
1

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

EECE 478

Rasterization
& Scenes

1

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Learning Objectives

Rasterization
– Be able to describe the complete graphics

pipeline.
– Describe the process of rasterization for

triangles and lines.
Compositing

– Manipulate alpha blending values for
smoothing, compositing and antialisaing.

2

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Learning Objectives
Scenes and Optimization

– Be able to create data structures for entire
scenes.

– Be able to evaluate the relative expense of
basic rendering sequences.

– Be able to use basic techniques to optimize
pipeline rendering.

– Describe and implement various scene
culling techniques.

2

3

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Vocabulary
• Rasterization
• Device coordinates
• Clipping
• Bounding box
• Axis-aligned

bounding box
• Bounding volume
• Bounding sphere

• Culling
• Back-face culling

Tesselation
• Antialiasing
• Compositing
• Alpha blending
• Scene graph

4

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Rasterization

Rasterization: Converting 2D objects to
raster or coloured pixels
– End of pipeline ⇒ frame buffer
– After clipping against canonical view volume

Model
View

Project
CVV Clipp

q

GL_MODELVIEW GL_PROJECTION

Render
Z+FB

5

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Clipping
Canonical view volume determines what

will be drawn on screen
• Throw away everything outside of CVV
• Must draw partial objects at edges

3

6

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Clipping

Canonical view volume creates
normalized device coordinates
– x,y,z from [-1,1]
⇒ window coordinates – viewport transform
⇒ screen coordinates – window transform
– convert from float ⇒ integer

7

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Liang-Barsky Clipping

Clipping lines (2D):
– Parametric form
– Order of α1, α2, α3, α4 determines clip

8

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Clipping Triangles

Clipping triangle against CVV can produce
– nothing (culled)
– triangle, quadrilateral, or pentagon

Optimize tests that can reduce total
computation
– try to find nothing first

4

9

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

View Volume Culling

Bounding box is a rectangle that
minimally encloses the triangle
– parallel to x,y axes ⇒ axis aligned
– simple to construct

• min and max of x,y coords of vertices
– if b-box doesn’t intersect CVV, then triangle

can’t!

10

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

General Volume Culling
A bounding volume completely contains some

subset of scene
– no part of contents intersects region of interest if BV

doesn’t
– find bounding volumes such that we can quickly

reject intersection of bounding volume with ROI
• Avoid need for complex intersection calculation!
• Useful for frustum culling, collision detection, …

11

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Line Rasterization
Bresenham’s Algorithm: (x1,y1) → (x2,y2)

1. For Δx = x2-x1 Δy = y2-y1 where Δx > Δy
2. Set d = 0 y = y1 x = x1

3. Until x = x2
1. Plot (x,y)
2. If Δx > 2(d+Δy) then

• d = d+Δy
3. Else

• d = d+Δy-Δx, y = y+1
4. x = x+1

5

12

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Polygon Rasterization

Start with polygon in device coordinates
Achieve four goals:

– Projection from 3D to 2D
– Hidden-surface removal
– Shading and colouring
– Rasterization of polygon

End with polygon pixels in frame buffer

13

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Rasterization Strategy
Scan Conversion

– Given color and z for
A, B, C

– Sort A,B,C by y
– Compute xl & xr for

each y
– Interpolate color and

z for left and right
– Interpolate along

each scan line C

B

A
y

xl xr

14

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Compositing
Compositing: Combining a number of

images into one
– Can be done at rasterization
– Need some way to control combination
– Easiest form is to control transparency
– Often dependent on order of drawing

sequence
Billboarding, Transparency, Antialiasing

6

15

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Alpha Blending

Alpha: Colors have fourth component
– α controls combination of colors with

framebuffer contents (per pixel)
– α is opacity (α=1 is fully opaque)
– (1-α) is transparency

16

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

OpenGL: Alpha Blending
• Three component colors RGB ⇒ α=1
• Alpha blending must be enabled
• Options for blending styles

/* Set up for standard Alpha blend */
glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA,
 GL_ONE_MINUS_SRC_ALPHA);

17

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Transparent Objects

Observations:
– Occluded by opaque objects
– Do not occlude opaque objects

Implementation:
– Draw all transparent objects after opaque
– Turn off update of depth buffer
– Retain depth buffer test!
/* Prepare to draw translucent object */
glDepthMask (GL_FALSE);

