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Abstract—We have recently proposed a novel receiver for
Ultra-Wide-band Impulse-Radio communication in bursty appli-
cations like Wireless Sensor Networks. The receiver, based on the
principle of Compressed Sensing (CS), exploits the sparsity of the
transmitted signal to achieve reliable demodulation. It acquires a
modest number of projections of the received signal using analog
correlators, and performs a joint decoding of the time of arrival
and the data bits from these under-sampled measurements via
an efficient quadratic program. In this paper we examine the
robustness of this receiver to strong narrow-band interference
(NBI) from primary licensed systems like WiMAX. First, by
choosing frequency selective test functions in the front-end
correlators, we ensure that the interferer can corrupt only a small
fraction of the CS measurements. Then we implement a ‘digital
notch’ by identifying and dropping those affected measurements
during the quadratic programming reconstruction. The method is
easily extended to multiple interferers without additional cost or
complexity. We show that by implementing such a ‘digital notch’
the receiver becomes extremely robust to NBIs. For example
its performance is negligibly affected even when the WiMAX
customer premise equipment is at a distance comparable to that
of the UWB transmitter and the base station is only ten times
farther off, both very practical scenarios.

I. INTRODUCTION

On account of its ability to trade bandwidth for a reduced
transmit power, Ultra-Wide-band (UWB) Impulse Radio (IR)
[1] [2] is a promising candidate for power constrained ap-
plications like wireless sensor networks. However, in such
applications the traffic is often bursty with a low duty cycle,
which implies that there is a large timing uncertainty at the
start of each burst, and the usual approach of using long
training headers for accurate timing acquisition is unsatis-
factory due to an excessive overhead. Secondly, due to the
prohibitive complexity of fast A/D conversion and maximum
likelihood sequential estimation (MLSE), a commonly used
pragmatic approach is to avoid inter-symbol interference (ISI)
via a sufficiently low baud-rate, and then use a maximum ratio
combining (MRC) rake [3], an energy detector (ED) [4] or a
transmit-reference (TR) receiver [5]. Unfortunately, the price
paid in doing so is a significantly lowered instantaneous data
rate and long channel occupancy.

In light of these issues, in [6] we proposed a novel receiver
that performs a ‘joint’ decoding of timing and amplitude
information, by exploiting the sparsity (burstiness) of the
transmitted signal, thus turning an apparent drawback into a
strength. This joint decoding is inspired by the principle of
compressed sensing (CS) [7] [8]. The architecture completely

bypasses the requirement of high-rate A/D conversion. Instead
we use an analog front-end consisting of a bank of correlators
with tractable test functions and a low-rate A/D converter.
The DSP back-end implements a computationally efficient
quadratic program (QP). The receiver can operate with various
levels of timing accuracy, ranging from a fraction to many
multiples of the pulse width Tpulse. As the burst size becomes
moderately large, it implicitly acquires timing ‘on the fly’,
which allows us to send bursts without training headers.
Moreover, it works well even in significant ISI, and we are
not restricted to a low baud-rate.

In this paper we will study another critical robustness
property of the receiver of [6], namely its insensitivity to
narrow-band interference (NBI) from primary licensed systems
like WiMAX. Note that a generic UWB receiver needs to be
kept ‘wide open’ in the frequency domain in order to gather
all the signal energy, which makes it potentially susceptible to
strong narrow-band interference from a variety of licensed and
unlicensed sources. In a digital correlator or MLSE receiver
the dynamic range of the front-end high-speed A/D converter
can be easily saturated by the NBI. Similarly analog receivers
like rake, ED and TR also suffer heavily because they have
no inherent mechanism to reject the interference energy from
their decision statistic. Hence some mechanism to ‘notch out’
the interferer needs to be implemented in analog, before the
signal enters the receiver. Since one a-priori does not know
the frequency location of the interferer, one must identify it
and then tune the notch in real time, which adds to the cost
and complexity.

In contrast, we will demonstrate in this paper that the CS
receiver of [6] has an inherent robustness to narrow-band
interference, thanks to its structural properties. Firstly, the
correlator test functions used in the analog front end can be
chosen to be highly frequency selective signals (rather than
pseudo-random noise-like signals as in classical CS), without
any significant loss in performance. As a consequence, an NBI
can corrupt only a small fraction of all the CS measurements.
Secondly, we can implement a ‘digital notch’ by identifying
and dropping the affected measurements during reconstruction,
thereby recovering essentially all the performance of the
interference-free case. Even multiple interferers are easily
handled and require no hardware modifications.

