©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

EECE 478

Lighting, Materials
and Texture

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Learning Objectives

Lighting

» Describe the simple lighting model

« Define point light sources

 Create a lighting structure for a scene
Materials

« Define surface normals for objects

» Model surface materials

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Learning Objectives

Textures

» Describe how texture maps relate to
surface appearance

» Load texture maps into memory

+ Define texture coordinates for a surface
» Give reasons to mipmap textures

» Define a mipmap for a texture




©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Vocabulary
« light source « Phong model
« specular < angle of incidence
« diffuse ¢ angle of reflection
« translucent « flat shading
¢ illumination function + Gouraud shading
« ambient light ¢ texture map
¢ spotlight ¢ mipmap

lambertian surface

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Scene Lighting

Light source (1)
Incident points (P,, P,)

Surface normals (n,, n,)
Eye point (e)

v
<

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Light Sources

lllumination function

— Object surface emits light

— Every surface point emits light in certain
intensities dependent on direction

I(xy,z,6.@A)

— Consider all rays from light source (p,) to
an incident point (p,) then on to eye (e)

- RGB source: [/,1,1,]




©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Ambient Light

Inside rooms or outdoors

» Acts as if constant light coming from all
directions

* Ambient means all around

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Point Source

Ideal point source

« surface is single point

« light emitted equally in all directions

* intensity reduced by inverse-square law

1(p,.po) =%Fl<po)

‘l_D

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Distant Source

Ideal distant source
* incident rays are parallel

— use vector as source point (p,)
* intensity is constant

po=[x y z 0
1(pi,Po) =1(po)




©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong Model

Color at point p is determined by vectors
» T - from light source

* n — surface normal

» v —direction to eye point e

 r —reflection v o
| n
2 P %

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong Model(2)

Color at point p is combination of three
components

» ambient — from ambient light
« diffuse — due to scattered light
 specular — due to reflected light

I=l +1,+1,

=LR+ LR +LR

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong: Ambient

* Intensity constant over surface
» Reflected light is fraction of incident light

Ra:ka GLfloat a[] = {
1.0, 0.5, 0.5, 1.0
0<k, <1 )
_ glMaterialfv (GL_FRONT,
Ia_Laka N
GL_AMBIENT, a);




©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong: Diffuse(1)

» Based on Lambertian surface model
» Reflected light emitted in all directions

43‘} ﬁ;}
e 0\d d
“d 2]
n
I I 1
d/cos@ d
©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong: Diffuse(2)

* Intensity proportional to cos8

» Cosine derived from dot product
—normalize | and n

Rd :deOSQ GLfloat d ] = {

1.0, 0.5, 0.5, 1.0
:kd(”jh) b
_ glMaterialfv (GL_FRONT,
g = Lyky (1) GL_DIFFUSE, d);

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong: Specular(1)

» Based on Phong surface model
» Reflected light emitted by reflection

v
<
=

| [

\ T

°7

¥




©2003, Lee Iverson <leei@ece.ubc.ca>

UBC Dept. of ECE

Phong: Shininess

Shininess specified by

ain to (cos@?

Shininess

©2003, Lee Iverson <leei@ece.ubc.ca>

Shininess such that

UBC Dept. of ECE

Phong: Specular(2)

— Larger values are shinier surfaces
— Values >500 are metallic
— Values >100 are “shiny” (e.g. plastic)

Rs:Igcos“(p GLfloat s[] = {
u 1.0, 0.5, 0.5, 1.0
=k(v) i
_ a glMaterialfv (GL_FRONT,
l=Lk(vD) GL_SPECULAR, s);
©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong: Complete

Total intensity of surface point
— ambient + diffuse + specular
— optionally attenuate by distance (Z,/,)

P=1,+1,+1,

= Lk, + ALk (1

1
=L B
s a+bd +cd?

) + Lk(vIT)°)
(Loky (10 + L (v 1))




©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong: Vectors

Four vectors determine shading
— Light vector (1) given
— View vector (v) given
— Normal vector (n) computed
— Reflection vector (r) computed

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong: Normals

Normal to surface (collection of triangles)
— Consider surface as plane
— Compute normal of triangle (p,,p,.p;)

nt{p-p,)=0
Given three non - collinear points
n=(p,=p)*(Ps=Py)

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Phong: Reflection

Light ray reflected off surface
— angle of incidence = angle of reflection
— reflected about normal vector
—1,n, r all in same plane

Ith=n0t
r=al +fn
assuming all are unit vectors
r=2(1h)n-I




©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

OpenGL: Normals

Normal specified as attribute (state)
— applies to all following vertices
— user responsible for normalizing

/* Flat shaded triangle. */

glshadeModel (GL_FLAT);

glBegin (GL_TRIANGLES) ;
glNormal3f (0.577, -0.577, 0.577);
glvertex3f (1.0, 0.0, 0.0);
glvertex3f (0.0, 1.0, 0.0);
glvertex3f (0.0, 0.0, 1.0);

glEnd ();

