
Data-Knowledge-Context:
An Application Model for Collaborative Work

Lee Iverson
Dept. of Electrical and Computer Engineering

University of British Columbia
Vancouver BC, Canada

leei@ece.ubc.ca

ABSTRACT
For many years, researchers and software developers have
been seeking to develop systems and applications to enable
efficient and effective group work and organizational mem-
ory. The systems proposed and developed have in many
respects had little impact on the effectiveness of group ac-
tivities outside the laboratory. Other researchers have iden-
tified many of the challenges that groupware systems face,
but these insights have done little to structure subsequent
research.

We suggest that these difficulties are primarily due to an
operating system model and a model of application devel-
opment that has significantly restricted the ability of users
to properly manage their own data and work products much
less share them with others. Moreover, it is nearly impossi-
ble to effectively integrate collaborative activities with nat-
ural practices of work and communication. Instead, we pro-
pose an alternative system architecture, the DKC model,
that places HCI, knowledge representation and management,
and distributed, hypertext operating systems in a coordi-
nated structure. We clearly delineate the roles of each of
these aspects within the whole, collaborative environment.
By adopting this model, we suggest that researchers and de-
velopers of both single-user and collaborative systems will be
able to design effective, multi-platform, multi-application,
and multi-workplace collaborative environments that may
finally have some impact beyond the laboratory.

Categories and Subject Descriptors
D.2.11 [Software Architectures ]: Patterns; D.4.3 [File
Systems Management ]: Distributed File Systems; H.2.4
[Systems ]: Distributed Databases; H.5.4 [Hypertext/Hypermedia
]: Architectures

Keywords
Computer Supported Cooperative Work (CSCW) (primary

keyword) ; Database access / Information Retrieval ; World
Wide Web and Hypermedia ; Software architecture and en-
gineering

1. INTRODUCTION
Anyone who was there or has seen video of the 1968 ”Mother
of All Demos”[13] at which Douglas Engelbart first revealed
combination of the mouse, hypertext, visual/interactive com-
puting, multimedia workspaces, and shared environment,
can’t help but be impressed with both the vision and execu-
tion of technology in the service of collaborative work. Some
who worked there have suggested that in terms of enabling
flexible, integrated collaboration and organizational mem-
ory, few systems have ever risen to the level established in
Engelbart’s Augmentation Research Center [14] in the early
’70s. In a certain respect, much of the research in group-
ware, hypertext and CSCW that has gone on since then is
still trying to recapture the potential of that working envi-
ronment. We would like to suggest that an understanding
of certain aspects the evolution of these technologies and
the relationships that these have with both social processes
and, in particular, the patterns and models for development
and delivery of software applications may explain the fail-
ure to be able to recapture that integration of technologies
in support of collaborative work.

Much of the work in CSCW has focused on analysing the
interfaces between technologies and group work activities in
order to better facilitate effective, efficient collaborative pro-
cesses and ensure that the technologies support, rather than
disrupt, the social activities that this collaboration depends
on. Among the most useful of these analyses as far as guid-
ing the design of future systems are those that examine both
the failures (e.g. office automation and videoconferencing)
and successes (e.g. email and the Web) of the technolo-
gies designed to encourage and facilitate group work. In
particular, we need to combine analyses of groupware tech-
nologies themselves[19], with an understanding of the social
requirements for the success of those technolgies[1], and a
deep consideration of the affordances of computer-mediated
communication systems as far as their ability to enable col-
laborative activities[32].

Grudin, in an essentially pre-Web study of the legacy of the
early work on groupware systems and their relative failure
with respect to both enterprise-scale MIS and single-user
productivity tools, identified eight ”challenges” for develop-



ers[19]. We would like to highlight four of these, what he
called ”work vs. benefit”, ”critical mass”, ”unobtrusive ac-
cessibility” and ”the adoption process”. With the ”work vs.
benefit” challenge he suggested that one of the most critical
failures was in creating systems and work environments in
which the work required to make them function effectively
is necessarily performed by those who get little benefit from
the work they are doing. The ”critical mass” issue has to do
with the tendency to develop technologies or work practices
that require full participation from the users to provide any
benefit at all. An example would be group calendar appli-
cations, which often break down if even a single participant
doesn’t contribute to the collective scheduling and notifica-
tion. He described as ”unobtrusive accessibility” the prob-
lem of having the group coordination features of software
applications being relatively infrequently used in compari-
son to the normal work practices. The consequence of this is
that these collaborative functions need to be more transpar-
ent and usable than the typical task-oriented features of the
collaborative applications. Finally, he highlighted the need
for a clear and workable ”adoption process” that takes into
account such issues of heterogeneity of work environments
and practices and the means by which users change their
work habits and tools when necessary.

