
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
©2003, Lee/verson leei@ece.ubc.ca
Game Physics

Collision Detection
Dynamic Simulation

- Object/Environment
- Eqns of motion
- Differential eqns
- Optimization
- Projectiles
- Recursive dimensional
- Friction clustering

Chap. 8 Math for 3D... Chap. 10\&11
Collision Detection
Cee verson deeierecaubcar
Determine time and location of collisions,
given:

- Moving objects
- Stationary environment

Collision Detection

Determine time and location of collisions, given:

- Moving objects
- Stationary environment

Object Models

Objects are collections of primitives

- Spheres
- Boxes
- Planes

Objects are articulated and hierarchical \qquad

- Nested bounding volumes
- Transform chains
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

```©2003, Lee Iverson <leei@ece.ubc.ca>

\section*{Environment Model}

Terrain and static elements
-2D+ spatial organization
- Only small changes

Therefore:
- Can preprocess for optimization
- Use quad/oct-trees or BSP trees
- Object volumes compared to tree to determine possible collisions

\section*{©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE \\ Object/Environment Collisions}
- Use spatial partitioning to simplify
- Identify possible collisions of dynamic object with static environment
- Dynamic sphere vs. static plane
- Dynamic box vs. static plane
```

@2003,Lee Iverson leei@ece.ubc.ca UBC Dept. of ECE

```

\section*{Sphere vs plane}

Plane = any surface with constant normal
- Move plane by \(r\) and intersect w/point

©2003, Lee Iverson <leei@ece.ubc.ca>

\section*{Box vs plane}

Determine effective radius \(r_{\text {eff }}\) of box
- Box defined by vectors R, S and T

©2003, Lee lverson sleei@ece.ubc.ca>
Object vS Object \begin{tabular}{l} 
UBC Dept. of ECE \\
Two moving objects with \(\mathbf{V}_{1}\) and \(\mathbf{V}_{2}\) \\
\(=\) Stationary object \\
\(\quad+\) Moving object with \(\mathbf{V}=\mathbf{V}_{1}-\mathbf{V}_{2}\) \\
\(\Rightarrow\) Only need moving + stationary
\end{tabular}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Sphere vs Sphere}

Two spheres \(\left(\mathbf{P}_{1}, r_{1}, \mathbf{V}_{1}\right)\) and \(\left(\mathbf{P}_{2}, r_{2}, \mathbf{V}_{2}\right)\)
- Find \(t\) where \(\left|\mathbf{P}_{1}(t)-\mathbf{P}_{2}(t)\right|=r_{1}+r_{2}\)
```

 4"4-9|4-ᄑ||
    ```




©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE
Rigid Body Motion
Math for 3D Game Programming
Chap. \(10 \& 11\)

Chap. 2.2
©2003, Lee verson deei@ece.ubc.caz
Kinematics: T and R
Kinematics models the motion of objects of ECE
Objects have
- Center of mass \(\mathbf{r}_{\mathrm{cm}}\)
- Principle axes \(\mathbf{R}^{\mathbf{0}}, \mathbf{R}^{1}, \mathbf{R}^{2}\)
- Velocity \(\mathbf{v}=d \mathbf{r} / d t\)
- Acceleration \(\mathbf{a}=d \mathbf{v} / d t\)
- Angular velocity \(\omega=d \boldsymbol{\theta} / d t\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
```

@2003,Lee Iverson leei@ece.ubc.ca
UBC Dept. of ECE

```

\section*{Dynamics: F and A}

Dynamics models the actions created by application of forces
- Momentum \(\mathbf{p}=m \mathbf{v}\)
- Force \(\mathbf{F}_{\text {net }}=m(d \mathbf{v} / d t)\)
- Angular momentum \(\mathbf{L}=\mathbf{r} \times \mathbf{p}\)
- Torque \(\mathbf{N}_{\text {net }}=\mathbf{r} \times d \mathbf{p} / d t\)```

