
1

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

EECE 478

Lighting, Materials

and Texture

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Learning Objectives

Lighting
• Describe the simple lighting model

• Define point light sources
• Create a lighting structure for a scene
Materials
• Define surface normals for objects
• Model surface materials

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Learning Objectives

Textures
• Describe how texture maps relate to

surface appearance

• Load texture maps into memory
• Define texture coordinates for a surface
• Give reasons to mipmap textures
• Define a mipmap for a texture

2

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Vocabulary

• light source
• specular
• diffuse

• translucent
• illumination function
• ambient light

• spotlight
• lambertian surface

• Phong model
• angle of incidence
• angle of reflection

• flat shading
• Gouraud shading
• texture map

• mipmap

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Scene Lighting

• Light source (I)

• Incident points (P1, P2)
• Surface normals (n1, n2)
• Eye point (e)

€

I

€

P n1 1,

€

P n2 2,

€

e

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Light Sources

Illumination function
– Object surface emits light
– Every surface point emits light in certain

intensities dependent on direction
I(x,y,z,θ,φ,λ)

– Consider all rays from light source (p0) to
an incident point (pi) then on to eye (e)

– RGB source: [Ir,Ig,Ib]

3

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Ambient Light

Inside rooms or outdoors
• Acts as if constant light coming from all

directions

• Ambient means all around

€

Ia ar ag ab

T
I I I= []

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Point Source

Ideal point source
• surface is single point

• light emitted equally in all directions
• intensity reduced by inverse-square law

€

I p p
p p

I p(,) ()i

i

0

0
2 0

1=
−

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Distant Source

Ideal distant source
• incident rays are parallel

– use vector as source point (p0)

• intensity is constant

€

p

I p p I p
0

0 0

0= []
=

x y z T

i(,) ()

4

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong Model

Color at point pp is determined by vectors

•• II – from light source

•• nn – surface normal

•• vv – direction to eye point e

•• rr – reflection

€

I

€

n

€

v

€

r

€

p

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong Model(2)

Color at point pp is combination of three
components

• ambient – from ambient light

• diffuse – due to scattered light
• specular – due to reflected light

€

I I I I

L R L R L R
a d s

a a d d s s

= + +
= + +

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong: Ambient

• Intensity constant over surface
• Reflected light is fraction of incident light

€

R k

k

I L k

a a

a

a a a

=
≤ ≤
=

0 1

GLfloat a[] = {
 1.0, 0.5, 0.5, 1.0
};
glMaterialfv (GL_FRONT,
 GL_AMBIENT, a);

5

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong: Diffuse(1)

• Based on Lambertian surface model
• Reflected light emitted in all directions

€

d

€

d

€

d

€

θ

€

d cosθ

€

n

€

d

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong: Diffuse(2)

• Intensity proportional to cosθ
• Cosine derived from dot product

– normalize l and n

€

R k

k

I L k

d d

d

d d d

=
= ⋅()
= ⋅()

cosθ
l n

l n

GLfloat d[] = {
 1.0, 0.5, 0.5, 1.0
};
glMaterialfv (GL_FRONT,
 GL_DIFFUSE, d);

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong: Specular(1)

• Based on Phong surface model
• Reflected light emitted by reflection

€

r

€

l

€

v

€

φ

6

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong: Shininess

Shininess specified by α in to (cosφ)α

Shininess

- 0 . 2

0

0.2

0.4

0.6

0.8

1

1.2

- 2 -1 .5 - 1 -0 .5 0 0.5 1 1.5 2

φφφφ

S=1

S=3

S=7

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong: Specular(2)

Shininess such that
– Larger values are shinier surfaces
– Values >500 are metallic

– Values >100 are “shiny” (e.g. plastic)

€

R k

k

I L k

s s
n

s

s s s

=

= ⋅()
= ⋅()

cos φ
α

α

v r

v r

GLfloat s[] = {
 1.0, 0.5, 0.5, 1.0
};
glMaterialfv (GL_FRONT,
 GL_SPECULAR, s);

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong: Complete

Total intensity of surface point
– ambient + diffuse + specular

– optionally attenuate by distance (Id,Is)

€

I I I I

L k d L k L k

L k
a bd cd

L k L k

a d s

a a d d s s

a a d d s s

= + +

= + ⋅() + ⋅()()
= +

+ +
⋅() + ⋅()()

A() l n v r

l n v r

α

α1
2

7

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong: Vectors

Four vectors determine shading
– Light vector (l) given
– View vector (v) given
– Normal vector (n) computed

– Reflection vector (r) computed

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong: Normals

Normal to surface (collection of triangles)
– Consider surface as plane

– Compute normal of triangle (p1,p2,p3)

€

n p p

n p p p p

⋅ −() =

−() × −()

0

1 1

0

Given three non - collinear points

= 2 3

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong: Reflection

Light ray reflected off surface
– angle of incidence = angle of reflection
– reflected about normal vector

– l, n, r all in same plane

€

l n n r

r l n

r l n n l

⋅ = ⋅

⋅() −

= +

assuming all are unit vectors

=

α β

2

8

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

OpenGL: Normals

Normal specified as attribute (state)
– applies to all following vertices
– user responsible for normalizing