The usefulness of this analysis can be appreciated by con-
sidering the degree to which the success of the Web as a
collaborative information sharing environment can be un-
derstood in comparison to much more capable hypertext
environments that preceded it (e.g. Intermedia[33] or Micro-
cosm[18]). I would like to suggest that, the combination of
its simplicity, early standardization and open source imple-
mentation, contributed to an easy and seductive adoption
storyline as well as a clearly unobtrusive accessibility. In
terms of work vs. benefit, it accommodates a wide variety
of different user types and goals from pure browsers to large-
scale communities of interest, to work-focused intranets, to
small-scale vanity publishing. It’s simplicity and flexibility
has allowed it to adapt to a wide variety of different social
environments and easily develop a critical mass of users well
beyond it’s initial conception as a tool for efficiently sharing
scientific information. In fact, this explosive growth beyond
the initial conception and plan even harks back to another of
Grudin’s observations, that there is a ”failure of intuition”
for developers in designing groupware systems in being able
to predict the impact of these systems on their intended user
communities.

Ackerman[1] built on Grudin’s work and expanded it by
considering the social dynamics of cooperative work more
deeply and thus emphasized a number of different aspects
of the problem, especially with respect to particular issues
that we don’t yet know how to handle from a technological
point of view. He pointed out that social processes are fluid
and nuanced and that systems for sharing information and
opinion need to reflect that and provide simple ways of man-
aging the subtleties and dynamics of our trust in those we
are or might be collaborating with. He pointed out the im-
portance of synchronous collaboration, especially in terms of
the ”presence” and ”visibility” of our collaborators and their
work. Finally, echoing and expanding on Grudin’s asser-
tion that intuition on the effects of design choices for group
work, he argued strongly for a co-evolutionary approach to

the development of these systems, in which there is a strong
assumption that the technology will affect its user commu-
nities and that these effects should be studied, understood
and force the adaptation of the software and other tools to
the needs of the communities.

Finally, Whittaker[32] examines the the existing literature
on the affordances of various computer-mediated communi-
cation (CMC) media and compares these with the needs of
collaborative workers in terms of the avoidance of redun-
dancy, the exploitation of varying expertise and experience
within groups. He highlights the need to support both syn-
chronous and asynchronous modes of communication and
to explore shared experiences through shared environments
much more deeply. When combined with some of the recent
emphasis on ”common ground”[8] or mutual knowledge de-
velopment using CMC technologies[10], there is a clear indi-
cation that for cognitive tasks that depend critically on ef-
ficient communication of knowledge and the the recognition
and resolution of conflicts, synchronous and asynchronous
communication pathways and recordings of conversations
and conclusions (e.g. email archives) all contribute to col-
laborative work in complementary ways.

With all of this knowledge then, why are we still not able
to develop effective collaboration environments for our user
communities? We would like to suggest that one of the
primary stumbling blocks is a fundamentally uncooperative
model for the development and dissemination of software ap-
plications. Given the background knowledge outlined above,
we will show how this model inhibits effective collaboration,
and then propose an alternative that may will allow for the
development of much more effective collaborative tools with-
out requiring users to abandon their entire existing software
environment and work practices.

2. CURRENT APPLICATION MODELS
In many ways, the model-view-controller pattern[21] char-
acterizes the modern accepted best-practice approach to the
development of effective user-oriented software applications
(see Fig. 1). It describes a modularization of functionality in
interactive software applications in which the user interacts
directly with a controller, that in turn interprets the user’s
actions to modify both the application’s internal data model
and the representation of that model on the computer screen
(the view). In order to maintain a persistent record of the
model (and view), the application designer either adopts or
designs a data format which encodes the model and stores
it in a file on some filesystem (networked or not). Notably,
since it is often difficult to relate these internal models of
tasks and user activities in applications to standardized data
formats it is normal practice to create a new format specific
to every significant new application or task-oriented system.

One of the consequences of this design pattern is that it leads
to an expectation that persistent data will be encapsulated
in these, often complicated or deliberately obscure, exter-
nal data formats. Moreover, it is assumed that a new data
format is required for each new application or data model.
When combined with economic incentives within the soft-
ware industry for consumer lock-in and mandatory upgrade
paths, it becomes clear that there is a huge opportunity
for a user’s data and knowledge to be ”captured” and even



Figure 1: Model-View-Controller pattern with ex-
ternal file format application model. Note that the
persistence of the model (and possibly view) is in-
stantiated by the definition of a document format
and by the process of encoding and decoding be-
tween the model and this external format, which is
stored via a filesystem.