Note that [9] have also considered a similar CS approach
to NBI mitigation, although there also exist some significant



differences. Firstly [9] require a low pulsing rate so that ISI is
avoided, while our receiver can work at any pulsing rate up to
the Nyquist frequency. Secondly they do not address the issue
of imperfect timing, while our receiver is very robust to the
same. Lastly, they use a random CS measurement matrix and
hence need to explicitly identify the NBI sparsity sub-space
by taking a Discrete Cosine transform. Our CS ensemble itself
implements a Fourier analysis of sorts, due to which the NBI
subspace is immediately apparent from the magnitude of the
CS measurements.
Outline of the paper: In Section II we present the UWB
system model, the interference model and, for the sake of self-
sufficiency, the receiver architecture from [6]. In Section III
we describe the digital notching mechanism, and then present
simulations demonstrating the robustness of the scheme in the
exemplary scenario of WiMAX interference. Section IV makes
concluding remarks.
Convention: With an abuse of notation, P (x) will denote the
density or mass function of a random variable X . U([a, b])
will denote a uniform distribution over the interval [a, b] of
the real line or of integers, depending on the context. When x
is a vector, xT is the transpose, ‖x‖2 the L2-norm (Euclidean
length), ‖x‖1 the L1-norm (largest absolute value), and ‖x‖0
the number of non-zero elements. H(f),Φ(f) etc will denote
Fourier transforms of continuous-time finite-energy signals
h(t), φ(t) etc. h(t) ? φ(t) denotes a convolution of the signals.

II. SYSTEM MODEL AND RECEIVER ARCHITECTURE

A. Transmitter and Channel

Please refer to the signal-path diagram shown in Figure 1.
The UWB-IR transmitter consists of a timing block that gen-
erates a clock signal at a nominal frequency fbaud = 1/Tbaud

and an IR pulse generator. The baud clock provides the timing
for the IR pulses within each burst, as well as the timing
for the start of each burst after requisite down-sampling to a
burst rate fburst bursts per second. A total of K pulses are
transmitted in each burst after which the transmitter hibernates
till the start of the next burst. At the k-th strobe of the clock
within a burst, the IR pulse generator sends on the air a pulse
φU (t), amplitude modulated by the bit Bk provided by the
payload, drawn equiprobably from the alphabet{+1,−1}. It
is nominally centered at the frequency fcU with a bandwidth
ΩU . Define

φl
U (t) .=

K−1∑
k=0

bkl φU (t− kTbaud), (1)

θ(f) .=
1

2K

2K−1∑
l=0

|Φl
U (f)|2, (2)

where bkl ∈ {+1,−1} is the k-th bit of the number l ∈
{0, 1, . . . , 2K − 1}. Then the power spectral density (PSD)
of the transmitted bursty UWB signal is given by [10]

PSDTX
U (f) =

θ(f)
Tburst

. (3)

Let LTX
U be the maximum equivalent isotropically radiated

power spectral density (EIRP-SD) allowed under government

regulations, and let us assume that maxf PSD
TX
U (f) = LTX

U .
The UWB channel cU (t) is known to be linear dispersive with
tens or hundreds of resolved multi-path components, and a
temporal dispersion as large as 100 nanoseconds in indoor
environments [11]. Additionally, there is a path-loss (spreading
loss) of d−ρ

U , where dU be the distance of the UWB transmitter
from the UWB receiver, and ρ is the path-loss exponent.

