O2005, Lee lverson deei@ece. ubc.ca>	
EEC Dept. of ECE	
Linear Algebra and	
3D Geometry	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Learning Objectives

- Linear algebra in 3D
- Define scalars, points, vectors, lines, planes
- Manipulate to test geometric properties
- Coordinate systems
- Use homogeneous coordinates
- Create coordinate transforms
- Distinguish rigid body, angle-preserving and affine transforms

©2005, Lee Iverson leei@ece.ubc.ca
 Learning Objectives

- Represent transforms in homogeneous coordinates
- Rotation, translation and scaling
- Combine to move fixed points or rotation axes
- Quaternion rotations
- Manipulate transform matrices in OpenGL

©2005, Lee Iverson leei@ece.ubc.ca	UBC Dept. of ECE
Vocabulary	
- Scalar - Point - Line - Vector - Plane - Dot product - Cross product - Normal	- Coordinate system - Frame - Homogeneous coordinates - Rotation - Translation - Scaling - Quaternions

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

©2005, Lee Iverson 〈leei@ece.ubc.ca>

Geometric Objects

- Fixed Point in space
- Scalar is a real number
- Vector has direction and magnitude \qquad

\qquad
\qquad
\qquad

```
©2005, Lee Iverson <leei@ece.ubc.ca>

\section*{Defined Operations}
- Point + Vector = Point
- Point - Point = Vector
- Scalar * Vector = Vector
- Vector + Vector = Vector
- Vector - Vector = Vector \(\qquad\)
- Vector \(\cdot\) Vector \(=\) Scalar (dot)
- Vector \(\times\) Vector \(=\) Vector (cross)
\(\qquad\)
\(\qquad\)

\section*{Inner Product}
- Linear measure of a vector space
- Constraints:
\(-\langle u, v\rangle\) is a scalar
\(-\langle\alpha u, v\rangle=\alpha<u, v\rangle\)
\(-\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle\)
\(-\langle v, v\rangle \geq 0\) (magnitude of \(v\) or \(\|v\|=\sqrt{ }\langle v, v\rangle\) )
\(-\langle v, v\rangle=0\) only if \(v=0\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Dot Product}
- Scalar combination of vector lengths and internal angle
- Perpendicular vectors have inner product of 0


\section*{©2005, Lee Iverson <leei@ece.ubc.ca>}

UBC Dept. of ECE

\section*{Cross Product}

Outer product of vectors
- Cross product \(n\) is perpendicular to \(u\) and \(v\)
- Right hand coordinate system
\(-n\) is normal to plane of \(u, v\)

```

@2005, Lee Iverson leei@ece.ubc.ca
UBC Dept. of ECE

```

\section*{Line}
- Line \(L\) passes through point \(P_{0}\) with direction \(v\)
- \(L\) is all points \(P\)

©2005, Lee Iverson <leei@ece.ubc.ca>

\section*{Plane}
- Plane \(T\) passes through point \(P_{0}\) with directions \(u\) and \(v\)
\(\qquad\)
- \(T\) is all points \(P\)
\(-n\) is normal vector
\(P=P_{0}+\alpha u+\beta v\)
\(n=u \times v\)
\(0=\left(P-P_{0}\right) \cdot n\)


\section*{©2005, Lee Iverson <leei@ece.ubc.ca> \\ Coordinate System}
- Any three non-coplanar vectors \(v_{1}, v_{2}, v_{3}\) define a coordinate system (vector space)
- any vector \(w\) is uniquely defined as a linear combination of basis vectors \(v_{1}, v_{2}, v_{3}\)

