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1.0 Game Overview 
 

1.1 Game Concept  
 

Abyssal Marauders was originally designed to be a 3D version of 

Space Invaders, hence the synonymous game name. Since its conception, 

Abyssal Marauders has evolved into a 3D space action game where the 

player assumes the role of a pilot who must destroy incoming enemy 

kamikaze ships before they explode. Each time an enemy collides with the 

player ship, the player loses hit points. Once the player loses all of their hit 

points, the game ends. 

The purpose of the game is to out-manoeuvre the enemy AI and 

annihilate a maximal number of enemy ships before being destroyed. The 

player receives points based on the type of ship destroyed as well as firing 

accuracy.   

 
1.2 Game Engine Principles 
 

1.2.1 General Game Engine Principles 

 
The high-level conceptual overview of our game engine is as 

follows: 

 

While the user is playing and does not wish to exit 

{ 

 Check for input from the user 

  Deal with any input quickly 

 Check to see if it is time for a periodic update 

  If it is time, deal with the periodic update 

  If it is not time, render a frame to the scene 

} 
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The reasoning behind this game engine stems from the recognition 

of three important factors: 

 

1. User input cannot be missed and must often be acted upon 

immediately. 

 

2. There are numerous game state alterations that do not require 

immediate re-evaluation partly because the game state is not 

static but dynamic, as discussed in subsequent sections. 

 

3. The frame rendering rate has the lowest priority, but achieving 

the highest possible frame render rate translates into smoother 

animation and is desirable. Thus, rendering should occur at any 

opportunity, and therefore should scale with the processing 

power of the host machine. 

 

Note: A common term used throughout the game engine section is 

“game state”. The precise definition of “game state” will be explained in 

future sections. Until defined explicitly, “game state” refers to a series of 

variables that determine the game’s current status (e.g. the position and 

heading of ships, weapons that are firing, ships that are hit, etc…). As 

game events transpire, game state variables change (e.g. the player 

changes heading, fires a weapon or a ship explodes) thus altering the 

game state. 

 
1.2.2 Event Driven Vs. Periodic Game Updates 

 

Clearly because Abyssal Marauders was a real-time action game 

our team found “pausing” the game difficult (i.e. waiting for input from the 

player while not processing game state variables with changes in time) 

unlike a board game or a turn-based strategy game. The primary issue is 
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that the game must constantly be in motion regardless of input, or lack 

thereof, from the user with the possible exception of a deliberate pause 

function. 

Thus, our team opted for an event driven system where a polling 

loop constantly checks for new queued events and immediately responds 

to events in FIFO order. User input immediately generates new events. If 

there are no new events on the queue then the game state still progresses. 

However, an event-driven methodology results in possibly 

conflicting requirements such as reacting quickly to user input while 

minimizing response periods. To avoid some of these conflicting 

requirements our team recognized the paradigm of capturing user input in 

real-time but not necessarily evaluating the input’s consequences in real-

time. Therefore, the user input capture rate can be significantly greater than 

the input response rate.  

For example, consider mouse movements. In our game, mouse 

movement directly influences the direction of the player’s spaceship. 

Moreover, the mouse position dictates the mouse cursor position on the 

screen. From a player’s perspective, it would be unacceptable to have 

observable delay between mouse movements and cursor response. In fact, 

the player would feel distracted and the game could become unplayable.  

Therefore, updating the cursor position on the screen should occur as soon 

as possible and take precedence over other events such as translating 

mouse movements into changes in ship heading, which could occur after a 

small delay without game play deteriorating.  

Furthermore, other events can be evaluated after longer delays 

since many game states change slowly with time, if at all. One common 

example is ship orientation since checking for small deviations in ship 

position every few milliseconds may be excessive when the processing 

time could potentially be better spent rendering graphics.   
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1.2.3 Comprehending Game Time  

 
Thoughtful game design must consider setting the game clock to an 

actual time and not the processor clock time. A common error in first 

generation computer games was processing game and graphics logic as 

fast as the host computer could achieve. Consequently, game speeds (e.g. 

the speed of moving game objects) widely varied from computer to 

computer which caused inconsistent game play experiences. In the most 

extreme cases, faster computers hastened game speed to the point of not 

responding at all in a timely fashion.   

Our team’s vision was for game quality to vary with computer 

power, not game speed. Thus, a spaceship travelling ten units per second 

on a first-generation Pentium should travel exactly ten units per second on 

a new Quad Pentium Core 2 Duo. However, the graphics quality should 

scale to utilize all available processing power. 

To realize the “quality over speed” paradigm with increasing 

processing power, all game state alterations had to occur relative to a 

measure of “actual time”. Our development strategy was two-fold.  First of 

all, our team changed the game state only at regular periodic intervals 

defined by actual time (e.g. every 1/60th of a second as opposed to every 

400 processor clock cycles).  Secondly, every state was conceptually “non-

static” with respect to time as described in the sections below.   

 

1.2.4 The Possibility of Timer Overload 

 
In our implementation, “actual time”, such as 4:13:01 pm, is not 

explicitly used. Instead the function SDL_GetTicks() returns a single long 

integer, starting from 0, that indicates the number of milliseconds since SDL 

was initialized. A natural question that arises with this approach is the 

possibility of the timing variable overloading (i.e. could the number of 

elapsed milliseconds since the game started approach the limit of a long 

integer’s maximal value?). 
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To answer this question, a short calculation can be performed. A 

long integer can reach a maximum positive limit of 2,147,483,647 

depending on the programming / system environment (up to 

18,446,744,073,709,551,615 on some systems).  

 

days
hr

dayhr
ms

ms 9.24
24
1

min60
1

sec60
min1

1000
sec1647,483,147,2 ≅××××  

 

Therefore, our game would need to run continuously for 24.9 days 

before overloading of the timing variable would become an issue. Since it’s 

unlikely that any player would ever play continuously for a fraction of this 

time, overloading the timer is not an issue. Thus, the extra overhead of 

adding a special check independent of the SDL_GetTicks() function for an 

overloaded timing variable is unjustified. 

However, one proposed strategy for detecting timing overload is to 

set an SDL timer event for a timing overload check.  If an overload is 

possible within the next period, we could reset the detecting timer to occur 

at shorter periods, thus checking for timer overload more frequently as the 

timer variable approaches overload.  When an overload is attained and the 

timing variable rolls over, the programmer would need to evaluate every 

state at the timing variable’s maximum value, and proceed to reset the 

base time for each game state variable to its rollover value.  “Base time” for 

game states is described in more detail below. 

 

1.2.5 The “Pausing” Conundrum 

 

Because game states are entirely time based, when the game is 

paused, even if we stop updating the game state variables, time still 

increments. When the game is unpaused, if no new events are observed, 

the first game state update will immediately alter all game states to the 

calculated state for the current time. That is, the game state variables will 
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discontinuously be assigned to new values as if the pause had never 

happened. 

To correct this issue, a time measurement must be taken when the 

pause was initiated and when the game is unpaused. The total time the 

game was paused is then calculable and game state variables can proceed 

to update continuously accounting for the game state base time value 

altered by the pause time offset. 

 
1.2.6 Non-Periodic Rendering 

 
As discussed earlier, objects should be rendered to the screen as 

fast as possible to provide the smoothest animation. Thus, rendering will 

not occur periodically but instead at irregular intervals whenever the 

processor is idle. However, rendering the scene depends on the game 

state. Therefore, to render the current scene, we need to update the game 

state but, as described above, the game state is updated at periodic 

intervals. If this logic is correct then it is pointless to render between game 

state updates, as the same states would be redrawn. 

The situation complicates further since the game state is not a 

collection of static variables that describe instantaneous states but rather 

game state variables are often function parameters. Using the game state 

variables, functions can derive an instantaneous state at any instant in 

time, which is the key concept of non-periodic rendering.   

 

1.2.7 Contemplating Periodic Rendering 

 
If one examines our team’s high-level engine, clearly frames are 

rendered to the screen only when no other events are pending. Therefore, 

if several successive events are triggered or if periodic updates occur too 

frequently or require excessive processing time, then rendering may not 

occur for lengthy periods of time. Thus, it may be tempting to modify the 

game engine slightly as described below:   
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While the user is playing and does not wish to exit 

{ 

 Check for input from the user 

  Deal with any input quickly 

 Check to see if it is time for a periodic update 

  If a periodic update is required, deal with the periodic 

update AND render a single frame to the screen. 

  If a periodic update is not required, render a frame to 

the screen. 

} 

 

At surface value this high-level strategy appears to guarantee that 

the screen would be rendered at least once every period. However, in 

practice, this rendering tactic backfires badly. 

If events or periodic updates are indeed taking too long, thus 

consuming processing time that could otherwise be used to render 

graphics, forcing the game engine to render only worsens the situation. 

While graphics are rendering, additional events and periodic updates are 

accumulating causing the program to fall behind further. 

An optimist may argue that overwhelming the engine with events 

and updates may only be short term and that the engine will eventually 

drain the event and update queue and “catch-up” in real-time processing. 

That is, instead of a rendering delay lasting an entire delay interval, the 

modified algorithm would provide some interim frames (i.e. valuable player 

feedback) within the delay interval, at the cost of lengthening the interval 

itself. Though this scenario may be true one should remember that 

although objects should be rendered to the screen as frequently as 

possible for smoothest animation, ultimately rendering is the lowest priority 

task.   
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By forcing a render every period, the render will not only increase 

the interval for which the game engine is overwhelmed (assuming the game 

engine even can “catch up”) it also delays the execution of more important 

tasks. From the user’s perspective, there is a delayed response observed 

for each user action, such as delays for the game engine to acknowledge 

the player has fired a weapon. Even worse, the user could experience a 

delay between actual mouse movements and observed cursor movements. 

Furthermore, there is the possibility that rendering itself takes 

longer than the game update period.  In such a case, forcing a render 

guarantees that the game engine will be overwhelmed since during the time 

to render at least one additional rendering will be queued on the stack. As 

an analogy, imagine working on an assembly line where outputting an item 

requires forty seconds, but new items consistently arrive at your assembly 

station every thirty seconds. In the limit as time approaches infinity, the 

game engine is guaranteed to be overwhelmed and the “to-render” stack 

will overflow. 

A more palpable alternative is the original strategy of rendering 

non-periodically, which may skip animation frames but compared to the 

issues described above, skipped animation frames are an acceptable 

compromise. Attempting to establish mandatory periodic rendering is 

actually damaging and potentially crippling to the game engine. 

In summary, if the host computer is not rendering graphics because 

it cannot process updates and events in a timely fashion, then the computer 

is not powerful enough to play our game and there is no foreseeable 

change to the game architecture to avoid this shortcoming besides limiting 

other aspects like 3D model complexity. 

