

· Perfect match for Synthetic Camera

©2003, Lee Iverson <leei@ece.ubc.ca>

UBC Dept. of ECE

Viewers: Camera Parameters

- Camera position
- center of projection (COP)
- Orientation
 - direction it is pointing
 which way is up
- Focal length
- distance of projection plane from COP
- Film plane
- size of projection surface

©2003, Lee Iverson <leei@ece.ubc.ca>

UBC Dept. of ECE

Viewer: Camera Parameters

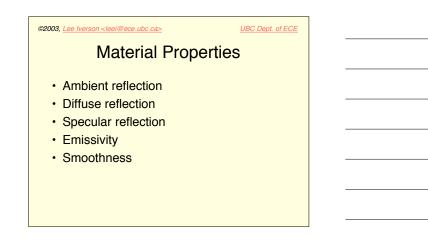
- · External parameters:
 - define camera wrt. outside world
 COP and orientation
- Internal parameters:

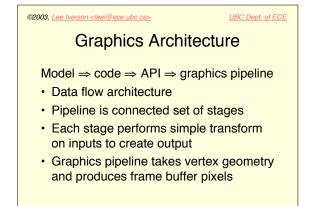
 - don't change when just moving camera
 focal length and field of view

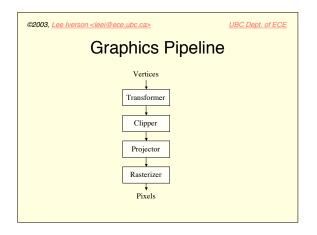
©2003, Lee Iverson <leei@ece.ubc.ca>

UBC Dept. of ECE

Viewer: Camera API


- External parameters ⇒ *view* matrix
- Internal parameters \Rightarrow *projection* matrix
- OpenGL has functions to set these:
 set matrix directly
 - define COP, orientation, focal length and FOV
 - look at a point from a COP


©2003, Lee Iverson <leei@ece.ubc.ca>


Light Sources

UBC Dept. of ECE

- Location
- point light sources
- Intensity
- Color
- Directionality
 - omnidirectional
 - spotlight

©2003, Lee Iverson <leei@ece.ubc.ca>

UBC Dept. of ECE

Transformer

Vertices \Rightarrow Vertices

- Change of coordinate systems

 model coordinates to world coordinates
 world coordinates to camera coordinates
- Simple matrix multiplications
 - purely linear
 - very parallelizeable

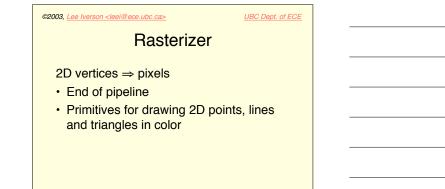
UBC Dept. of ECE

UBC Dept. of ECE

Clipper

Vertices \Rightarrow fewer Vertices

- Need not process that which will not be seen
- Different kinds of clippers


 clipping rectangle of projection plane
 windows

Projector

- 3D Vertices \Rightarrow 2D Vertices
- Near final stage

©2003, Lee Iverson <leei@ece.ubc.ca>

- Perspective or orthogonal
- Linear transform + division

