100
2000

4000

6000

8000

10000

12000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

60 70 80 90 100
Logic Block Width

No. of Routing Layers = 3

60 70 80 90 100
Logic Block Width

No. of Routing Layers = 4

Min. Width
MPSA
PinsPer
PinsX
PinsDiag

(c) 16-input, 8-output Logic Block

Figure 6.5: Impact of logic block pin positions on Crossover routing fabric.

The plots show trends for the most congested circuit — pdc.

107

16 18 20 22 24 26 28

2000

3000

4000

5000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

16 18 20 22 24 26 28
Logic Block Width

No. of Routing Layers = 3

16 18 20 22 24 26 28
Logic Block Width

No. of Routing Layers = 4

Min. Width
MPSA
PinsPer
PinsX
PinsDiag

(a) 2-input, 1-output Logic Block

50 60 70 80
2000

4000

6000

8000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

50 60 70 80
Logic Block Width

No. of Routing Layers = 3

50 60 70 80
Logic Block Width

No. of Routing Layers = 4

Min. Width
MPSA
PinsPer
PinsX
PinsDiag

(b) 10-input, 5-output Logic Block

60 70 80 90 100
2000

4000

6000

8000

10000

12000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

60 70 80 90 100
Logic Block Width

No. of Routing Layers = 3

60 70 80 90 100
Logic Block Width

No. of Routing Layers = 4

Min. Width
MPSA
PinsPer
PinsX
PinsDiag

(c) 16-input, 8-output Logic Block

Figure 6.6: Impact of logic block pin positions on Jumper20 routing fabric.

The plots show trends for the most congested circuit — pdc.

108

16 18 20 22 24 26 28

2000

3000

4000

5000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

16 18 20 22 24 26 28
Logic Block Width

No. of Routing Layers = 3

16 18 20 22 24 26 28
Logic Block Width

No. of Routing Layers = 4

Min. Width
PinsPer
PinsX
PinsDiag

(a) 2-input, 1-output Logic Block

50 60 70 80
2000

4000

6000

8000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

50 60 70 80
Logic Block Width

No. of Routing Layers = 3

50 60 70 80
Logic Block Width

No. of Routing Layers = 4

Min. Width
PinsPer
PinsX
PinsDiag

(b) 10-input, 5-output Logic Block

60 70 80 90 100
2000

4000

6000

8000

10000

12000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

60 70 80 90 100
Logic Block Width

No. of Routing Layers = 3

60 70 80 90 100
Logic Block Width

No. of Routing Layers = 4

Min. Width
PinsPer
PinsX
PinsDiag

(c) 16-input, 8-output Logic Block

Figure 6.7: Impact of logic block pin positions on SingleVia routing fabric.

The plots show trends for the most congested circuit — pdc.

109

available in the routing fabric, the difference is not as significant. This trend can

be seen in Figures 6.5 and 6.6. The reason is that the number of available routing

resources (metal segments) are limited when there are only two routing layers in

the routing fabric. Different pin position schemes can result in a significant dif-

ference between the device widths, highlighting the importance of choosing the

correct scheme for the correct circumstances. With more routing layers, or wider

logic blocks, the number of routing resources increase and the impact of different

pin position schemes is not as significant.

Second, the number of routing layers in the routing fabric can affect the per-

formance of a particular pin position scheme. Figures 6.5 and 6.6 show that with

two routing layers, the device width with PinsDiag scheme is significantly worse

than PinsPer and PinsX schemes, especially when the logic block contains more

than three pins. For example, in case of a 16-input, 8-output logic block with two-

layer Crossover fabric (Figure 6.5c), the difference between the device widths

with PinsDiag and PinsPer schemes is more than 3×. Similarly, for Jumper20

fabric, there is a big gap between PinsDiag, and PinsX and PinsPer schemes. In

fact, in many cases, the use of PinsDiag scheme with two-layer Jumper20 fabric

makes the circuit unroutable. However, the PinsDiag fabric performs better with

both Crossover and Jumper20 fabrics when there are more than two layers in the

routing fabric. This is because the PinsDiag scheme connects an entire routing

track to each pin. The use of PinsPer and PinsX schemes allow multiple pins per

routing track, and therefore these schemes perform better when there are only two

routing layers. As the number of routing layers increases, the ability of PinsPer

110

and PinsX schemes to connect pins to only a small number of layer-two segments

becomes a limiting factor and PinsDiag scheme performs better in this case.

Finally, the third observation is that the performance of a particular pin posi-

tion scheme is also dependant on the architecture of the routing fabric. For two-

layer Crossover fabric, PinsPer scheme has the best performance except when the

logic block has only three pins (Figure 6.5). As mentioned earlier, the PinsPer

scheme aims to distribute pins equally on each side of the logic block; with three

pins, the PinsPer scheme ends up with a single pin per routing track. Hence, the

PinsX scheme which assigns two pins per routing segment, performs better in the

case of three pins. Unlike the Crossover fabric, the PinsPer scheme is not routable

with two-layer Jumper20 fabric in many cases (Figure 6.6). The results for Sin-

gleVia fabric are shown in Figure 6.7. The plots for two-layer SingleVia fabric

and two-layer Crossover fabric are similar because a two-layer SingleVia fabric is

identical to two-layer Crossover fabric. It can be seen that unlike the Crossover

and Jumper20 fabrics, the PinsDiag scheme does not perform better than PinsPer

and PinsX schemes for three- and four-layer SingleVia fabrics. This is because the

third and fourth layers in SingleVia fabric are not completely flexible; the connec-

tions can only be made at end points and they also consume many segments from

layer two (accessing segments). The PinsDiag scheme consumes many routing

segments of the flexible first layer, hence it degrades the performance.

For our experiments, we used the best-case pin position scheme for each rout-

ing fabric depending on its architecture and the number of routing layers. Ta-

ble 6.2 shows the pin position schemes used with different fabrics in our experi-

111

Table 6.2: Pin position schemes used in the experiments

Routing

Fabric

Pin Position Schemes

PinsPer PinsX PinsDiag

Crossover
Pins > 3, and

Routing layers = 2

Pins = 3, and

Routing layers = 2
Remaining cases

Jumper20

Jumper40
Not used

a) Routing layers = 2, or

b) Pins cannot be assigned

using PinsDiag scheme

(logic block is too small

to accommodate all the

pins with 1 pin/track)

Remaining cases

SingleVia Not used All cases Not used

ments.

6.5 Performance and Cost Trends

In this section, we present the experimental results for fixed-metal routing fab-

rics. We look at the trends for routing fabrics with two, three, and four metal

layers. With three metal layers, the number of wire segments along one direction

(horizontal or vertical) are roughly twice as large as the other direction. Such

asymmetric fabrics may be useful in the following cases:

1. logic blocks have a large number of input/output pins and many metal seg-

ments from the first layer are consumed in making connections to these

pins;

2. there is too much congestion; or,

3. when logic blocks have non-square aspect ratios (this work only considers

112

square aspect ratios).

We present power, delay, area, die-cost trends for four different VPSA routing

fabrics. We also compare the VPSA performance against MPSAs. The MPSA

data is calculated as in Section 5.2 (we use the same layout area values and number

of routing layers as used for VPSAs, but do not perform detailed routing).

6.5.1 Power Results

To look at the effect of a certain routing architecture on VPSA performance, we

first look at the dynamic power dissipated in the interconnect. The results for four

different VPSA routing fabrics are shown in Figure 6.8 along with the results for

an MPSA routing fabric. The horizontal axis in each graph shows the number of

metal layers that can be used for routing. Depending on the type of the fabric,

different number of via layers are customizable. For example, for the Crossover

and Jumper fabrics, n routing layers would imply that there are n−1 configurable

via layers; for SingleVia fabric, the number of configurable via layers is always

one, irrespective of the number of routing layers. The vertical axis in each of the

plots shows interconnect power that we estimate from total interconnect capaci-

tance. The values in all the graphs are normalized to the interconnect power of a

VPSA having two-input, one-output “Dense” logic blocks and one customizable

via layer with the Crossover routing fabric. We show separate plots for different

logic block types and different block layout areas. Figures 6.8a, 6.8b, and 6.8c

show the plots corresponding to the first, fifth, and last rows of Table 6.1. Some

of the congested circuits could not be routed with Jumper20 and Jumper40 fab-

113

rics when “Dense” logic blocks were used, so the entire curve is omitted. The

trends for the remaining logic block types are similar and the plots are shown in

Appendix D.

There are three main observations. First, there is a significant range in inter-

connect power consumption of different via programmable routing fabrics. The

SingleVia, Jumper20, and Jumper40 fabrics dissipate 0–85%, 15–30%, and 28–

54% more power than Crossover fabric respectively. The Jumper40 fabric also

dissipates 7–22% more power than the Jumper20 fabric. The relative power dissi-

pation between the different fabrics is mostly similar across different logic block

layout densities (each individual plot in Figures 6.8a, 6.8a, and 6.8c). It is interest-

ing to see that a small architectural change, varying the number of long segments

from 20% to 40%, can affect the power consumption by 7% to 22%.

Second, except for the SingleVia fabric, the power dissipation generally im-

proves as more routing layers are available and this improvement diminishes as

the layout area of the logic block increases. This can be seen from the interconnect

power of Crossover across the three plots in Figure 6.8a. For “Dense” logic block

(left plot), the power consumption with three customizable via layers is 29% lower

than the power consumption with a single customizable via layer. For “Sparse”

logic block (right plot), this variation is only 0.3%. A similar conclusion can be

drawn from Figures 6.8b and 6.8c. The reason for reduction in power dissipation

with more routing layers is due to the fact that, with more routing layers, a design

can be successfully routed with less whitespace, and connections between logic

blocks can be made with shorter nets. In the case of the SingleVia fabric, the

114

2 3 4

0.5

1

1.5

2

2.5

N
o

rm
a

liz
e

d
 P

o
w

e
r

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

(a) 2-input, 1-output logic block

2 3 4

0.5

1

1.5

2

2.5

N
o

rm
a

liz
e

d
 P

o
w

e
r

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

(b) 10-input, 5-output logic block

2 3 4

0.5

1

1.5

2

2.5

N
o

rm
a

liz
e

d
 P

o
w

e
r

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

(c) 16-input, 8-output logic block

Figure 6.8: VPSA power trends

115

power dissipation does not improve with more routing layers. There are two rea-

sons for this. First, the third and fourth routing layers in the SingleVia fabric are

restrictive; the connections can only be made at the end points of each segment

and the connections also consume many segments from layer two (accessing seg-

ments). Second, it is possible that some of the accessing segments are used to

make local connections (e.g., connection between two layer-one segments). This

can increase the power consumption since these segments are connected to layer-

three or layer-four segments with fixed vias.

Finally, the third observation is regarding the gap between MPSAs and VPSAs.

It can be seen that using only via layers for customization increases power dissi-

pation. The Crossover fabric, which has the smallest power consumption among

the VPSA fabrics, has a power dissipation that is 1.5–3.5× larger than an MPSA.