```

@2005, Lee Iverson leei@ece.ubc.ca
UBC Dept. of ECE

```

\section*{Frame}
- Basis vectors \(v_{1}, v_{2}, v_{3}\) and an origin \(P_{0}\) define a frame
- any point \(P\) is uniquely defined by a vector \(w\) added to the origin \(P_{0}\)
\[
\begin{gathered}
P=P_{0}+\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \\
P=P_{0}+\left[\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{3}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
\end{gathered}
\]

\section*{©2005, Lee Iverson <leei@ece.ubc.ca>}

\section*{Representation}

Given a frame: \(\left(P_{0}, v_{1}, v_{2}, v_{3}\right)\)
- representation of point \(P\) is \(\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)\)
- representation of vector \(w\) is \(\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)\)
\[
\begin{aligned}
& w=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \\
& P=P_{0}+\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}
\end{aligned}
\]

\section*{©2005, Lee Iverson <leei@ece.ubc.ca> \\ Cartesian Frame}

\section*{Orthonormal basis}
- basis vectors mutually perpendicular
- basis vectors all have magnitude 1

Euclidean basis: \(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\)
\(e_{1}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}\)
\(e_{2}=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]^{T}\)
\(e_{3}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{T}\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{©2005, Lee Iverson <leei@ece.ubc.ca> \\ Homogeneous Coordinates}
- Don't want to confuse points and vectors
- representations should be different
- N.B. Points refer to origin, vectors don't

\section*{Solution:}
- Use a 4-dimensional coordinate system

\section*{©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE}

\section*{Homogeneous Point}

Four component homogeneous coordinate
- First three components refer to basis
- Fourth component refers to origin

```

©2005, Lee Iverson leei@ece.ubc.ca

Change of Frame(1)

Express frame F_{2} in coordinates of F_{1}

```
F}=(\mp@subsup{P}{0}{},\mp@subsup{v}{1}{},\mp@subsup{v}{2}{},\mp@subsup{v}{3}{}
F}=(\mp@subsup{Q}{0}{},\mp@subsup{u}{1}{},\mp@subsup{u}{2}{},\mp@subsup{u}{3}{}
u}=\mp@subsup{\gamma}{11}{}\mp@subsup{v}{1}{}+\mp@subsup{\gamma}{12}{}\mp@subsup{v}{2}{}+\mp@subsup{\gamma}{13}{}\mp@subsup{v}{3}{
u}=\mp@subsup{\gamma}{21}{}\mp@subsup{v}{1}{}+\mp@subsup{\gamma}{22}{}\mp@subsup{v}{2}{}+\mp@subsup{\gamma}{23}{}\mp@subsup{v}{3}{
u}=\mp@subsup{\gamma}{31}{}\mp@subsup{v}{1}{}+\mp@subsup{\gamma}{32}{}\mp@subsup{v}{2}{}+\mp@subsup{\gamma}{33}{}\mp@subsup{v}{3}{
Q Q = }\mp@subsup{\}{41}{}\mp@subsup{v}{1}{}+\mp@subsup{\gamma}{42}{}\mp@subsup{v}{2}{}+\mp@subsup{\gamma}{43}{}\mp@subsup{v}{3}{}+\mp@subsup{P}{0}{
```

©2005, Lee Iverson leei@ece.ubc.ca

Change of Frame(2)

The same in matrix form
$F_{1}=\left(P_{0}, v_{1}, v_{2}, v_{3}\right)$
$F_{2}=\left(Q_{0}, u_{1}, u_{2}, u_{3}\right)$
$\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3} \\ Q_{0}\end{array}\right]=\left[\begin{array}{llll}\gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\ \gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\ \gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\ \gamma_{41} & \gamma_{42} & \gamma_{43} & 1\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2} \\ \nu_{3} \\ P_{0}\end{array}\right]$

®2005, Lee Iverson leei@ece.ubc.ca

Change of Frame(3)

Consider homogeneous coordinates
$-\mathbf{a}_{1}$ in F_{1} and \mathbf{a}_{2} in F_{2}
$\mathbf{a}_{2}\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3} \\ Q_{0}\end{array}\right]=\mathbf{a}_{2}{ }^{T}\left[\begin{array}{llll}\gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\ \gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\ \gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\ \gamma_{41} & \gamma_{42} & \gamma_{43} & 1\end{array}\right]\left[\begin{array}{c}v_{1} \\ v_{2} \\ v_{3} \\ P_{0}\end{array}\right]=\mathbf{a}_{1}^{T}\left[\begin{array}{c}v_{1} \\ v_{2} \\ v_{3} \\ P_{0}\end{array}\right]$
so,
$\mathbf{a}_{1}=\mathbf{M}^{T} \mathbf{a}_{2}$ and $\mathbf{a}_{2}=\left(\mathbf{M}^{T}\right)^{-1} \mathbf{a}_{1}$
\qquad
\qquad

Change of Frame(4)

