

University of British Columbia

EECE 478 – Computer Graphics

Game Design – 3D Labyrinth

Phoebe Hsu

Neville Kwong

George Lee

Patricia Mo

Owen Yang

Date submitted: April 14, 2008

 i

 TABLE OF CONTENTS

LIST OF ILLUSTRATIONS... iii
LIST OF ABBREVIATIONS.. iv
1.0 INTRODUCTION .. 1
2.0 PURPOSE... 2
3.0 GAME DESCRIPTION.. 3
4.0 GAME ARCHITECTURE ... 4
5.0 GAME ENGINE AND GAME LOGIC ... 5
6.0 CALCULATION MODULE.. 7

6.1 Physics Engine .. 7
6.2 Math Module... 11

6.2.1 Quaternion.. 11
6.2.2 Vector Class ... 12

7.0 FRONT END .. 13
7.1 Game Display.. 13

7.1.1 Menu .. 13
7.1.2 Rendering... 14
7.1.3 Texture ... 14

7.2 Mouse Control .. 16
7.3 Audio... 16

8.0 RTU... 19
9.0 FUTURE IMPROVEMENT... 20

9.1 Multi-threading ... 20
9.1.1 ThreadClass.. 20
9.1.2 ActiveClass .. 21

9.2 Multi-threading Communication .. 21
9.2.1 Design .. 22
9.2.2 Dispatcher .. 22
9.2.3 Messaging System ... 23

10.0 CONCLUSIONS... 24
11.0 REFERENCES ... 25

 ii

LIST OF ILLUSTRATIONS

Figure 2.1 Screenshots of 3D Labyrinth...2

Figure 4.1 Game Architecture...4

Figure 6.1 Block Diagram of the Physics Engine...7

Figure 6.2 Ray to Plane Collision Detection.. 10

Figure 7.1 Texture of the Blocks vs. Seamlessly Tiled Version of the Texture File........15

Figure 8.1 Sample of the Real-time Tweaking Unit Display..19

 iii

LIST OF ABBREVIATIONS

GDC GameData class

 iv

1.0 INTRODUCTION

This project discusses the development of an action puzzle solver computer game, 3D

Labyrinth, by using OpenGL. In this game, player will be asked to use mouse to rotate

the box to move the ball from the starting point to the ending point. Our goal of this

project is to learn the game developing process and create a final product that is both

exciting and fun to play. Contrary to the traditional labyrinth game which has only one

layer, our maze will consist of multiple layers that will allow bigger motion. To imitate

the feeling of the drop-down motion of a ball in the real world, complicated physics

engine is also implemented.

The report divides into the following primary sections:

o Game Architecture

o Game Engine and Game Logic

o Calculation Module

o Front End

o RTU

o Future Improvement

 1

2.0 PURPOSE

The purpose of the project is to utilize OpenGL API to create a 3D computer game. The

game that we chose is a 3D version of Labyrinth. The player has to rotate a 3D maze to

maneuver the ball to a set destination while avoiding obstacles. The 3D nature of the

game makes the game a lot more difficult and more enjoyable then the original 2D

version of the game.

Figure 2.1 Screenshots of 3D Labyrinth

 2

3.0 GAME DESCRIPTION

The 3D Labyrinth game is based on traditional labyrinth game where the user yaw the

board and move the ball to the destination. Unlike the traditional one, the 3D Labyrinth is

built in 3 dimensions and the cube is composed of multiply layers. The user can yaw,

pitch, and roll the cube to move the ball to the destination. The objective of this game is

to move the ball to the destination as fast as possible. Through this process, the user has

to maneuver the cube to avoid letting the ball fall out of the cube. The user can control

the maze’s movements by hold down the left or right mouse button and drag the mouse in

any direction. The game will also be limited by a countdown clock to increase the “fun”

factor.

Game Feature:

o Scripting Language: The levels of the game will be scripted.

o Physical Simulation: The user will be rotating the box around, therefore gravity

and perhaps other forces will apply.

o Key Frame Animation: The movement of the balls may need key frame

animation.

o Collision Detection: The ball will collide with the walls of the cube.

o Sound Effect: All games must have some sort of sound effect.