The gap between MPSAs and VPSAs reduces when the number of routing layers

increase. The gap also reduces when the layout area of the logic blocks increase.

6.5.2 Delay Trends

The delay results are shown in Figure 6.9. These plots are similar to Figure 6.8,

except that the vertical axis now shows interconnect delay. As in the case of

power, the plots are normalized to the interconnect delay of a two-layer Crossover

routing fabric with two-input, one-output “Dense” logic blocks. As mentioned

in Chapter 4, average net delay is used to estimate interconnect delay. The main

observations from the delay plots are as follows.

First, like power, delay has significant range across different routing fabrics.

116

2 3 4

0.5

1

1.5

2

2.5

N
o

rm
a

liz
e

d
 D

e
la

y

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

(a) 2-input, 1-output logic block

2 3 4

0.5

1

1.5

2

2.5

N
o

rm
a

liz
e

d
 D

e
la

y

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

(b) 10-input, 5-output logic block

2 3 4

0.5

1

1.5

2

2.5

N
o

rm
a

liz
e

d
 D

e
la

y

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

(c) 16-input, 8-output logic block

Figure 6.9: VPSA delay trends

117

The SingleVia, Jumper20, and Jumper40 fabrics are 0–89%, 32–80%, and 18–

79% slower than the Crossover fabric respectively. As in the case of power, these

trends are mostly independent of the number of available routing layers.

Second, also as in the case of power, the increase in the number of routing

layers generally improve the delay, except for the SingleVia fabric. This is also

because more routing layers reduce congestion, allowing the circuits be routed

with less whitespace. This reduces the wirelength for each net and improves delay.

The additional layers in the SingleVia fabric are not as flexible as in other fabrics

and some of the long segments can be used to make local connections. This results

in an increase in delay. A router that intelligently selects the routing segments

from layer-two can improve the delay performance of the SingleVia fabric.

A third observation is regarding the difference between the performance of the

Jumper20 and Jumper40 routing fabrics. Jumper20 has fewer long segments than

Jumper40 and it was consistently better in terms of power. However, in terms of

delay, Jumper40 fabric is better than Jumper20 in some cases (e.g., Figure 6.9a).

This shows an interesting trade-off; having more long segments in a fabric can

improve delay but can make power worse.

Finally, the last observation is regarding the comparison of VPSA and MPSA

interconnect delay. As in the case of power, the VPSA delay is worse than that of

an MPSA but it improves as the layout area increases. However, it is important to

observe the magnitude by which the delay gets worse in VPSAs. The increase in

the delay for the Crossover fabric compared to MPSAs ranges from 2–10×. To

investigate this, we looked at the total wirelength and total number of vias for each

118

2 3 4
1.5

2

2.5

3

3.5

4

4.5

No. of Routing Layers

V
P

S
A

T
o
ta

l
W

ir
e
le

n
g
th

M
P

S
A

T
o
ta

l
W

ir
e
le

n
g
th

Crossover
SingleVia
Jumper20
Jumper40

(a) Total wirelength

2 3 4

20

30

40

No. of Routing Layers

V
P

S
A

T
o
ta

l
N

o
.

o
f

V
ia

s
M

P
S

A
T

o
ta

l
N

o
.

o
f

V
ia

s

Crossover
SingleVia
Jumper20
Jumper40

(b) Total vias

Figure 6.10: MPSA and VPSA delay comparison for a 2-input, 1-output

logic block with medium layout density

of the fabrics relative to the MPSA. The plots for two-input, one-output Medium

logic block are shown in Figure 6.10. It can be seen that with two routing layers,

the increase in wirelength is only 2× to 3×, whereas the number of vias has a

dramatic increase of 22× to 36×. This causes the delay to increase significantly.

The reason for this behavior is that VPSAs need to go through a via whenever a

wire has to extend in any direction; depending on the architecture of the routing

fabric, it may have to go through more than one via in order to extend by just one

more segment (e.g., in case of Jumper20 and Jumper40 routing fabrics).

The relatively poor performance of VPSAs compared to MPSAs may be im-

proved in two ways. First, double vias could be used to make connections be-

tween metal segments at the expense of area. Second, VPSAs may respond more

strongly to buffer insertion due to the larger resistance and capacitance of the in-

terconnect.

119

6.5.3 Area Trends

The plots for core area are shown in Figure 6.11. The important observations are

as follows. First, like power and delay, there is a significant range in the core area

among the different routing fabrics, especially when there are a small number of

routing layers. The core areas with the SingleVia, Jumper20, and Jumper40 fab-

rics are 0–46%, 0–34%, and 0–60% larger than the core areas with the Crossover

fabric, respectively.

Second, the availability of more routing layers reduces the core area. However,

this reduction becomes small as the logic block layout area increases. For exam-

ple, from Figure 6.11a, it can be seen that the core area for the Crossover fabric

for the “Dense” logic block reduces by 50% when the number of routing layers

increases from two to four; however there is no area reduction when the “Sparse”

logic block is used. Similar trends can observed for other logic block types (Fig-

ures 6.11b and 6.11b). Another interesting observation is that with fewer routing

layers the core area with “Dense” logic blocks is larger than the core area with

“Medium” logic blocks. This is because there is a lot of congestion when the

number of routing layers, or the layout area, is small. We are using uniform

whitespace allocation in our CAD flow, which inserts whitespace everywhere in-

stead of targeting the congested regions. This results in a significant increase in

the core area. The use of an “intelligent” whitespace allocation algorithm, one

that inserts whitespace only at congested regions, may help to reduce this prob-

lem. In the absence of such an algorithm, there is very little advantage of having a

logic block with small layout area, especially when the number of routing layers

120

2 3 4

0.5

1

1.5

2

N
o

rm
a

liz
e

d
 C

o
re

 A
re

a

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

(a) 2-input, 1-output logic block

2 3 4

0.5

1

1.5

2

N
o

rm
a

liz
e

d
 C

o
re

 A
re

a

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

(b) 10-input, 5-output logic block

2 3 4

0.5

1

1.5

2

N
o

rm
a

liz
e

d
 C

o
re

 A
re

a

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

(c) 16-input, 8-output logic block

Figure 6.11: VPSA area trends

121

is small.

Finally, there is a significant area gap between MPSAs and VPSAs. The

Crossover fabric has the least area among the different VPSA routing fabrics and

its area is 1–5× larger than the MPSA area. The difference between the MPSA

and the VPSA area is reduced as the number of routing layers increases or when

the logic block layout area increases. Improving the CAD flow (e.g., conges-

tion aware whitespace allocation) can also reduce the gap between MPSAs and

VPSAs.

6.5.4 Cost Trends

Finally, we apply the cost model described in Chapter 3 to estimate the die-cost.

However, because the MCNC benchmarks are small, we first scale the core area

to a reasonable value. To do this, we scale all the core areas in such a way that

the core area for an MPSA with two-input, one-output “Dense” logic blocks and

having two routing layers is 10mm2. The resulting cost plots are shown in Figure

6.12. Instead of showing relative values, we show absolute die-cost values. The

important observations are described below.

The routing fabric architecture affects die-cost. In some cases, the MPSA cost

is better than VPSA cost whereas in other cases the VPSA is better than an MPSA,

despite the fact that the area of a VPSA is never less than that of an equivalently

capable MPSA. For example, the core area of the two-layer Crossover and Sin-

gleVia fabrics with “Medium” two-input, one-output logic blocks is 54% more

than MPSA (Figure 6.11a); however, in terms of die-cost the VPSA is 15% less

122

2 3 4
5

10

15

D
ie

 C
o

s
t

($
)

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

(a) 2-input, 1-output logic block

2 3 4
5

10

15

D
ie

 C
o

s
t

($
)

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

(b) 10-input, 5-output logic block

2 3 4
5

10

15

D
ie

 C
o

s
t

($
)

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

(c) 16-input, 8-output logic block

Figure 6.12: VPSA cost trends

123

expensive than the corresponding MPSA. Similarly, in the same example with

four routing layers, the VPSAs with SingleVia and Crossover fabrics are 48%

and 34% cheaper than MPSAs, respectively. For densely laid out logic blocks,

an MPSA is cheaper when fewer routing layers are available. With more routing

layers, VPSAs become cheaper. This is easily seen in Figures 6.12a and 6.12b for

the “Dense” logic block. As the layout area of each logic block increases (layouts

become sparse), VPSAs become more cost effective even with fewer routing lay-

ers. It can also be seen that sparsely laid out logic blocks may lead to a more cost

effective die than densely laid out logic blocks; this may be caused by inferior

whitespace allocation performed during placement.

The cost plots in Figure 6.12 also demonstrate the cost effectiveness of the

SingleVia fabric. In most cases, the SingleVia fabric results in similar core area

compared to the Crossover fabric, however, the die-cost is significantly lower,

especially with four routing layers. This is because the cost of the mask-set is the

dominant factor that determines die-cost. In SingleVia fabrics, only a single mask

needs to be customized which makes SingleVia fabrics superior to other fabrics in

terms of cost.

6.6 Limitations of Detailed Routing

Our detailed router could not route the large heterogeneous circuits from the eA-

SIC suite in a reasonable amount of time. There were two main issues. First,

the time to route a single net sometimes becomes very large, which causes a sin-

gle routing iteration to take about 36 hours. Second, all the congestion could not

124

be removed within eight routing iterations for a range of different global routing

constraints.

We tried several techniques to improve the runtime of the detail router. These

included pruning the router search space, changing the net ordering scheme, and

modifying the rip-up and re-route strategy. To prune the search space, we only put

the 10 lowest cost neighbors of a segment on the heap during wavefront expansion,

compared to the original algorithm which puts all the neighbors on the heap. We

also changed the net ordering such that the longest nets are routed first. Long nets

take the most time to route, and routing them early, when there is little congestion,

should improve the runtime. Finally, after each routing iteration, we ripped-up

and re-routed only those nets that pass through congested global cells rather than

ripping-up and re-routing all the nets.

After making the above changes, the runtime for a single routing iteration

reduced to about 7 hours (for the smallest eASIC circuit). However, the circuit

could still not be routed successfully. This suggests that an algorithm different

from the PathFinder algorithm might be more appropriate for performing detailed

routing of such large circuits, at least when routing has to be done many times in

order to find smallest routable grid size. This is an avenue for future research.

6.7 Summary

In this chapter, we studied the power, delay, area, and die-cost trends for VPSAs.

We investigated three types of routing fabrics: one that uses crossover wiring

(Crossover), another that uses jumper wiring (Jumper), and a fabric that uses mul-

125

tiple routing layers but in which only a single via layer can be configured (Single-

Via). We also explored three different schemes for the logic block pin positions.

The results show that the logic block pin positions have a significant impact

on the VPSA performance. In general, with limited routing resources (e.g., fewer

metal layers), we found that it is better to assign multiple pins to a single metal

track; whereas, in other cases it is better to assign a single pin to an entire metal

track.