held hostage by the applications that create and manipulate
them. We refer to this as the ”tyranny of format”. For soft-
ware vendors, the choice to keep a data format proprietary
is seen as one of the best tools for ensuring customer de-
pendence. Since access to the user’s own accumulated work
and knowledge is necessarily mediated by the application,
the user can only access their own intellectual output by
using the vendor’s applications. If this lock-in is effective,
then it enables other potential manipulations such as subtly
or radically changing data formats with upgrades to applica-
tions. The final consequence of this practice comes when it
is aligned with a move to make more applications ”leased”,
such that they require the maintenance of an active license
in order to continue to function. In these cases, failure to
subscribe and pay an annual fee can mean that a user would
be prevented from even continuing to access their own data,

Another consequence of this application model derives from
the observation (related to the second point above) is that
collaborative activities are also ”captured” by the data for-
mats and depend on the goals of the vendor in supporting
collaboration within the application and not on the needs
of different user communities for collaborative facilities. In
essence, since the data model and task-oriented knowledge
are inaccessible outside the application (except via external
data formats or application-provided communication paths)
there is very little possibility of developing general personal
information management tools except at the granularity of
”files” or documents stored in filesystems. Important classes
of information management and collaboration tools that could
potentially be implemented relatively independently of task-
oriented applications are impossible to implement without
direct assistance from these data-capturing applications (e.g.
personal information management, hypertext linking, an-
chored conversations[7], etc.). Moreover, the potential for
reuse of information inside captured documents by other
applications is limited by the application developer’s or ven-
dor’s commitment to support such reuse.

One response to this problem (whether the problem was

stated in these terms or not) is to create ”standard” data
formats and even languages (such as SGML or XML) for
expressing a variety of data formats in standard form. This
is admirable and necessary, but probably not sufficient. It’s
success depends critically on patterns of adoption by ven-
dors and developers and the need to satisfy many different
parties in the standardization processes often means that the
standards developed are extremely complicated and gener-
ally unmanageable by any but the largest corporations or
communities of developers.

A case in point is the widely-perceived complexity and un-
usability of the current XML Schema: Part 1 (Complex
Datatypes) standard[31]. This has been characterized as
a conflict between the data-oriented (i.e. database manage-
ment) and text-oriented (i.e. SGML and HTML) commu-
nities and the difficulty of resolving their often competing
requirements[9]. We would like to suggest that in addition to
these difficulties is the fundamental confusion embedded in
the XML standards between data models and syntax. XML,
as flexible and adaptable as it may be, is still a markup lan-
guage, a syntax designed primarily for ”marking-up” pri-
marily textual documents. It has been adapted with mixed
success to the goal of representing and exchanging funda-
mentally non-textual data resources (e.g. XML-RPC and
SOAP), but it retains its roots as a language for expressing
text. We suggest that a step beyond XML would clearly sep-
arate data model from the (possibly numerous) languages
for expressing that data model and build a collaborative
foundation around that. The DKC model we are proposing
begins with exactly that observation.

3. THE DKC MODEL
The Data-Knowledge-Context (DKC) model (see Fig. 2) is
a layered application development model and system archi-
tecture that clearly separates concerns between a general
operating system layer (the Data layer) and two semanti-
cally rich layers above it (the Knowledge and Context lay-
ers). It separates these concerns based on persistent vs.
ephemeral storage and explicit vs. implicit semantics. The
Data layer is a generic data storage infrastructure designed
around an extensible data modelling language, communi-
cation and data distribution facilities, both structural and
content-based search, change auditing and a security and
privacy system designed to promote patterns of data sharing
that match the nuances of trust patterns in collective work.
It needs to be platform-independent, language and program-
ming language-independent and application-independent. The
Knowledge layer is a persistent store of explicitly semantic
knowledge intended to provide the facilities for storing and
accessing semantically rich depictions and interpretations of
the world. The Context layer is the ephemeral, task and
user-oriented interface to this world of data and knowledge.

In terms of subverting the dominant MVC application paradigm
(see Fig. 3, the Data layer stores the model as a structured
data model and provides all of the necessary facilities to
manage this data model by multiple users, with multiple
data formats and with multiple patterns of access and com-
munication of the components in this model. The view and
controller parts of the application are aspects of the Context
layer, designed to manage task-based interactions and visu-
alizations of the data for the user and task being targeted.



Figure 2: The DKC Model, a three-layer model of
Data, Knowledge and Context layers. The Context
layer is equivalent to the client application.

The Knowledge layer should capture, and make indepen-
dently available to other Contexts, the business rules and
logic that can be abstracted out of the application. More-
over, it will be able to store and manage a wide variety of
personal and group information management facilities that
should make semantic search and reuse of data more trans-
parent. However, it should be noted that the Knowledge
layer is an optional part of these systems. In general, the
Knowledge layer should be seen as an opportunity for devel-
opers and users to develop new facilities for managing and
exploiting knowledge that is now available outside of the
data-capturing applications.

