
 1

EECE 478

Game Project

Grigoris Eglesos (37465051)

Karl Burkat

Ting Yun (86768017)

York Pan (84258045)

April 10, 2008

 i

Abstract

In order to demonstrate the theories and skills learned in our ECE 478 class, we were

split into teams and told to design a game from “scratch” using OpenGL, glut or SDL.

This game must demonstrate basic understanding of the theories learned in class, and also

attempt to include some of the more advanced techniques that were discussed.

This report will detail the design process from initial ideas to implementation and testing.

It does not cover background material, which is simply the course material. It is

recommended that the reader have some knowledge of OpenGL and computer graphics

theory before reading this report.

 ii

Table of Contents
Abstract..i

Table of Contents ..ii

List of Abbreviations..iii

1.0 Introduction...1

2.0 Game Mechanic ..2

2.1 Inspirations..2

2.2 Modification..2

2.3 Considerations...3

3.0 Character Model..4

3.1 Concept ...4

3.2 Implementation..4

4.0 Interaction ...5

4.1 Perspective ..5

4.2 Movement ...5

4.3 Projectiles..6

5.0 Landscape ...7

Appendix .. 10

 iii

List of Abbreviations

OpenGL Open Graphics Library
GLUT OpenGL Utility Toolkit
SDL Simple Direct Media Layer
TD Tower Defense
RTS Real Time Strategy
FPS First Person Shooter

 1

1.0 Introduction

Our team is comprised of the remnants of the class after all the teams were formed, so the

first challenge we encountered was trying to find a genre of gaming that everybody was

familiar with. Familiarity brings the advantage of a unified design vision which we would

need if we were to create an original game both visually on par with the larger groups, as

well as being simple and fun to play.

In this report, the major components of the game will be separated and the progress made

on them will be described independently. The design phases of conception,

implementation, and testing and modifications will be covered logically for each of the

components. In these sections, this report will discuss success requirements for each

component, the steps taken to implement the solutions, document the results of testing

and solutions to problems discovered, and will analyze the results. For brevity sake, terms

explained in the course material will be assumed to be understood by the reader.

As of the writing of this report, the game has not been completed, and progress is

ongoing. For the demo, we will have a working game with a completed feature set, and

when it is complete, there will be an addendum to this report detailing the aspects that

were completed in the intervening time.

 2

2.0 Game Mechanic

2.1 Inspirations

Initial ideas included some tower defense games1, a Scorched Earth / Gunbound / Worms

style game2, and some simple RTS game ideas. Keeping in mind that the game must meet

the requirements of integrating the third dimension into gameplay aspects somehow, we

tried to modify the ideas to incorporate the third dimension either strategically or as a

mechanic.

In the case of the TD game, players would need to build according to hills and valleys to

try and herd the “monsters” around the map to maximize the amount of time the player’s

towers have to shoot at them.

The shooting game idea incorporated the 3rd dimension rather easily as there would

simply be a second angle for the players to align to determine direction as well. To keep

that idea from being trivial, we would set a random wind vector to throw off the player’s

aim. At this time, the game we had envisioned was still a turn based game, in the spirit of

the games which inspired us.

We were unable to come up with a method of effectively integrating the 3rd dimension in

an RTS game, so we discarded that idea.

2.2 Modification

Our idea of a 3d Scorched Earth was the most appealing to the team members so we went

with that as an initial design target. For this type of game, we would need a character

model of some kind, a world, some kind of collision detection, and a projectile

mechanism. We spoke to Dr. Iverson and got his input on the idea and also to get a sort

of green light on the project before we devoted too much time into the idea which may or

may not be badly received at demo time.

 3

With Dr. Iverson’s input, we decided to eliminate the turn based aspect and go with a real

time system.

2.3 Considerations

It was around this time that there was some debate as how the game would present itself,

as in whether there would be an AI controlled opponent, or whether it would be online

with another player. With a little research, we found some prebuilt libraries that would

handle most of the net code, so we decided to rule out an AI controlled opponent in favor

of player vs player interaction.

Later on in development, we were focused so heavily on other aspects of the game; we

realized we had neglected the networking portion for too long. After bringing this up at a

weekly meeting, we pushed network play off the schedule until we could finish building

the world and have an interacting character in it. In the worst case scenario, where we did

not have any time to implement networking at all, we would simply set two viewports

side by side as in multiplayer console games and set the controls on the keyboard for two

players.

 4

3.0 Character Model

3.1 Concept

Originally the game we envisioned was heavily focused on the gameplay and not the

characters that the players are controlling. The characters could be tanks, or soldiers, or

even a kid throwing a snowball. While the actual model was not clear, the process which

we would build the model was mostly certain though. We would need to create a skeleton

on which we could lay a skin of our choosing.

3.2 Implementation

For the skeleton we used OpenGL and created series of lines drawn straight down, at the

local origin and then rotated and translated each of them to the proper position to form a

stick figure. What this provided us was both a center point for collision detection

calculations, and basis on which we could overlay the skins. The separately drawn stick

figure also gave us the benefit of being able to animate the limbs independently and

therefore also the skin, while remaining conceptually simple.

For the skin, we had originally tried to build a model using OpenGL and GLUT

primitives; however, this proved to be very time consuming and made the math fairly

complex. We spoke with other groups to see where others were standing with the same

issue, and we came to the conclusion that we could use an external program to create the

skins we needed. We started trying to build models using 3dStudio Max and importing

them into the game world. The models looked infinitely better than the ones we tried to

draw using primitives and it was much faster as well. With the inclusion of some extra

code, we were able to import the models into our game, but not without having to debug

a nightmare of linker errors. After solving the linker error problem, the skins bound to the

skeleton with no problem. The entire character moves with glTranslate and glRotate

functions.