 

 

 

 

 

 8



1.2.8 Joystick/Gamepad Input Devices 

 
Our team was fully aware during the early stages of game 

development that the ideal controller would be a joystick / throttle control. A 

fair criticism of our game is that a specialized input controller is missing 

from our implementation. 

The primary reason for not implementing a joystick-based control 

scheme is that none of our team members possessed a PC compatible 

joystick / throttle control, which would severely limit development and 

testing. A secondary reason for choosing a keyboard and mouse control 

scheme over a joystick is due to PC game standards and the non-

universality of joysticks compared to keyboard and mice (i.e. joysticks can 

have different numbers of buttons relatively located anywhere in addition to 

having a throttle control, etc…). 

However, conceptually, our application control model facilitates the 

addition of a joystick with minimal difficulty. To add joystick support several 

modifications would be necessary including adding joystick-specific events 

to respond to changes in the joystick state and linking joystick controls to 

variables and functions that affect the game state. For example, imagine 

there is a variable called fDistX that determines how fast the player rotates 

about the local x-axis according to a continuous range from -1 (fast turn 

left) to 0 (remain straight) to 1 (fast turn right). An input reading from the 

joystick left/right axis requires normalization to the game state variable 

fDistX to achieve the desired effect of turning the ship. In particular, the 

programmer would not be concerned with turning rates, angles, pixels or 

other internal game engine details. Similarly, alterations to the mouse x-

direction and the “right” keyboard button are already mapped in this fashion 

thus demonstrating the ease of integrating new control schema. 

Based on the predicted relative ease of integrating joystick or 

gamepad support, adding joystick support is a recommended future 

modification. 
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1.3 Game Engine Control Logic 
 

Our game engine logic is presented in high-level detail below: 

 
 

While the user is playing and does not wish to exit 
{ 
 Check for input from the user 

{ 
 If(new user input is detected) 
 { 
  Deal with user input quickly 
  If there are events in the queue then: 

If keyboard events occur, change the appropriate 
control variables Handled 

immediately Else if mouse events occur, change the appropriate 
control variables 

  Else if it is time for a periodic update 
  { 

UpdatePlayer(); 
CollisionDetection(iTimeStamp); 
AI(); 
SuperAI(); 

  { 

Handled 
periodically 

 } 
 Else 

{ 
 // No user input is present so render a frame to the screen 

   DrawModel(TimeStamp); 
   DrawAnimations(TimeStamp); 
   DrawDebris(TimeStamp); 
   DrawOverlay(); 

Handled as 
often as 
possible when 
idle 

} 
} 

} 
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1.4 Dynamic Motion 
 

For movement calculations, several assumptions were applied to 

simplify calculations and ease control for the player. 

Our team’s first assumption was that acceleration is zero (i.e. the 

player had direct control over both angular and linear velocity). More 

specifically, the player could control their linear speed and orientation. 

The second major assumption is that the player ship velocity vector 

was always oriented in the current direction the ship was pointed.   

It is important to note that the two described assumptions were for 

the player’s movement only. For the enemy ships, velocity is manipulated 

directly to orient the ships in any provided direction. The simplification for 

the enemy ships was justified since geometric calculations became easier. 

From the AI’s perspective, calculating final enemy ship heading was 

simpler than determining the angular speed for which each ship should 

turn. Thus, enemy ships can change heading instantaneously. However, by 

a clever use of symmetric models coupled with the fact that the AI 

determined heading based on the position of the player’s ship, which has a 

finite turning speed, the instantaneous heading change of the enemy ships 

is predominantly unnoticed. 

Thus, from the two assumptions described above, the player ship’s 

instantaneous velocity in the x, y and z directions can be calculated as 

follows: 

 

1. Use angular velocity to determine the ship’s instantaneous 

orientation. 

2. Utilize the ship orientation to calculate a unit vector in the new 

direction of the ship. 

3. Multiply the unit vector by the player ship’s scalar speed to 

calculate the final linear velocities in the x, y and z direction. 
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However, a first approximation is made to compensate for the 

limitations of our gaming engine and of a computer with a finite ability to 

sample mouse positions. In reality, a pilot would continuously vary the 

ship’s control which would result in a constantly changing angular velocity 

and linear velocity. However, for our game, mouse positions, which are 

used to calculate angular velocity, are sampled only at discrete time 

intervals as illustrated in Figure 1 below. 

 

 

 

 

 

 

 

 

 

Time

Angular 
Velocity 

(e.g. 
angular 
velocity 
about the  
x-axis) 

Actual 
continuous 
velocity 

Our 
Sampling 
of velocity

Figure 1. Discretizing angular velocity based on periodic time samples. 
 

Therefore, if the ship’s current orientation is required for rendering 

after sampling angular velocity, we can approximate that angular velocity 

remains constant between sampling periods as shown in Figure 2 below. 

 

 

 

 

 

 

 

 

 Time 

Angular 
Velocity 

(e.g. 
angular 
velocity 
about the  
x-axis) 

Our 
approximation 
 

Our 
Sampling 
of velocity 

Figure 2. How to approximate angular velocity. 
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In summary, our first approximation is assuming angular velocity is 

constant between discrete time intervals. 

Note that interpolation between points to obtain more accurate 

approximations is not used because whenever an angular velocity is 

calculated, the only known quantity is the last sampled value. Since future 

samples cannot be predicted interpolation cannot be achieved. 

Next, a second approximation is used, namely that linear velocity is 

constant between time intervals. In essence, the second approximation 

implies that the player’s ship, which would in reality be travelling along 

smooth curves, is modelled in our game as travelling along short line 

segments, changing orientation and velocity at discrete time intervals as 

illustrated in Figure 3 below. However, if the time intervals are short 

enough, the distinction between the real trajectory and the estimated 

trajectory is negligible. Since the game’s sampling time interval is set to 

1/60th of second, a linear velocity approximation is acceptable. 

 

Modelled flight path 

Actual flight path 

Figure 3. Estimating true player ship trajectory over time. 
 
To calculate the position of any particular object, whether it is the 

player’s ship, an enemy ship, an animation, or anything else in our gaming 

universe, the following parameters must be known– all of which are stored 

in the game state variables for each object: 
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Basetime = the time when all the following parameters were last 

calculated. 

 

Px, Py, Pz = the initial x, y, z position at the above Basetime. 

 

Vx, Vy, Vz = the initial x, y, z velocities at the above Basetime. 

 

Ux, Uy, Uz = the axis of rotation for a given orientation at the above 

Basetime. 

 

Theta = the angle of rotation at the above Basetime. 

 

Wx, Wy, Wz = the axis of rotation for angular velocity at the above 

Basetime. 

 

WTheta = the angle of rotation for angular velocity at the above 

Basetime. 

 

Hence, if we need to know the position of any object at any given 

time in the universe, we can determine the position by the following 

procedure: 

 

1. Obtain the current time. 

2. Subtract the Basetime to calculate a time difference. 

3. Multiply the time difference by the velocity. 

4. Add the value from step 3 to the initial position. 

 

Similarly, orientation is calculated with a similar principle, though 

with more complex details as described below. Based on the expressed 

method, a change in position is not sufficient to warrant a game object 
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update since position is a derived value. In fact, object updates are only 

necessary immediately if object linear and angular velocity change.   

The game object updating observation described in the previous 

paragraph reduces processing requirements for movement calculations 

substantially since objects only require updating when velocities change. 

Although velocities may alter frequently if the player ship moves 

continuously, the dozens of enemy ships controlled by a simple AI benefit 

greatly from this optimization to save valuable processing time. 

However, from this description of calculating position, a subtle third 

approximation was made. Recall that in our game engine we had 

previously assumed velocity changes with orientation and realized 

orientation is a function of time. Thus, between game state updates, when 

the player changes angular velocity parameters the orientation is changing. 

Therefore, object linear velocity updates should occur between the updates 

described above. We implicitly assumed between periodic updates that 

orientation and velocity are independent.   

The third approximation is illustrated below in Figure 4. Figure 4 

depicts how a ship with constant speed and angular velocity should move 

between intervals. 

 

 

 
 
 
 
 
 
 
 

Figure 4. Ideal ship trajectories with constant speed and angular velocity. 
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However, after applying the third approximation the player ship 

trajectory closely resembles the schematic in Figure 5 below. 

 

 

 

 

Figure 5. Approximated ship trajectories with constant velocity. 
 

Figure 5 above is exaggerated since it assumes the player ship 

turns 90º within one periodic update. However, in our game, turns are 

limited to 3.3º between updates which improves the approximation 

significantly. In summary, our third major approximation was that between 

periodic updates linear and angular velocities vary with time independently.   

 
1.5 Orientation 

 
The first step when performing a periodic update and drawing an 

object is determining object orientation to a good approximation. Therefore, 

the issue of internally representing orientation is important. 

 

1.5.1 The Euler Angle Misconception 

 
Euler angles are easy to understand. With our original game 

concept, a gun turret in a fixed position, Euler angles could effectively 

represent orientation. In fact, for most first person shooter games which 

involve movement along a ground plane where the “up” vector is relatively 

fixed, an Euler angle representation works well.   

When the user rotates left or right when travelling along the ground 

plane, the user expects to rotate about the y-axis as shown below in Figure 

6.  Even if the viewing direction changes, say if the player looks up or 

down, the user still expects left and right inputs to rotate the player about 

the y-axis. 
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 y 

x

z 

Using this simple rotation paradigm for our 
purposes initially seemed plausible. 
 
In particular, left and right mouse movements 
could be directly mapped to rotations about the y-
axis and vertical mouse movements could be 
mapped to rotations about the x-axis. 
 

 

 

Figure 6. Euler angle rotations. 
 

Thus, a general Euler angle rotation required three separate 

rotations about each independent coordinate axis. Arbitrarily, our team 

chose to rotate about the z-axis first, followed by the y-axis and finally the 

x-axis. 

Since gun turrets did not have the “roll” degree of freedom, we 

could eliminate the initial rotation about the z-axis. Deriving unit vectors 

from the rotation representing the heading was relatively simple and 

everything was conceptually consistent. 

With a gun turret many simplifications were possible. Naively, when 

our game concept shifted from a player gun turret to a player spaceship we 

initially decided our orientation and control scheme could trivially continue 

to be backboned by Euler angles. However, experience taught us a 

valuable lesson… 

 
1.5.2 Local Coordinate Frames vs. Global Coordinate Frames 

 
Euler angles suffer from a number of drawbacks. One critical 

drawback is the possibility of Gimbal lock. Gimbal lock occurs when a 

rotation about an Euler axis rotates an axis of rotation such that the axis of 

rotation becomes collinear with another axis of rotation which essentially 

results in a loss of a rotation axis. However, as our control scheme 
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matured, Gimbal lock was not encountered since other issues were more 

prominent. 