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

OpenGL: Normals

Per-vertex normals are interpolated
— Gouraud shading

/* Smooth shaded triangle. */

glshadeModel (GL_SMOOTH) ;

glBegin (GL_TRIANGLES) ;
glNormal3f (0.0, 0.707, 0.707);

glvertex3f (1.0, 0.0, 0.0);
glNormal3f (0.707, 0.0, 0.707);
glvertex3f (0.0, 1.0, 0.0);
glNormal3f (0.707, 0.707, 0.0);
glvertex3f (0.0, 0.0, 1.0);
glEnd ()7
©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

OpenGL: Light Source

Values of L, in Phong model
— Small number of distinct sources
—Indexed by GI. LIGHTn
- glEnable turnson

/* Define simple point light source. */
glEnable (GL_LIGHTING) ;

glEnable (GL_LIGHTO);

glLightfv (GL_LIGHTO, GL_POSITION, pO)
glLightfv (GL_LIGHTO, GL_AMBIENT, a0)
glLightfv (GL_LIGHTO, GL_DIFFUSE, dO0);
glLightfv (GL_LIGHTO, GL_SPECULAR, s0)




©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

OpenGL: Material

Values of R, in Phong model
— Can specify front, back or both
— Emission is object as light source

/* Define Phong material. */
glMaterialfv (GL_FRONT, GL_EMISSION, e);
glMaterialfv (GL_FRONT, GL_AMBIENT, a);
glMaterialfv (GL_FRONT, GL_DIFFUSE, d);
glMaterialfv (GL_FRONT, GL_SPECULAR, s);
glMaterialf (GL_FRONT, GL_SHININESS, sh)

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Pipeline Buffers

Color buffers

— front and back for animation
— left and right for stereo
Depth buffer

— hidden surface removal

¢ Accumulation buffer

— multi-pass methods
Stencil buffer

— stencil screening

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Surface Texture

Can vary color/material on vertex-by-
vertex basis using g1lColor or
glMaterial
— Maximum resolution is # of polygons
— Expensive to change

Alternative: Define texture image
— Maximum resolution is image resolution
— Inexpensive with hardware support




©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Texture Coordinates

Need way to define connection between:
— Points on image (2D)
— Vertices on surface of object

Define texture coordinates on texture image
— s is horizontal coordinate of image [0,1]
— tis vertical coordinate of image [0,1]

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Texture Maps

1. Enable texture

2. Define texture image

3. For each vertex of object:
a. Set texture coordinates
b. Define other vertex properties
c. Bind vertex with glvertex*

Texture image is wrapped onto object

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Effect of Texture Map

Texture is interpolated into polygon
— Texture coords interpolated bilinearly

— Inter-pixel values may be interpolated by
GL_NEAREST Or GL_LINEAR

11 11
mEE mEN
Nsaore (E
0 0
0 < 1 0 € 1

10



©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Texture & Shading

May have both texture map and shading
— Must define combination
— Texture determines surface color

Decal: Unaffected by shading
Modulate: Filtered by shading equations
Use glTexEnv to change mode

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

OpenGL: Texture Definition

glTexImage2D copies image from
program memory to texture memory
— define contents of current texture
Parameters for:
— image size and format
— mipmap level and border properties
— location of image data

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

OpenGL: glTexlmage2D

Details:

— Components defines how texture will be
stored in texture memory

— Image format may be converted

/* Define texture image in tarray */

glTexImage2D (GL_TEXTURE_2D, 0, //level 0
3, // components

512, 512, O, // size and border width

GL_RGB, // tarray is RGB
GL_UNSIGNED_BYTE, // with 0-255 bytes
tarray); // memory image is here




©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

OpenGL: Variations

In addition to g1 TexImage2D we have:
- glTexSubImage2D: Define part of larger
texture

- glTexImagelD: Define 1D texture (t
coordinate is 0)

- glTexImage3D: For volumetric texture

- glCopyTexSubImage2D: Copy memory
from buffer into texture image

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Texture Objects

Keep many textures in texture memory
— Define each texture once
— Easily change which texture being mapped

Texture object is name of defined texture
- glGenTextures creates new names (ints)
- glBindTexture make name current

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Texel Magnification

Texture (s,¢) O 3D vertex [0 screen

— Texture pixel (texel) becomes quadrilateral
on screen

— May be magnified or minified if it is >1 pixel
or <1 pixel on screen
— Need to define linear or nearest for both

12



©2003, Lee Iverson <leei@ece.ubc.ca>

UBC Dept. of ECE

Texture Foreshortening

» Texture mapped object may be at range
of distances

— Magnification and minifaction varies across
image or with distance

— Minification may be expensive
— Minification may also cause moiré effects

Solved by mipmapping

©2003, Lee Iverson <leei@ece.ubc.ca>

UBC Dept. of ECE
Mipmaps

Mipmap = Texture pyramid
— Level 0 is base texture image
— Level n+1 is 2x2 downsample of level n
— Fill pyramid down to level with 1 pixel

Interpolate in 3D into pyramid
— Choose level where texel size = screen pixel
— Can use nearest or linear interpolation

13