 3

4.0 GAME ARCHITECTURE

Maze Creation

Game Logic

RTU

Game

Mouse Control

Audio Control

Menu Control

Front End

Texture Control

Menu Rendering

Maze Rendering

Render

Collision Plane

Physics

Quaternion

Vector Class

Math Module

Figure 4.1 Game Architecture

 4

5.0 GAME ENGINE AND GAME LOGIC

The GameData Class object stores data such as the ball’s location, the game level, the

maze information, the ball's kinematic characteristics, the time elapsed, etc. Level

description is defined by a simple text file, which the GameData class is responsible for

parsing. The parsed level information is stored in an array that will be used later by the

Physics engine and the Render engine.

GameData Class SetMaze()

This function parses the input text file that contains the maze information, and stores it in

a three dimensional array. It also initializes and sets up some environment variables for

the game.

The Maze in a Text file

Here is an example of a Maze input file:

SIZE 5 5 1

LAYER //this is plane layer 1

&BBBBB

&BBBBB

&BBBBB

&BBBBB

&BBBBB

LAYER //this is plane layer 2

&BBBBB

&BWWsB

&BBWWB

&BeWWB

 5

&BBBBB

This will create a 5 x 5 x 1 (Width x Depth x Height) maze.

Parsing Symbols Explanation:

&: a token to notify the parser that it’s starting to parse a new row

B: a block that is a solid cube with 6 non-passable planes.

W: an empty space where the ball can pass through freely

s: starting location of the ball

e: ending point. When the ball comes into contact with this block, the game ends

 6

6.0 CALCULATION MODULE

6.1 Physics Engine

Physics class handles the movement of the ball inside the maze. Physics class is

activated in a set time interval (16ms). Collision handling, force and kinematics

calculations of the ball are all done within the Physics class. Parameters of the world are

gathered from the GameData class (GDC) object. Newly calculated values are returned

back to the GDC object every time Physics Class finishes. The block diagram of the

Physics Engine is shown in Figure 6.1, and each function will be briefly discussed below.

Constructor

 Figure 6.1 Block Diagram of the Physics Engine

CPlaneDect()

This function keeps track of all the planes that are not passable by the ball. These planes

are called “Collision Planes” and are stored as CollisionPlaneClass objects.

HeadonCollision =false

 Calculate ()

GroundTouch()

NetForce() NextPhase()

intersectCalc()

CollisionHandle() CPlaneDect() return to main

HeadonCollision =true

 7

The CplaneDect function loops through the maze array generated by the GameData class

and store all of these collision planes in a local array. The array is unchanged throughout

the entire runtime of the game.

Each of these CollisionPlaneClass object consists of a normal vector of the plane, and

also the mid-point of the plane.

Calculate ()

The calculate function rotates the gravity vector by the conjugate of the rotation

quaternion of the maze.

Instead of having a constant gravity vector with a moving maze, the Physics class treats

the game world as having a moving gravity vector with a constant maze. The reason for

this is that it would take a lot more resources to keep track of all of the collision plane

positions and normal vectors if the maze was moving. By keeping the maze motionless,

we only have to generate the collision plane array once for every game session. Although

the Physics class treats the maze as stationary, to the player of the game, the maze is

moving according to their mouse input. This illusion is done in frontEnd and Render

class, and will be described in greater details in their respective sections.

Since the rotation of the maze is done by quaternion matrix transformation of the

modelview matrix, the gravity vector is rotated by the maze’s rotation quaternion

conjugate so that it would always appear to the player that the gravity points downwards

(negative Y direction).

GroundTouch()

This function first determines if the ball is currently being pulled against a surface by

gravity, if it is, it will then determine the normal force vector of the ball. The

 8

RayToPlane() function is used here to determine if any point on the surface of the ball is

touching a collision plane by passing in a vector that has the length of the radius of the

ball and is pointing in the gravity’s direction. If no touching point is found, the ball is in

the air. If a touching plane is found, a normal vector is obtained. This procedure is

repeated 3 times for each of the X, Y, Z components. This covers the cases where the

ball is concurrently touching multiple planes (possible maximum number of contact

planes is 3, but this function will work with any number of contact planes). The XYZ

components are added together in the end of the function and magnified to the magnitude

of the gravity vector to obtain the normal force vector.