In terms of delay and power, the performance of Crossover and Jumper fabrics

improves as the number of routing layers increases. As the layout area of logic

blocks increases, the improvement diminishes. The performance of the SingleVia

fabric generally gets worse as the number of routing layers increases. This is

because the SingleVia fabric is not as flexible as the other fabrics. For each routing

fabric, the die-area improves as the number of routing layers increases. However,

as in case of delay and power, the improvement is insignificant when the logic

blocks have a large layout area. The die-cost also improves with the number of

routing layers, except logic blocks with a large layout area.

We also compared VPSAs against MPSAs. In terms of area, delay, and power,

MPSAs perform better than VPSAs. The maximum difference between MPSAs

and VPSAs for area, delay, power is 5×, 10×, and 3.5× respectively. We also

found that MPSAs are more cost effective than VPSAs when Dense logic blocks

(small layout area) and two or three routing layers are used. However, in all other

cases, MPSAs are up to 2× more expensive than VPSAs. One of the reasons

for the improved delay and power performance of MPSAs is the large number of

126

serially connected vias in VPSAs. This also shows an important aspect of the in-

terconnect architecture: for better performance, a routing fabric should use fewer

serially-connected vias to make connections between the fixed metal segments.

Hence, the Crossover fabric performs better than the Jumper fabric.

There is a significant difference between the performance of VPSAs using the

different routing fabrics. A VPSA using the Crossover fabric has the best power,

delay, and area performance. The power, delay, and area of VPSAs with other

fabrics is up to 85%, 89%, and 60% worse than VPSAs built using Crossover

fabric, respectively. However, in terms of die-cost, the SingleVia fabric is best.

The die-cost of a VPSA using a SingleVia fabric is up to 36% lower than one

using other fabrics. These results show that the interconnect architecture plays a

very important role in the overall efficiency of VPSAs and it should be thoroughly

researched.

Finally, the efficiency of VPSAs also depends on the associated CAD algo-

rithms. For example, although we have not investigated this, we expect that the

use of timing- or power-driven placement and routing algorithms may reduce the

power and delay penalty of SingleVia fabrics. Similarly, our results suggest that a

congestion-driven whitespace insertion, and buffer insertion, are both important.

Logic blocks with dense layouts (small layout area) offer little advantage without

such an algorithm, especially when the number of routing layers is small.

127

Chapter 7

Conclusions

7.1 Research Observations

In this dissertation, we have investigated power, delay, area, and die-cost trends

for Structured ASICs. We focussed our attention on Structured ASIC interconnect

and studied how the performance and cost is affected by the number of custom

metal and/or via masks.

The die-cost of Structured ASICs depends on die-area as well as on the number

of custom masks. The cost due to the custom masks is a significant component

of die-cost. Increasing the number of custom masks must result in a considerable

reduction of die-area to be cost-effective. For example, according to our cost

model described in Chapter 3, a 95mm2 MPSA in 45nm with two configurable

layers (two metal and two via) costs $15; each additional custom layer in this

MPSA must reduce the die-area by more than 15mm2 for the die-cost to remain

128

$15. In contrast, the corresponding two-layer VPSA with a SingleVia fabric (two

metal layers, but only a single via mask required for customization) that costs $15

has an area of 110mm2; each additional metal routing layer in this VPSA only

needs to save about 6mm2 of die-area to remain cost-effective.

Table 7.1 summarizes the important observations regarding the delay, power,

area, and cost trends of MPSAs and VPSAs. The area, delay, and power improve

as the number of routing layers increases for both MPSAs and VPSAs. However,

as the layout area of the logic block increases, the improvement diminishes. In

terms of die-cost, small MPSA dies (die-area < 100mm2) have the lowest cost

with 2 custom layers; the lowest cost in large MPSA dies (die-area> 100mm2) is

obtained with 3 to 4 custom layers. The lowest cost in VPSAs is achieved with

4 routing layers, except when sparse logic blocks (large layout area) are used.

MPSAs are up to 10×, 3.5×, and 5× better than VPSAs in terms of delay, power,

and area respectively. However, in terms of die-cost, VPSAs are up to 50% less

expensive.

The area, delay, power, and die-cost of VPSAs is sensitive to the logic block

pin positions and the architecture of the fixed-metal routing fabric. We inves-

tigated three different types of VPSA routing fabrics: (1) Crossover fabric, (2)

Jumper fabric, and (3) SingleVia fabric. Compared to a VPSA with Crossover fab-

ric, VPSAs with Jumper or SingleVia fabrics perform up to 89% worse in terms

of delay, up to 85% worse in terms of power, and up to 60% worse in terms of

area. In terms of die-cost, VPSAs with the SingleVia fabric are up to 36% less ex-

pensive than VPSAs employing other types of fabrics. This significant difference

129

Table 7.1: Summary of MPSA and VPSA trends
Delay

Trends

Power

Trends

Area

Trends
Cost Trends

MPSAs

(Chapter 5)

Homogeneous

Circuits

Dense Logic Block: 3 or 4 custom

layers for best performance

Sparse Logic Blocks: 2 custom lay-

ers for best performance

Min. Cost: 2 custom

layers

Heterogeneous

Circuits

Best performance with 3 or 4

custom layers; additional layers

offer little advantage

Min. cost obtained with:

- 2 custom layers with

sparse tech. mapping

- 3 or 4 custom layers

with dense tech. mapping

VPSAs

(Chapter 6)

Crossover

Fabric
– – – –

Jumper

Fabric

0–89%

worse

than

Crossover

0–85%

worse

than

Crossover

0–60%

worse

than

Crossover

–

SingleVia

Fabric

SingleVia is 0–36%

cheaper than other VPSA

fabrics

MPSAs vs. VPSAs

(Chapter 6)

MPSAs

1–10×
better than

VPSAs

MPSAs

1–3.5×
better than

VPSAs

MPSAs

1–5×
better than

VPSAs

MPSAs are cheaper

only for Dense Logic

Blocks with 2 or 3 layers.

VPSAs are up to 50%

cheaper in other cases

suggests that the topology of the VPSA interconnect fabric has a significant im-

pact on the overall performance and cost of VPSAs; it should be more thoroughly

researched.

Structured ASICs also provide a cost-effective alternative to CBICs. We com-

pared the die-cost of MPSAs to CBICs. It was observed that small dies with a core

area of up to 10mm2 in a 2-layer 45nm MPSA can be 10× less expensive than

a corresponding 2.8mm2 45nm CBIC. For large designs with embedded macro

blocks, the cost difference (between a 2-layer 45nm MPSA and a corresponding

CBIC) is 2×. This cost advantage grows to 4× for a 4-layer MPSA.

130

Finally, whitespace insertion is a key component of the CAD flow that can

significantly improve the performance and cost of Structured ASICs. The CAD

flow currently uses uniform whitespace insertion. This inflates area and cost when

there are few routing layers. It was observed that in case of two routing layers,

congestion-driven whitespace insertion can potentially reduce die-cost by more

than 50%. In the absence of such an algorithm, logic blocks with dense layouts

(small layout area) offer little advantage.

Most of the results from this research are useful for a Structured ASIC vendor

who could use them to gain an insight into various trade-offs involved in the design

of Structured ASICs. However, a Structured ASIC user could also benefit from

some of the observations and can make an intelligent decision about selecting a

particular Structured ASIC product. For example, an MPSA would be a better

choice for a design that requires high performance, whereas a VPSA could be a

better option when a low-cost implementation is the primary objective.

7.2 Contributions

The key contributions of the research are as follows:

• A cost model that relates die-area and number of routing layers of Struc-

tured ASICs. The cost model takes into account mask-set cost, wafer pro-

cessing costs, device volume requirements, die-yield, die-area, and number

of custom masks. It estimates the cost of a single Structured ASIC die. Tra-

ditionally, for CBICs and FPGAs, area has been used as a proxy to estimate

the cost of the device. However, because of the large mask-set costs, the

131

number of custom masks in a Structured ASIC have a significant impact

on its cost. The cost model allowed us to demonstrate that in most cases,

contrary to popular belief, the area savings due to the availability of more

routing layers does not translate into a cost savings.

• A sensitivity analysis of the structured ASIC die-cost to various parame-

ters such as device volume requirements and mask-set costs. In terms of

volume requirement, the MPSA die-cost is more sensitive to per-customer

volume (Vc) than total device volume (Vtot); a smaller Vc makes MPSAs

more cost-effective than CBICs. Similarly, increasing mask-set costs also

make MPSAs more economical than CBICs.

• A CAD flow that places and routes a benchmark circuit for a variety of

Structured ASIC architectures. The CAD flow makes use of open-source

CBIC global placement and global routing tools. It includes a custom de-

tailed placer to perform legalization of different types of logic blocks. It also

includes a custom detailed router to perform detail routing on fixed-metal

routing fabrics found in VPSAs. The CAD flow provides area, delay, and

power estimates for a benchmark circuit when implemented on a particular

Structured ASIC architecture.

• Cost, area, delay and power trends for MPSAs, and VPSAs as a function of

the number of routing layers.

These contributions are an important step towards the development of im-

proved Structured ASIC architectures and CAD algorithms. To the best of our

132

knowledge, the Structured ASIC die-cost has not been directly used as a perfor-

mance metric in the past. The proposed cost model will help to compare the dif-

ferent architectural choices in future Structured ASICs by considering their cost.

The CAD flow that has been set up as part of this research, can be instrumental in

the future research related to Structured ASICs. The flow provides a mechanism

to analyze different architectures and different CAD algorithms. In this way, it

will facilitate the development of new Structured ASIC architectures and more

efficient CAD algorithms. Finally, the performance and cost trends that have been

presented in this dissertation provide an insight into various trade-offs involved

in Structured ASIC design. These results can also serve as a baseline result for

future Structured ASIC studies.

7.3 Limitations

There are several limitations in the research presented in this dissertation. The

important limitations are as follows:

• The whitespace insertion scheme used in the CAD flow distributes the whites-

pace uniformly across the whole die rather than inserting it only at con-

gested locations. Thus, a large amount of whitespace may be added before

a design can be routed. This can result in increased delay and power, large

area, and expensive dies, especially with small block sizes and fewer routing

layers.

• Buffer insertion could be necessary for improving the delay of long or high-

133

fanout nets. It could be particularly important for VPSAs, which have a

larger number of vias and higher wirelength compared to MPSAs. We did

not consider the impact of buffer insertion.

• We did not perform detailed routing for MPSAs, and our detailed router for

VPSAs was unable to route very large circuits in a reasonable amount of

time.

• When calculating the delay and power estimates, we did not consider the

delay and power dissipation of the logic blocks or precise critical paths.

• We assume that there are dedicated power and clock networks for the logic

blocks and we do not consider their overhead.

• There are different possibilities for configuring the logic blocks such as

lower-level vias or SRAM cells. The use of additional configuration layers

can increase the die cost of Structured ASICs. However, in this dissertation

we did not study this effect.