Figure 3: MVC mapping to DKC layered model.
The View and Controller modules are in the Con-
text layer and the Model may be an object model,
knowledge model or simply a data model. The ap-
plication is essentially just the View and Controller
modules.

In many ways, this model can be compared favourably to the
database-oriented two-tier and three-tier models (see Fig. 4)
for enterprise level applications. The Data layer should be,
in fact, expressed in terms of database-like language and the

Knowledge layer can be seen to be the expression of the busi-
ness rules for managing that data. The Context layer is then
clearly associated with the user-interface issues at the top of
the two-tier or three-tier layers. We do not claim that the
DKC model is in any way independent of these architectures.
In fact, it can be seen as a way of taking the lessons learned
from those models and applying them to the next genera-
tion of flexible, deeply user- and task-oriented applications
for a much wider class of users than traditionally supported
by the enterprise-level systems. We do this, specifically, by
describing requirements and concerns that the layers must
or may support that go beyond the traditional concerns of
the tiers in these models and focus explicitly on allowing col-
laborative work between loosely-connected individuals and
groups without the boundaries imposed by data-capturing
application models. Moreover, we make explicit the need
for systems built on these foundations to be able to ”play
well with others” and interact effectively with entrenched or
idiosyncratic applications and work practices.

Figure 4: DKC and the three-tier enterprise model.
The only major difference here is that the Knowl-
edge layer does not isolate the database from the
client/context layer.

One other class of applications that we are aware of already
more or less ascribes to this model, shared virtual worlds[24].
In these environments, the world model is, in fact, separated
from the front-end application and, whether distributed or
centralized, is managed via a series of transactions between
the client and server(s). Moreover, the communication be-
tween users of these systems is managed (and sometimes
recorded) by the central server(s). Thus, these servers are
implementing the Data layer in this kind of system, includ-
ing both persistent storage and facilitated communication.
They do not, however, tend to make the business rules of
the system available to their users or client applications in a
way that could be exploited with automatic reasoning tools.
In that sense, they implement the Data and Context layers,
but the Data layer is not entirely pure, being a combination
between the Data and Knowledge layers. Moreover, they
tend to not support the mixture of asynchronous and syn-
chronous access that may be necessary for supporting col-
laborative work practices. That said, in terms of implemen-
tation strategies and techniques they provide an excellent
example of the kinds of distributed technologies and design
patterns that might go into a DKC-based system.

So far, we have only glossed over the concerns and respon-



sibilities of these three layers with reference to metaphors
and existing systems. In order to make this model applica-
ble to design and analysis, we must make the concerns and
requirements of the component layers more explicit. Appro-
priately, we will start with the Context layer, the one closest
to the users and tasks to be supported.

3.1 Context Layer
The Context layer is the primary location of HCI-related
concerns. In a pure implementation of the DKC model, in
fact, the Context layer is the client application itself. As
such, it manages all interactions between the user and the
data models that are being manipulated. It encompasses
user-interfaces including visualization, presentation, and in-
teraction. For purposes of the trust management that must
be communicated to lower layers, it is also where authentica-
tion maintenance must be managed, ensuring that the user
claimed to be interacting with the models is in fact the per-
son that the permissions have been entrusted to. In the fu-
ture, as these technologies mature, it is within this layer that
we will see the deployment of user and task-modelling and
more sophisticated knowledge capture (e.g. speech recog-
nition and transcription). For more significantly hardware-
dominated collaborative application environments (such as
instrumented spaces or augmented environments), it is likely
that the initial integration of the mixed media will have to
happen at this layer in order for context to be recognized
and captured.

It is named the Context layer primarily because although
context is largely recognized as important in representing
and capturing knowledge it is generally not considered ex-
plicitly within the modelling of systems (although this usage
is related to ”context-aware computing”, the breadth of our
use of the term is obviously broader and come from discus-
sions with Charlie Ortiz at SRI). In our estimation, user-
interfaces, user- and task-modelling and knowledge capture
are all driven by ephemeral semantic context and we em-
phasize this with the name.

3.2 Knowledge Layer
The Knowledge layer is responsible for the representation
and management of explicit, persistent semantic knowledge.
The goal of identifying this as a separate layer in a system
architecture is to focus on the reusability of such knowledge
and services outside the boundaries of particular contexts
and application-based constraints. This is the traditional
domain of knowledge representation and management sys-
tems, models and technologies and we hope to provide a
means by which these may be made available to all knowl-
edge workers.