/* Flat shaded triangle. */
glShadeModel (GL_FLAT);
glBegin (GL_TRIANGLES);
 glNormal3f (0.577, -0.577, 0.577);
 glVertex3f (1.0, 0.0, 0.0);
 glVertex3f (0.0, 1.0, 0.0);
 glVertex3f (0.0, 0.0, 1.0);
glEnd ();

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

OpenGL: Normals

Per-vertex normals are interpolated
– Gouraud shading

/* Smooth shaded triangle. */
glShadeModel (GL_SMOOTH);
glBegin (GL_TRIANGLES);
 glNormal3f (0.0, 0.707, 0.707);
 glVertex3f (1.0, 0.0, 0.0);
 glNormal3f (0.707, 0.0, 0.707);
 glVertex3f (0.0, 1.0, 0.0);
 glNormal3f (0.707, 0.707, 0.0);
 glVertex3f (0.0, 0.0, 1.0);
glEnd ();

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

OpenGL: Light Source

Values of Lx in Phong model
– Small number of distinct sources
– Indexed by GL_LIGHTn
– glEnable turns on

/* Define simple point light source. */
glEnable (GL_LIGHTING);
glEnable (GL_LIGHT0);
glLightfv (GL_LIGHT0, GL_POSITION, p0);
glLightfv (GL_LIGHT0, GL_AMBIENT, a0);
glLightfv (GL_LIGHT0, GL_DIFFUSE, d0);
glLightfv (GL_LIGHT0, GL_SPECULAR, s0);

9

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

OpenGL: Material

Values of Rx in Phong model
– Can specify front, back or both
– Emission is object as light source

/* Define Phong material. */
glMaterialfv (GL_FRONT, GL_EMISSION, e);
glMaterialfv (GL_FRONT, GL_AMBIENT, a);
glMaterialfv (GL_FRONT, GL_DIFFUSE, d);
glMaterialfv (GL_FRONT, GL_SPECULAR, s);
glMaterialf (GL_FRONT, GL_SHININESS, sh)

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Pipeline Buffers

• Color buffers
– front and back for animation
– left and right for stereo

• Depth buffer
– hidden surface removal

• Accumulation buffer
– multi-pass methods

• Stencil buffer
– stencil screening

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Surface Texture

Can vary color/material on vertex-by-
vertex basis using glColor or
glMaterial
– Maximum resolution is # of polygons
– Expensive to change

Alternative: Define texture image
– Maximum resolution is image resolution
– Inexpensive with hardware support

10

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Texture Coordinates

Need way to define connection between:
– Points on image (2D)
– Vertices on surface of object

Define texture coordinates on texture image
– s is horizontal coordinate of image [0,1]
– t is vertical coordinate of image [0,1]

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Texture Maps

1. Enable texture
2. Define texture image
3. For each vertex of object:

a. Set texture coordinates
b. Define other vertex properties
c. Bind vertex with glVertex*

Texture image is wrapped onto object

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Effect of Texture Map

Texture is interpolated into polygon
– Texture coords interpolated bilinearly
– Inter-pixel values may be interpolated by
GL_NEAREST or GL_LINEAR

€

s

€

t

€

1

€

0

€

0

€

1

€

s

€

t

€

1

€

0

€

0

€

1

11

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Texture & Shading

May have both texture map and shading
– Must define combination
– Texture determines surface color

Decal: Unaffected by shading

Modulate: Filtered by shading equations
Use glTexEnv to change mode

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

OpenGL: Texture Definition

glTexImage2D copies image from
program memory to texture memory
– define contents of current texture

Parameters for:
– image size and format

– mipmap level and border properties
– location of image data

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

OpenGL: glTexImage2D

Details:
– Components defines how texture will be

stored in texture memory
– Image format may be converted

/* Define texture image in tarray */
glTexImage2D (GL_TEXTURE_2D, 0, //level 0
 3, // components
 512, 512, 0, // size and border width
 GL_RGB, // tarray is RGB
 GL_UNSIGNED_BYTE, // with 0-255 bytes
 tarray); // memory image is here

12

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

OpenGL: Variations

In addition to glTexImage2D we have:
– glTexSubImage2D: Define part of larger

texture
– glTexImage1D: Define 1D texture (t

coordinate is 0)
– glTexImage3D: For volumetric texture

– glCopyTexSubImage2D: Copy memory
from buffer into texture image

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Texture Objects

Keep many textures in texture memory
– Define each texture once
– Easily change which texture being mapped

Texture object is name of defined texture
– glGenTextures creates new names (ints)
– glBindTexture make name current

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Texel Magnification

Texture (s,t) ⇒ 3D vertex ⇒ screen
– Texture pixel (texel) becomes quadrilateral

on screen
– May be magnified or minified if it is >1 pixel

or <1 pixel on screen

– Need to define linear or nearest for both

13

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Texture Foreshortening

• Texture mapped object may be at range
of distances
– Magnification and minifaction varies across

image or with distance
– Minification may be expensive
– Minification may also cause moiré effects

Solved by mipmapping

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Mipmaps

Mipmap = Texture pyramid
– Level 0 is base texture image

– Level n+1 is 2x2 downsample of level n

– Fill pyramid down to level with 1 pixel

Interpolate in 3D into pyramid
– Choose level where texel size ≈ screen pixel

– Can use nearest or linear interpolation