 The major issues we encountered with rotations were more 

rudimentary. Namely, given a freely moving and rotating space ship our 

local and global orientation frames were different. With a gun turret, even a 

moving turret where the linear frame may change, the orientation frame 

remains constant. In a space ship, the orientation frame changes 

constantly. This subtle issue of changing orientation frames is difficult to 

conceptualize, which partly explains why the problem was not immediately 

identified. A more detailed schematic explanation is provided below.  

 
With a gun turret, regardless of player viewing 
angle, a left or right player input results in a 
rotation about the y-axis. 

y 

x

z 

 
 
 

  
As an example, imagine a vector oriented at 45º 
with respect to the yz plane as shown in the 
schematic on the left. 

 
 
 

If one wants to turn left (i.e. counter-
clockwise) by 90º, one would pivot at the 
origin, parallel to the y-axis, and turn 90º 
counter-clockwise such that the viewing 
vector is still oriented at 45º with respect to 
the z-axis as shown in the schematic on the 
left. 
 

y 

x

z 

To achieve this result using Euler angle 
rotations, one could first rotate 45º about the 
x-axis then rotate 90º about the y-axis without 
issues. 

y

x

Now imagine one wants to turn right 30º and 
look down 20º. Therefore, the turning angle 
is decreased from 90º to 60º, and the up angle 
changes from 45º to 25º. 
 
Euler rotations by 25º in the up direction then 
60º around the y-axis, would result in the 
expected orientation. 
 
In this case, Euler angles work intuitively 
because the orientation frame does not move 
or rotate. z  18



 

 
Now, imagine you are a pilot in an 
airplane angled up at 45º. 

y 

x

z 

y 

x

z 

Assume the airplane needs to rotate left 
90º. 
 
You as the pilot expect to move left 
relative to your own y axis, relative to 
yourself not an arbitrary, global, fixed 
y-axis. A 90º left turn when already 
facing 45º in the up direction results in 
a vector positioned along the positive x-
axis, which is certainly different from 
the Euler representation of a 45º turn up 
followed by a 90º left turn as above. 

y` 

x` 

z` 

In summary, as a pilot you would want 
to rotate 90º about the local frame, 
which is constantly changing based on 
the current airplane orientation, and not 
the global frame. 
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             Thus, “turning left” translates to a different directive for an observer 

on the ground “looking up” versus a pilot in an airplane oriented at an 

upward angle. 

The described global versus local coordinate frame problem does 

not obviously manifest itself because rotations purely about the x-axis or y-

axis behave correctly since the local frame is changing but subsequent 

rotations occur about an axis that does not change. For example, if the 

player is controlling a turret, which is oriented upwards, and the player 

directs the turret to point further “up” the player would experience the same 

orientation effect as an airplane pilot pulling up on the control stick 

incrementally. Similarly, combinations of “left” and “right” turns without 

intermediate “up” or “down” movement result in correct behaviour for Euler 

angle representations. The Euler angle problem only becomes evident for 

combinations of left or right and up or down movements. Even with 

combined left, right, up and down movements, unless the deviations in 

different directions are large, the local frame and global frame are similar 

enough that the difference between the expected response and the actual 

response is not observable. Hence, the subtle global versus local 

coordinate frame problem was initially overlooked. 

To solve the global versus local coordinate frame problem a 

mapping must be performed to translate local rotations about the local 

frame into equivalent rotations about the global frame. However, this 

problem is geometrically difficult to solve using Euler rotations.  

Consequently, our team failed to solve the issue.  

Euler rotations are counter-intuitive at arbitrary angles not aligned 

with the coordinate axes. In fact, rotations completely “break down” at 90º 

due to the Gimbal effect which results in “rolling”. At 180º, the controls 

reverse themselves; for example, moving the ship right actually turns the 

ship left. 
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If we were watching the player spaceship from outside, from some 

fixed camera angle, the system might work since we would once again 

have a fixed viewing reference, but it would be difficult to accurately judge 

angles and directions of targets thus straining game play. 

The final implemented solution involved limiting rotations up and 

down to +/- 45º while allowing full freedom to move right and left. Rolling is 

disallowed entirely. Though we had a workable control system, rotations up 

and down would result in increasingly unnatural behaviour. Realistically, 

spaceships can rotate along any axis at any angle so our implementation is 

admittedly artificial and potentially frustrating to a human player if an enemy 

ship is located beyond the imposed 45º limits. Given a second opportunity 

at implementing the user control interface, quaternions may have been a 

better option rather than Euler angles.  

 

1.5.3 An Axis Angle Representation 

 
One solution to our control problems is unexpected, and would 

require us to completely change our representation of orientation.  Using an 

axis angle, instead of some permutation of three rotations about the x, y 

and z axes, only a single rotation is necessary about some unit vector. 

 
 

For example, to rotate 45º “up”, we would define 
a unit vector in the –x direction, and a rotation of 
45º as illustrated in the diagram to the left. Why 
should we choose the negative x direction instead 
of the positive x direction? By convention the 
right hand rule states if one’s thumb is pointed 
down the axis of rotation, one’s fingers curl in 
the direction of positive rotation. To simplify 
rotations, our coordinate system is always right-
handed. 

y 

x

z   
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Next, if we wanted to rotate 90º left 
about the local axis from the point of 
view of the space ship the schematic 
rotation would be that shown in the 
adjacent figure. 
 
Our axis of rotation is now a unit vector 
along the positive y-axis (locally) and 
the angle of rotation is 90º. 
 

y` 

x` 

z` 

 
 
 
 
 
 
 
 

If these two rotations were the only 
rotations necessary the same local 
frame issue occurs because we are still 
implicitly assuming there is a global 
rotation frame. 

 
 
 
 
 y` 

x` 

z`  
 
 Ideally, we should rotate about a unit 

vector in the y`-direction as shown in 
the adjacent schematic. 

 
 
  
 

 

 

However, if we view the local rotation that the player wishes to 

execute and observe the rotation in the global frame, we observe that 

unlike Euler angles, translating a local rotation to a global rotation is easy. 

Therefore, the natural question arises: how do we convert from a 

local angular representation to the desired global angular representation as 

shown schematically below? 

 y` 

x` 

z` 

y` 

x` 

z` 
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. 
Observe that the rotation angle is invariant (for example, 90º in our 

ongoing discussion). Hence, we need to determine the new rotation axis. If 

we superimpose the two rotation axes we observe that to translate a 

rotation in the local frame to a rotation in the global frame, we simply rotate 

the local rotation axis (i.e. the unit vector itself) by the rotation of the local 

frame. In this example, the local frame was oriented at 45º “upwards” (i.e. a 

turn about a unit vector in the negative x-direction clockwise). 

 
 

 
y` 

x` 

z` 

 
 
 
 
 
 
 
 
 
 
 
 

 

Hence, our original objective of mapping rotations in the local frame 

to rotations in the global frame was achieved. 

To summarize, performing a rotation about the local frame in terms 

of a global rotation requires the following steps: 

 
1. Observe the desired local rotation axis RA described by a unit 

vector uA. 

2. Rotate the unit vector in step 1 by the rotation of the local 

frame. Denote this second rotation RB. Thus, RB produces a 

new unit vector uB. 
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3. Next, we can combine uB and RA to create a new rotation that 

represents the local rotation in terms of a global rotation. 

Denote this rotation RC. 

4. Combine the rotation of the frame RB with the new global 

rotation, RC, using matrix multiplication (i.e. RCRB) to produce 

the final transformation matrix RD representing the total rotation 

with respect to the global frame. 

5. Finally, we retrieve the rotation axis and rotation angle from RD 

and store them as the new rotation of the local frame (i.e. RD 

will be the rotation RB for the next local rotation). 

 
However, there is still one additional step, namely, how do we 

translate player input into a local rotation? Using Euler angles, we 

mentioned that turning left and right meant changes to the angle of rotation 

about the y-axis, and turning up and down meant changes to the angle of 

rotation about the x-axis. Therefore, user controls were mapped to angular 

rotations about the x-axis and y-axis. How would the control scheme 

change for the axis-angle representation of orientation? 

Surprisingly, the transition of the control scheme to an axis-angle 

representation is straight-forward. Left and right rotations generate a 

rotation axis in the local y-direction, up and down rotations generate a 

rotation axis about a vector in the local x-direction, and “rolling” rotations 

generate a rotation axis in the local z-direction. Therefore, left and right 

rotations generate a vector in the y-direction, up and down rotations 

generate a vector in the x-direction and rolling rotations generate a vector 

in the z-direction. The vector lengths scale with the amount of left/right, 

up/down and rolling indicated by user input, say by the position of the 

mouse cursor. Finally, we add each vector together and normalize them to 

determine our rotation axis. The rotation angle can be set to some constant 

if a constant rate of rotation is desired. Alternatively, the rotation angle can 

vary with some scaling factor relative to the length of the pre-normalized 
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vector sum. There are still issues with an axis-angle representation, 

specifically singularities at 0º and 180º rotation angles that must be treated 

as special cases. 

Overall, the axis-angle control system permits intuitive, natural 

movement in any general direction. Calculating directional unit vectors for 

the axis-angle control scheme is similar to calculating directional unit 

vectors for the Euler angle representation. As a final bonus with the axis-

angle control scheme, Gimbal lock is avoided entirely. 

The source code that implements the described axis-angle control 

system is included below: 

 
orientation spaceObject::CurrentOrient (long timestamp) 
{ 
 orientation Jill; 
 long TimeDiff = timestamp - basetime; 
  
 // Interim Values for the calculation 
 float RadTheta = theta * M_PI / 180.0;     
 //theta in radians 
 float c = cos(RadTheta);       
  //cos of theta 
 float s = sin(RadTheta);       
  //sin of theta 
 float t = 1.0 - c;        
   //1 - cos theta. 
 float x = Ux;         
   //Unit vector normalized to x 
 float y = Uy;         
   //Unit vector normalized to y 
 float z = Uz;         
   //Unit vector normalized to z 
  
 //First, we establish the initial transformaion matrix based on 
the reference rotation axis 
 //and angle, i.e. Ux, Uy, Uz and theta.  They have been assigned 
above. 
 float A11 = t*x*x+c; 
 float A12 = t*x*y-z*s; 
 float A13 = t*x*z + y*s; 
 float A21 = t*x*y + z*s; 
 float A22 = t*y*y + c; 
 float A23 = t*y*z-x*s; 
 float A31 = t*x*z-y*s; 
 float A32 = t*y*z + x*s; 
 float A33 = t*z*z+c; 
  
 //Second, we need to transform the local frame rotation into a 
gloval frame reference.  This 
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 //is done by rotating the local rotation axis by the above initial 
rotation (in other words, we 
 //do a matrix multiplication of the matrix A above with the vector 
representing the local 
 //rotation axis. 
 //Note - Wtheta is a function of time. 
  