NextPhase()

This function handles all of the kinematic calculations of the ball. It computes the

acceleration, the velocity, the resulting displacement and the final location of the ball

assuming that no collision will happen. The kinematic formulas we used in this function

are listed below:

a = Fnet

m
Vnext =Vprevious + a ⋅ dt

d = 1
2

a ⋅ 2(dt)+Vprevious ⋅ dt

intersectCalc()

This function is responsible for detecting head on collisions. It takes in the current

location of the ball, the after location of the ball computed in “NextPhase” and the

collision plane array to determine if a head on collision will happen before the ball gets to

its new location. This function loops through all entries of the collision plane array and

uses RayToPlane() to detect head on collision. If multiple planes are found to be

intersecting with the ball’s path, only the one closest to the ball will be considered. We

will have a collision.

 9

CollisionHandle()

After a collision has been detected, this function computes the resulting velocity direction

using reflected ray principles. Energy conservation is not being fully modeled in our

program. Instead, whenever there’s a collision, the magnitude of the velocity will be

dampened by a preset ratio (~0.3 - 0.6). The results have proven that this method does

indeed mimic very well the Law of conservation of Energy observed in reality. This

function also notifies Render of a collision, so that a sound effect can be played, and it

also determine if the ball hits the exit point, so that the proper actions can be taken

accordingly.

RaytoPlane()

This function takes in the current ball location vector, Ball displacement vector and a

CollisionPlaneClass object to determine if the Ball’s displacement path will intersect with

the given plane (i.e. collision). This is modeled by a simple linear algebra mathematical

problem that can help determine if a line created by two distinct points are intersecting a

given plane. If a collision is determined to be happening, this function also calculates

which point on the given plane does the displacement vector of the ball intersects with.

Figure 6.2 Ray to Plane Collision Detection

 10

CollisionPlaneClass()

CollisionPlaneClass is a class object that represents a non-passable finite plane. A

plane’s normal vector, four vertices, and center point are stored in each of these objects.

Its constructor takes in all four vertices of a given plane and uses linear algebra and

simple mathematics to calculate its normal and center point. Vertical planes and

horizontal planes are treated differently when calculating normal vectors because of the

difference of the Z-axis polarity in OpenGL and linear algebra right-hand-rule. This class

object is created solely to serve the purpose of collision detection in the Physics engine.

IsOnPlane()

Due to the mathematical model being used in Physics class to determine a ray to plane

intersection assumes that a plane is infinite in area, this function is created to help

determine if an intersection point calculated in Physics Class is really lying within the

bound of a particular collision plane. The method to achieve that is to first connect the

calculated collision point with the center of the given plane to form a line. Then using

simple linear algebra, we check if there’s any intersection between that line and any one

of the four bounds of the given plane. If no intersection is found, that means the collision

point lies within the bound of the given plane. At such point, the function returns true,

otherwise, if an intersection is found, returns false.

6.2 Math Module

6.2.1 Quaternion

The game play of our game requires extensive 3 dimensional control freedom using the

mouse. Consistent and intuitive control of the cube is critical for the game. Originally,

we translated mouse motion into Euler angle representation and rotated the cube with a

simple rotational matrix and modelview matrix multiplication. However, such method

 11

presented a problem generally known as the Gimbal lock, where one of the three

rotational axis would be changed when the cube is rotated more than 90 degrees around

another rotational axis. Such problem greatly affected the intuitiveness and consistence

of the game play. To address this problem, we adopted the quaternion rotation method.

When we’re using quaternion to apply rotation to the cube, the rotational direction for

each axis is constant regardless of the orientation of the cube. In the Quaternion class,

we’ve defined a quaternion object and a few quaternion specific mathematical operations.

With the help of the Vector class, we’re able to deliver intuitive cube controls from

mouse inputs.

6.2.2 Vector Class

This class defines a 3 dimensional vector with X, Y and Z components. It is greatly used

in the Physics engine to describe three-dimensional objects, positions and directions.

This class also contains all of the useful vector mathematical operations such as the cross-

product, dot-product and magnitude calculations.

