

©2005, <u>Lee Iverson <leei@ece.ubc.ca></u>

UBC Dept. of ECE

Learning Objectives

- · Linear algebra in 3D
 - Define scalars, points, vectors, lines, planes
 - Manipulate to test geometric properties
- Coordinate systems
 - Use homogeneous coordinates
 - Create coordinate transforms
 - Distinguish rigid body, angle-preserving and affine transforms

©2005, Lee Iverson <leei@ece.ubc.ca>

UBC Dept. of ECE

Learning Objectives

- Represent transforms in homogeneous coordinates
 - Rotation, translation and scaling
 - Combine to move fixed points or rotation axes
 - Quaternion rotations
- Manipulate transform matrices in OpenGL

©2005, Lee Iverson <leei@ece.ubc.ca>

UBC Dept. of ECE

Homogeneous Coordinates

- Don't want to confuse points and vectors
 representations should be different
- N.B. Points refer to origin, vectors don't

Solution:

· Use a 4-dimensional coordinate system

-		
©2005, <u>Lee Iverson <leei@ece.ubc.ca></leei@ece.ubc.ca></u>	UBC Dept. of ECE	
Change of Frame(1)		
Express frame F_2 in coordinate	es of F_1	
$F_1 = (P_0, v_1, v_2, v_3)$ $F_2 = (Q_0, u_1, u_2, u_3)$		
$u_{1} = \gamma_{11}v_{1} + \gamma_{12}v_{2} + \gamma_{13}v_{3}$ $u_{2} = \gamma_{21}v_{1} + \gamma_{22}v_{2} + \gamma_{23}v_{3}$ $u_{3} = \gamma_{31}v_{1} + \gamma_{32}v_{2} + \gamma_{33}v_{3}$ $Q_{0} = \gamma_{41}v_{1} + \gamma_{42}v_{2} + \gamma_{43}v_{3} + P_{0}$		

$$\begin{array}{l} \mbox{\it BC Dept. of ECE} \\ \hline \mbox{\bf Translation(1)} \\ T(\mathbf{d}): \mbox{ Displace all points } \mathbf{p} \mbox{ by vector } \mathbf{d} \ to \ \mathbf{p}' \\ \hline \mbox{\bf p} = \begin{bmatrix} x & y & z & 1 \end{bmatrix}^T \\ \mbox{\bf p}^{\, =} \begin{bmatrix} x' & y' & z' & 1 \end{bmatrix}^T \\ \mbox{\bf d} = \begin{bmatrix} \alpha_x & \alpha_y & \alpha_z & 0 \end{bmatrix}^T \\ \mbox{\bf p}^{\, =} \mathbf{p} + \mathbf{d} \\ = \begin{bmatrix} x + \alpha_x & y + \alpha_y & z + \alpha_z & 1 \end{bmatrix}^T \end{array}$$

(\$2005, Lee Iverson deel@ece.ubc.cas)
DEC Dept. of ECE
Translation(2)
In matrix form we can express this as:

$$- T(\alpha_x, \alpha_y, \alpha_z)$$
 is the *translation matrix*

$$\left[\mathbf{p}' = \begin{bmatrix} 1 & 0 & 0 & \alpha_x \\ 0 & 1 & 0 & \alpha_y \\ 0 & 0 & 1 & \alpha_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{p} = T(\alpha_x, \alpha_y, \alpha_z) \mathbf{p}$$

©2005,	Lee Iverson <leei@ece.ubc.ca></leei@ece.ubc.ca>	<u>UBC Dept</u>	of ECE
	Transformation	on Operations	
	glLoadMatrix(M)	$\mathbf{C} \leftarrow \mathbf{M}$	
	glMultMatrix(M)	C ← CM	
	glLoadIdentity()	C ← I	
	glRotatef(0,vx,vy,vz)	$\mathbf{C} \leftarrow \mathbf{CR}(\theta, vx, vy, vz)$	
	glTranslatef(tx,ty,tz)	$\mathbf{C} \leftarrow \mathbf{CT}(tx,ty,tz)$	
	glScalef(sx,sy,sz)	$\mathbf{C} \leftarrow \mathbf{CS}(sx, sy, sz)$	

©2005, Lee Iverson <leei@ece.ubc.ca>

UBC Dept. of ECE

Order of Transformations

- OpenGL operations post-multiply
 - last transformation called is first applied
 - sometimes useful to save matrix
- Matrix context saved by push/pop glPushMatrix() - push CTM onto stack glPopMatrix() - pop CTM off stack