For example, consider the Hanning modulated RF pulse of
[2] which we used in our simulations, with fc = 4.0 GHz and
a 6-dB bandwidth ΩU = 2.0 GHz. The pulse duration is small,
Tpulse = 1.0 nanosecond. Since our receiver can tolerate
significant ISI, we may choose a baud-rate close to the Nyquist
frequency, say fbaud = fnyquist/8 = 500 Mbaud. Hence the
interval between consecutive pulses is Tbaud

.= 1/fbaud = 2.0
nanoseconds, and a burst of K = 64 bits (say) will last for
127 nanoseconds. In contrast, the interval between consecutive
bursts may be as large as Tburst = 1/fburst = 100 mi-
croseconds. A practical inexpensive clock has a timing drift of
% ∼ 40 parts per million (p.p.m.) caused by random frequency
modulation [12]. While the total drift from the beginning to the
end of a burst is limited to a negligible value of K%fbaud = 5.1
picoseconds, the drift from one burst to the the next is ∼ 4.0
nanoseconds, which is relatively very large. Even with a coarse
timing algorithm for predicting the start of the bursts, like a
second-order tracking loop, a residual tracking error of the
order of 1.0 nanosecond is unavoidable.

Without loss of generality we can concentrate on the re-
ception of a single burst, and treat the estimated time of
arrival (TOA) of that burst as the temporal origin t = 0. The
residual error of the coarse timing block is then perceived as
a late arrival of the actual burst by an amount υ seconds.
(By prefixing a sufficient guard interval in the coarse timing
estimate, we can ensure that the true arrival can only be late
but never early.) For simplicity suppose that the true TOA υ
is distributed over the interval [0, γ] according to a uniform
density. From the point of view of the receiver, the output of
the transmitter during the burst is then written as

S(t) =
K−1∑
k=0

Bk φ(t− kTbaud − υ). (4)

Notice that in writing this equation we ignore the small timing
drift within a burst.

B. Interference Model

Suppose there is a narrow-band interferer (NBI) at a dis-
tance dI from the UWB receiver. Let the pulse shape used
by the NBI be φI(t), nominally centered at fcI and having
a bandwidth ΩI � ΩU , and let its signalling interval be TI .
Then, assuming that the NBI uses a zero-mean unit-power
signalling constellation, its EIRP is given by

PTX
I =

∫
|ΦI(f)|2df

TI
. (5)

The interferer sees a channel cI(t) to the UWB receiver, and
a path-loss of d−ρ

I .



C. SNR and SIR in an Optimal Matched Filter Receiver

Let hU (t) .= φU (t) ? cU (t), and analogous to equa-
tions (1),(2) define

hl
U (t) .=

K−1∑
k=0

bkl hU (t− kTbaud), (6)

ξ(f) .=
1

2K

2K−1∑
l=0

|H l
U (f)|2. (7)

An optimal (but intractable) receiver would replace the front-
end filter g(t) with a bank of 2K matched filters (MFs), one
each for the candidate signal hl

U (−t), l = 0, 1, . . . , 2K − 1.
Assuming that the timing is perfectly known, it would then
declare as the estimate of the payload the index l of the filter
which has the maximum output at the sampling time. Such a
hypothetical genie-timed MF receiver serves as a reference
with which we can compare our suboptimal receiver. The
average signal to noise ratio (SNR) per bit in the MF receiver
is given by

SNRbit
.=
d−ρ

U

∫
ξ(f)df

K N0
2

, (8)

where N0
2 is the two-sided power spectral density of the zero-

mean additive white Gaussian (AWG) thermal noise V (t).
Similarly define hI(t)

.= φI(t), and

hl
cross(t)

.= hI(t) ? hl
U (−t), (9)

χ(f) .=
1

2K

2K−1∑
l=0

|H l
cross(f)|2. (10)

Then the average signal to interference ratio (SIR) per bit is
given by

SIRbit =
(
dI

dU

)ρ TI

(∫
ξ(f)df

)2

K
∫
χ(f)df

. (11)

Note that the SIR so defined is additively compatible with the
SNR in the mean squared error sense. That is, the net signal
to perturbation ratio (SPR) per bit in the MF receiver is

SPRbit =
1

1

SNRbit
+ 1

SIRbit

. (12)

D. Receiver

The tractable suboptimal receiver proposed in [6] consists
of an analog front-end and a DSP back-end. Its defining
characteristic is that it relieves the analog front-end of difficult
tasks like fast A/D conversion and accurate delay lines, and
instead compensates by using an elaborate but tractable DSP
back-end.