The change of frame transformation \mathbf{M}^{T} transforms coordinates from F_{2} to F_{1}
$\mathbf{M}^{T}=\left[\begin{array}{cccc}\gamma_{11} & \gamma_{21} & \gamma_{31} & \gamma_{41} \\ \gamma_{12} & \gamma_{22} & \gamma_{32} & \gamma_{42} \\ \gamma_{13} & \gamma_{23} & \gamma_{33} & \gamma_{43} \\ 0 & 0 & 0 & 1\end{array}\right]$
©2005, Lee Iverson leei@ece.ubc.ca UBC Dept. of ECE
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cartesian Frame

$$
\begin{gathered}
F_{1}=\mathbf{M}_{1} \mathbf{C} \text { and } F_{2}=\mathbf{M}_{2} \mathbf{C} \\
F_{2}=\mathbf{M} F_{1}=\mathbf{M M}_{1} \mathbf{C}=\mathbf{M}_{2} \mathbf{C} \\
\Rightarrow \mathbf{M M}_{1}=\mathbf{M}_{2} \\
\Rightarrow \mathbf{M}=\mathbf{M}_{2} \mathbf{M}_{1}^{-1} \\
\Rightarrow \mathbf{M}^{T}=\left(\mathbf{M}_{1}^{-1}\right)^{T} \mathbf{M}_{2}^{T} \\
\text { and } \\
a_{1}=M^{T} a_{2}, \quad a_{2}=\left(M^{T}\right)^{-1} a_{2} \\
a=M_{2}^{T} a_{2}, \quad a=M_{1}^{T} a_{1}
\end{gathered}
$$

```
@2005, Lee Iverson <leei@ece.ubc.ca>

\section*{Affine Transformation}
```

A transformation is a function from vertices (point or vector) to vertices

- transformation is linear or affine if and only if
$f(\alpha u+\beta v)=\alpha f(u)+\beta f(v)$
or
$f(p+\beta v)=f(p)+\beta f(v)$
\Rightarrow need only transform endpoints

```

\section*{©2005, Lee Iverson <leei@ece.ubc.ca> \\ UBC Dept. of ECE \\ Canonical Transformations}
- Translation rigid body
- Rotation rigid body
- Scaling angle preserving
- Shear

Represented by \(4 \times 4\) matrix \(\mathbf{M}\) in homogeneous coordinates
©2005, Lee Iverson 〈leei@ece.ubc.ca>
UBC Dept. of ECE

\section*{Translation(1)}
\(\mathrm{T}(\mathbf{d})\) : Displace all points \(\mathbf{p}\) by vector \(\mathbf{d}\) to \(\mathbf{p}^{\prime}\)
```

p}=[$$
\begin{array}{llll}{x}&{y}&{z}&{1}\end{array}
$$\mp@subsup{]}{}{T
\mp@subsup{\mathbf{p}}{}{\prime}=[$$
\begin{array}{llll}{\mp@subsup{x}{}{\prime}}&{\mp@subsup{y}{}{\prime}}&{\mp@subsup{z}{}{\prime}}&{1}\end{array}
$$\mp@subsup{]}{}{T}
d=[llllll}\mp@subsup{\alpha}{x}{
\mp@subsup{p}{}{\prime}}=\mathbf{p}+\mathbf{d
=[llllll}x+\mp@subsup{\alpha}{x}{

```
```

©2005, Lee Iverson 〈leei@ece.ubc.ca>

Translation(2)

```
Translation(2)
```

In matrix form we can express this as:
$-\mathrm{T}\left(\alpha_{x}, \alpha_{y}, \alpha_{z}\right)$ is the translation matrix

$$
\mathbf{p}^{\prime}=\left[\begin{array}{cccc}
1 & 0 & 0 & \alpha_{x} \\
0 & 1 & 0 & \alpha_{y} \\
0 & 0 & 1 & \alpha_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \mathbf{p}=\mathrm{T}\left(\alpha_{x}, \alpha_{y}, \alpha_{z}\right) \mathbf{p}
$$

\qquad

```
@2005,Lee Iverson <leei@ece.ubc.ca>
                                    UBC Dept. of ECE
```


Translation(3)

$\mathrm{T}\left(\alpha_{x}, \alpha_{y}, \alpha_{z}{ }^{\text {-1 }}\right.$: Simple inverses are important

$$
\begin{aligned}
\mathrm{T}\left(\alpha_{x}, \alpha_{y}, \alpha_{z}\right)^{-1} & =\mathrm{T}\left(-\alpha_{x},-\alpha_{y},-\alpha_{z}\right) \\
& =\left[\begin{array}{cccc}
1 & 0 & 0 & -\alpha_{x} \\
0 & 1 & 0 & -\alpha_{y} \\
0 & 0 & 1 & -\alpha_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