• In CBIC cost calculation, we assumed that all the masks are modified in a

re-spin and did not consider the impact of ECO techniques that may reduce

the number of masks that need to be changed for each spin ([59]).

• We did not perform technology mapping, but instead approximated it by

clustering. As a result, we could not compare different logic block types

with each other.

134

However, despite these limitations we believe our results are sufficiently accu-

rate to draw important conclusions.

7.4 Future Work

Many interesting avenues for future research have been identified during this re-

search. In the following, we highlight some of the interesting directions for future

work.

One of the most important directions for future work is to develop a whites-

pace insertion algorithm that inserts whitespace only in congested areas. As we

have shown, there is a significant performance gap that can be filled with such

an algorithm. There are several possible approaches. A routability-driven place-

ment contest has been announced as part of International Symposium on Physical

Design (ISPD) 2011 conference [9]. The concepts from the open-source placers

that will be released as part of the contest could be used in conjunction with the

legalization techniques proposed in the RegPlace placer ([43]). This could re-

sult in a high-quality congestion-driven Structured ASIC placer. Another possible

approach is to use a flow similar to Un/DoPack [53].

Exploring buffer insertion techniques for Structured ASICs is another impor-

tant future direction. The buffers in Structured ASICs have to be pre-designed

and pre-allocated. This makes the buffer insertion problem very challenging. In

terms of architecture, the number of buffer resources and how frequently they are

allocated, are interesting research questions. The drive strength of buffers is also

an interesting problem; the buffers can have a fixed drive strength or their drive

135

strength can be made via-configurable. The impact of these different architectural

choices on the performance and cost of Structured ASICs should be explored.

Similarly, in terms of CAD, performing the actual buffer insertion is an important

problem. The buffers can be inserted into long/high-fanout nets during the routing

step, or the CAD can handle this task as a post-routing step.

Detailed routing for VPSAs should be explored. The VPSA routing fabric is

very flexible and there are many possibilities for making connections. We found

that the increased flexibility becomes a limitation for a PathFinder-based routing

algorithm when it is used to route circuits containing hundreds of thousands of

nets. To tackle this problem, the use of ASIC-like track assignment techniques

such as [33], should be explored. The track assignment is an intermediate step

between global and detailed routing, where parts of nets are assigned to various

tracks in the ASIC routing fabric. This can be useful in narrowing down the router

search space. Alternatively, more restrictive routing architectures may be able to

restrict the detail router search space without overly compromising routability.

The CAD flow should be enhanced to include timing-driven and low-power

modes. Techniques used in FPGA CAD could be explored for this purpose. How-

ever, to identify the timing- or power-critical paths, detailed logic block models

are needed (e.g., flip-flop locations). Some of the real Structured ASIC architec-

tures that have been proposed in the literature could be used as a starting point for

this purpose.

New architectures for logic blocks and routing fabrics should be investigated.

Logic blocks with different numbers of inputs, outputs, and configuration points

136

should be studied. Also, different configuration methods (i.e., through SRAM

cells, lower-level vias, or upper-level vias) should be explored. Similarly, the ar-

chitecture of the metal segments in VPSAs has a significant impact on its perfor-

mance and cost. We have shown the trends for a few types of fabrics. However,

other types of fabrics should be explored that improve the performance or cost.

One possibility is to employ SingleVia-style fabrics in which the position of the

custom-via layer is changed to the upper-via layers (e.g., via layer between M5

and M6). Another possibility is to explore FPGA-like interconnect fabrics that

replace the programmable switches with visa. The performance improvement that

can be achieved with such fabrics through CAD enhancement (e.g., intelligently

selecting different types of segments during routing) should also be investigated.

Finally, in the long term, techniques to reduce the design and manufacturing

complexities of Structured ASICs should be explored. The Structured ASIC de-

sign process should be as simple as the FPGA design process, where a user does

not need to perform complex physical design tasks such as clock tree synthesis,

scan insertion, design-rule checks etc. The devices should be reliable enough to

avoid signal integrity simulations. Similarly, design of Structured ASICs using

fabrication-friendly layout shapes should be investigated. The research related to

Restricted Design Rules (RDRs) (such as [42]) could be useful in this regard.

137

References

[1] Altera HardCopy ASIC Series

http://www.altera.com/products/devices/hardcopy-asics/about/hrd-index.

html. → pages 29

[2] Chip-X CX6200 Structured ASIC Datasheet

http://www.chipx.com/images/stories/pdf/cx6200 usbphy ds 0210d.pdf.

→ pages 29

[3] eASIC Placement Contest.

http://web.archive.org/web/20080723214221/http://www.easic.com/index.

php?p=university. → pages 80, 98

[4] Nextreme Structured ASIC, eASIC Corp.

http://www.easic.com. → pages 29

[5] Faraday Structured ASIC Technology

http://www.faraday-tech.com/html/products/structuredASIC.html. →
pages 29

[6] The Advent of Next Generation Lithography Technologies in Advanced

Semiconductor Processing, Frost & Sullivan Press Release, Aug. 27,

2007. → pages 47

[7] Fujitsu AccelArray

http://web.archive.org/web/20071031122818/www.fujitsu.com/global/

services/microelectronics/product/asic/accelarray/index 2.html. → pages

29

[8] Actel Corporation, IGLOO FPGA Fabric User’s Guide, Jul. 2010.

http://www.actel.com/documents/IGLOO UG.pdf. → pages 17

138

http://www.altera.com/products/devices/hardcopy-asics/about/hrd-index.html
http://www.altera.com/products/devices/hardcopy-asics/about/hrd-index.html
http://www.chipx.com/images/stories/pdf/cx6200_usbphy_ds_0210d.pdf
http://web.archive.org/web/20080723214221/http://www.easic.com/index.php?p=university
http://web.archive.org/web/20080723214221/http://www.easic.com/index.php?p=university
http://www.easic.com
http://www.faraday-tech.com/html/products/structuredASIC.html
http://web.archive.org/web/20071031122818/www.fujitsu.com/global/services/microelectronics/product/asic/accelarray/index_2.html
http://web.archive.org/web/20071031122818/www.fujitsu.com/global/services/microelectronics/product/asic/accelarray/index_2.html
http://www.actel.com/documents/IGLOO_UG.pdf

[9] Routability-driven Placement Contest, International Symposium on

Physical Design, 2011.

http://www.ispd.cc. → pages 35, 135

[10] The International Technology Roadmap for Semiconductors (ITRS),

chapter Yield Enhancement, pages 7–10. 2007. → pages 47

[11] Lightspeed Logic

http://web.archive.org/web/20080111112237/http://www.lightspeed.com/

products.html. → pages 29

[12] LSI Logic Rapidchip Xtreme2

http://web.archive.org/web/20061015051026/www.lsilogic.com/files/docs/

techdocs/Rapidchip/rcxtreme2 ds.pdf. → pages 29

[13] Private Conversation, Dr. John Logan, Nortel Networks, September 2007.

→ pages 18

[14] XPressArray-II, ON Semiconductor

http://www.onsemi.com/pub link/Collateral/TND338-D.PDF. → pages 29

[15] Actel Corporation, ProASIC3 FPGA Fabric User’s Guide, Jul. 2010.

http://www.actel.com/documents/PA3 UG.pdf. → pages 17

[16] Altera Corporation, Stratix III Device Handbook, ver 2.1, Jul. 2010.

http://www.altera.com/literature/hb/stx3/stratix3 handbook.pdf, . → pages

14

[17] Altera Corporation, Stratix IV Device Handbook, ver 4.1, Mar. 2010.

http://www.altera.com/literature/hb/stratix-iv/stx4 5v1.pdf, . → pages

[18] Altera Corporation, Stratix V Device Handbook, ver 1.0, Jul. 2010.

http://www.altera.com/literature/hb/stratix-v/stx5 5v1.pdf, . → pages 14

[19] Dylan McGrath, “FPGA startup: Process tech eases ASIC migration”,

EETimes, March 2010.

http://www.eetimes.com/electronics-news/4088048/

FPGA-startup-Process-tech-eases-ASIC-migration. → pages 29

[20] TSMC results fall in Q1, sees rebound, Apr. 2009.

http://www.eetimes.com/showArticle.jhtml?articleID=217200925. →
pages 3

139

http://www.ispd.cc
http://web.archive.org/web/20080111112237/http://www.lightspeed.com/products.html
http://web.archive.org/web/20080111112237/http://www.lightspeed.com/products.html
http://web.archive.org/web/20061015051026/www.lsilogic.com/files/docs/techdocs/Rapidchip/rcxtreme2_ds.pdf
http://web.archive.org/web/20061015051026/www.lsilogic.com/files/docs/techdocs/Rapidchip/rcxtreme2_ds.pdf
http://www.onsemi.com/pub_link/Collateral/TND338-D.PDF
http://www.actel.com/documents/PA3_UG.pdf
http://www.altera.com/literature/hb/stx3/stratix3_handbook.pdf
http://www.altera.com/literature/hb/stratix-iv/stx4_5v1.pdf
http://www.altera.com/literature/hb/stratix-v/stx5_5v1.pdf
http://www.eetimes.com/electronics-news/4088048/FPGA-startup-Process-tech-eases-ASIC-migration
http://www.eetimes.com/electronics-news/4088048/FPGA-startup-Process-tech-eases-ASIC-migration
http://www.eetimes.com/showArticle.jhtml?articleID=217200925

[21] ViASIC ViaMask and DuoMask

http://www.viasic.com/products. → pages 29

[22] ASAP Metal Programmable Cell Libraries, Virage Logic

http://www.viragelogic.com/upload/documents/

product broch asap logic v10.pdf. → pages 29

[23] Xilinx Inc., Virtex-4 Family Overview, ver 3.1, Aug. 2010.

http://www.xilinx.com/support/documentation/data sheets/ds112.pdf, . →
pages 14

[24] Xilinx Inc., Virtex-5 Family Overview, ver 5.0, Jun. 2009.

http://www.xilinx.com/support/documentation/data sheets/ds100.pdf, . →
pages

[25] Xilinx Inc., Virtex-6 Family Overview, ver 2.2, Jan. 2010.

http://www.xilinx.com/support/documentation/data sheets/ds150.pdf, . →
pages 14

[26] S. N. Adya and I. L. Markov. Combinatorial techniques for mixed-size

placement. ACM Transactions on Design Automation of Electronic

Systems (TODAES), 10(1):58–90, 2005. → pages 32

[27] S. N. Adya, I. L. Markov, and P. G. Villarrubia. On whitespace and

stability in physical synthesis. Integration, the VLSI Journal, 39(4):

340–362, 2006. → pages 35, 36

[28] U. Ahmed, G. Lemieux, and S. Wilton. Area, delay, power, and cost

trends for Metal-Programmable Structured ASICs (MPSAs). In IEEE

International Conference on Field Programmable Technology (ICFPT),

pages 278–284, Dec. 2009. → pages iv

[29] U. Ahmed, G. Lemieux, and S. Wilton. The impact of interconnect

architecture on Via-Programmed Structured ASICs (VPSAs). In

Proceedings of ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (FPGA), pages 263–272, Feb. 2010. →
pages iv

[30] U. Ahmed, G. Lemieux, and S. Wilton. Performance and cost tradeoffs in

Metal-Programmable Structured ASICs (MPSAs). IEEE Transactions on

VLSI Systems, Oct. 2010. doi:10.1109/TVLSI.2010.2076841. → pages iv

140

http://www.viasic.com/products
http://www.viragelogic.com/upload/documents/product_broch_asap_logic_v10.pdf
http://www.viragelogic.com/upload/documents/product_broch_asap_logic_v10.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://dx.doi.org/10.1109/TVLSI.2010.2076841

[31] N. Akihiro, M. Kawaharazaki, M. Yoshikawa, and T. Fujino. Architecture

of via programmable logic using exclusive-or array (VPEX) for EB direct

writing. In Proceedings of IEEE Custom Integrated Circuits Conference,

pages 261–264, Sep. 2007. → pages xiii, 26, 27

[32] T. Barnett, J. Bickford, and A. Weger. Product yield prediction system and

critical area database. IEEE Transactions on Semiconductor

Manufacturing Transactions on, 21(3):337 –341, Aug. 2008. → pages 31

[33] S. Batterywala, N. Shenoy, W. Nicholls, and H. Zhou. Track assignment:

A desirable intermediate step between global routing and detailed routing.

In Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pages 59–66, Nov. 2002. → pages 34,

66, 136

[34] V. Betz and J. Rose. Vpr and t-vpack: Versatile packing, placement and

routing for FPGAs. In International Workshop on Field Programmable

Logic and Applications (FPL), pages 213–222, 1997. → pages 32, 61

[35] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD for

Deep-Submicron FPGAs. Kluwer Academic Publishers, 1999. → pages 4,

32, 61, 67, 71, 72, 82

[36] M. A. Beunder and B. Hoefflinger. New directions in semicustom arrays.

IEEE Journal of Solid-State Circuits, 23(3):728–735, Jun. 1988. → pages

14

[37] D. Blaauw and K. Gala. Deep submicron issues in high performance

design. In Proceedings of Int’l Workshop on Power and Timing Modeling,

Optimization and Simulation, Sep. 2001. → pages 2

[38] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic. Field

Programmable Gate Arrays. Springer, 1992. → pages 4

[39] A. Caldwell, A. Kahng, and I. Markov. Optimal partitioners and end-case

placers for standard-cell layout. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 19(11):1304–1313, Nov. 2000.

→ pages 32

141

[40] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Design and

implementation of move-based heuristics for VLSI hypergraph

partitioning. J. Exp. Algorithmics, 5, 2000. → pages 32

[41] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Improved algorithms for

hypergraph bipartitioning. In Proceedings of the Asia and South Pacific

Design Automation Conference (ASP-DAC), pages 661–666, 2000. →
pages 32

[42] L. Capodieci, P. Gupta, A. B. Kahng, D. Sylvester, and J. Yang. Toward a

methodology for manufacturability-driven design rule exploration. In

Proceedings of the ACM/IEEE Design Automation Conference (DAC),

pages 311–316, 2004. → pages 137

[43] A. Chakraborty, A. Kumar, and D. Pan. Regplace: A high quality

open-source placement framework for structured ASICs. In Proceedings

of the ACM/IEEE Design Automation Conference (DAC), pages 442–447,

Jul. 2009. → pages 66, 135

[44] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze, and M. Xie. mpl6: enhanced

multilevel mixed-size placement. In Proceedings of the International

Symposium on Physical Design (ISPD), pages 212–214, 2006. → pages 32

[45] C.-C. Chang and J. Cong. Pseudo pin assignment with crosstalk noise

control. In Proceedings of the International Symposium on Physical

Design, pages 41–47, 2000. → pages 34

[46] T. Chau, P. Leong, S. Ho, B. Chan, S. Yuen, K. Pun, O. Choy, and

X. Wang. A comparison of via-programmable gate array logic cell

circuits. In Proceedings of ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (FPGA), pages 53–62, 2009. → pages

26

[47] R. Chawala. FPGAs and structured ASICs: New solutions for changing

market dynamics. Chip Design Magazine, Oct. 2005. → pages 18

[48] H. H. Chen and D. D. Ling. Power supply noise analysis methodology for

deep-submicron VLSI chip design. In Proceedings of the ACM/IEEE

Design Automation Conference (DAC), pages 638–643, 1997. → pages 2

142

[49] J. F. Chen, T. Laidig, K. E. Wampler, and R. Caldwell. Practical method

for full-chip optical proximity correction. In Proc. SPIE, pages 790–803,

1997. → pages 2

[50] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang. A

high-quality mixed-size analytical placer considering preplaced blocks

and density constraints. In Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), pages 187–192, 2006.

→ pages 32, 61

[51] S. Y. L. Chin and S. J. E. Wilton. Static and dynamic memory footprint

reduction for FPGA routing algorithms. ACM Transactions on

Reconfigurable Technology and Systems (TRETS), 1:18:1–18:20, January

2009. → pages 68

[52] D. Chinnery and K. Keutzer. Closing the Gap Between ASIC & Custom:

Tools and Techniques for High-Performance ASIC Design. Springer, 1st

edition, 2002. → pages 3

[53] D. Chiu, G. Lemieux, and S. Wilton. Congestion-driven regional

re-clustering for low-cost FPGAs. In IC-FPT, pages 167–174, Dec. 2009.

→ pages 35, 36, 90, 135

[54] M. Cho and D. Pan. Boxrouter: A new global router based on box

expansion and progressive ILP. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 26(12):2130–2143, Dec. 2007.

→ pages 34

[55] G. W. Clow. A global routing algorithm for general cells. In Proceedings

of the ACM/IEEE Design Automation Conference (DAC), pages 45–51,

1984. → pages 33

[56] J. Cong, J. R. Shinnerl, M. Xie, T. Kong, and X. Yuan. Large-scale circuit

placement. ACM Transactions on Design Automation of Electronic

Systems (TODAES), 10(2):389–430, 2005. ISSN 1084-4309. → pages 32

[57] M. E. de Lima and D. J. Kinniment. Sea-of-gates architecture.

Microelectronics Journal, 26(5):431–440, Jul. 1995. → pages 14

143

[58] J.-R. Gao, P.-C. Wu, and T.-C. Wang. A new global router for modern

designs. In Proceedings of the Asia and South Pacific Design Automation

Conference (ASP-DAC), pages 232–237, Mar. 2008. → pages 34

[59] S. Golson. The human ECO compiler. In Synopsys Users Group

Conference (SNUG), 2004. → pages 54, 134

[60] J. N. Helbert. Handbook of VLSI Microlithography. William Andrew, 2nd

edition, 2001. → pages 1

[61] J. L. Hennessy and D. A. Patterson. Computer Architecture: A

Quantitative Approach. Morgan Kaufmann Inc., 2006. → pages 44

[62] A. Hetzel. A sequential detailed router for huge grid graphs. In

Proceedings of the Conference on Design Automation and Test in Europe

(DATE), pages 332–339, 1998. → pages 34

[63] P. Heydari and M. Pedram. Capacitive coupling noise in high-speed VLSI

circuits. Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, 24(3):478–488, Mar. 2005. → pages 2

[64] D. A. Hodges, H. G. Jackson, and R. A. Saleh. Analysis and Design of

Digital Integrated Circuits. McGraw Hill, 3rd edition, 2004. → pages 2

[65] Y. I. Ismail and E. G. Friedman. On-Chip Inductance in High Speed

Integrated Circuits. Springer, 1st edition, 2001. → pages 2

[66] R. C. Jaeger. Introduction to Microelectronic Fabrication. Prentice Hall,

2nd edition, 2001. → pages 1

[67] A. B. Kahng and Y. C. Pati. Subwavelength lithography and its potential

impact on design and EDA. In Proceedings of the ACM/IEEE Design

Automation Conference (DAC), pages 799–804, 1999. → pages 2

[68] S. Kaptanoglu. Power and a new class of future FPGA architectures. In

Keynote Address at Int’l Conf. on Field Programmable Technologies

(IC-FPT), Dec. 2007. → pages 17

[69] V. Kheterpal, A. J. Strojwas, and L. Pileggi. Routing architecture

exploration for regular fabrics. In Proceedings of the ACM/IEEE Design

Automation Conference (DAC), pages 204–207, 2004. → pages 25

144

[70] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. Optimization by

simulated annealing. Science, 220:671–680, 1983. → pages 32

[71] A. Koorapaty, V. Kheterpal, P. Gopalakrishnan, M. Fu, and L. Pileggi.

Exploring logic block granularity for regular fabrics. In Proceedings of the

Conference on Design Automation and Test in Europe (DATE), 2004. →
pages 25

[72] I. Koren and A. D. Singh. Fault tolerance in VLSI circuits. IEEE

Computer, 23:73–83, Jul. 1990. → pages 30, 31

[73] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. In

Proceedings of the ACM/SIGDA International Symposium on Field

Programmable Gate Arrays (FPGA), pages 21–30, 2006. → pages 13, 17

[74] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs.

IEEE Transactions on CAD, 26(2):203–215, 2007. → pages 4, 13, 17

[75] M. Levenson, N. Viswanathan, and R. Simpson. Improving resolution in

photolithography with a phase-shifting mask. Electron Devices, IEEE

Transactions on, 29(12):1828–1836, Dec. 1982. → pages 2

[76] C. Li, M. Xie, C.-K. Koh, J. Cong, and P. H. Madden. Routability-driven

placement and white space allocation. IEEE Trans. on CAD of Integrated

Circuits and Systems, 26(5):858–871, 2007. → pages 35, 36

[77] L. W. Liebmann. Layout impact of resolution enhancement techniques:

impediment or opportunity? In Proceedings of the International

Symposium on Physical Design (ISPD), pages 110–117, 2003. → pages 16

[78] L. W. Liebmann, T. H. Newman, R. A. Ferguson, R. M. Martino, A. F.

Molless, M. O. Neisser, and J. T. Weed. Comprehensive evaluation of

major phase-shift mask technologies for isolated gate structures in logic

designs. volume 2197, pages 612–623. SPIE, 1994. → pages 2

[79] L. W. Liebmann, A. F. Molless, R. A. Ferguson, A. K. K. Wong, and S. M.

Mansfield. Understanding across-chip line-width variation: the first step

toward optical proximity correction. volume 3051, pages 124–136. SPIE,

1997. → pages 2

145

[80] Y. Liu, A. Zakhor, and M. Zuniga. Computer-aided phase shift mask

design with reduced complexity. Semiconductor Manufacturing, IEEE

Transactions on, 9(2):170–181, May 1996. → pages 2

[81] T. Luo and D. Z. Pan. Dplace2.0: a stable and efficient analytical

placement based on diffusion. In Proceedings of the Asia and South

Pacific Design Automation Conference (ASP-DAC), pages 346–351, 2008.