 RadTheta = Wtheta * M_PI / 180.0 * TimeDiff; 
 c = cos(RadTheta);        
     //cos of theta 
 s = sin(RadTheta);        
     //sin of theta 
 t = 1.0 - c;   
 x = A11*Wx + A12*Wy + A13*Wz; //Unit vector normalized to x 
 y = A21*Wx + A22*Wy + A23*Wz; //Unit vector normalized to y 
 z = A31*Wx + A32*Wy + A33*Wz; //Unit vector normalized to z 
  
 //Once we have completed the transform, we now find a new rotation 
matrix that describes the local 
 //rotation in terms of the global frame. 
 
 float B11 = t*x*x + c; 
 float B12 = t*x*y - z*s; 
 float B13 = t*x*z + y*s; 
 float B21 = t*x*y + z*s; 
 float B22 = t*y*y + c; 
 float B23 = t*y*z - x*s; 
 float B31 = t*x*z - y*s; 
 float B32 = t*y*z + x*s; 
 float B33 = t*z*z + c;   
  
 //Now we multiply the matrixes together to find the final rotation, 
this involves rotating about 
 //the reference rotation (A) first, and then rotating about the 
new rotation matrix (B) second. 
 //But in Matrix math, that is actually BA. 
  
 float C11 = B11*A11 + B12*A21 + B13*A31; 
 float C12 = B11*A12 + B12*A22 + B13*A23; 
 float C13 = B11*A13 + B12*A23 + B13*A33; 
 float C21 = B21*A11 + B22*A21 + B23*A31; 
 float C22 = B21*A12 + B22*A22 + B23*A32; 
 float C23 = B21*A13 + B22*A23 + B23*A33; 
 float C31 = B31*A11 + B32*A21 + B33*A31; 
 float C32 = B31*A12 + B32*A22 + B33*A32; 
 float C33 = B31*A13 + B32*A23 + B33*A33; 
  
 //Now we have the final rotation matrix that describes the total 
rotation. 
 
 //Now, we need to convert this rotation matrix back to our axis 
angle representation, which is 
 //actually a non trivial task... 
 
 //The angle is equal too.. 
 Jill.theta = acos((C11+C22+C33-1.0)/2.0)/M_PI*180.0; 
 if (fabs(Jill.theta) < 0.001) 
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 { 
  Jill.Ux = 1.0; 
  Jill.Uy = 0.0; 
  Jill.Uz = 0.0; 
  Jill.theta = 0.0; 
 } 
 else if (fabs(fabs(Jill.theta) - 180.0) < 0.001) 
 { 
  Jill.Ux = 1.0; 
  Jill.Uy = 0.0; 
  Jill.Uz = 0.0; 
  Jill.theta=180; 
 } 
 else 
 { 
  Jill.Ux = (C32 - C23)/sqrt((C32 - C23)*(C32 - C23)+(C13 - 
C31)*(C13 - C31)+(C21 - C12)*(C21 - C12)); 
  Jill.Uy = (C13 - C31)/sqrt((C32 - C23)*(C32 - C23)+(C13 - 
C31)*(C13 - C31)+(C21 - C12)*(C21 - C12)); 
  Jill.Uz = (C21 - C12)/sqrt((C32 - C23)*(C32 - C23)+(C13 - 
C31)*(C13 - C31)+(C21 - C12)*(C21 - C12)); 
 } 
  
 return Jill; 
}; 

 
 

1.6 Dynamic Game State 
 

Typically, the game state consists of all the variables representing 

the state of all game objects at a given instant of time. Thus, the game 

state is the internal representation of the entire game. Example game 

parameters include real physical quantities such as spaceship positions, 

velocities and orientations. Moreover, fictitious values like shields, armor 

and weapons fire are grouped as game state variables. Note that each 

game state variable is logically dynamic. 

However, game state variables are stored statically since variables 

only change if explicitly updated. For example, if a spaceship position was 

simply stored at time 0 as (1, 2, 3), and it was not updated until time 5 to (3, 

2, 1), then in the interim period between time 0 and time 5, each position 

reading would be returned as (1, 2, 3). There is clearly an inherent 

disadvantage of this updating approach. If the screen rendering function 

was “fast” and could render the game state four times between updates, 

say at times 1, 2, 3, and 4 then the gained rendering function speed would 
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be wasted because each graphical position update during these interim 

times would result in the same (1, 2 ,3) position being rendered.  

Instead of storing quantities like position directly, we can store 

parameters such as velocity and reference coordinates such that coupled 

with time, the position can be derived dynamically. With parameter storage, 

when calculating position, instead of returning a static variable, we can 

leverage parameters to derive the current position. For example, if we store 

the reference position (1, 2, 3) and velocity (0, 0, 1) at time 0 then at time 5 

we can calculate the new position based on the spaceship’s last velocity. 

Hence, each time the rendering function requires a position measurement 

in the interval time period between game state variable updates, we can 

use the original reference position and velocity with time and some 

mapping function to derive a new position. 

More concretely if position is equal to reference position + velocity* 

time then if the rendering function requires position values at times 1, 2, 3, 

and 4, a new value for position is derived resulting in a different output 

rendering. Specifically, 

 

At time = 1, we obtain (1, 2, 3) + (0, 0, 1)(1) = (1, 2, 4) 

At time = 2, we obtain (1, 2, 3) + (0, 0, 1)(2) = (1, 2, 5) 

At time = 3, we obtain (1, 2, 3) + (0, 0, 1)(3) = (1, 2, 6) 

At time = 4, we obtain (1, 2, 3) + (0, 0, 1)(4) = (1, 2, 7) 

 

Since the output position value is changing with time smooth 

animation is observed. In particular, the faster objects are rendered, the 

smoother the resulting animation.  Thus, performance scales with 

processor power, which is the advantage of a “dynamic game state”. At a 

high-level a dynamic game state is similar to keyframe animation, where 

only a few animation frames are defined and each interim frame is 

interpolated from the nearest keyframes. 
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1.7 Game State Variables 
 

Game state variables define the information required to reconstruct 

a snapshot of the game state at a particular instant of time. Each game 

state variable is described independently below. 

 
list<spaceObject*>  TheObjList; 

 

TheObjList contains every game object that the player can interact 

with. For example, the player ship, enemy ships and collidable objects are 

stored in TheObjList. 
 

list<AnimationObject*> TheAnimList;   

 

TheAnimList stores animations. An animation is defined as user 

observable events that have no direct influence on other game parameters. 

Example animations include explosions or weapon effects. 
 

list<spaceObject*> WeaponsFireList; 

 

The WeaponsFireList contains the results of weapon fire such as 

projectiles and laser beams. Projectiles, such as missiles, are a “grey area” 

because projectiles were originally envisioned to be treated as an object in 

the ObjList until colliding with another object. If a projectile collided with 

another object, that projectile would be converted into an exploding 

projectile on the WeaponsFireList. 

Given that each variable described above was continuously 

updated, in addition to which object in TheObjList is the player’s ship and 

the time for which all the game state variables are valid, we can restore the 

exact same game state corresponding to the stored time value. 
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1.8 The Envisioned Multiplayer Network Game 
 
 

Originally, the game engine was designed with networked 

multiplayer game play in mind. Classes were designed such that adapting 

the game engine for multiplayer game play would merely require 

transporting existing functions to the server-side of the game with minimal 

modifications. Conceptually, each player client would transmit a periodic 

update of the player’s latest input to the server while the server coordinated 

game state changes. The logical transition from a single-player game to a 

multiplayer network game is depicted below in Figure 7. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Client 
 
While the user is playing and does not wish to exit 
{ 
 Check for input from the user 
 { 
  Deal with any input quickly 
  If there are events in the queue then: 
  If keyboard event, change appropriate control variables 
  Else If mouse event, change the appropriate control variables 
  Else If it is time for a periodic update 
  { 
   If it is time, deal with the periodic updates: 
   { 
    Send current user input to server 
 
 
 
 
 
   } 
  { 
  Check for received changes from server 
 } 
 If it is not time 
 { 
  render a frame to the scene 
  DrawModel(TimeStamp); 
  DrawAnimations(TimeStamp); 
  DrawDebrie(TimeStamp); 
  DrawOverlay 
 } 
} 

Server 
 
While the user is playing and does not wish to exit 
{ 
 Check for input from ANY user 
 { 
  Deal with received inputs quickly 
   
 
 
  Else If it is time for a periodic update 
  { 
   If it is time, deal with the periodic updates: 
   { 
    UpdatePlayer(); 
    CollisionDetection(iTimeStamp); 
    AI(); 
    SuperAI(); 
    Send Changes to game state to Client 
   } 
  { 
  
 
 } 
 If it is not time 
 { 

  
 
 
 
 
 

 } 
}

Figure 7. A proposed multiplayer game engine. 
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1.9 Game Control Mappings 
 
Keyboard Flight Controls 

 
Keyboard Key Game Control 
Up Arrow Pitch down 
Down Arrow Pitch Up 
Left Arrow Yaw Left 
Right Arrow Yaw Right 
, Roll Left 
. Roll Right 
[ 1/3 Throttle 
] 2/3 Throttle 
“ Full Throttle 
Backspace Full Stop 
W Increase Speed 
S Decrease Speed 

 
 
 

Camera Controls 
 

Keyboard Key Game Control 
F1 Cockpit View - Forward 
F2 Cockpit View – Left 
F3 Cockpit View – Right 
F4 Cockpit View – Rear 
F5 External Chase Camera 
F6 External Chase Camera – Left 
F7 External Chase Camera – Right 
F8 External Chase Camera – Forward 
F10 Fixed Camera Position 

 
Other Game Controls 

 
Keyboard Key Game Control 
P Pause 
Esc Escape 
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2.0 Game Features 
 

2.1 Game Physics 
 

There are virtually no physics in our game for two reasons: 

 

1. Real physics is counter intuitive to most players as explained 

below: 

• In real physics, ships could accelerate to near unlimited 

velocities and would experience inertia when turning. 

• Transitioning to zero velocity using real physics, with 

freedom of rotation and no friction, is almost impossible 

since in order to stop moving, one needs to provide a certain 

acceleration in a certain direction.  Any deviations from this 

acceleration magnitude and direction combination would 

cause the player ship to move or rotate in some other 

direction. 

• Most players would likely find movement in one direction 

while viewing in a different direction counter-intuitive. 

• Most classic space simulation games such as Wing 

Commander, X-Wing and Star Lancer have fictitious physics. 