1) Analog Front-end: The first block in the analog front-
end is a noise-limiting bandpass-pass filter g(·) centered at fc

and having a bandwidth ≈ ΩU . Its output is

R(t) =
K−1∑
k=0

Bkh(t− kTbaud − υ) +W (t) + I(t), (13)

where the three terms are, respectively, the UWB signal,
thermal noise and the interference signal. Here h(t) .= φU (t)?

cU (t) ? g(t) is the total impulse response seen by the UWB
transmitter. W (t) =

∫
V (t − τ)g(τ)dτ is the band-limited

response of the filter g(τ) to the thermal noise process V (t),
and I(t) is its response to the incoming interference signal.

Let λh denote the length of the total impulse response
h(t). The signal R(t) is fed to a bank of M parallel analog
correlators, followed by M integrators. The test function used
in correlator number m is denoted as ψm(t), and the whole
ensemble of test functions is denoted by {ψm(t)}, which is
assumed to be known to the DSP back-end. In Section III-A
we will discuss the criteria for selecting the ensemble. The
integrators m = 0, 1, . . . ,M − 1 are reset to zero at the
epoch t = 0 and their output is sampled synchronously at
the epoch λh + γ + (K − 1)Tbaud when all of the energy of
the burst is known to have arrived with high probability. Thus,
for m = 0, 1, . . . ,M − 1, we have the M measurements

Ym =
∫ λh+γ+(K−1)Tbaud

0

R(t)ψm(t) dt. (14)

The vector of measurements Y = [Y0, Y1, . . . , YM−1]T is then
fed to the DSP back-end, which recovers the payload bits
Bk, k = 0, 1 . . . ,K − 1 via a tractable QP algorithm.

2) DSP Back-end: The demodulation of the payload by the
DSP back-end relies on a consistent discrete time representa-
tion of the signal. Let fs be a sufficiently large virtual sampling
frequency [13] for the received UWB-IR signal. We would
like to emphasize that this is only a ‘thought-experiment’
construction, and no A/D conversion is done at rate fs in
actuality. Let Ts

.= 1/fs, and define h[n] .= h(nTs), n =
0, 1, . . . ,Λh − 1 and h

.= [h[0], h[1], . . . , h[Λh − 1]T , where
Λh = dλhfse is the length of the discrete-time finite impulse
response h[n]. A similar convention will apply to other signals
like g(t), ψm(t),W (t) etc. Let γ and Tbaud be multiples of
Ts, which can be achieved by construction. Now, expressed
in rate fs samples, the TOA uncertainty is Γ .= γfs and
the baud period (the interval between consecutive pulses) is
Nbaud = Tbaudfs. Define ΛX

.= Γ + (K − 1)Nbaud. Then
the length of the total burst response including the timing
uncertainty is N .= Λh + ΛX − 1.

Let Υ = round(υfs) be the burst TOA υ quantized to a
step size of Ts. The quantization error can be made negligible
provided fs is chosen large enough. Now, the sampled version
of R(t) can be written as a vector R ∈ RN given by

R = HX +W + I. (15)

Here the vector X ∈ RΛX is a virtual discrete time infor-
mation signal which has all samples equal to zero except
for K non-zero samples. The k-th non-zero sample, for
k = 0, 1, . . . ,K − 1, has a random amplitude Bk drawn
independently and equiprobably from {−1,+1}, and has a
random location Λk = Υ + kNbaud. On account of the
modeling assumption made in Section II-A, it follows that
Υ ∼ U([0,Γ]). The vectors W, I ∈ RN are the sampled
version of the additive Gaussian noise W (t) and interference
I(t) respectively, and the matrix H ∈ RN×ΛX is the convo-
lutional matrix (Toeplitz form) of h[n] [14]. In a similar vein
we can further relate the actually sampled measurements Y at



the output of the integrators to the virtual information signal
X . Define the M ×N measurement matrix

Ψ .=
1
fs

[
ψ0, ψ1, . . . ψM−1

]T

, (16)

where ψi
.=

[
ψi[0], ψi[1], . . . , ψi[N − 1]

]T

, ∀i =
0, 1, . . . ,M−1. Then we can write the measurement equation

Y = ΨR = ΨHX + ΨW + ΨI. (17)

Let B .= [B0, B1, . . . , BK−1]T . The aim of the DSP back-
end is to optimally estimate B,Υ from the measurement
Y , based on the relation in equation (17) and the a-priori
statistical knowledge about B,Υ. Note that B contains the
payload which is of primary interest, while the quantity Υ is
a ‘nuisance’ parameter. We assume that the system response
h(t) is known to the receiver, up to a random TOA υ. This
can be achieved by a tandem identification algorithm [6].