 12

7.0 FRONT END

7.1 Game Display

7.1.1 Menu

The menu option is selected whenever the player presses the key 'm'. The game is then

paused and a menu appears on the screen. The options in menu are:

o select background music

o mute

o volume control

o ball style

o restart

o resume

o quit

When the menu option is selected, the mouse is no longer controlling the cube in game

play but rather the menu selection. This is done by checking if the menuIsOn variable in

frontend is selected. The menu was made click-able with the mouse by using OpenGL's

selection render mode. During the creation of each textured menu object, an ID is passed

to that object with the use of glLoadName(GLuint ID). This allows us to uniquely

identify the rendered item. In the mouse function, the glSelectBuffer(GLsizei size,

GLuint* buffer) function is used to create the selectlist buffer stack. Then, whenever a

rendered menu object is clicked, it's object ID is passed into the selectlist stack. The

integer 'nhits' keeps track of how many clicks have occured. Once 'nhits' are detected, a

for loop is used to check which object has been clicked. The object selected's ID during

the click 'i' can be found in the selectist at the 4*i+3 position. This ID is then passed to

switch cases that determine which follow through with the actions necessary to satisfy the

selection chosen. The details of how audio is controlled can be found in the Audio

 13

section of the report. The ball style is changed by changing the material characteristics of

the ball object. Resume menu selection is satisfied by changing the menuIsOn variable to

not true. Restart menu option is implemented to go back to the initial game sequence.

Quit menu selection exits the game program.

7.1.2 Rendering

In our project, the maze has multiple layers which consist of many blocks. There are four

choices for the blocks, the solid block, the empty block, the hole, and the trap. The

design of the maze is first stored in a text file, and imported into the game each time

when the game is being executed. To translate the block design into three-dimensional

maze, we first obtain the pre-set levels of the height, width, and length from the Game

Engine, and use for loops to stack different types of blocks according to the maze text

file. It is noted that we draw our blocks in a display list to improve our game speed. By

putting the code between display list start and end, the code will only be compiled once

and can be reused every time we call the list. If display list was not used, we would have

needed to configure the pipeline, push the data, and obtain the binary value for draw each

block.

For the ball to be visible to the player while moving the ball, the layers that are one level

higher than the ball position or higher are set to be transparent. The transparency is set

by using alpha bending, which is setting the alpha value to be 0.05. Also, because our

cube can be rotated in any direction in any degree, we use the normal vector of the top

plane to detect whether the cube is up-side-down. When the cube’s top plane is facing

downward, the layers that were originally one level lower than the ball position or lower

are set to be transparent.

7.1.3 Texture

 14

The LoadTextureRaw(const char * filename, int wrap) from

http://www.nullterminator.net/gltexture.html was used. This function takes in a .raw file

that is 256x256 and loads it into a buffer, and sets the attributes of the texture. By

binding a texture, we can choose which texture is used. When the game is ended, the

textures are deleted.

In this game, textures are used for the background, menu screen, and cube. The

background is loaded and not changed. For the menu screen, each button has a unique

texture mapped to it. Since the cube is rendered block by block, it was simpler to texture

each block individually. To keep the appearance of the cube's surface continuous, the

texture of the blocks were created so that the opposite edges of the texture would match

(Figure 7.1) when tiled.

Figure 7.1 Textures of the Blocks vs. Seamlessly Tiled Version of the Texture File

The textures used in the game are from images online that have been edited and

converted to .raw format using Photoshop.

 15

7.2 Mouse Control

The maze’s movement is fully under the control of the mouse. The maze can be rotated

in 3 degree of freedom. Combined with mouse clicks, the 2D motion of the mouse can

be translated into 3-dimensional motion of the cube.

Left Mouse Button held down:

Forward and Backward motion of mouse is translated into pitching motion of the cube.

Left and right motion of the mouse is translated into rolling motion of the cube.

Right Mouse Button held down:

Forward and Backward motion of the mouse is also translated into pitching motion, while

left and right motion of mouse is now translated into yawing motion of the cube.

glutMouseFunc, glutMotionFunc and glutPassiveMotionFunc are used to achieve the

mouse control scheme. glutMouseFunc is used to determine which of the two mouse

button is being pressed. glutMotionFunc is used to track the mouse’s position while a

mouse button is pressed, and the displacement of the mouse cursor is translated into

rotation degree. glutPassiveMotionFunc tracks the position of the mouse while NO

BUTTON is pressed. The purpose of this is so that while not attempting to rotate the

cube (i.e. no mouse button pressed), the user can still freely move the cursor around the

screen.