Significantly, we explicitly recognize the need for a variety of
different semantic services (see Fig. 5), ranging from simple
representational systems (e.g. ontological models) through
full-fledged reasoning systems (e.g. traditional knowledge
bases).

3.2.0.1 Declarative Semantics
In that respect, it should be clear that the storage and man-
agement of Semantic Web[4, 16, 11] data and the services
necessary to take advantage of this information would lie in

this layer. Some work has recently been done on using on-
tological models as foundations for higher-levels of informa-
tion integration. In general, whether the models are being
produced automatically, semi-automatically or completely
under user control, there is a significant advantage to be
gained by assuming that their expression and use is made
distinct from both the Data layer and the Context layer.
Whether these semantic models are considered to be data
or metadata, a clear constraint that comes from the current
representations being used to codify this declarative knowl-
edge is that they represent information about other objects,
and thus rely inherently on models of reference to objects.
Any object or granularity of object that cannot be refer-
enced in a Data layer, cannot be the subject or object of a
declarative semantic statement. Providing a more univer-
sal means of referencing data at a variety of granularities
should be one of the main constraints on the design of the
Data layer.

3.2.1 Procedural Semantics
More interesting, we claim, is the observation that procedu-
ral knowledge is just as important and potentially reusable
as the kinds of declarative knowledge traditionally associ-
ated with knowledge representation. What do we mean by
procedural knowledge? Well, object models for one. When
data is tied to behaviours to form behaving objects, there
is a clear sense in which those objects explicitly represent a
semantics for the data they encapsulate. We suggest that
in many cases it will enhance the overall patterns of reuse
of data and semantics if we explicitly separate these pro-
cedural semantics of objects from the implicit semantics of
structured data. A claim that we rely on, and we hope to ad-
dress it in future work, is that we believe that object models
limit reuse of information in a way that structured and semi-
structured data models (at the Data layer) do not. Given
that contention, it makes sense to separate these concerns
and allow reuse and repurposing of data separately from
the procedural constraints imposed by an object model. In
many cases, of course, we may need to limit this indepen-
dence (e.g. in financial systems where there are real hard
constraints on the data model that cannot be represented in
the data model constraint language), in which case we may
need to restrict modification of the data model by using the
knowledge layer in the same way as the business rules layer
in the three-tier enterprise model, to isolate the client from
the actual data model. In general, however, this an optional
usage in the DKC model and needs to be supported but not
required.

This is not an entirely radical idea if we consider the ex-
perience of agent-oriented systems in which the procedu-
ral and declarative semantics of agents are necessarily com-
bined into a single package so that agent brokers may reason
about them in order to coordinate services5. In these sys-
tems, agent languages[23] such as KQML[17] are combined
with mobile and distributed objects to produce mobile, self-
describing active agents. The difficulty is often ensuring that
the declarative and procedural semantics stay harmonized as
the agent’s implementation evolves.

3.2.2 Knowledge Services
In addition the the basic declarative semantics, it is neces-
sary in many environments to provide automatic reasoning



services that can draw conclusions or generalizations from
the semantic models represented in a declarative fashion.
These KBS-style systems, we argue, are appropriately situ-
ated at this knowledge layer and should be independent of
the view-control elements of the context layer above it. In
that respect too, we would classify web services (in so far as
they are semantically well-defined) and data mining services
as aspects of the DKC Knowledge layer.

Figure 5: Relationship between Data Model, Object
Model and Knowledge Model within the Knowledge
layer. Agent services typically combine Object and
Knowledge models while Knowledge-Based services
provide logical inference services on the Knowledge
Models.

How are the Context and Knowledge layers related? The
Context layer is responsible for capturing contextual infor-
mation and formulating it in such a way that it can be coded
and reused by the Knowledge layer. The Knowledge layer, in
the mean time will be typically responding to semantically-
rich, context-dependent queries from the Context layer and
and providing services to enhance the Context layer’s in-
terfaces. Meanwhile, the Data layer sits underneath both
of these and provides the universal, operating-system like
services that are required to implement both.

3.3 Data Layer
Since the Data layer sits underneath the two other layers, it
is responsible for all aspects of the system implementation
that are not rightly associated with either. In particular,
it is a layer for persistent storage but not explicit seman-
tics. We suggest that to truly approach the needs expressed
by Grudin[19], Ackerman[1] and in this paper, it needs to
support the following set of mixed functionalities.

Data Model The observations from experience with enterprise-
level architectures, shared virtual worlds and even mod-
ern dynamic web sites suggests that the best founda-
tion for sharing and flexible reuse of data is a gen-
eral and flexible data model. Moreover, with our ab-
straction of the DKC model out of the model-view-
controller architecture, we can assume that the mod-
els that need to be made persistent are structured and
constrained.