E. Bit Demodulation Based on Incomplete Measurements
Let us define the set X as the set of all signals x ∈ RΛX

that satisfy the following properties:
1) ‖x‖0 = K (sparsity).
2) The first nonzero sample is located at `0 ∈ [0,Γ]. The

subsequent non-zero samples are located at positions
`k = `0 + kNbaud, ∀k = 1, 2, . . . ,K − 1 (timing).

3) The magnitudes of all the nonzero samples are from
{−1,+1} (signaling alphabet).

Clearly |X | = 2K(Γ+1), X is the finite equiprobable alphabet
of the random information signal X (cf. Section II-D2), and
there is a one-to-one mapping

{−1,+1}K × {0, 1, . . . ,Γ} → X (18)
(B,Υ) 7→ X(B,Υ). (19)

Hence we can write P (Y |B,Υ) = P (Y |X), which implies
that, without losing optimality, we may first make the ML
estimate X̂ of the information signal X , and then map it to the
optimal estimates of the payload B̂(X̂) and TOA Υ̂(X̂). It is
straightforward to show that if we ignore the interference term
ΨI in equation (17) (whose statistics are a-priori unknown to
us) and consider only the additive Gaussian noise, the ML
demodulator declares the estimated signal as [6]

X̂ = argmin
x∈X

(Y −ΨHx)T (ΨGGT ΨT )−1(Y −ΨHx), (20)

where G is the Toeplitz matrix of g(t). Unfortunately, the
complexity of the ML demodulation problem (20) scales as
2min(K,λhfbaud)), which is clearly impractical. Hence in [6]
we proposed an alternative suboptimal demodulation technique
whose complexity is O(K3). Let the vector ξ(a, `1, `2) be a
positive penalty vector for the candidate information signals
x ∈ X . It incorporates the available timing information
by giving more penalty to those locations of x where the
occurrence of the non-zero samples is unlikely. That is, for
all n = 0, 1, . . . ,ΛX − 1,

ξ(a, `1, `2)[n] .=

 1.0,
n = `+ kNbaud

` ∈ [a+ `1, a+ `2]
k ∈ {0, 1, . . . ,K − 1}

f, otherwise,

(21)

where f is some suitable large number like 103. Also define
a corresponding diagonal penalty matrix as Ξ(a, `1, `2) =
diag(ξ(a, `1, `2)). Now consider the following relaxation of
the ML demodulation problem of equation (20):

X̃ = argmin
x∈RN‖Ξ(a,`1,`2) x‖1=K

(Y −ΨHx)T (ΨGGT ΨT )−1(Y −ΨHx).

(22)
Notice that the new constraint set is not discrete, but rather
a continuous set of signals of adequately small L1 norm.
Therefore notice that X ⊂ {x ∈ RN : ‖Ξ(0, 0,Γ)x‖1 = K}.
With some manipulation we can re-write (22) as [7]

X̃n = Z̃n − Z̃n+N , n = 0, 1, 2, . . . , N,

Z̃ = min fT z + 1
2z

TQz
z ≥ 0, [ξ(a, `1, `2)T , ξ(a, `1, `2)T ]z = K,

(23)

Q =
(
HT ΨT (ΨGGT ΨT )−1ΨH −HT ΨT (ΨGGT ΨT )−1ΨH
−HT ΨT (ΨGGT ΨT )−1ΨH HT ΨT (ΨGGT ΨT )−1ΨH

)
,

(24)
f = [−Y T (ΨGGT ΨT )−1ΨH, Y T (ΨGGT ΨT )−1ΨH]. (25)

(23) is now a standard QP, which has several efficient large-
scale techniques of solution, of which O(K3) interior point
methods are generally the fastest [15]. We perform the de-
modulation in two stages. In the first stage we solve the QP
in (23) using ξ(a = 0, `1 = 0, `2 = Γ). The result of this
stage, X̃(1), is used to extract an estimate Υ̂ of the arrival
time via correlation with the template ξ(0, 0, 0)[n] as follows:

Υ̂ = argmax
n′∈{0,1,...,Γ}

∑
n

|X̃(1)[n− n′]| ξ(0, 0, 0)[n]. (26)

We then solve the QP in (23) again, using ξ(a = Υ̂, `1 =
0, `2 = 0). From the result X̃(2), we demodulate the payload

B̂k = sign(X̃(2)[Υ̂ + kNbaud]), k = 0, 1, . . . ,K − 1. (27)

We would like to point out that the performance of the (ML
or QP) demodulator is invariant w.r.t. the burst length K even
when the number of correlators M is held constant.