 5

4.0 Interaction

4.1 Perspective

We did not know what kind of view we wanted at first, whether it be the classic FPS type

of perspective or a third person perspective3. So to begin with, we created a first person

camera system in GLUT, as it seemed the easiest at the time.

4.2 Movement

The initial first person3 system used polar global coordinates with keyboard callbacks to

turn and move the camera naturally. This worked quite well, given the inherent keyboard

callback limitations of GLUT.

The next task was trying to get link the movement of the camera and the model. The first

problem that we encountered with this task is that gluLookat moves the camera

differently than glRotate does. Trying to brute force coordinate the movement of the

camera and the objects did not go very well, the mathematics were complicated and hard

to keep track of.

Around this time, the team decided to switch the camera perspective from first person to

third person, to better show off the models we were developing in 3dStudio Max. Trying

to convert the camera system to 3rd person view in polar global coordinates while trying

to synchronize the movement of the model was becoming far too time consuming, so we

decided to redo the entire camera system to match the skeleton drawing system. That is,

to use a simplified local coordinate system instead to take care of translations and

rotations. While conceptually harder to grasp at first, it pays off when trying to coordinate

more complex movements at once, as the mathematics are just much simpler than

compared to a polar coordinate system.

 6

4.3 Projectiles

The first projectile system we tried to implement involved a simulated parabolic arc with

user inputted variables such as lateral and vertical angle and launching force. Of course

these would be worked into the controls of the game, and not as simple numbers to be

inputted. The implementation got as far as the theoretical formula for velocity as a

function of (arbitrarily created, for this purpose only) time and initial velocity.

Once the force vector is broken down into component vectors with the angle information,

the calculations for positioning of the projectile at a given time works out like this:

 Zposition = (Zspeed*time + (g*time2)/2);

Xposition = Xspeed*time;

Where the Z position represents altitude and X position represents distance traveled from

the starting position, aka the player. The vertical component of the projectile vector is

under constant acceleration downwards while the horizontal component is a constant

velocity. Time is simulated for the duration of this calculation. The calculation continues

until the vertical position reaches the height of the plane, or if a collision is detected with

an object.

It was not brought to full implementation before the time of the writing of this report.

 7

5.0 Landscape

5.1 Intention

During preliminary planning phases, we had envisioned a procedurally generated

landscape that would be pseudo random generated for every new instance of the game.

The area which the player is allowed to move around and interact in would be a hilly

open area dotted with trees and rocks.

5.2 Realization

Getting the terrain generator to work properly proved to be more complicated than first

anticipated. The theory works by first generating a 2 dimensional array of floating point

integers, then using glTexCoord to bind the floor to those points. After having spent too

much time already on a non vital feature, we decided to shelve this particular feature for

now, and go with a flat terrain.

5.3 Skybox

One simple addition that makes a world of difference was the addition of a skybox.

Basically it is an extremely large box which encompasses the entire playing area. A sky

texture is then applied to the inside of the box so that it would give the illusion of look

out over a world rather than a plane in an empty space. One handy tutorial that helped us

achieve this can be located here

 8

6.0 Work Break Down
Our group change log is the constant email communication between the group members.

Every time there was a change whether it be small or large we sent an email to the group.

As a result, we can go back and find the older iterations of code that we sent out, however

due to the many parallel versions of the game not to mention the different fragments that

we wrote, it is extremely messy to try and write a single log for it all. So rather than

showing individual logs, we have amalgamated the individual progresses into a single

visual representation. These dates are an approximation as the actual border between

tasks is a little fuzzy. For ease of viewing, the chart will be included as a file as well as on

the report.

 9

 10

Appendix
1. The premise of a tower defense game is simply to keep the monsters or “creep”

that emerge from a starting gate from reaching the goal of a map. The map may

be as simple as a large open area or it may be complex, but there is always at least

one starting gate and one ending gate (there have been some derivations from this

formula, but for the most part it has been done this way). The creep will take the

shortest open path to the exit gate, so the player must build “towers” that shoot at

the creep in such a way as so the creep are killed before they reach the exit. If

there is no open path, the monsters will attack the nearest tower, destroying it, but

otherwise, the creep will not attack. The logical strategy is to construct a maze of

towers to maximize the creep path around the towers so the towers have more

time to kill the creep.

2. Scorched Earth, Gunbound, and Worms are games where the player attempts to

destroy the other player first. Each player controls an artillery piece or character

and has control over force of projectile launch and angle of fire. The players take

turns firing at each other with the idea that with each shot, their aim gets better

until they are able to hit their opponent. Random elements such as wind and

terrain make this task less than trivial. If the players are mobile then it adds

another layer of strategy to the gameplay.

3. First person and third person perspective refers to the placement of the camera in

games. In a first person perspective, the camera is placed where the character’s

eyes would be, giving the player the illusion of being in the game. From a story

telling point of view, this perspective is used when the player’s empathy for the

character is prioritized above other gameplay aspects. From a simulation point of

view, this perspective most closely resembles the feeling of driving a car, flying a

plane, or even just the illusion of “belonging” in the game world. Third person

 11

perspective positions the camera a small distance behind the player in the game.

This can apply to many different types of characters, to use the previous example,

behind a car or plane, or behind a person. The advantage this view brings is a

greater awareness of the player’s surroundings. As screens are only so wide,

images beyond the field of view cannot be rendered at all, where as in reality,

humans rely on peripheral vision. Third person perspective simulates this by

showing objects and surroundings that otherwise be in the character’s peripheral

vision, but cannot be rendered due to physical constraints.