Database View Given the emphasis on a structured, con-
strained data model, it should be clear that most of the

basic interactions with the model must be managed ex-
actly as they are in a modern, multi-user transactional
database. In fact, we suggest that implementing a data
layer on top of either an object database or relational
database is the best option for bootstrapping such a
system. One point though is that since we are relat-
ing the model directly to the development of user-level
applications, we probably cannot support the kind of
conceptual mismatch between programming language
data models and relational models. Instead, it seems
essential that the data layer appear in this respect as
a distributed object database.

Filesystem View We have pointed out clearly above that
it is not a luxury or afterthought to support existing
applications, work patterns and data formats. As such,
it will be essential to maintain a connection between
the database view and a distributed filesystem view.
For this reason, we suggest that a Data layer must have
some extensible architecture for relating data models
and formats and that the availability of these cross-
walks be made explicit and public. Moreover, the Data
layer should be able to incorporate and provide facili-
ties for accessing remote filesystem-like resources (e.g.
NFS, HTTP, IMAP, etc.) with the same APIs and
modeling tools available on the database side.

Asynchronous and Synchronous Interaction Since ef-
fective work patterns and communication for collabo-
rative activities involves both synchronous and asyn-
chronous communication, and end-user devices may
move on and off the network, it will be necessary to
provide means of interacting with both the database
and filesystem layers in both synchronous and asyn-
chronous modes. This would potentially mean that
when connected, a user could be interacting with an
interactive, shared data model in an effectively shared
environment with any other connected users of a data
repository. When offline, the user should still be able
to work, but with an interaction mode that is queued
and then synchronized when eventually reconnected.

Granular Reference We argued that granular reuse of data
was important. Moreover, the key enabling technolo-
gies for Semantic Web services rely on the ability to
reference content within files. If we hope to bring
knowledge management and hypertext capabilities to
all data formats (as we stated above) then it is clear
that we need to provide some sort of universal, granu-
lar referenceability of content inside arbitrary files.

Change Auditing and Synchronization In order to en-
able the orderly transition from disconnected to con-
nected use and resynchronization of resources, it is nec-
essary to have some kind of change tracking and then
synchronization methods. We suggest that the flexi-
ble data model and granularity of reference can pro-
vide a mechanism that can allow for universal change
tracking and synchronization for any kind of document
format via identification of data models and indepen-
dent history auditing for all data model objects within
documents.

Flexible Security and Privacy Clearly providing a means
for users to flexibly manage the trust environment for



allowing others to reuse and even manipulate their
data resources is essential for effective sharing and col-
laboration. Moreover, we suggest that the appropriate
granularity for this security management is at the level
of the sub-document objects within the data model.

Search for Content and Structure Clearly for purposes
of data mining and information management, provid-
ing a universal search infrastructure is essential. More-
over, we suggest that this searchability be presented at
both content and structural levels.

So, with these requirements, we have a recipe for the Data
layer that could effectively support the Knowledge and Con-
text layers above it while enabling application-independent
collaboration and knowledge services. This Data layer would
have to appear as both an active object database with message-
oriented middleware facilities and as a distributed, synchro-
nizing filesystem (such as in software change management
(SCM) systems such as CVS[3], Subversion[15] or BitKeeper[5]).
From a filesystem point of view, potential existing candi-
dates for this aspect of the system would be the distributed
filesystems such as Coda[30], Oceanstore[22], and ADHocFS[6].

These systems do not, however provide rich document mod-
eling facilities that would allow the to connect the filesystem
view with the database view. There are however, existing
systems that either already implement this kind of facility
or are moving in that direction, such as libferris[25], the
BeOS filesystem[2], and the the WinFS filesystem that is
positioned as part of Microsoft’s Longhorn OS initiative[26].
In particular, the BeOS and WinFS systems seem to be
the best systems to begin to use to begin to evaluate the
potential for the DKC model as a new end-user applica-
tion model. Unfortunately, while certainly integrating the
database/filesystem model in order to provide ”the best of
both worlds” to their users, both systems concentrate on
using the database elements in a very traditional way and
in terms of the filesystem aspects, simply use it to replace
the ”directory” aspects of the filesystem model. This is
quite similar to the Presto[12] system developed at Xerox
PARC as a backend for a new kind of desktop and filesys-
tem metaphor that de-emphasized hierarchy and names of
digital objects in favour of rich, semantic properties and an
integrated search facility (a clear precursor of the WinFS
system). An open-source project that appears to have great
potential as such a foundation is the GNOME Storage[27]
project. It is clearly motivated by many of the same con-
cerns and perceived needs as the analysis above, but has, at
this point a definite platform-specific flavour that may sig-
nificantly limit its impact. Unfortunately, in each of these
systems the documents themselves are still represented as
bitstreams to be interpreted by the consuming applications.
Thus, where they may greatly enhance opportunities for
new styles of information organization, they leave in place
the reuse and collaboration limitations that result from the
”tyranny of format”. Moreover, they are each tightly inte-
grated with the underlying operating systems, which clearly
limits their reusability. Thus none of these systems seem to
really meet the full requirements of the Data layer described
above.