III. ROBUSTNESS TO NARROW-BAND INTERFERENCE

A. Choice of Measurement Ensemble

It was shown in [7], [8] that {ψm(t)} can be any universally
decoherent measurement ensemble of randomly generated
noise-like signals. However, we actually do not need such
universality since we known that our signal sparsity is always
in the temporal domain [16]. Hence the Fourier ensemble
of sinusoids of amplitude 1/

√
N and frequencies selected

deterministically and uniformly from the signal band [fc −
Ω
2 , fc + Ω

2 ] is optimally decoherent w.r.t. the UWB signal. In
fact such an ensemble is highly desirable when we face strong
NBI because the two are mutually coherent. As a consequence
the NBI can affect only a few CS measurements. In contrast,
no matter which M test functions we choose we are likely to
capture roughly a fraction Mfs

2ΩN of the received UWB signal’s
energy. This implies that reliable demodulation of the UWB-
IR signal is possible after paying an under-sampling penalty of
roughly 10 log10

2ΩN
Mfs

dB, and this penalty will (on an average)
decrease monotonically and vanish as M ↑ N 2Ω

fs
.



B. Digital Notch

As we indicated above, if we choose an appropriate mea-
surement ensemble that is coherent w.r.t. the NBI but deco-
herent w.r.t. the UWB signal, it is assured that the NBI can
corrupt only a few CS measurements and we can therefore
implement a digital notch to suppress those measurements.
This is achieved as follows. Suppose for the time being that
there can be at the most nI = 1 NBI. Let

m̂ = argmax
m∈{0,1,...,M−1}

|Ym|. (28)

Now let D be an even number and

Ynotched = [Y0, Y1, . . . , Ym̂−D
2
, Ym̂+ D

2
, . . . , YM−2, YM−1]T

(29)
be a shortened vector obtained by notching out the D + 1
measurements around the index m̂. Now we simply execute the
QP demodulation in equations (23),(24),(25) using Ynotched ∈
RN−D−1 in lieu of Y ∈ RN , along with the appropriate
corresponding sub-matrix of Ψ. D can be chosen quite small,
say D ∼ β ΩI

∆ , where ∆ = ΩU

M is the frequency spacing of the
test functions and β is a safety factor to account for leakage
into adjacent measurements. We found that β ∼ 4− 8 works
well. Note that a smaller β can be used if we choose test
functions with better frequency selectivity. Finally, if nI > 1
interferers are expected, we simply apply the above notching
procedure around the nI largest absolute values in Y .

Our simulations presented in Section III-C indicate that
whenever the NBI are of any significant strength (say SIRbit ≤
20 dB), they can be very reliably detected and notched by
the above method. If an interferer is very weak we may
mis-detect and hence fail to suppress it. This, by itself, will
have no noticeable impact (since it is weak). But will the
unintended side-effect of notching out valid (uncorrupted)
measurements be catastrophic? The decoherence property of
the CS ensemble ensures that this is not the case. In fact,
since each CS measurement on an average captures an equal
fraction of the UWB signal energy, in the interference-free
regime the performance penalty due to the notching of (D+1)
CS measurements, w.r.t. an un-notched matched filter receiver,
is limited to a maximum of

−10 log10

(
1− nI(D + 1)

M

)
∼ −10 log10

(
1− nIβΩI

ΩU

)
dB.

(30)
Of course, when strong NBIs are actually present, the digitally
notched CS-QP receiver does not have any extra perfromance
loss while the un-notched matched filter can be completely
disabled. Thus the performance penalty in equation (30) is
a cost we pay ‘up-front’ to achieve robustness against nI

interferers, whatever their actual strength (within reason). For
example, if we plan for nI = 2 WiMAX NBIs of bandwidth
ΩI = 20 MHz, the performance penalty is only 0.75 dB,
which is a very modest.