 

2. Real physics is not usually required for game play as justified 

below:  

 a.   For collision detection between weaponry and enemy 

ships or ship-to-ship collisions:  In the case of weaponry 

and enemy ship collisions, there would be negligible 

physical effects on the ships, and with ship collisions, 

like car crashes, the physical collision response (e.g. 

damped oscillations) is less important than the sheer 

physical damage caused by the collision. 
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b.   Newtonian physics: For the purpose of our game it seemed 

pointless to assign mass or forces (i.e. thrust) to ships since 

mass and force are typically employed to derive 

acceleration or velocity. Therefore, our team opted for the 

more computationally efficient strategy of working with 

acceleration and velocity values directly. 

 

The only physics principles present in the game are basic kinematic 

equations for both linear and angular motion to model object movement as 

described below: 

 

Position =  ½ * acceleration * t2 + velocity * t + reference position 

 

Orientation = ½ * angular acceleration * t2 + angular velocity * t + 

reference angle 

 
2.2 The Super-AI 

 

The Super-AI is the equivalent to the Dungeon Master in Dungeons 

and Dragons.  The Super-AI tracks the overall game state and responds 

accordingly. Important game state parameters for the Super-AI include the 

current number of enemies, the elapsed time since the last enemy respawn 

and the distance between each enemy ship and player ship.  Depending on 

the game state parameters, the Super-AI can dramatically alter the game 

state. Examples of potential game state changes include introducing new 

enemy ships, removing enemy ships that have flown out of range and 

spawning a “boss” ship. 

Originally, our team intended to script the Super-AI so levels were 

fully customizable. However, due to time constraints, the implemented 

SuperAI is hard-coded in the application. The current logic of the Super-AI 
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is to spawn random enemy spacecraft formations and have each enemy 

continuously chase the player ship. When a sufficient number of waves of 

enemy ships are destroyed, the SuperAI would spawn a boss alien 

spacecraft for the player ship to engage. While combating the boss alien 

spacecraft, the SuperAI would introduce additional alien spacecraft that 

would appear to emanate from the boss spacecraft. 

 
2.3 Enemy AI Behaviour and Logic 

 
The SDL::AI function is found within the SDL_App class of the 

project. This function controls the behavior of each individual enemy ship in 

the game world.   

The AI behaves as follows: for each shipObject contained in 

TheObjList (except for the shipObject representing the player’s ship), the AI 

calculates the shipObject’s position in the game world as shown in the 

source code below.   

 

TimeDiff = TimeStamp - (*ShipIterator)->basetime; 

(*ShipIterator)->basetime = TimeStamp; 

 

x = ((*ShipIterator)->Ax * 0.5f * (GLfloat)TimeDiff * 

(GLfloat)TimeDiff) + ((*ShipIterator)->Vx *(GLfloat)TimeDiff) + 

((*ShipIterator)->Px); 

 

y = ((*ShipIterator)->Ay * 0.5f * (GLfloat)TimeDiff * 

(GLfloat)TimeDiff) + ((*ShipIterator)->Vy *(GLfloat)TimeDiff) + 

((*ShipIterator)->Py); 

 

z = ((*ShipIterator)->Az * 0.5f * (GLfloat)TimeDiff * 

(GLfloat)TimeDiff) + ((*ShipIterator)->Vz *(GLfloat)TimeDiff) + 

((*ShipIterator)->Pz); 
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Overall, the source code snip-it calculates the distance each enemy 

ship has traveled since the last time the AI function was called. The AI then 

proceeds to calculate a vector representing the distance between the 

player’s ship and the current enemy ship by taking the difference between 

the x, y and z positions of both ships. The player-enemy ship vector is 

converted to a unit vector and the ship’s x, y, and z velocities are calculated 

by simply taking the x, y, and z components of the unit vector and scaling 

all three results by the speed variable stored in shipObject. Currently, the AI 

directs every enemy ship spawned in the world towards the player’s current 

position. Once an enemyShip’s position and direction has been adjusted, 

the ship is sent to the ObjRenderList for rendering. 

Originally, the AI was prototyped to be a simple, ‘proof-of-concept’ 

design to be enhanced as game development progressed.  However, due 

to time constraints, the simple AI concept has minimally evolved to become 

the main enemy AI.  While the “player ship chasing” AI may seem 

overwhelming since enemy ships will constantly adjust their heading 

towards the player, the player’s ship has a greater maximum speed than 

the enemy ships permitting the player to “escape” undesirable enemy 

confrontations before collision. 

The AI function is run every periodically from within the 

TimerEventHandler function. 

 
2.4 Ship Collision Detection and Logic 

 
The SDL_App::ShipCollision function determines if any enemy 

ships have collided with the player’s ship and is also responsible for the 

game logic behind ship collisions.   

The player’s ship and enemy ships are assigned a ‘size’ variable 

which represents the minimum radius of a sphere which bounds the ship in 

question. The collision detection algorithm is simple; 

SDL_App::ShipCollision calculates the distance between an enemy ship 

and the player’s ship. If this distance is less than the added radii of the 
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enemy ship in question and the player’s ship then a collision has occurred.  

ShipCollision then proceeds to execute the game logic behind collisions.  

The calculations involved in finding the distance between two ships utilize 

the same equations as used in the SDL_App:AI function; ShipCollision 

finds the enemy ship’s current position and subtracts this position from the 

player ship’s position. The magnitude of this vector is the distance between 

the two ships. 

When an enemy ship collides with the player’s ship, ShipCollision 

applies damage calculations; if the player’s ship has less than zero hit 

points after the collision, the player ship is destroyed and the 

SDL_App::GameOver function is called. If the player survives the collision, 

an appropriate number of hit points are subtracted from the player ship’s hit 

points and the enemy ship involved in the collision is destroyed and 

removed from the game world.   

SDL_App::ShipCollision is called periodically from the 

TimerEventHandler through SDL_App::CollisionDetection. 

Given additional time to optimize the AI, our team would have set 

limitations on the enemy ships’ angular velocities, which would have 

effectively given the player the option of performing turning manoeuvres 

rather than relying on the player’s greater maximum speed. Moreover, we 

could have implemented an enemy ship AI that flees from the player ship 

once its healthy decreases below a certain threshold.   

 
2.5 Weapon Collision Detection 

 
2.5.1 Instant Hit/Miss Weaponry  

 
The weapon collision detection algorithm is slightly more complex 

than the bounding sphere collision detection algorithm used for ship 

collisions. Weapon collision detection is performed once for every potential 

target and we can instantly calculate if a weapon fired collides with a target 
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or not. The net effect is exactly analogous to using bounding sphere game 

objects. An example weapon collision calculation is explained below. 

 
 

Suppose we have a space ship at Po and 
a target at So. Moreover, suppose the 
spaceship at Po fires a laser beam d, 
which is represented as a directional 
vector, as depicted in the adjacent 
diagram. 

So 

Po 

d 

 
 

First of all, we calculate the unit vector 
u representing the direction of d. 
Another vector, a, defines the trajectory 
from the player ship to the target ship. 

So 

Po 

u 

a 

 
 

Next, we calculate the projection of a 
on u, which is the vector b. Subtracting 
a from b results in the vector c as 
illustrated in the adjacent diagram.  

So 

Po 

u 

 
 

a 

c 

b 
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The length of c indicates the minimum distance between the laser 

beam and the target. If the length of c is less than the target size, there is a 

potential hit. The hit is only potential because the above calculation only 

determines whether a hit occurs assuming the laser beam is an infinite line 

in both directions. Two further checks are necessary to establish if the 

physical laser beam “hit” the object in question. The first check is ensuring 

that vector b is positive so that only objects in front of the ship are hittable 

while the second check is determining if the length of b is less than the 

maximum range of the fired weapon. 

The complete source code for weapon collision detection is 

provided below. 

 
void SDL_App::WeaponCollision(long TimeStamp) 
{ 
 position ImDoomPosition; 
 position ImTargetPosition; 
 list<spaceObject*>::iterator ShipIterator; 
 list<spaceObject*>::iterator WeaponIterator; 
 float Ux, Uy, Uz;      //Unit vectors 
representing direction of ship 
 float Bx, By, Bz;       
 float Cx, Cy, Cz, Cdot; 
 float n;        //Dummy 
Parameter for parameterization 
 float InterimX, InterimY, InterimZ;  //Interim Holders 
 float DistanceToDeath;     //How far away 
from beam 
 int hitTrue = 0; 
 
 //Only do collision detection if the ship is running 
 if (PlayerShip != NULL) 
 { 
  //We must test for each weapon fire in the universe 
  for (WeaponIterator = WeaponsFireList.begin(); 
WeaponIterator != WeaponsFireList.end(); ) 
  { 
   hitTrue = 0; 
    
   ImDoomPosition = (*WeaponIterator)-
>CurrentPosition(TimeStamp); 
 
   //Get the unit vector of the laser beam 
   Uy = -sin( ImDoomPosition.Pa / 180 * M_PI ); 
   Ux = fabs(cos(ImDoomPosition.Pa / 180.0f * M_PI)) * 
sin(ImDoomPosition.Pb / 180.0f * M_PI); 
   Uz = fabs(cos(ImDoomPosition.Pa / 180.0f * M_PI)) * 
cos(ImDoomPosition.Pb / 180.0f * M_PI); 
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    //printf ("\nWeapon(start): Px: %f, Py: %f, 
Pz: %f\n", ImDoomPosition.Px, ImDoomPosition.Py, ImDoomPosition.Pz); 
    //printf ("Weapon(end): Ux: %f, Uy: %f, 
Uz: %f\n", Ux, Uy, Uz); 
 
   //We must test for teach object in the universe EXCEPT 
the player's ship 
   for (ShipIterator = TheObjList.begin(); 
ShipIterator != TheObjList.end();) 
   { 
    if ((*ShipIterator) != PlayerShip) 
    { 
     ImTargetPosition = (*ShipIterator)-
>CurrentPosition(TimeStamp); 
      
     //Get a vector from the beam to the origin 
of the laser 
     Bx = ImTargetPosition.Px - 
ImDoomPosition.Px; 
     By = ImTargetPosition.Py - 
ImDoomPosition.Py; 
     Bz = ImTargetPosition.Pz - 
ImDoomPosition.Pz; 
      
     //Get the projection of the beam to the 
ship 
     Cdot = Bx*Ux + By*Uy + Bz*Uz; 
 
     Cx = Cdot * Ux; 
     Cy = Cdot * Uy; 
     Cz = Cdot * Uz; 
 
     //Get the shortest distance to the beam 
     DistanceToDeath = (Cx-Bx)*(Cx-Bx) + (Cy-
By)*(Cy-By) + (Cz-Bz)*(Cz-Bz); 
 
     if (DistanceToDeath <= 4.0) 
     { 
… 
 

2.5.2 Projectile Weaponry 

 
Although the algorithm for projectile collision detection is straight-

forward, there were prohibitive reasons why projectiles were not present in 

our game. The general algorithm for projectile collision detection is for 

every game state update, test to determine if the projectile is within the 

bounding sphere radius of any ship. If the projectile is within the bounding 

sphere radius then a hit occurs. Clearly, the projectile collision detection 
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algorithm is the same algorithm as ship collision algorithm; the algorithmic 

complexity is not the issue. 