→ pages 32

[82] G. S. May and C. J. Spanos. Fundamentals of Semiconductor

Manufacturing and Process Control. Wiley-IEEE Press, 1st edition, 2006.

→ pages 1

[83] L. McMurchie and C. Ebeling. PathFinder: a negotiation-based

performance-driven router for FPGAs. In Proceedings of ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays (FPGA),

1995. → pages 33

[84] A. Misaka, A. Goda, K. Matsuoka, H. Umimoto, and S. Odanaka. Optical

proximity correction in dram cell using a new statistical methodology.

volume 3051, pages 763–773. SPIE, 1997. → pages 2

[85] F. Mo and R. K. Brayton. Regular Fabrics in Deep Sub-Micron

Integrated-Circuit Design. Springer, 1st edition, 2004. → pages 17

[86] M. D. Moffitt. Maizerouter: engineering an effective global router. In

Proceedings of the Asia and South Pacific Design Automation Conference

(ASP-DAC), pages 226–231, 2008. → pages 34

[87] K. Morris. Un-structured ASIC. FPGA and Structured ASIC Journal, Feb.

2007. → pages 13, 17

[88] A. Nakamura, M. Kawarasaki, K. Ishibashi, M. Yoshikawa, and T. Fujino.

Regular fabric of via programmable logic device using exclusive-or array

VPEX for EB direct writing. IEICE Transactions, 91-C(4):509–516,

2008. → pages 26

[89] T. Okamoto, T. Kimoto, and N. Maeda. Design methodology and tools for

NEC electronics’ structured ASIC ISSP. In ISPD ’04, pages 90–96, 2004.

→ pages 29

146

[90] Z. Or-Bach. Paradigm shift in ASIC technology: In-standard metal,

out-standard cell. eASIC White Paper, September 2005. → pages 3, 15,

47, 87

[91] M. M. Ozdal and M. D. F. Wong. Archer: a history-driven global routing

algorithm. In Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pages 488–495, 2007. → pages 34

[92] L. Pileggi, H. Schmit, A. J. Strojwas, P. Gopalakrishnan, V. Kheterpal,

A. Koorapaty, C. Patel, V. Rovner, and K. Y. Tong. Exploring regular

fabrics to optimize the performance-cost trade-off. In Proceedings of the

ACM/IEEE Design Automation Conference (DAC), pages 782–787, 2003.

→ pages 24

[93] P. Rai-Choudhury. Handbook of Microlithography, Micromachining, and

Microfabrication. Volume 1: Microlithography. SPIE Publications, 1997.

→ pages 1

[94] Y. Ran and M. Marek-Sadowska. The magic of a via-configurable regular

fabric. In Proceedings of IEEE International Conference on Computer

Design (ICCD), pages 338–343, 2004. → pages xiii, 23, 24

[95] Y. Ran and M. Marek-Sadowska. An integrated design flow for a

via-configurable gate array. In Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), pages

552–589, 2004. → pages

[96] Y. Ran and M. Marek-Sadowska. Via-configurable routing architectures

and fast design mappability estimation for regular fabrics. In Proceedings

of the IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), pages 25–32, 2005. → pages 100, 102, 103

[97] Y. Ran and M. Marek-Sadowska. Via-configurable routing architectures

and fast design mappability estimation for regular fabrics. IEEE

Transactions on VLSI Systems, 14(9):998–1009, Sept. 2006. → pages 23,

71, 100, 102, 103

[98] J. A. Roy and I. L. Markov. High-performance routing at the nanometer

scale. In Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pages 496–502, 2007. → pages 34, 66

147

[99] J. A. Roy, D. A. Papa, S. N. Adya, H. H. Chan, A. N. Ng, J. F. Lu, and

I. L. Markov. CAPO: Robust and scalable open-source min-cut

floorplacer. In ISPD, pages 224–226, 2005. → pages 32, 61

[100] J. A. Roy, D. A. Papa, A. N. Ng, and I. L. Markov. Satisfying whitespace

requirements in top-down placement. In ISPD ’06, pages 206–208, 2006.

→ pages 35

[101] J. Rubinstein, P. P. Jr., and M. A. Horowitz. Signal delay in RC tree

networks. IEEE Trans. on CAD of Integrated Circuits and Systems, 2(3):

202–211, 1983. → pages 60

[102] F. M. Schellenberg and L. Capodieci. Impact of RET on physical layouts.

In Proceedings of the International Symposium on Physical Design

(ISPD), pages 52–55, 2001. → pages 2

[103] F. M. Schellenberg, H. Zhang, and J. Morrow. Evaluation of OPC efficacy.

volume 2726, pages 680–688. SPIE, 1996. → pages 2

[104] H. Schmit, A. Gupta, and R. Ciobanu. Placement challenges for

Structured ASICs. In ISPD’08, pages 84–86, 2008. → pages 63

[105] N. Selvakkumaran, P. N. Parakh, and G. Karypis. Perimeter-degree: A

priori metric for directly measuring and homogenizing interconnection

complexity in multilevel placement. In Proceedings of System Level

Interconnect Prediction Workshop (SLIP), pages 53–59, 2003. → pages 35

[106] A. Sharma, C. Ebeling, and S. Hauck. Architecture-adaptive

routability-driven placement for FPGAs. In Proceedings of IEEE

International Conference on Field Programmable Logic and Applications

(FPL), pages 427–432, 2005. → pages 35, 36

[107] M. J. Smith. Application-Specific Integrated Circuits. Addison-Wesley

Professional, 1997. → pages 3

[108] C. Snyder and M. Disman. Structured ASICs offer application

adaptability. Semiview Report, Dec. 2003.

http://web.archive.org/web/20060520112713/http://www.semiview.com/

downloads/semiview adaptability.pdf. → pages xi, 13, 15

148

http://web.archive.org/web/20060520112713/http://www.semiview.com/downloads/semiview_adaptability.pdf
http://web.archive.org/web/20060520112713/http://www.semiview.com/downloads/semiview_adaptability.pdf

[109] L. Stok and J. Cohn. There is life left in ASICs. In ISPD, pages 48–50,

2003. → pages 3

[110] C. Strapper, F. Armstrong, and K. Saji. Integrated circuit yield statistics.

Proc. of the IEEE, 71(4):453–470, April 1983. → pages 30

[111] T. Taghavi, X. Yang, and B.-K. Choi. Dragon2005: Large-scale

mixed-size placement tool. In Proceedings of the International Symposium

on Physical Design (ISPD), pages 245–247, 2005. → pages 32

[112] M. Tom and G. Lemieux. Logic block clustering of large designs for

channel-width constrained FPGAs. In Proceedings of the ACM/IEEE

Design Automation Conference (DAC), pages 726–731, 2005. → pages

35, 36, 90

[113] M. Tom, D. Leong, and G. Lemieux. Un/DoPack: re-clustering of large

system-on-chip designs with interconnect variation for low-cost FPGAs.

In Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pages 680–687, 2006. → pages 35, 36,

90

[114] H.-P. Tseng, L. Scheffer, and C. Sechen. Timing and crosstalk driven area

routing. IEEE Transactions on Computer Aided Design, 20:528–381, Apr.

2001. → pages 34

[115] H. Veendrick. Deep-Submicron CMOS ICs. Kluwer Academic Publishers,

2nd edition, 2000. → pages 2

[116] F. Veredas, M. Scheppler, and H. Pfleiderer. Automated conversion from a

LUT-based FPGA to a LUT-based MPGA with fast turnaround time. In

Proceedings of the Conference on Design Automation and Test in Europe

(DATE), pages 36–41, 2006. → pages 25

[117] F. Veredas, M. Scheppler, B. Zhai, and H. Pfleiderer. Regular routing

architecture for a LUT-based MPGA. In Proceedings of IEEE Computer

Society Annual Symposium on VLSI (ISVLSI), pages 257–262, 2006. →
pages 25

[118] N. Viswanathan, M. Pan, and C. Chu. Fastplace 3.0: A fast multilevel

quadratic placement algorithm with placement congestion control. In

149

Proceedings of the Asia and South Pacific Design Automation Conference

(ASP-DAC), pages 135–140, 2007. → pages 32

[119] A. K. Wong. Some thoughts on the ic design-manufacture interface. IEEE

Design and Test of Computers, 22:206–213, 2005. → pages 16

[120] A. K.-K. Wong. Resolution Enhancement Techniques in Optical

Lithography. SPIE Publications, Mar. 2001. → pages 2, 16

[121] K.-C. Wu and Y.-W. Tsai. Structured ASIC, evolution or revolution? In

Proceedings of the International Symposium on Physical Design (ISPD),

pages 103–106, 2004. → pages 13, 18

[122] B. Zahiri. Structured ASICs: Opportunities and challenges. In

Proceedings of IEEE International Conference on Computer Design

(ICCD), pages 404–409, Oct. 2003. → pages 4, 13, 17

150

Appendices

151

Appendix A

Characteristics of MCNC

Benchmarks

In this appendix, we show the characteristics of each MCNC benchmark circuit

used in the experiments. The number of primary inputs and primary outputs for

each benchmark circuit are shown in Table A.1. Tables A.2 and A.3 list the

number of logic blocks and number of nets in each circuit respectively, when

mapped to a particular logic block type (logic blocks with a given number of

input and output pins).

152

Table A.1: MCNC benchmarks: primary inputs and primary outputs

Circuit Primary Inputs Primary Outputs

alu4 14 8

apex2 38 3

apex4 9 19

bigkey 229 197

clma 62 82

des 256 245

diffeq 64 39

dsip 229 197

elliptic 131 114

ex1010 10 10

ex5p 8 63

frisc 20 116

misex3 14 14

pdc 16 40

s298 4 6

s38417 29 106

seq 41 35

spla 16 46

tseng 52 122

153

Table A.2: MCNC benchmarks: number of logic blocks

Circuit
Number of Logic Blocks in a Circuit for Different Logic Block Types

2-in,1-out 4-in,2-out 6-in,3-out 8-in,4-out 10-in,5-out 12-in,6-out 14-in,7-out 16-in,8-out

alu4 2732 1366 911 683 547 456 391 342

apex2 3165 1583 1055 792 633 528 453 396

apex4 2196 1098 732 549 440 366 314 275

bigkey 2979 1490 993 745 596 497 426 373

clma 14253 7127 4751 3564 2851 2376 2037 1782

des 2901 1451 967 726 581 484 415 363

diffeq 2556 1278 852 639 512 426 366 320

dsip 2531 1266 844 633 507 422 362 317

elliptic 5474 2737 1825 1369 1095 913 782 685

ex1010 8020 4010 2674 2005 1604 1337 1146 1003

ex5p 1779 890 593 445 356 297 255 223

frisc 6023 3012 2008 1506 1205 1004 861 753

misex3 2557 1279 853 640 512 427 366 320

pdc 8408 4204 2803 2102 1682 1402 1202 1051

s298 4272 2136 1424 1068 855 712 611 534

s38417 13656 6828 4552 3414 2732 2276 1951 1707

seq 2939 1470 980 735 588 490 420 368

spla 7438 3719 2480 1860 1488 1240 1063 930

tseng 1861 931 621 466 373 311 266 233

Table A.3: MCNC benchmarks: number of nets

Circuit
Number of Nets in a Circuit for Different Logic Block Types

2-in,1-out 4-in,2-out 6-in,3-out 8-in,4-out 10-in,5-out 12-in,6-out 14-in,7-out 16-in,8-out