Finally, another variant is possible where, instead of decid-
ing a-priori on the number of possible NBIs we wish to be
immune against (nI ), we choose it on a burst-to-burst basis.
That is, in each burst we notch out the nI CS measurements

whose absolute value crosses a certain pre-defined threshold.
Thus nI is now a random variable. Therefore, we can in effect
adapt the notching to the number of NBIs actually active.
Note that we must set the threshold conservatively (i.e. not too
high) so that we reliably detect and notch the NBIs when they
are present. This means we will suffer some ‘false alarms’
and intermittently notch uncorrupted measurements. Hence,
instead of a fixed deterministic penalty, we pay a ‘stochastic’
penalty for achieving NBI robustness, and its average value
will be given by the expectation of equation (30) w.r.t. the
distribution of nI conditioned on an interference-free regime.

C. Simulations of WiMAX Interference

As an exemplary case we simulate interference from a
WiMAX transmitter (IEEE 802.16-2004 [17] and later). We
consider the maximum allowed bandwidth under the draft
standard, namely ΩI = 20 MHz, which constitutes the worst
case from the point of view of the UWB system. We choose a
center frequency of fcI = 4.0 GHz (out of the possible range
2−66 GHz), since it falls approximately in the middle of our
UWB spectrum (cf. Section II-A). We simulate the presence
of WiMAX customer premise equipment (CPE) (uplink) with
a standard transmit power PTX

I ∼ 23 dBm. From these
results the performance in the presence of a base station (BS)
(downlink) having PTX

I ∼ 43 dBm can be easily inferred, as
we shall see shortly. For the UWB transmitter we choose the
FCC specified PSD limit LTX

U = −41.3 dBm/MHz [12].
We randomly generate two channel realizations from the

CM1 model of [11], normalize them to unit energy (since
we model the distance-based path loss separately) and specify
them as the responses cU (t), cI(t), which are held constant
throughout. Note that the temporal dispersion of the CM1
channel can be as large as 50 to 100 nanoseconds. We set
gU (t) to be a Nyquist filter of bandwidth ΩU around fcU ,
adequately delayed and truncated in time for realizability. All
simulations are performed with fs = 10 GHz, K = 8 bits
per burst, ρ = 2.0, fbaud = 500 Mbaud (implying that ISI
extends for 25 − 50 pulses), fburst = 1 Mbursts per second,
and TI = 1.5

2ΩI
= 37.5 nanoseconds (hence a 50% roll-off

in the WiMAX modulation). We use the IR pulse described
in Section II-A and the CS-QP demodulation described in
Section II-D2. A Fourier ensemble is used, as described in
Section III-A, with the M test functions located uniformly
from 2.5 to 5 GHz. (An asymmetric range is chosen around
the center frequency fc = 4.0 GHz to exploit the ‘tilt’ in
the channel frequency response.) A Tuckey window is applied
to each test function to ensure sufficiently rapid decay of its
spectrum away from its center frequency, in order to minimize
leakage. In the following discussion, the quantity Mfs

2αΩN , with
α = 1.5, will be called the under-sampling factor, such that
Mfs

2αΩN = 1 implies adequate sampling while Mfs

2αΩN < 1
implies under-sampling.1

Figure 2(a) shows the PSD of the UWB and the NBI signals
at the input of the filter g(t) under the condition SIRbit =

1For a strictly band-limited φU (t), α = 1.0. For the practical pulse
we use, we empirically determined that α = 1.5 ensures a performance
indistinguishable from Nyquist rate time-domain sampling.



25 dB, as well as the spectra of a couple of exemplary test
functions. Figures 2(b),(c) show the contribution of the UWB
signal and the WiMAX NBI to the CS measurements when
Mfs

2αΩN = 1.0. Subplot (a) shows the case when the NBI is
co-located with a test function and (b) shows the case when
it falls in inbetween two adjacent test functions. It is clear
that even for such relatively high SIR, the NBI stands out in
magnitude in both cases and can be reliably detected. Note that
if we operate with significant undersampling Mfs

2αΩN � 1.0,
the test functions are not densely packed and the NBI can
fall ‘in between the cracks’. This missed detection is not a
problem however since in such a case the NBI will not affect
the performance at all. In other words, whenever the NBI is
in a position to degrade the receiver performance, we can also
reliably detect and digitally notch it.