The underlying problem stems from the number of algorithm 

executions. Each projectile requires the algorithm to test for collisions 

against every object in the game during each periodic update. Moreover, 

each projectile position must be continuously tracked. The processing 

requirements increase exponentially with each projectile fired. Thus, for a 

game with multiple human players or several enemies simultaneously firing 

projectiles, processing requirements are prohibitively expensive. 

To circumvent the processing issue, one can impose a limit on the 

number of active projectiles, a common tactic in video games. However, 

limiting the number of projectiles results in an artificial game where weapon 

rates of fire are slow. In particular, firing an automatic projectile weapon 

would feel unrealistic to most players. 

However, projectile weapons fire can be simulated. A simple 

simulation would reuse the collision detection algorithm for laser beams a 

single time for each projectile to determine if the projectile would hit the 

target or not and then animate a travelling projectile.  

 

2.6 Creation of 3D Studio Max Models 
 

Our space shooting game requires basic models, such as the 

player space ship, enemy alien ships and potentially other space objects. 

Creating models to represent space objects is tricky using primitive 

OpenGL shapes, especially for individuals with a limited artistic 

background. Moreover, a substantial amount of optimized rendering code 

would be required in OpenGL drawing functions, likely using display lists, in 

addition to extra overhead required to effectively track objects. Using 3D 

Studio Max, models can be created efficiently. Our team used 3D Studio 

Max as it is an industry standard so experience gained can be transferred 

to the 3D Studio Max expert’s resume. Moreover, there are open-source 3D 

Studio Max loaders widely available for use. 
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The first implemented model was the player’s spaceship. The 

player spaceship design is loosely based on the Star Wars X-Wing fighter 

as shown in Figure 8 below. Using primitive shapes such as pyramids, 

pipes, and ovals the basic player ship shape could be crafted. In general, 

3DS Max provides a sleek interface for the Cartesian camera angles which 

permits intuitive 3D manipulation of the drawn model as exemplified in 

Figure 9 below.   

 
 
 
 
 
 
 
 
 
 
 

Figure 8. An X-Wing fighter: the basis for the player ship. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. 3D Studio Max design interface. 
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After designing the foundational model shape, a 2D texture can be 

applied using the 3DS Max material editor. The material editor allows users 

to modify the color of the ship as well as add 2D textures to the ship’s hull. 

Each texture can be imported as a JPEG image file. The texture file used 

for the ship’s hull is shown below in Figure 10. 

 

 
Figure 10. Player ship hull texture. 

 
Proprietary 3D Studio Max files can be saved in the 3DS format for 

later importing into an OpenGL application using a 3DS loader. Leveraging 

these fundamental model creation techniques, other models were produced 

for the enemy alien ships (UFOs), missiles, and the alien mothership as 

illustrated below in Figures 11, 12 and 13. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. 3D Studio Max alien ship (UFO) model. 
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Figure 12. 3D Studio Max missile model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. 3D Studio Max alien mothership model. 
 

At this stage, space objects needed to be loaded and rendered in 

our OpenGL game environment using a 3D Studio Max loader, as 

described in the next section. 
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2.7 3D Studio Max Model Classes 
 

Having created models in 3D Studio Max some method was 

needed to load and render each model. Our team opted to wrap the open-

source library Lib3ds (http://lib3ds.sourceforge.net/). The Lib3ds API 

provides a mechanism to load and render 3D Studio Max files, as shown in 

Figure 14 below; however, the core API does not offer texture mapping 

support. To support texture mapping for imported 3D Studio Max models, 

the Lib3ds API had to be integrated into our main game project and 

abstracted as a class, namely the SDL_3DSModel class.  

To integrate Lib3ds into our game project, our team linked into the 

Lib3ds library through Visual Studios, which was straightforward given the 

Lib3ds DLL files. The SDL_3DSModel class is adapted from Lib3ds sample 

code which loads a 3DS file into a GLUT window and suggests a 

framework for texture mapping. 

 

Figure 14. 3DS Loader rendering the player ship model. 
 

To read JPEG image texture maps another third-party library, 

called SDL_Image, was leveraged. Source code from the open-source 

SDL_Image library was incorporated in the SDL_3DSModel class. In 

general, the SDL_3DSModel class abstracts a model originally created in 

3D Studio Max. The parameterized class constructor has a filename input 

for creating a tree data structure representing the model. Whenever the 
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model requires rendering, a call to the public function “draw” will recursively 

render the nodes for the model. Within the class implementation, textures 

mapped to exported 3D Studio Max models are properly rendered with the 

SDL_Image library with the caveat that lower resolution textures should be 

used to minimize processing time. For example, the enemy ship hull texture 

is only 100x100 pixels to optimize performance on standard machines as 

exemplified in Figure 15 below.  

 

 

Figure 15. Texture-mapped player ship rendered in the game. 
 

Overall, the SDL_3DSModel class provides an efficient 

encapsulation for loading 3DS model files into the game.  

 

2.8 The Heads-up Display 
 

For the player to effectively pilot the spaceship and be aware of 

his/her surroundings, a heads-up display (HUD) is necessary. The heads-

up display presents the current player ship status including health and 

score. Moreover, the HUD provides a three-dimensional radar to determine 

where the enemies are located in space.  

The HUD module is abstracted from the main animation class. In 

particular, the HUD class contains the rendering code for the health bar, 

player score and 3D radar as shown in Figure 16 below.  
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Player 

3D radar 

Health Bar 

Figure 16. The player’s heads-up display. 
 
 

Each component of the HUD is rendered in a separate viewport in 

OpenGL to maintain a separate projection matrix and perspective from the 

main rendering code. In particular, the 3D radar viewport occupies a 

quarter of the screen (i.e. the bottom right-hand corner) while the health bar 

is rendered in the bottom middle of the screen.  

The HUD constructor requires the height and width of the SDL 

application to properly size the viewports for display and if the SDL window 

is resized, the viewport dimensions must be updated. The health bar is 

drawn using a 2D rectangle with the rectangle length scaled according to 

the player’s current health. The HUD text, including labels and score, is 

implemented using the 2D Text class, as described in the 2D Text section.  

Drawing the 3D radar requires rendering a green, 3D wireframe 

gluSphere without lighting. The radar sphere is rendered at the center of 

the viewport with the gluLookAt function looking at the center of the sphere. 

A list of spaceObjects is passed into the drawRadar function to determine 

which space objects should be visible on the radar. When the radar is 

drawn the positions of each space object in the world are processed by 

calculating their distance with respect to the player’s ship and comparing if 
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the object is within the visibility texture-mapped sphere. If the object is 

within the texture-mapped sphere, a red point is rendered inside the 

wireframe radar sphere to represent the space object. Moreover, the radar 

rotates as the spaceship is rotating. The current angle of the radar is 

adjustable by invoking the rotateRadar function which rotates according to 

Euler angles.  

Overall, the heads-up display (HUD) class creates a simple, 

intuitive display for the player and provides an efficient means to render the 

HUD by higher-level callers.  

 

2.9 Rendering 2D Text to the Screen 
 

 
To display static and dynamic information to the user, primarily in 

the HUD (Head’s-Up-Display), a text display mechanism was required. 

Static information included labels for the health bar and radar in addition to 

a “Game Over” message while dynamic information included the player’s 

current score and score multiplier. To effectively render two-dimensional 

text to the screen for the user’s benefit, several third-party libraries were 

investigated. The obvious option was to investigate existing two-

dimensional font implementations from well-known, OpenGL, open-source 

websites, such as NeHe Productions (http://nehe.gamedev.net/). Although 

NeHe Productions presented a detailed tutorial for rendering two-

dimensional text to the screen, the source code was predominantly 

Windows specific so extracting the critical tutorial information to create an 

API for text rendering was deemed time-consuming and inefficient by our 

team.  

An alternative approach to text rendering was to employ an open-

source, lightweight API named glFont developed by BYU student Brad Fish 

(http://students.cs.byu.edu/~bfish/glfont.php). Though the provided wrapper 

for the FreeType rasterizer seemed promising as it could theoretically 

render any TrueType font to the display, glFont usage was rejected 
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because the sample source code did not execute as advertised. Thus, the 

final decision was to wrap the open-source, SDL TTF API (available at 

http://www.libsdl.org/projects/SDL_ttf/) using a namespace interface rather 

than a class interface for ease of use. The wrapper created for the SDL 

TTF library is shown below: 

 

namespace SDL_2D_Text 

{ 

void InitTTFLibrary(); 

 

void loadTTFFont(const char * const fontFileNameAndPath, int 

pointSize, int specialFontFormatting, TTF_Font *&font); 

 

GLuint create2DTextTexture( TTF_Font * font, const char *const 

message, SDL_Color * foregroundColour, int& textureWidth, int& 

textureHeight, GLfloat textureCoordinates[]); 

 

void draw2DText(GLuint textTexture, int textTextureWidth, int 

textTextureHeight, int lowerLeftTextXPosition, int 

lowerLeftTextYPosition, GLfloat textureCoordinates[]); 

 

void delete2DText(GLuint textTexture); 

} 
 

From a client programmer’s perspective, to render text to the 

screen the namespace functions InitTTFLibrary()and loadTTF() must be 

called in succession to initialize the TTF library and then load the specified 

TTF file with a given point size and special formatting (e.g. bold, underline 

or italized characteristics). Next, the client programmer passes a message 

and desired text foreground for the newly loaded font to the 

create2DTextTexture(). The create2DTextTexture() function returns an 
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integer representing a handle to the texture loaded in GPU memory for the 

provided message string. To transform the user message into a texture, the 

text is first rendered to a SDL surface before being passed to a texture 

creation function. Finally, the original message is rendered to the screen as 

a texture mapped to a rectangle at the provided lowerLeftTextXPosition and 

lowerLeftTextYPosition by invoking draw2DText(). Text textures can be 

deleted from GPU memory by invoking the delete2DText() function on a 

integer handle referencing the text texture. 

Tests utilizing the SDL_2D_Text namespace functions suggested 

the original library and wrapper worked exactly as expected and in 

particular the rendered text can be easily scaled and repositioned for 

screen resizing operations. Overall, the SDL_2D_Text namespace provides 

a convenient, extensible set of functions to interact with two-dimensional 

text and is leveraged throughout the HUD. An example of how two-

dimensional text is used in the HUD is shown below in Figure 17. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Examples of 2D  
text in the HUD 

Figure 17. 2D Text in the HUD. 