alu4 2746 1994 1672 1480 1381 1301 1230 1173

apex2 3203 2367 2057 1871 1756 1666 1647 1587

apex4 2205 1707 1495 1352 1301 1248 1232 1191

bigkey 3208 2074 1844 1753 1738 1521 1422 1240

clma 14315 10116 8766 8012 7558 7190 6934 6672

des 3157 2384 2043 1779 1642 1621 1628 1517

diffeq 2620 2043 1647 1574 1471 1348 1304 1272

dsip 2760 2073 1470 1083 955 1170 1031 797

elliptic 5605 4391 3159 2779 2845 2622 2486 2401

ex1010 8030 6093 5157 4853 4643 4427 4333 4234

ex5p 1787 1423 1279 1193 1135 1098 1078 1067

frisc 6043 4581 3304 2989 2874 2727 2645 2566

misex3 2571 1868 1625 1496 1417 1344 1280 1251

pdc 8424 6127 5150 4735 4417 4217 4070 3894

s298 4276 2829 2294 1968 1696 1545 1452 1388

s38417 13685 9730 8869 7957 7503 7309 6991 6618

seq 2980 2211 1914 1743 1640 1530 1489 1477

spla 7454 5322 4547 4109 3837 3639 3491 3402

tseng 1913 1455 1143 1083 1004 950 941 863

154

Appendix B

Logic Fabrics and Pin Positions

B.1 Crossover Fabric

The trends for the Crossover fabric with different pins positions are shown in

Figures B.1–B.5. The plots show trends for the most congested circuit (pdc) and

with logic blocks having 4, 6, 8, 12, and 14 inputs.

B.2 Jumper20 Fabric

The trends for the Jumper20 fabric with different pins positions are shown in

Figures B.6–B.10. The plots show trends for the most congested circuit (pdc) and

with logic blocks having 4, 6, 8, 12, and 14 inputs.

B.3 SingleVia Fabric

The trends for the SingleVia fabric with different pins positions are shown in

Figures B.11–B.15. The plots show trends for the most congested circuit (pdc)

155

and with logic blocks having 4, 6, 8, 12, and 14 inputs.

30 35 40 45 50

2000

3000

4000

5000

6000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

30 35 40 45 50
Logic Block Width

No. of Routing Layers = 3

30 35 40 45 50
Logic Block Width

No. of Routing Layers = 4

Min. Width
PinsPer
PinsX
PinsDiag

Figure B.1: Trends for 4-input, 2-output logic blocks with Crossover fabric

40 50 60

2000

4000

6000

8000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

40 50 60
Logic Block Width

No. of Routing Layers = 3

40 50 60
Logic Block Width

No. of Routing Layers = 4

Min. Width
PinsPer
PinsX
PinsDiag

Figure B.2: Trends for 6-input, 3-output logic blocks with Crossover fabric

40 50 60 70

2000

4000

6000

8000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

40 50 60 70
Logic Block Width

No. of Routing Layers = 3

40 50 60 70
Logic Block Width

No. of Routing Layers = 4

Min. Width
PinsPer
PinsX
PinsDiag

Figure B.3: Trends for 8-input, 4-output logic blocks with Crossover fabric

156

50 60 70 80 90
2000

4000

6000

8000

10000

12000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

50 60 70 80 90
Logic Block Width

No. of Routing Layers = 3

50 60 70 80 90
Logic Block Width

No. of Routing Layers = 4

Min. Width
PinsPer
PinsX
PinsDiag

Figure B.4: Trends for 12-input, 6-output logic blocks with Crossover fabric

60 70 80 90 100
2000

3000

4000

5000

6000

7000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

60 70 80 90 100
Logic Block Width

No. of Routing Layers = 3

60 70 80 90 100
Logic Block Width

No. of Routing Layers = 4

Min. Width
PinsPer
PinsX
PinsDiag

Figure B.5: Trends for 14-input, 7-output logic blocks with Crossover fabric

30 35 40 45 50

2000

3000

4000

5000

6000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

30 35 40 45 50
Logic Block Width

No. of Routing Layers = 3

30 35 40 45 50
Logic Block Width

No. of Routing Layers = 4

Min. Width
PinsPer
PinsX
PinsDiag

Figure B.6: Trends for 4-input, 2-output logic blocks with Jumper20 fabric

157

40 50 60

2000

4000

6000

8000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

40 50 60
Logic Block Width

No. of Routing Layers = 3

40 50 60
Logic Block Width

No. of Routing Layers = 4

Min. Width
PinsPer
PinsX
PinsDiag

Figure B.7: Trends for 6-input, 3-output logic blocks with Jumper20 fabric

40 50 60 70

2000

4000

6000

8000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

40 50 60 70
Logic Block Width

No. of Routing Layers = 3

40 50 60 70
Logic Block Width

No. of Routing Layers = 4

Min. Width
PinsPer
PinsX
PinsDiag

Figure B.8: Trends for 8-input, 4-output logic blocks with Jumper20 fabric

50 60 70 80 90
2000

4000

6000

8000

10000

12000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

50 60 70 80 90
Logic Block Width

No. of Routing Layers = 3

50 60 70 80 90
Logic Block Width

No. of Routing Layers = 4

Min. Width
PinsPer
PinsX
PinsDiag

Figure B.9: Trends for 12-input, 6-output logic blocks with Jumper20 fabric

158

60 70 80 90 100
2000

3000

4000

5000

6000

7000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

60 70 80 90 100
Logic Block Width

No. of Routing Layers = 3

60 70 80 90 100
Logic Block Width

No. of Routing Layers = 4

Min. Width
PinsPer
PinsX
PinsDiag

Figure B.10: Trends for 14-input, 7-output logic blocks with Jumper20 fab-

ric

30 35 40 45 50

2000

3000

4000

5000

6000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

30 35 40 45 50
Logic Block Width

No. of Routing Layers = 3

30 35 40 45 50
Logic Block Width

No. of Routing Layers = 4

Min. Width
PinsPer
PinsX
PinsDiag

Figure B.11: Trends for 4-input, 2-output logic blocks with SingleVia fabric

40 50 60

2000

4000

6000

8000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

40 50 60
Logic Block Width

No. of Routing Layers = 3

40 50 60
Logic Block Width

No. of Routing Layers = 4

Min. Width
PinsPer
PinsX
PinsDiag

Figure B.12: Trends for 6-input, 3-output logic blocks with SingleVia fabric

159

40 50 60 70

2000

4000

6000

8000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

40 50 60 70
Logic Block Width

No. of Routing Layers = 3

40 50 60 70
Logic Block Width

No. of Routing Layers = 4

Min. Width
PinsPer
PinsX
PinsDiag

Figure B.13: Trends for 8-input, 4-output logic blocks with SingleVia fabric

50 60 70 80 90
2000

4000

6000

8000

10000

12000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

50 60 70 80 90
Logic Block Width

No. of Routing Layers = 3

50 60 70 80 90
Logic Block Width

No. of Routing Layers = 4

Min. Width
PinsPer
PinsX
PinsDiag

Figure B.14: Trends for 12-input, 6-output logic blocks with SingleVia fab-

ric

60 70 80 90 100
2000

3000

4000

5000

6000

7000

C
h
ip

 W
id

th

Logic Block Width

No. of Routing Layers = 2

60 70 80 90 100
Logic Block Width

No. of Routing Layers = 3

60 70 80 90 100
Logic Block Width

No. of Routing Layers = 4

Min. Width
PinsPer
PinsX
PinsDiag

Figure B.15: Trends for 14-input, 7-output logic blocks with SingleVia fab-

ric

160

Appendix C

Logic Block Dimensions

Minimum and maximum logic block sizes calculated for each MCNC circuit for

different IO pin count are shown in Tables C.1 and C.2 respectively. The minimum

block size is the smallest block size that is routable with 2 routing layers. The

maximum block size is the smalled block size that can be routed without any

whitespace. The block sizes were determined using Crossover fabric with PinsPer

pin position scheme. The largest value for each logic block type (IO pins) was

used to determine the logic block dimensions.

161

Table C.1: Minimum block sizes

Circuit
Block Sizes for Logic Blocks with different I/O pin count

2-in,1-out 4-in,2-out 6-in,3-out 8-in,4-out 10-in,5-out 12-in,6-out 14-in,7-out 16-in,8-out

alu4 10 × 10 16 × 16 20 × 20 22 × 22 24 × 24 28 × 28 30 × 30 30 × 30

apex2 10 × 10 16 × 16 20 × 20 22 × 22 24 × 24 30 × 30 32 × 32 34 × 34

apex4 12 × 12 16 × 16 20 × 20 22 × 22 26 × 26 28 × 28 34 × 34 34 × 34

bigkey 10 × 10 16 × 16 18 × 18 20 × 20 22 × 22 24 × 24 28 × 28 28 × 28

clma 10 × 10 16 × 16 22 × 22 24 × 24 30 × 30 32 × 32 36 × 36 36 × 36

des 12 × 12 16 × 16 20 × 20 20 × 20 24 × 24 28 × 28 30 × 30 30 × 30

diffeq 10 × 10 14 × 14 16 × 16 18 × 18 22 × 22 24 × 24 30 × 30 28 × 28

dsip 10 × 10 16 × 16 18 × 18 20 × 20 22 × 22 26 × 26 28 × 28 28 × 28

elliptic 10 × 10 16 × 16 20 × 20 22 × 22 26 × 26 28 × 28 34 × 34 34 × 34

ex1010 10 × 10 16 × 16 20 × 20 22 × 22 28 × 28 30 × 30 36 × 36 38 × 38

ex5p 12 × 12 18 × 18 22 × 22 24 × 24 28 × 28 32 × 32 36 × 36 38 × 38

frisc 10 × 10 16 × 16 20 × 20 22 × 22 26 × 26 30 × 30 34 × 34 36 × 36

misex3 10 × 10 16 × 16 18 × 18 22 × 22 24 × 24 28 × 28 32 × 32 32 × 32

pdc 12 × 12 20 × 20 22 × 22 26 × 26 30 × 30 32 × 32 38 × 38 40 × 40

s298 8 × 8 14 × 14 16 × 16 16 × 16 20 × 20 24 × 24 26 × 26 26 × 26

s38417 10 × 10 16 × 16 20 × 20 22 × 22 24 × 24 30 × 30 34 × 34 34 × 34

seq 10 × 10 16 × 16 20 × 20 22 × 22 26 × 26 28 × 28 32 × 32 34 × 34

spla 12 × 12 18 × 18 22 × 22 24 × 24 28 × 28 32 × 32 36 × 36 38 × 38

tseng 10 × 10 14 × 14 18 × 18 18 × 18 22 × 22 24 × 24 30 × 30 28 × 28

MAX 12 × 12 20 × 20 22 × 22 26 × 26 30 × 30 32 × 32 38 × 38 40 × 40

Table C.2: Maximum block sizes

Circuit
Block Sizes for Logic Blocks with different I/O pin count

2-in,1-out 4-in,2-out 6-in,3-out 8-in,4-out 10-in,5-out 12-in,6-out 14-in,7-out 16-in,8-out