Next we consider the performance of the digitally notched
CS-QP receiver when there is a single NBI colocated with
a test function, at various values of SIRbit. We use a fixed
value of nI = 1 for the digital notch. Note that a given
value of SIRbit translates to a unique value of dI

dU
according to

equation (11). Some exemplary values of this relationship are
provided in Table I for the case of a WiMAX CPE as well as
BS. We simulate four cases, namely (i) Adequate sampling and
perfect timing: Mfs

2αΩN = 1.0, γ = 0, (ii) Under-sampling and
perfect timing: Mfs

2αΩN = 0.25, γ = 0, (iii) Adequate sampling
and poor timing: Mfs

2αΩN = 1.0, γ = 1.0 nanosecond, and
(iv) Under-sampling and poor timing: Mfs

2αΩN = 0.25, γ = 1.0
nanosecond. We present the results in the four respective
sub-plots of Figure 3. In subplot Figure 3(a) for reference
we also show the performance of the matched filter receiver
with perfect timing (cf. II-C) but no interference rejection
mechanism. The figure allows us to make several interesting
observations.

Firstly, with perfect timing and adequate sampling (subplot
(a)) we see that the digitally notched CS-QP receiver is 20
dB more robust to NBI than the un-notched matched filter.
Specifically, an SIRbit of 0 dB causes a loss of ∼ 0.5 dB
at BER 10−3 operating point, while for the matched filter an
SIRbit of 20 is needed for similar performance. From Table I
we know that SIRbit = 0 dB when dI/dU ∼ 0.9(9.9) for
a WiMAX CPE (BS). This implies that the CPE can be as
a distance comparable to that of the UWB transmitter, and
the BS interferer need be only about ten times further away,
to ensure that there is no noticeable impact on the digitally
notched CS-QP UWB receiver. This is not an unreasonable
scenario. In contrast, a generic un-notched UWB receiver will
need the distances to be ten times larger, which essentially
means that it cannot co-exist with the WiMAX system. Note
that ultimately the CS-QP receiver degrades because of NBI
leakage into adjacent CS measurements.

Secondly, we see that the robustness of the digitally notched
CS-QP receiver to the NBI is also carried over to the cases
of under sampling, imperfect timing or both. We observe,
as was expected, that imperfect timing has little effect on
performance, since with K = 8 the receiver can already
acquire timing ‘on the fly’. Similarly we verify that the degra-
dation due to under-sampling is graceful and in proportion

to the under-sampling factor. That is, Mfs

2αΩN = 0.25 leads to
around 6 dB loss. In fact, we note that the NBI robustness
improves when we have under-sampling. This is explained
by the fact that with more frequency separation among the
test-functions, the NBI leakage into adjacent measurements is
further reduced. Finally, we also see that the loss due to under-
sampling and imperfect timing is decoupled, i.e. combines
additively in dB. In summary, we have verified that all the
observations made in [6] for the interference-free case also
hold for the scenario of strong NBI.

IV. CONCLUDING REMARKS

We have shown that the CS-QP UWB-IR receiver proposed
in [6] can be made extremely robust to narrow-band interfer-
ence by the simple expedient of (a) using frequency selective
test functions in the correlators, and (b) implementing a simple
digital notching mechanism wherein we identify and drop the
few NBI corrputed measurements. For the exemplary case of
WiMAX interference, we showed that the receiver remains
practically unaffected even when the CPE is at a distance
comparable to that of the UWB transmitter and the BS is only
ten times farther off.
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Fig. 3. Effect of WIMAX interference on the BER vs SNRbit performance
of a digitally notched CS-QP receiver, for various scenarios of under-sampling
and timing uncertainty. (a) Adequate sampling and perfect timing (b) Under-
sampling and perfect timing (c) Adequate sampling and poor timing, and
(d) Under-sampling and poor timing. In subplot (a) we also show the perfor-
mance of an un-notched genie-timed matched filter receiver. In each subplot
the curves are parametrized by SIRbit = −30,−20,−10, 0, 10, 20,∞ dB.