 49



 
 
 
2.10 Scoring System Mechanics and Logic 

 
A scoring system is included in the game logic to add a general 

game objective and improve game replayability. Whenever the player 

destroys an enemy ship with the ship’s weapons, a certain number of 

points are added to the player’s score.  The number of points awarded is 

based on an enemy ship’s base score multiplied by a scoring multiplier 

variable. The scoring variable increases if the player manages to hit enemy 

ships in succession without missing a single shot thus discouraging players 

from adopting a ‘spray-and-pray’ mentality with their weapons handling. 

Shown in Figure 18 below is a game screenshot with the player’s current 

score and score multiplier shown in the top-right-hand corner of the screen. 

 

 
Figure 18. Score with multiplier. 
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The scoring system is currently embedded inside the 

SDL_App::WeaponCollision function since the scoring system is directly 

dependant on if the player hits or misses with their weapons.   

 
2.11 Animation 
 

Animations are an integral component to any game as user 

feedback is provided when an event occurs. For Abyssal Marauders in 

particular, the three principle animations are: lasers, for damaging enemy 

spacecraft; explosions, which occur when an enemy spacecraft is 

destroyed; and enemy ship damage, which occurs when an enemy ship is 

damaged but not destroyed. 

Our game architecture includes a base class for all animations 

called the animationObject class. The animationObject class inherits from 

the spaceObject class thus information regarding spaceObject position, 

velocity, and Basetime when the object was created is known. An 

animation class adds a draw function, which renders a frame of the 

animation, and returns a 1 when the animation is completed. Since the 

animationObject class is an abstract class, application code can store an 

array of animationObject pointers for different types of animation. 

Each principle type of animation is contained within its own class. 

The laser animation occurs when the player presses the mouse to fire the 

laser weapon as shown below in Figures 19 and 20. Currently, the lasers 

are simply glLines with a line width of twenty. Since the player ship is 

modeled after a Star Wars X-Wing fighter, four laser beams are emitted 

with every weapons fire. The laser object must have a copy of the player 

ship rotation angle to ensure the lasers are pointed in the right direction 

using rotations about the Euler angles. Finally, the laser speeds are 

initialized to 0.01 and double every rendering cycle to provide the illusion 

that the lasers are travelling near the speed of light. A laser sound effect is 

created within the AnimLaser class by calling the playSound() function. A 
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potential improvement for the laser animation is adding a glow texture to 

provide an overall science-fiction feeling to the game.  

 

 

 

 

 

 

 

 

 

 

Figure 19. First-person perspective of a laser animation. 
 

 

 

 

 

 

 

 

 

 

Figure 20. Third-person perspective of a laser animation. 
 

The explosion animation occurs when an enemy ship is destroyed 

by the player’s weapons. The explosion animation is implemented using 

triangle particles, which act as debris, and emit at random speeds and 

rotations creating the illusion of shattered glass as shown in Figure 21 

below. For each enemy ship explosion, the current position of an enemy 
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spacecraft is calculated and the explosion animation is rendered until one 

second of game time has elapsed. If time permits 3D textures can be 

added to each explosion particle to provide a fire effect. Moving the s, t and 

u vectors of the 3D texture can provide additional animation to the 

explosion. 

 

  

 

 

 

 

 

 

Figure 21. Explosion animation. 
 

The enemy damage animation occurs when a player weapon 

collides with an enemy spacecraft but does not destroy it. Since a shield on 

the enemy spacecraft prevents it from being destroyed, a shield animation 

should be rendered. A growing gluSphere encapsulating the enemy 

spacecraft implements the shield animation. One trick employed to render 

the enemy shield was to use alpha blending so the enemy shields 

appeared transparent as shown in Figure 22 below. In effect, the shield 

animation provides user feedback to signify if the player weapon collided 

with the enemy spacecraft.    

 
 
 
 
 
 
 

 

 

Figure 22. Enemy spacecraft shield animation. 
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2.12 Sphere Texture Mapping for the Space Background 
 

To improve game realism and professionalism our team decided a 

space background was necessary. The objective of the background was to 

move with respect to the spaceship and permit the player to rotate their 

ship 360º along any of the three coordinate axes to see different regions of 

space. To achieve this effect, a space *.TGA image was loaded into 

memory and subsequently texture mapped to a sphere. 

The first stage of texture mapping to a sphere was loading the 

texture into memory. Invoking loadTGAfile(), which requires a texture file 

path and name and a integer to represent a handle to the texture file loaded 

to memory, uploaded the texture to GPU memory. Each invocation of 

loadTGAfile() attempts to open the specified *.TGA image file and examine 

the file’s metadata, including image resolution and color scheme, then load 

the image into texture memory by calling the glTexImage2D() OpenGL 

function. However, before glTexImage2D() is called, the texture image 

properties are set for repeating in the s and t directions with linear 

interpolation for the MIN_FILTER and MAG_FILTER. The only restriction 

with the loadTGAfile() function is that the image resolution had to be a 

power of two in the x-direction and y-direction to a maximum of 512 x 512 

pixels and only *.TGA image files could be loaded into memory. 

Drawing and texture mapping the outside of a sphere was achieved 

by incrementally texture mapping wedges at the sphere surface by varying 

the lines of latitude and longitude in a nested for loop. For visually-

appealing texture mapping results that minimally affected performance, the 

sphere was divided into thirty-six lines of latitude and seventy-two lines of 

longitude. During each frame render, the sphere was redrawn and texture 

mapped centered at the location of the player’s ship with a radius of sixty 

units so that the player’s line of sight was minimally constrained.  

Despite the general successes associated with sphere texture 

mapping, there were two unresolved difficulties. The first issue was texture 
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wrapping which caused discontinuities at the boundary where the sphere 

was first texture mapped as shown in Figure 23 below. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Discontinuity formed by 
texture mapping to a sphere 

Figure 23. Discontinuity created by sphere texture mapping. 
 

A natural solution to the sphere texture wrapping problem would be 

leveraging a high-resolution, tileable image of space to ensure wrapping 

the image would naturally not cause discontinuities. However, tileable high-

resolution images of space were difficult to acquire from the Internet.  

A second issue with texture mapping was distortion and limitations 

for image resolution. Due to the texture loader employed, a loaded texture 

could have a maximum image resolution of 512 x 512 pixels and each 

resolution dimension had to be a power of two, primarily due to restrictions 

of the OpenGL glTexImage2D() loader. Therefore, the sphere texture 

required disproportionate resizing before loading into the GPU thus creating 

distortion. 
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2.13 Game Menus 
 

The game menu enables users to restart a new game, alter game 

parameters and pause the game. A game menu system can accommodate 

non-real-time settings. For example, game commands can be remapped 

through an options menu. The game menu’s implementation is primarily 

accomplished with 2D texture mapping and 2D text textures. In particular, 

24-bit Windows bitmap files are used for different game menu screens. 

Each bitmap file was generated from edited artwork by resizing the images 

and modifying the commands with Adobe Photoshop CS3 to fulfill our 

particular game requirements. For example, the original background image 

for the main game menu is shown below in Figure 24 and the same image 

overlaid with our custom game menus is shown below in Figure 25. 

 

 

 

 

 

 

 

 

 

 

Figure 24. The original background image for the main game menu. 
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For the menu page bitmap files, we added text for each menu page 

with different titles. All the added text is given specific effects such as 

shadow, inner glow (specularity), outer glow (emissivity) and color 

gradients to enhance readability and the aesthetic appearance of the menu 

page. Most of these operations were accomplished by using blending 

properties and layers in Adobe Photoshop CS3. All of the generated 

bitmaps were also resized to 1024x512 pixels since the SDL_LoadBMP() 

function only works with dimensions that are powers of two.  

 

 

 

 

 

 

 

 

Figure 25. The original background image overlaid with custom game menus. 
 

The menu page bitmaps are loaded when the menu is initialized or 

when the application is initialized. Once loaded into an array in memory, the 

bitmap images can be reused for future invocations of the game menus. 

However, the 24-bit Windows bitmap files are saved in a characteristic 

BGR color format instead of the standard RGB. Consequently, calling 

SDL_LoadBMP() will result in correct texture mapping with the wrong color 

scheme. To solve this issue, the texture data had to be converted to a 

suitable format to ensure expected texture mapping and colorization as 

exemplified in the code fragment below: 
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if ( TextureImage->format->BitsPerPixel == 24 ) 
   { 
       printf("Handle 24 bits"); 
       TextureSize = 3 * TextureImage->w * TextureImage->h; 
       TextureData = (unsigned char*)TextureImage->pixels; 
 
       for (int Pointer  = 0; Pointer < TextureSize; Pointer+=3) 
       { 
           Temporary = TextureData[Pointer]; 
           TextureData[Pointer] = TextureData[Pointer + 2]; 
           TextureData[Pointer + 2] = Temporary; 
       } 
   } 

 
An example of an incorrectly loaded game menu bitmap is shown in 

Figure 26 below. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 26. An incorrectly loaded 24-bit *.BMP file. 
 
 

Moreover, our team implemented a credits scene, which is 

integrated into the game menu, by 2D texture mapping. For the game 

credits, the text is predominantly generated using a 2D text texture map 

rather than Adobe Photoshop text. Alpha bending is utilized extensively in 

the game credits. 
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To smooth transitions between the game state, pause menu state, 

main menu state, and ending scene state, the architecture shown in Figure 

27 below was implemented. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

MenuTimerHandler 

MenuRenderFrame 

MenuKeyboardHandler 

… 

… 

*RenderFrameFunction

*KeyboardHandlerFunc
tion 

*TimerHandlerFunctio
n 

… 

… 

GameTimerHandler

GameRenderFrame

GameKeyboardHandler

SwapStateToMenu 

SwapStateToGame

Figure 27. Menu and game callback interaction architecture. 
 
 

When the application is initialized, the user observes the game 

menu state. Throughout the application, the SDL event handler manages 

user input, timers and screen rendering by invoking the appropriate 

callback functions. For example, the event handler calls the RenderFrame() 

function when the screen requires updating. Moreover, user keyboard input 

is handled by a KeyboardHandler() function. Similarly, timer events trigger 

TimerHandler functions to update game state variables. When a new game 

is started, the SwapStateToGame() function is invoked and all the function 

pointers described in the menu and game callback interaction architecture 

diagram above will point to the GameRenderFrame(), 

GameKeyboardHandler(), and GameTimerHandler() functions. Thus, the 

application’s behavior can seamlessly transition between the main game, 

main menu, pause menu, and ending scene states. 
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Based on the state architecture described above, the game is 

paused by invoking the SwapStateToPauseMenu() function, which 

removes event handling for the GameRenderFrame() and 

GameTimerHandler() functions. Consequently, the game state at the time 

of pausing is preserved until the user exits the paused game state by 

invoking SwapStateToGame(). With this architecture each logical game 

state can have its own distinct input handlers. For example, pressing the 

“enter” button on the menu will not cause the player’s spacecraft to release 

a bomb and menu navigation will not alter the player spacecraft’s 

orientation. 