O2005, Lee Iverson leei@ece.ubc.ca UBC Dept. of ECE

Scaling

$\mathrm{S}\left(\beta_{x}, \beta_{y}, \beta_{z}\right)$: Stretch every vertex away from origin
$\mathbf{p}^{\prime}=\left[\begin{array}{llll}\beta_{x} x & \beta_{y} y & \beta_{z} z & 1\end{array}\right]^{T}$
$\left[\begin{array}{llll}\beta_{x} & 0 & 0 & 0\end{array}\right]$
$=\left[\left.\begin{array}{cccc}0 & \beta_{y} & 0 & 0 \\ 0 & 0 & \beta & 0\end{array} \right\rvert\, \mathbf{p}\right.$
$\left[\begin{array}{llcc}0 & 0 & \beta_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

```
©2005, Lee Iverson <leei@ece.ubc.ca>
```


Scaling

```
\(\mathrm{S}\left(\beta_{x}, \beta_{y}, \beta_{z}{ }^{-1 /}\right.\) Simple inverse
\(\mathrm{S}\left(\beta_{x}, \beta_{y}, \beta_{z}\right)^{-1}=\mathrm{S}\left(\frac{1}{\beta_{x}}, \frac{1}{\beta_{y}}, \frac{1}{\beta_{z}}\right)=\left[\begin{array}{cccc}\frac{1}{\beta_{x}} & 0 & 0 & 0 \\ 0 & \frac{1}{\beta_{y}} & 0 & 0 \\ 0 & 0 & \frac{1}{\beta_{z}} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\)
```

©2005, Lee Iverson <leei@ece.ubc.caz
Rotation
$\left.\begin{array}{c}\mathrm{R}\left(\theta_{x}, \theta_{y}, \theta_{z}\right): \text { Rotate by } \theta \text { around each of } x, \\ y \text { and } z \text { axes. } \\ \mathrm{R}_{x}\left(\theta_{x}\right)=\mathrm{R}\left(\theta_{x}, 0,0\right)=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \theta_{x} & -\sin \theta_{x} & 0 \\ 0 & \sin \theta_{x} & \cos \theta_{x} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\end{array}\right]$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
-2005, Lee Iverson leei@ece.ubc.ca UBC Dept. of ECE

2D Rotation(1)