There are however, a few of systems described in the litera-
ture or in active development that seem to have some chance
of meeting the full set of requirements. HOSS[29], a hyper-
media operating system appears to have been built around
many of the same principles outlined above but with not as
much emphasis on extensibility and backwards compatibil-
ity with existing formats and applications. It did, however,
seed the development of a new approach to managing data
and hypertext called structural computing [28] that empha-
sizes structure over data. It would seem that the Data layer
described above would qualify as a structural computing en-
vironment. We plan to explore the alignment of these two
paradigms in the future.

Since none of these systems meet our full set of requirements,
we are pursuing a project that directly addresses the goals
and requirements for such a Data layer. We refer to it as
NODAL[20], the Network-Oriented Document Abstraction
Library (see Fig. 6). As can be seen from the architecture di-
agram, its core features are the Hypertext OS/middleware,
a database-like layer and its connection with a standard
filesystem API. The model is extensible with plugins for
different storage substrates (RDBMS, LDAP, etc.), docu-
ment formats, referenceable filesystems (e.g. HTTP, IMAP,
POP, local FS) and filesystem views (e.g. HTTP, Web-
DAV+DeltaV, NFS). It is designed around a document-
oriented data modelling language that allows data models
to be associated with a plugin-extensible set of file formats
(either on the repository or client side). The data model
is built around a set of Node types that are strongly-typed
collections of properties organized as Records, Sequences or
Maps. The Record types correspond to Pascal-like record
types or database tables, while the Maps represent general
dictionary-like structures and the Sequences are list-like or-
dered sequences. These structuring elements are each indi-
vidually referenceable by URI and hold potentially complete
metadata describing change history, security constraints and
attribution.

Figure 6: NODAL System Architecture

4. CONCLUSION
Having summarized existing work to identify some of the
requirements to create systems to enable effective collab-
orative work, we identified another endemic technological
barrier to these collaborations that we called ”the tyranny
of format”. The emphasis on data formats as the units of
collaboration in most modern user-centered applications, we



argue, severely constrains the ability of users to engage in
the kinds of collaborative activities they require and ”cap-
tures” their accumulated work in applications that they may
have little control over. We identify this format tyranny
with the model-view-controller pattern used in the devel-
opment of modern interactive software applications. In re-
sponse to this, we introduced the Data-Knowledge-Context
(DKC) model for collaborative applications that combines
some of the modularization of the MVC model with the
distributed application view of the three-tier enterprise ap-
plication model and shared virtual environments.

In analyzing the DKC model and describing the relation-
ships between the three layers, we were able to derive a
clear and comprehensive set of requirements for the Data
layer that would form the universal substrate for such a sys-
tem development model. This new view of an operating
system/middleware layer underneath collaborative applica-
tions resonates with a number of systems that have been
developed in the past and which are now in development.
We hope that with the description of this model, we will be
able to seed the movement away from the existing models
and towards more effective systems for human-centered col-
laboration. We have even described a means by which we
can do this without sacrificing existing users and applica-
tions.

5. REFERENCES
[1] M. Ackerman. The intellectual challenge of cscw: The

gap between social requirements and technical
feasibility. Human-Computer Interaction, 15:179–203,
2000.

[2] Be Inc. The BeBook. 1997.

[3] B. Berliner. CVS II: Parallelizing software
development. In Proceedings of the USENIX Winter
1990 Technical Conference, pages 341–352, Berkeley,
CA, 1990. USENIX Association.

[4] T. Berners-Lee. The semantic web roadmap.
http://www.w3.org/DesignIssues/Semantic.html,
1998.

[5] BitMover Inc. Bitkeeper pro.
http://www.bitkeeper.com/Products.BK Pro.html.

[6] M. Boulkenafed and V. Issarny. Adhocfs: Sharing files
in wlans. In Proceeding of the 2nd IEEE International
Symposium on Network Computing and Applications,
Cambridge, MA, USA, April 2003.

[7] E. F. Churchill, J. Trevor, S. Bly, L. Nelson, and
D. Cubranic. Anchored Conversations: chatting in the
context of a document. In Proceedings of the CHI
2000 Conference on Human Factors in Computing
Systems, pages 454–461, The Hague, The Netherlands,
2000. ACM Press.