7.3 Audio

The audio used in the game was loaded using the OpenAL API. OpenAL objects consist

of a Listener, a Source, and a Buffer. There can be multiple buffers and sources. The

buffers contain the audio data (.wav format) and are attached to a source. The source is

 16

the object that actually emits the sound. The listener represents the position where the

sounds are heard.

As openAL has the capabilities to create multiple sources that hold multiple buffers, the

listener is able to hear more than one audio clip at one time. The background music and

sound effects files were all loaded as buffers attached to different sources so that we

could control the behaviour of each separately. This allows us to create a game that has

many different audio situations; for example, the background music continues playing

when an event driven sound effect, such as the ball colliding with the wall, is activated.

For this game, 8 sources were used for the following sounds: rolling, collision, game

over, game win, menu click, menu open, background music normal tempo, and

background music fast tempo.

Some of OpenAL's features are that it allows the programmer to set the location, velocity

and orientation of the listener as well as set the gain, looping option, pitch, location and

velocity of the source. The listener's location, velocity and orientations and the source's

pitch, location and velocity are all initialized when the game is started. Depending on the

current situation, different sources were activated to play. During normal game play, the

background music normal tempo source was set to loop, and rolling and collision sources

were triggered by the balls current action. When the timer reaches only 10 seconds left,

the background music fast tempo source is activated instead of the normal tempo. When

game end occurs, either the game over source or game win source is activated. For the

duration of the entire game, menu can be opened. When it's open, menu open source is

played once, then for each time a menu option is clicked, menu click source is played.

Inside menu, extra features were added such as the option to change the volume or music

being played. The volume of the background music could be changed by changing that

particular sources gain value lower than it's current value. Also, different background

 17

music selections were made possible by allowing the buffer associated with the

background music to be changed.

In our game, OpenAL worked well in playing audio files for music and background

music. However, a few issues arised during implementation. One issue that came up was

that only .wav files could be used and as such only files of relatively low quality could be

used. If .wav files of high quality or long length were used, the size of the .wav would be

high. This was acceptible as there were only a few lengthy files. The other issue was

that the installation of OpenAL was not very many well documented on the sources that

were found online. In the future of the game however, this is not an issue as eventually

we were able to install OpenAL on Windows OS and it is already installed on Mac OS.

 18

8.0 RTU

The Real-time Tweaking Unit (RTU) is a function that provides developers a more

convenient way to change the values for all adjustable parameters, such as camera

position, light parameters, ball positions, gravity, and etc. The developers can key in the

variable names they would like to monitor into the code, and use arrow keys to adjust the

values while the game is being executed. The real-time response from the RTU enables

the developers to find the best solution for the game setting without repeating the tedious

trial-and-error work, such as going back to the code, increasing the value by 1, pressing

save, re-compiling and re-running the program to monitor the effect. It is a very helpful

tool for game development at the finishing stage. After using the RTU for tweaking, the

developers will remove it from the final design for demo purpose. Figure 8.1 shows the

look of the RTU.

Figure 8.1 Sample of the Real-time Tweaking Unit Display

In our game, we implement the RTU by using function renderBitmapString to show the

variable names and the pointers that point to the desired variables to be changed.

Function glViewport is used to separate the RTU from the real game display. Special

keys, the arrow keys, were set to point to different variables to adjust them. For example,

pressing DOWN would change the variable to be changed from “eye_x” to “eye_y” in

Figure 8.1, and pressing LEFT would decrease the value of “eye_y” by 1 while pressing

“right” would increase the value by 1.

 19

9.0 FUTURE IMPROVEMENT

The following components were discussed and implemented to add to overall game

processing efficiency. However, due to unforeseen circumstances, it is deprecated. These

components are included within this report for completeness.