Currently, the game menu implementation is embedded within the 

main SDL_App class. However, the game and menus do not logically share 

information so abstracting the game and menus as different classes would 

be a reasonable idea except that the function pointer scheme illustrated in 

Figure 27 above is infeasible with a class separation. Moreover, by 

embedding the game menu logic within the main SDL_App class significant 

overhead is avoided by invoking additional functions with parameters that 

would require checking.  

 
2.14 Sound and Music 

 

In video games, sound effects and music are considered significant 

features as audio additions enhance game play. Sound effects and music 

complement the visual graphics by providing companion sound effects for 

different events including collisions and explosions. If implemented well 

sound assists the player in responding to changes in the environment. 

Moreover, background music can increase the player’s level of excitement 

by engaging the player’s sense of hearing to accompany stunning visual 

effects. For these reasons, our team opted to incorporate both sound 

effects and music into our game. 
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At the game’s level of abstraction, audio is handled by a standard 

SDL library that monitors sound-based events. As a result, the audio 

feature inherits the portability aspects associated with the SDL library 

implementation so thus is compatible with other platforms such as 

Windows, MacOS and UNIX. 

In the rudimentary SDL library, the most common implementation 

pattern is the following logical sequence: 

 

1. Initialize the SDL Audio. 

2. Implement a sound sample buffer. 

3. Specify the desired audio format. 

4. Create or obtain a *.WAV file for playback, possibly using an 

audio format converter. 

5. Load the *.WAV file(s) into an audio buffer. 

 

Next, an audio callback function will continuously cycle through the 

audio buffer for playable sounds and potentially playback multiple audio 

files simultaneously. Therefore, the audio buffer size will impact the 

response time and drop rate of the audio playback. Once a sound sample 

in the buffer has finished playing, the sample is removed by a new loaded 

*.WAV file. For example, if a siren, gunshot, and scream sound are played 

during game execution, each *.WAV file will be loaded, converted, and 

stored in an available slot in the sound buffer. Each sound will be played 

when the audio callback function iterates through the sound’s buffer slot. A 

diagram illustrating the audio playback process is shown below in Figure 

28. 
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Originally, the sound interface for Abyssal Marauders was 

implemented as described above since this implementation permitted audio 

playback at any time within the game by simply invoking the PlaySound() 

function. Any audio file encoded in the *.WAV file format was playable. 

However, the SDL library lacked the ability to loop music and mix audio 

files to different volume levels. Moreover, the PlaySound() function 

inefficiently loaded the same *.WAV file multiple times if multiple playbacks 

of the same sound were required. To overcome these limitations and 

improve audio performance other audio API options were investigated. 

After researching several third-party SDL-compatible audio APIs, 

our team opted for the SDL plug-in library named SDL_mixer, which is 

implemented by the team who implemented the SDL library. The 

SDL_mixer plug-in library provides the features missing from the standard 

SDL audio library. Thus, music and sound effects can be mixed separately 

permitting substantial flexibility and control. Furthermore, sound effects can 

Figure 28. The SDL audio playback process. 
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be logically grouped together enhancing the sound experience. 

Additionally, SDL_mixer loads audio files to dynamic memory so each 

sound clip can be replayed anytime in the game without reloading the file. 

Most importantly, music can be easily looped and faded without extra event 

timers and handlers. A final feature of SDL_mixer is MP3 decoding support 

through the external mpeg.dll library. 

Despite the benefits offered by the SDL_mixer library, conflicts 

arise with the native SDL audio functions already leveraged extensively in 

our audio interface. However, the majority of the audio invocations are 

implemented similarly in SDL_mixer with added features thus mixing 

function calls between the two APIs could result in conflicting behavior. 

Although our team had a working audio interface to satisfy the fundamental 

game requirements, SDL_mixer was selected for its extra features and 

efficient implementation. 

In summary, the SDL_mixer command sequence can be described 

by the following steps: 

 

1. Initialize the SDL audio mixing by specifying all possible audio 

playback formats. 

2. Instantiate a separate sound sample and music buffer for each 

mix. 

3. Load all sound and music files into a buffer. 

4. Playback the music and sound files at appropriate points in the 

game. 

5. Close the audio stream and free dynamic memory allocated 

before terminating the application. 

 
The final audio API functions are shown below: 
void PlaySound(SoundSamples Sample); 

void PlayMusic(MusicSamples Sample); 

void InitializeGameAudio(); 

void CloseGameAudio(); 
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Both PlaySound() and PlayMusic() are callable throughout the 

game provided the InitializeGameAudio() function is invoked during game 

initialization. Furthermore, both PlaySound() and PlayMusic() require an 

enumerated parameter to specify the desired sound effects or music such 

as a LASER or EXPLOSION. The enumerated parameter abstraction 

allows developers to conveniently change the audio clip filename without 

modifying each invocation of PlaySound() or PlayMusic() that plays that 

particular audio clip. CloseGameAudio() must be invoked when the 

application terminates to free all reserved memory resources. 

The current game audio abstraction implementation plays a single 

sound for each PlaySound() function call. However, most commercial video 

games support an audio architecture such that a single triggered sound 

event, such as an explosion, can trigger other sound events simultaneously 

which results in a rich and realistic sound experience. Nevertheless, our 

game’s audio API supports multiple sound events by successive calls to the 

PlaySound() function. Error-checking can be performed during game 

initialization to ensure all required audio files are present in the game folder 

hierarchy. If files are missing, the application can terminate immediately. 

 
2.15 Software Configuration Environment 

 
To create an intuitive software development environment where 

different files could co-exist within a logical directory hierarchy several 

measures were taken. To fully comprehend these measures, a background 

of common Visual Studios 2005 elements is required since Visual Studios 

2005 was the primary software development tool employed for all game 

project development. The following description assumes the reader has 

some experience using Visual Studios 2005.  

 For the game development environment, the main solution file 

is located in ~\EECE_478_Game_Project. The Visual Studios 2005 solution 

file encapsulates the main game project file. An important distinction when 
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building a project is realizing if the release configuration or debug 

configuration is being built. Ideally, the debug and release builds should 

complete successfully since debug builds permit the programmer to 

effectively troubleshoot by setting breakpoints at the cost of extra files 

generated and larger file sizes while release builds act as a final copy of the 

software with more compact files. The developed game supported both 

debug and release build configurations.  

For individual source file compilations within the 

EECE_478_Game_Project project, warnings will be displayed. Most of the 

warnings stem from outdated function calls from third-party library code so 

thus can safely be ignored. However, the programmer should be aware of 

header file and library dependencies for third party, open-source 

implementations which could cause issues with compilation and project 

linking. 

By right-clicking on the project within Visual Studios, choosing 

“Properties” then looking under “Config Properties”  “C/C++”  “General” 

 “Additional Include Directories”, one can view the list of third-party 

header file inclusions. To determine how each macro is being resolved (e.g. 

what the macro “SDL_HOME” is resolving to for the main game project), 

left-click the “Additional Include Directories” field then click the “…” button 

 “Macros <<” as shown in Figure 29 below. 
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“Additional Include Directories” field within the property pages of a project 

Complete list of macro values for a particular project 
including both user-defined and built-in macros

List of additional include directories 

Figure 29. Displaying user-defined macros in Visual Studios. 
 

Each user-defined macro is written in upper-case while the macros 

in normal case are built-in Visual Studios macros. Built-in Visual Studios 

macros are defined intuitively but if needed a complete list can easily be 

found on the Internet. For example, the built-in Visual Studios macro 

“SolutionDir” resolves to the directory the solution file resides. 

Library dependencies are recorded in the project file’s “Additional 

Library Directories” and “Additional Dependencies” fields accessible by 

right-clicking on the project within Visual Studios, choosing “Properties” 

then looking under “Config Properties”  “Linker”  “General”  

“Additional Library Directories”. Macros are also used to resolve absolute 

library directory location to ease portability as described in the next 

paragraph. The “Additional Dependencies” field, used for stating filenames 
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of specific libraries to include, is similarly located under “Config 

Properties”  “Linker”  “Input”  “Additional Dependencies”.  

User-macros are definable through property sheets in Visual 

Studios 2005. Property sheets provide flexibility as a central point of control 

for porting software development environments to other machines. To see 

the complete list of property sheets linked to the EECE_478_Game_Project 

solution file, switch from the Visual Studios Solution Explorer view to the 

Property Manager view, expand a project by clicking the “+” sign beside it, 

expand the “debug” or “release” hierarchy and double-click “Base”. Within 

the Base property pages, go to “Common Properties”  “User Macros”. 

The lists of user-defined macros are displayed. 

To modify the user macros, open “base.vsprops” (located in ~ 

\EECE_478_Game_Project\EECE_478_Game_Project\Property Sheets) 

with a text editor and follow the syntactical pattern to redefine or add user 

macros. Note that the EECE_478_Game_Project solution file must be 

reloaded in Visual Studios for the effects to be observed. The other two 

property sheets present in ~ 

\EECE_478_Game_Project\EECE_478_Game_Project\Property Sheets 

are characteristics reserved for either debug builds only or release builds 

only. The debug and release build property sheets should never need to be 

modified since each inherits from the base.vsprops file.  

All user macros are defined relative to the location of the 

EECE_478_Game_Project.sln file so if the relative directory hierarchy is 

preserved on the local development machine, as uploaded to 

SourceJammer, our team’s chosen SCM tool, all header and library file 

dependencies should be resolved without problems. Our directory hierarchy 

is shown in Figure 30 below. 
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Figure 30. SourceJammer directory hierarchy. 
 

2.16 SourceJammer: An Open-Source SCM Tool 
 

 To permit concurrent access to files commonly modified by 

team members, a software configuration management tool was essential. 

Our team chose the open-source project known as SourceJammer 

(www.sourcejammer.org) for its intuitive, simple user interface for checking 

in and out files while maintaining a file version history. Moreover, 

SourceJammer has sufficient documentation online and is straight-forward 

to install, maintain and administer. The server-side of SourceJammer 

requires an installation of the latest Java SDK as well as the open-source 

Apache Tomcat application server. However, the client-side merely 

requires an installation of the current Java runtime libraries and the client 

application itself.  

After each group member’s account was created, individual login 

credentials were distributed to each developer in addition to the Tomcat 
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application server URL where the SourceJammer server was running. 

Overall, SourceJammer allowed primary application files to be revised 

frequently (in some cases more than thirty-five times) without introducing 

regressions. If regressions did occur, the versioning system permitted 

previous stable file versions to be recovered instantaneously. Thus, the 

latest core game files and open-source libraries could be conveniently 

distributed to each team member and a common working game build was 

always available. A screenshot of the SourceJammer GUI is shown below 

in Figure 31. 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. SourceJammer user interface. 
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