[8] H. H. Clark and C. R. Marshall. Definite reference and
mutual knowledge. Cambridge University Press, 1981.

[9] M. Classen. Schema wars: Xml schema vs. relax ng.
http://www.webreference.com/xml/column59/, 2002.

[10] C. D. Cramton. The mutual knowledge problem and
its consequences for dispersed collaboration.
Organization Science, 12(3):346–371, 2001.

[11] S. Decker, S. Melnik, F. van Harmelen, D. Fensel,
M. C. A. Klein, J. Broekstra, M. Erdmann, and
I. Horrocks. The semantic web: The roles of XML and
RDF. IEEE Internet Computing, 4(5):63–74, 2000.

[12] P. Dourish, K. Edwards, A. LaMarca, and
M. Salisbury. Presto: An experimental architecture for
fluid interactive document spaces. ACM Transactions
on Computer-Human Interaction, 6(2):133–161, 1999.

[13] D. C. Engelbart. The mother of all demos.
http://sloan.stanford.edu/mousesite/1968Demo.html,
1968.

[14] D. C. Engelbart and W. English. A research center for
augmenting human intellect. In Proceedings of the
AFIPS Fall Joint Computer Conference, pages
395–410, 1968.

[15] B. B. et. al. Subversion handbook.
http://subversion.tigris.org/files/documents/15/576/svn-handbook.html.

[16] D. Fensel, F. van Harmelen, I. Horrocks,
D. McGuinness, and P. Patel-Schneider. Oil: An
ontology infrastructure for the semantic web, 2001.

[17] T. Finin, R. Fritzson, D. McKay, and R. McEntire.
KQML as an Agent Communication Language. In
N. Adam, B. Bhargava, and Y. Yesha, editors,
Proceedings of the 3rd International Conference on
Information and Knowledge Management (CIKM’94),
pages 456–463, Gaithersburg, MD, USA, 1994. ACM
Press.

[18] A. M. Fountain, W. Hall, I. Heath, and H. Davis.
MICROCOSM: An open model for hypermedia with
dynamic linking. In European Conference on
Hypertext, pages 298–311, 1990.

[19] J. Grudin. Groupware and social dynamics: Eight
challenges for developers. Communications of the
ACM, 37(1):92–105, 1994.

[20] L. Iverson. NODAL: A filesystem for ubiquitous
collaboration.
http://nodal.sf.net/NODAL-WhitePaper.html, 2001.

[21] G. E. Krasner and S. T. Pope. A cookbook for using
the model-view-controller user interface paradigm in
smalltalk-80. Journal of Object-Oriented
Programming, 1(3):26–49, August/September 1988.

[22] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An
architecture for global-scale persistent storage. In
Proceedings of ACM ASPLOS. ACM, November 2000.

[23] Y. Labrou, T. Finin, and Y. Peng. The current
landscape of agent communication languages.
Intelligent Systems, 14(2), 1999.



[24] R. Lea, Y. Honda, K. Matsuda, O. Hagsand, and
M. Stenius. Issues in the design of a scalable shared
virtual environment for the internet. In Proceedings of
HICSS’97, January 1997.

[25] B. Martin. About libferris.
http://witme.sourceforge.net/libferris.web/.

[26] Microsoft Corp. Welcome to WinFS.
http://longhorn.msdn.microsoft.com/lhsdk/winfs/daovrwelcometowinfs.aspx.

[27] S. Nickell. Gnome storage.
http://www.gnome.org/ seth/storage/.

[28] P. Nurnberg, J. Leggett, and E. Schneider. As we
should have thought. In Proceedings of the Eighth
ACM Conference on Hypertext, pages 96–101,
Southampton UK, 1997.

[29] P. J. Nrnberg, J. J. Leggett, E. R. Schneider, and
J. L. Schnase. Hypermedia operating systems: A new
paradigm for computing. In Proceedings of Hypertext
’96, pages 194–202, 1996.

[30] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E.
Okasaki, E. H. Siegel, and D. C. Steere. Coda: A
highly available file system for a distributed
workstation environment. IEEE Transactions on
Computers, 39(4):447–459, 1990.

[31] The World-Wide Web Consortium. Xml schema: Part
1 (structures). http://www.w3.org/TR/xmlschema-1/,
2001.

[32] S. Whittaker. Theories and Methods in Mediated
Communication. MIT Press, 2003.

[33] N. Yankelovich, J. B. Haan, N. Meyrowitz, and
S. Drucker. Intermedia: The concept and the
construction of a seamless information environment.
IEEE Computer, 21(1):81–96, 1988.