$\mathrm{R}(\theta)$: Rotate by θ

$\mathrm{R}(\theta)\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}\cos \theta \\ \sin \theta\end{array}\right]$	$\xrightarrow[\cos \theta]{\sin \theta}$
$\mathrm{R}(\theta)\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}-\sin \theta \\ \cos \theta\end{array}\right]$	$\forall \theta \cos \theta$

```
©2005, Lee Iverson <leei@ece.ubc.ca>

\section*{2D Rotation(2)}
\(\mathrm{R}(\theta)\) : Simple matrix derived from rotation of basis vectors

O2005, Lee Iverson <leei@ece.ubc.ca>
3D Rotation: Z Axis
\begin{tabular}{c}
\(\mathrm{R}_{z}(\theta):\) 2D rotation of \((x, y)\) \\
\(-z\) axis is invariant \\
\(\mathrm{R}_{z}\left(\theta_{z}\right)=\mathrm{R}\left(0,0, \theta_{z}\right)=\left[\begin{array}{cccc}\cos \theta_{z} & -\sin \theta_{z} & 0 & 0 \\
\sin \theta_{z} & \cos \theta_{z} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1\end{array}\right]\) \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
©2005, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE \(\qquad\)

\section*{3D Rotation: Y Axis}
\(\mathrm{R}_{y}(\theta)\) : 2D rotation of \((x, z)\)
\(-y\) axis is invariant
\[
\mathrm{R}_{y}\left(\theta_{y}\right)=\mathrm{R}\left(0, \theta_{y}, 0\right)=\left[\begin{array}{cccc}
\cos \theta_{y} & 0 & \sin \theta_{y} & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta_{y} & 0 & \cos \theta_{y} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\]
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\begin{tabular}{l} 
O2005, Lee Iverson <leei@ece.ubc.ca> \\
3D Rotation \\
\begin{tabular}{rl}
\(\mathrm{R}\left(\theta_{x}, \theta_{y}, \theta_{z}\right)\) : General 3D rotation \\
- any rotation is combination of 3 axes
\end{tabular} \\
\begin{tabular}{rl}
\(\mathrm{R}\left(\theta_{x}, \theta_{y}, \theta_{z}\right)\) & \(=\mathrm{R}_{z}\left(\theta_{z}\right) \mathrm{R}_{y}\left(\theta_{y}\right) \mathrm{R}_{x}\left(\theta_{x}\right)\) \\
\(\mathrm{R}^{-1}(\theta)\) & \(=\mathrm{R}(-\theta)\) \\
& \(=\mathrm{R}^{T}(\theta)\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Quaternions}
- Generalization of complex numbers
\(-f^{2}=j^{2}=k^{2}=i j k=-1\)
\(-q=a+b i+c j+d k\)
\(-q=(a, v)\)
\(-q_{1} q_{2}=\left(a_{1} a_{2}-v_{1} \cdot v_{2}, a_{1} v_{2}+a_{2} v_{1}+v_{1} \times v_{2}\right)\)
\(-q=(a, v)=(\cos (\theta / 2), n \sin (\theta / 2))\)
- \(n\) is unit vector
- \(q\) is a rotation by \(\theta\) about \(n\)
©2005, Lee Iverson <leei@ece.ubc.ca>
UBC Dept. of ECE

\section*{Concatenation}

Transformations don't occur in isolation
- Linearity means matrices can be combined
\begin{tabular}{rl}
\(\mathbf{p}^{\prime}\) & \(=\mathbf{A p}\) \\
\(\mathbf{p}^{\prime \prime}\) & \(=\mathbf{B} \mathbf{p}^{\prime}\) \\
\(\mathbf{q}\) & \(=\mathbf{C} \mathbf{p}^{\prime \prime}\) \\
& \(=\mathbf{C}(\mathbf{B}(\mathbf{A p}))\) \\
& \(=(\mathbf{C B A}) \mathbf{p}\) \\
& \(=\mathbf{M p}\)
\end{tabular}


\section*{©2005, Lee Iverson <leei@ece.ubc.ca> \\ Compound Transformations}

Linear combination of translation, rotation, scaling and shear can produce any affine transformation.

©2005, Lee Iverson <leei@ece.ubc.ca>
UBC Dept. of ECE

\section*{Rotation About Point}

Strategy (origin is fixed point for rotation):
1. Move point \(p\) to origin
2. Rotate
3. Move point \(p\) back

```

@2005, Lee Iverson leei@ece.ubc.ca

```

\section*{Instance Transformation}
```

Consider a prototype object

- fixed size, position and orientation
- usable as model if we can
- make it desired size
- change to desired orientation
- move to desired position
$\mathbf{M}=\mathbf{T R S}$

```

\section*{OpenGL Transformations}

OpenGL has current transformation matrix (CTM)
- global variable
- aka GL_MODELVIEW matrix
- set/modified by functions

\section*{©2005, Lee Iverson 〈leei@ece.ubc.ca>}

\section*{Transformation Operations}
\begin{tabular}{|ll|}
\hline glLoadMatrix \((\mathrm{M})\) & \(\mathbf{C} \leftarrow \mathbf{M}\) \\
glMultMatrix \((\mathrm{M})\) & \(\mathbf{C} \leftarrow \mathbf{C M}\) \\
gILoadIdentity () & \(\mathbf{C} \leftarrow \mathbf{I}\) \\
glRotatef \((\theta, \mathrm{vx}, \mathrm{vy}, \mathrm{vz})\) & \(\mathbf{C} \leftarrow \mathbf{C R}(\theta, v x, v y, v z)\) \\
glTranslatef(tx,ty,tz) & \(\mathbf{C} \leftarrow \mathbf{C T}(t x, t y, t z)\) \\
glScalef(sx,sy,sz) & \(\mathbf{C} \leftarrow \mathbf{C S}(s x, s y, s z)\) \\
\hline
\end{tabular}

\section*{©2005, Lee Iverson <leei@ece.ubc.ca>}

\section*{Order of Transformations}
- OpenGL operations post-multiply
- last transformation called is first applied - sometimes useful to save matrix
- Matrix context saved by push/pop
glPushMatrix() - push CTM onto stack glPopMatrix() - pop CTM off stack```