alu4 24 × 24 40 × 40 46 × 46 54 × 54 60 × 60 70 × 70 76 × 76 80 × 80

apex2 24 × 24 38 × 38 50 × 50 56 × 56 66 × 66 76 × 76 82 × 82 88 × 88

apex4 28 × 28 42 × 42 52 × 52 60 × 60 74 × 74 76 × 76 86 × 86 94 × 94

bigkey 22 × 22 34 × 34 42 × 42 48 × 48 48 × 48 52 × 52 62 × 62 62 × 62

clma 24 × 24 40 × 40 56 × 56 68 × 68 76 × 76 84 × 84 94 × 94 100 × 100

des 26 × 26 38 × 38 46 × 46 54 × 54 58 × 58 68 × 68 74 × 74 76 × 76

diffeq 20 × 20 30 × 30 38 × 38 42 × 42 50 × 50 56 × 56 60 × 60 66 × 66

dsip 22 × 22 34 × 34 42 × 42 40 × 40 52 × 52 62 × 62 64 × 64 60 × 60

elliptic 24 × 24 40 × 40 46 × 46 54 × 54 64 × 64 70 × 70 86 × 86 88 × 88

ex1010 26 × 26 40 × 40 52 × 52 64 × 64 70 × 70 80 × 80 88 × 88 94 × 94

ex5p 28 × 28 44 × 44 56 × 56 64 × 64 74 × 74 80 × 80 90 × 90 100 × 100

frisc 24 × 24 40 × 40 50 × 50 60 × 60 68 × 68 78 × 78 84 × 84 92 × 92

misex3 24 × 24 40 × 40 48 × 48 56 × 56 66 × 66 70 × 70 76 × 76 86 × 86

pdc 28 × 28 50 × 50 62 × 62 72 × 72 82 × 82 92 × 92 104 × 104 106 × 106

s298 16 × 16 26 × 26 32 × 32 36 × 36 40 × 40 44 × 44 50 × 50 52 × 52

s38417 20 × 20 32 × 32 46 × 46 54 × 54 62 × 62 72 × 72 76 × 76 82 × 82

seq 26 × 26 40 × 40 52 × 52 60 × 60 68 × 68 78 × 78 82 × 82 92 × 92

spla 26 × 26 46 × 46 60 × 60 68 × 68 80 × 80 88 × 88 98 × 98 104 × 104

tseng 20 × 20 30 × 30 36 × 36 42 × 42 48 × 48 54 × 54 58 × 58 60 × 60

MAX 28 × 28 50 × 50 62 × 62 72 × 72 82 × 82 92 × 92 104 × 104 106 × 106

162

Appendix D

VPSA Performance and Cost Trends

In this appendix, we show the power, delay, area, and die-cost for logic blocks

with 4, 6, 8, 12, and 14 inputs.

Figures D.1–D.5 show the trends for power. The delay trends are shown in

Figures D.6–D.10. The area trends are shown in Figures D.11–D.15. Finally,

Figures D.16–D.20 show the die-cost trends.

2 3 4

0.5

1

1.5

2

2.5

N
o
rm

a
liz

e
d
 P

o
w

e
r

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

Figure D.1: Power trends for 4-input, 2-output logic blocks

163

2 3 4

0.5

1

1.5

2

2.5

N
o
rm

a
liz

e
d
 P

o
w

e
r

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

Figure D.2: Power trends for 6-input, 3-output logic blocks

2 3 4

0.5

1

1.5

2

2.5

N
o
rm

a
liz

e
d
 P

o
w

e
r

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

Figure D.3: Power trends for 8-input, 4-output logic blocks

2 3 4

0.5

1

1.5

2

2.5

N
o
rm

a
liz

e
d
 P

o
w

e
r

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

Figure D.4: Power trends for 12-input, 6-output logic blocks

164

2 3 4

0.5

1

1.5

2

2.5

N
o
rm

a
liz

e
d
 P

o
w

e
r

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

Figure D.5: Power trends for 14-input, 7-output logic blocks

2 3 4

0.5

1

1.5

2

2.5

N
o
rm

a
liz

e
d
 D

e
la

y

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

Figure D.6: Delay trends for 4-input, 2-output logic blocks

2 3 4

0.5

1

1.5

2

2.5

N
o
rm

a
liz

e
d
 D

e
la

y

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

Figure D.7: Delay trends for 6-input, 3-output logic blocks

165

2 3 4

0.5

1

1.5

2

2.5

N
o
rm

a
liz

e
d
 D

e
la

y

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

Figure D.8: Delay trends for 8-input, 4-output logic blocks

2 3 4

0.5

1

1.5

2

2.5

N
o
rm

a
liz

e
d
 D

e
la

y

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

Figure D.9: Delay trends for 12-input, 6-output logic blocks

2 3 4

0.5

1

1.5

2

2.5

N
o
rm

a
liz

e
d
 D

e
la

y

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

Figure D.10: Delay trends for 14-input, 7-output logic blocks

166

2 3 4

0.5

1

1.5

2

N
o
rm

a
liz

e
d
 C

o
re

 A
re

a

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

Figure D.11: Area trends for 4-input, 2-output logic blocks

2 3 4

0.5

1

1.5

2

N
o
rm

a
liz

e
d
 C

o
re

 A
re

a

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

Figure D.12: Area trends for 6-input, 3-output logic blocks

167

2 3 4

0.5

1

1.5

2

N
o
rm

a
liz

e
d
 C

o
re

 A
re

a

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

Figure D.13: Area trends for 8-input, 4-output logic blocks

2 3 4

0.5

1

1.5

2

N
o
rm

a
liz

e
d
 C

o
re

 A
re

a

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

Figure D.14: Area trends for 12-input, 6-output logic blocks

2 3 4

0.5

1

1.5

2

N
o
rm

a
liz

e
d
 C

o
re

 A
re

a

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

Figure D.15: Area trends for 14-input, 7-output logic blocks

168

2 3 4

5

10

15

D
ie

 C
o
s
t
($

)

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

Figure D.16: Die-cost trends for 4-input, 2-output logic blocks

2 3 4

5

10

15

D
ie

 C
o
s
t
($

)

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

Figure D.17: Die-cost trends for 6-input, 3-output logic blocks

2 3 4

5

10

15

D
ie

 C
o
s
t
($

)

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

Figure D.18: Die-cost trends for 8-input, 4-output logic blocks

169

2 3 4

5

10

15

D
ie

 C
o
s
t
($

)

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

Figure D.19: Die-cost trends for 12-input, 6-output logic blocks

2 3 4

5

10

15

D
ie

 C
o
s
t
($

)

No. of Routing Layers

 Dense Logic Block

(Small Layout Area)

2 3 4
No. of Routing Layers

 Medium Logic Block

(Medium Layout Area)

2 3 4
No. of Routing Layers

Sparse Logic Block

(Large Layout Area)

MPSA
Crossover
SingleVia
Jumper20
Jumper40

Figure D.20: Die-cost trends for 14-input, 7-output logic blocks

170

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Research Problem
	1.3 Research Approach
	1.4 Contributions

	2 Background and Related Work
	2.1 Overview
	2.2 Structured ASIC
	2.2.1 Advantages
	2.2.2 Disadvantages
	2.2.3 Types

	2.3 Prior Work on Structured ASICs
	2.3.1 Academic Efforts
	2.3.2 Commercial Efforts

	2.4 Yield Modeling
	2.5 CAD for FPGAs and CBICs
	2.5.1 Placement
	2.5.2 Routing
	2.5.3 Whitespace Insertion

	3 Cost Model for Structured ASICs
	3.1 Overview
	3.2 Factors Affecting Structured ASIC Cost
	3.2.1 Die-Yield
	3.2.2 Device Volume Requirements
	3.2.3 Mask-set Cost
	3.2.4 Processing Costs

	3.3 Die-cost Formulation
	3.3.1 Base Cost
	3.3.2 Customization Cost
	3.3.3 Prototyping Cost
	3.3.4 Good Dies per Wafer (Ngdpw)
	3.3.5 Die-Cost Equation

	3.4 Cost Modeling for Different Structured ASICs
	3.4.1 MPSA Die-Cost
	3.4.2 VPSA Die-Cost
	3.4.3 Die-Cost for VPSAs with Single-Via Configurability
	3.4.4 MPSA and VPSA Cost Trends

	3.5 Summary

	4 Framework and CAD
	4.1 Overview
	4.2 Architecture Modeling
	4.2.1 Logic Fabric
	4.2.2 Routing Fabric

	4.3 Evaluation Metrics
	4.3.1 Area
	4.3.2 Delay
	4.3.3 Power
	4.3.4 Cost

	4.4 CAD Flow
	4.4.1 Placement and Whitespace Insertion
	4.4.2 Routing

	4.5 Summary

	5 Metal-Programmable Structured ASICs
	5.1 Overview
	5.2 Homogeneous Circuits
	5.2.1 Technology Mapping
	5.2.2 Logic Block Dimensions
	5.2.3 Performance and Cost Trends

	5.3 Heterogeneous Circuits
	5.3.1 Device Architecture
	5.3.2 Technology Mapping
	5.3.3 Logic Block Dimensions
	5.3.4 Performance and Cost Trends

	5.4 Cost Sensitivity Analysis
	5.5 Impact of an Intelligent Whitespace Insertion Algorithm
	5.6 Summary

	6 Via-Programmable Structured ASICs
	6.1 Overview
	6.2 Experimental Setup
	6.2.1 Benchmark Circuits and Technology Mapping
	6.2.2 Logic Block Types and Dimensions

	6.3 Fixed-Metal Interconnect Fabrics
	6.3.1 Jumper Fabric
	6.3.2 Crossover Fabric
	6.3.3 SingleVia Fabric

	6.4 Impact of Logic Block Pin Positions
	6.5 Performance and Cost Trends
	6.5.1 Power Results
	6.5.2 Delay Trends
	6.5.3 Area Trends
	6.5.4 Cost Trends

	6.6 Limitations of Detailed Routing
	6.7 Summary

	7 Conclusions
	7.1 Research Observations
	7.2 Contributions
	7.3 Limitations
	7.4 Future Work

	References
	Appendices
	A Characteristics of MCNC Benchmarks
	B Logic Fabrics and Pin Positions
	B.1 Crossover Fabric
	B.2 Jumper20 Fabric
	B.3 SingleVia Fabric

	C Logic Block Dimensions
	D VPSA Performance and Cost Trends