7

18

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Object Models

Object Model: Data structure to enable
storage, manipulation and rendering

• Divided into objects
– Any part of model that moves as a unit
– Articulation allows whole or parts to be

moved together maintaining relationships
• Organized for rendering and culling

19

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Hierarchical Models
• Hierarchy = tree

– Root node
– Every node has ≥0 children
– Geometry, materials at nodes
– Transforms on links
– All objects below node are affected by state at

node
• Common models can be repeated

– Directed acyclic graph (DAG)

20

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Example Hierarchy

Consider a person
– Each node has geometry
– Each link has instance transform

H

T

ll lr
srsl

ftl ftr

brbl
fl fr

hrhl

T
H bl br ll lr

fl

hl

fr sl sr

hr ftl ftr

8

21

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Shared Geometry

Whenever same shape used
– Point to same geometry (DAG)
– Instance transform allows different sizes

T
H bl br ll lr

fl

hl

fr sl sr

hr ftl ftr

b

f

h

l

s

ft

22

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Render A Node
Depth-first graph traversal
1. At node:

a. Bind material
b. Render geometry

2. For each child link
a. Push link transform
b. Recursively render node at link
c. Pop link transform

23

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Tree Data Structure: C
typedef struct {

 Material *material;

 Geometry *geometry;

 Child *child;

} Node;

typedef struct {

 Child *next;

 GLfloat *mat;

 Node *node;

} Child;

void renderNode (Node *n, State *s) {
 if (n->material) { renderMat (n->material, s); }

 if (n->geometry) { renderGeom (n->geometry, s); }

 for (Child *ch = n->child; ch; ch = ch->next) {

 if (ch->mat) { glPushMatrix();

 glMultMatrix (ch->mat); }

 renderNode (ch->n, s);

 if (ch->mat) { glPopMatrix (); }

}

9

24

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Tree Data Structure: C++
class Node {
 void push (Path *p);

 void pop (Path *p);

 Child *child;

};

class Child {
 Child *next;

 Node *node;

};

void Node::render (Path *p) {
 push (p);

 for (Child *ch = n->child; ch; ch = ch->next) {

 ch->n->render (p->extend (ch->n));

 }

 pop (p);

}

25

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Hierarchical Culling(1)
• Each node has bounding volume

– Encloses objects at and below it in hierarchy
– Computed bottom-up from hierarchy

• Derive geometric bounding volume directly
• Transform children by inverse of link transform
• Bounding volume is union of transformed children

• Change in transform or geometry must be
propagated up hierarchy!
– Best to keep shallow hierarchies

26

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Hierarchical Culling(2)

Descend through tree
Before rendering a node:

1. Check bounding volume vs. frustum
2. If outside frustum, don’t render it or

children
3. If entirely inside frustum, turn off checking

for children

10

27

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Occlusion Culling
Occlusion culling: Don’t draw primitives

that will be occluded by others
• Binary Space Partition (BSP) Trees

– Recursively partition subspaces by planes
• Portals

– Indoors with walls and windows, doorways
• Horizon Culling

– Height fields

28

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Display Lists

• Display List: Fixed, optimized sequence
of OpenGL calls.
– glGenLists(n): Creates n display lists
– glNewList(i,t): Compiles and

optionally displays (depending on t) list i
– glEndList(): Finishes list started by
glNewList

– glCallList(i): Execute list i

29

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Representing Geometry

Surface representation:
– Set of vertices, colors, normals
– Mesh of primitives using vertices
– Many vertices shared between primitives

• Can store primitives using indices of vertices

0

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

11

30

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Vertex Arrays

1. Define and activate particular arrays
– Vertex, color, normal, texture coordinate
– glEnableClientState

– glVertexPointer, glColorPointer, …
2. Call drawing primitives that take arrays

of indices as arguments
• glDrawArrays: Fixed index order
• glDrawElements: Arbitray index order

31

©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Geometric Modeling
Winged Edge:
• Array of Edges

Edge Data Structure: a
• Vertices:

– Start: X End: Y
• Faces:

– Left: 1 Right: 2
• Traversals:

– Left: b, d
– Right: e, c