9.1 Multi-threading

To improve performance of the game, each component of the game is executed on

different threads. Posix Pthreads API was used because of its simple interface and its

portability. Using threading means that each of the components of the game has to

internally take care of multithreading and resource sharing. The components also has to

be designed around the concept of multithreading. Each of the components are already

quite difficult to design and implement without the extra burden of multithreading. A

solution to this is to encapsulate the logic of multithreading within one component, and

all other systems only needs to implement the interfaces to the multithreading component

to be able to run on different threads.

ThreadClass contains all the logic of threading such as creating threads, suspending

threads, resuming threads as well as terminating threads. ActiveClass inherits from

ThreadClass to act as the interface for other components. ActiveClass also provides an

abstract function that each component must override to execute as a thread.

9.1.1 ThreadClass

ThreadClass was designed to act as an all in one package that allows any class to run as

multithreaded application while providing the ability to suspend, resume and terminate it.

Unfortunately pthread does not provide a means of suspending and resume threads other

then using conditional wait variables. To solve this, a special function has to be written so

 20

that it runs on its own thread, and it will continuously call user’s intended threading

function. This design allows external threads to suspend the currently executing thread by

the use of conditional wait variables. In our ThreadClass, this special function is called

ThreadRunner. As the name suggests, its purpose is to run the user’s intended thread

function.

ThreadRunner contains an infinite loop that continuously runs user’s thread function until

user chooses to quit via return value or some other means. Within the loop, the function

will check whether or not to suspend the thread.

9.1.2 ActiveClass

ActiveClass acts as an interface between other components to ThreadClass. ActiveClass

contains an abstract function threadFunction that each of the inherited component must

implement. The inherited components will put all of their logic within this function. The

function pointer of threadFunction is then passed into ThreadClass to execute as a thread.

Because the function pointer of threadFunction is passed into ThreadClass through the

constructor, a wrapper around threadFunction has to be created because it is pure virtual.

The wrapper’s purpose is to act as a non pure virtual function so that the pointer of the

function can be passed into base class. Within the wrapper, it just calls the original

threadFunction.

9.2 Multi-threading Communication

In a multithreading environment, a particular thread may not be aware of other sister

threads that are created by the parent thread. In order for the sibling threads to know of

each other and to communicate with each other, a dispatcher should be used. The

dispatcher’s purpose is to deliver messages that it receives from other systems to the

destination systems.

 21

9.2.1 Design

As stated above, sibling threads are not aware of each other when it is running. To solve

this, each of the threads only needs to know of the dispatcher, and let the dispatcher take

care of the actual message delivery. Some messages may have multiple recipients as well

as different priorities. The approach we chose to take to solve this problem is to have one

single dispatcher datapool that receives messages from all external systems. The

dispatcher would sort and prioritize the messages for each external system concurrently,

and then finally send the message out.

9.2.2 Dispatcher

The dispatcher itself is a thread running concurrently with other systems in the game.

However dispatcher also contains multiple threads within it to achieve maximum

efficiency. There is one single thread called Parent, and multiple Child threads for each of

the external systems.

The dispatcher thread is responsible for creating and killing off the parent and child

threads. The parent thread is responsible for testing if there are any messages sent from

external systems to the dispatcher. If there are messages, it would copy the message to

the appropriate child threads for sorting and prioritizing.

The children threads would sort the messages according to priority. However there are

potential cases where high priority messages would keep on interrupting previous

messages resulting in those messages with less priority not getting executed. To combat

this issue, we also added a timestamp to each message.

 22

The messages are first sorted by priority with higher priority at the front of the queue.

Within messages with same priority, the messages that are older are moved closer to the

front of the queue. This algorithm ensures higher priority messages will be executed first

and message order will not keep on being interrupted by higher priority messages.

9.2.3 Messaging System

As mentioned above, Datapools are used as container to store messages in a queue.

Datapools has the ability to provide locking mechanisms for concurrent access between

multiple threads to shared resources. The datapools are declared “global” to the threads

accessing it because threads share same memory space.

Datapools contain a queue of messages. From the description before, each of the

messages has to contain a priority as well as a timestamp for sorting purposes. Below is

the schema of the messages.

Class

{

 Sender,

 List of Recipeints;

 Priority,

 TimeStamp;

 Message

}

The message class is declared as a template class because many different types of

messages may need to be passed from one system to the other.

