

©2003, <u>Lee Iverson <leei@ece.ubc.ca></u>

UBC Dept. of ECE

Environment Model

Terrain and static elements

- 2D+ spatial organization
- Only small changes

Therefore:

- Can preprocess for optimization
- Use quad/oct-trees or BSP trees
- Object volumes compared to tree to determine possible collisions

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE Object/Environment Collisions

- Use spatial partitioning to simplify
- Identify possible collisions of dynamic object with static environment
 - Dynamic sphere vs. static plane
 - Dynamic box vs. static plane

©2003, Lee Iverson <leei@ece.ubc.ca>

UBC Dept. of ECE

Kinematics: T and R

Kinematics models the motion of objects Objects have

- Center of mass $\mathbf{r}_{_{cm}}$
- Principle axes \mathbf{R}^0 , \mathbf{R}^1 , \mathbf{R}^2
- Velocity $\mathbf{v} = d\mathbf{r}/dt$
- Acceleration $\mathbf{a} = d\mathbf{v}/dt$
- Angular velocity $\mathbf{\omega} = d\mathbf{\theta}/dt$