 23

10.0 CONCLUSIONS

Overall, the game achieved what our group envisioned to do from the beginning. The

game included all the playable features such as game winning and losing scenarios as

well as mouse control of the maze and real world physical simulation. The success of the

project is primarily a result of our ability to follow through with an iterative software

development cycle. Another major factor in our success is the result of our awesome

teamwork. If more time were given, a lot more visual effects could be added to improve

the overall effectiveness of the game. The improvements mentioned in previous section

could also be fully realized.

 24

11.0 REFERENCES

[1] Hodges, Brian. "OpenGL Texture Tutorial." [Online]

http://www.nullterminator.net/gltexture.html, August 25, 2001.

[2] Olson, Curtis. "Flight Gear Installation Guide." [Online]

http://www.flightgear.org/Docs/Tutorials/fg_cygwin/fgfs_cygwin.htm#_Toc117306445,

October 2005.

[3] Vine, Norman. "Guide to cyg_openAL."

http://www.vso.cape.com/~nhv/files/cygwin/cyg_openAL.tgz, June 14, 2005.

[4] Winder, Lee. "A Guide To Starting With OpenAL."

http://www.gamedev.net/reference/articles/article2008.asp, October 23, 2003.

[5] "OpenAL Tutorial." http://www.edenwaith.com/products/pige/tutorials/openal.php,

November 10, 2005.

[6] "OpenAL." http://www.openal.org/, December 12, 2006.

Sherrod, Allen. "Ultimate Game Programming."

http://www.ultimategameprogramming.com/zips/Gl_Selection.ZIP, October 2004.

[7] Void, Sobiet. “Quaternion Powers.”

http://www.gamedev.net/reference/articles/article1095.asp,

February, 2003

[8] “The Matrix and Quaternion FAQ, Version 1.4”

http://www.flipcode.com/documents/matrfaq.html#Q54, December, 1998

 25

[9] “OpenGL:Tutorials:Using Quaternions to Represent Rotation”

http://gpwiki.org/index.php/OpenGL:Tutorials:Using_Quaternions_to_represent_rotation

[10] Bobick, Nick. “Rotating Objects Using Quaternions”

http://www.gamasutra.com/features/19980703/quaternions_01.htm, July, 1998

[11] “Little Quaternion Example”

http://www.idevgames.com/forum/showthread.php?p=134470, September 25, 2007

[12] Funkhouser, Thomas. "Ray Casting – Princeton University CS 426 Lecture 17”

http://www.cs.princeton.edu/courses/archive/fall00/cs426/lectures/raycast/sld017.htm,

2000

[13] “Sphere/Plane Intersection: Collision Detection Tutorial”

http://www.gamespp.com/algorithms/collisionDetectionTutorial01.html

[14] Owen, Scott. “Ray-Plane Intersection”

http://www.siggraph.org/education/materials/HyperGraph/raytrace/rayplane_intersection.

htm, June 2, 1999

[15] “Collision Detection”

http://www.edenwaith.com/products/pige/tutorials/collision.php, October, 2003

[16] “Posix Threads Programming”

https://computing.llnl.gov/tutorials/pthreads/, April 2, 2008

 26

	 LIST OF ILLUSTRATIONS
	 LIST OF ABBREVIATIONS
	1.0 INTRODUCTION
	 2.0 PURPOSE
	 3.0 GAME DESCRIPTION
	 4.0 GAME ARCHITECTURE
	 5.0 GAME ENGINE AND GAME LOGIC
	 6.0 CALCULATION MODULE
	6.1 Physics Engine
	6.2 Math Module
	6.2.1 Quaternion
	6.2.2 Vector Class

	 7.0 FRONT END
	7.1 Game Display
	7.1.1 Menu
	7.1.2 Rendering
	7.1.3 Texture

	7.2 Mouse Control
	7.3 Audio

	 8.0 RTU
	 9.0 FUTURE IMPROVEMENT
	9.1 Multi-threading
	9.1.1 ThreadClass
	9.1.2 ActiveClass

	9.2 Multi-threading Communication
	9.2.1 Design
	9.2.2 Dispatcher
	9.2.3 Messaging System

	 10.0 CONCLUSIONS
	 11.0 REFERENCES

