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Abstract

Signal detection without the need for channel state information at the receiver, so–called nonco-

herent detection, constitutes an interesting alternative to the widely–used concatenated scheme

of channel estimation and subsequent detection, so–called coherent detection, in adverse fading

channel environments. However, existing approaches to noncoherent detection are either too

complex or fail to achieve satisfactory power efficiencies under general fading conditions.

This thesis deals with the design and analysis of power–efficient, yet low–complexity non-

coherent detection schemes for point–to–point multiple–input multiple–output (MIMO) com-

munication systems. The starting point of this work is multiple–symbol differential detection

(MSDD), which simultaneously processes blocks of N > 2 received samples to estimate the

transmitted data. While MSDD is known to be capable of achieving power efficiencies close

to that of coherent detection with perfect channel state information if N is large, it quickly

becomes computationally intractable, as the candidate–signal space is (N−1)–dimensional, i.e.

the number of possible transmit sequences grows exponentially in N .

The application of tree–search algorithms, that have attracted considerable attention in the

recent communications literature, to overcome the complexity limitations of MSDD is investi-

gated. Furthermore, a nested MSDD structure consisting of an outer and a number of inner

tree–search decoders is developed, which renders MSDD feasible over wide ranges of system

parameters.

A second approach to low–complexity MSDD based on methods from combinatorial geome-

try is proposed for the interesting special cases of differential phase–shift keying (DPSK). This

approach is particularly appealing due to the fact, that its complexity is practically constant,

whereas tree–search based methods may have very high instantaneous complexities.

Inspired by decision–feedback differential detection (DFDD) and the observation that deci-

sions in the different positions of the MSDD observation window are not equally reliable, a new

noncoherent detection scheme, referred to as decision–feedback MSDD (DF–MSDD) is devised.

DF–MSDD achieves power efficiencies comparable to those of MSDD while the dimension of

the candidate–signal space and thereby the decoder complexity is reduced significantly. Here,

the tree–search methods developed for conventional MSDD are still applicable, such that a

computationally highly efficient noncoherent detector results.
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Following the development of the detection methods based on a generic MIMO channel

model, their application to transmission over time–selective and frequency–nonselective MIMO

channels and to transmission using orthogonal frequency–division multiplexing (OFDM) over

time– and frequency–selective channels is studied. While well–known differential space–time

modulation (DSTM) is applied for transmission over frequency–nonselective MIMO channels, a

new signal allocation scheme for OFDM–based transmission over frequency–selective channels

is devised, which makes use of both spatial and / or spectral (multipath) diversity and is partic-

ularly apt for power–efficient, low–delay MSDD. For this transmission scenario the application

of a two–dimensional observation window to MSDD to exploit channel correlations in both time

and frequency direction is investigated.

These practical aspects of this work are complemented by analytical studies regarding the

achievable power efficiency and computational complexity of the different detection schemes.

These investigations provide interesting insights into the connections between the performances

of the different detection schemes and their dependence on system and channel parameters and

into the behavior of the decoder complexity as a function of the system and channel parameters,

respectively. In consequence, they provide valuable guidelines for quick decoder design and

make system simulations largely expendable.

In summary, this work shows how power efficiencies very close to that of idealized coherent

detection assuming perfect channel state information can be achieved by means of noncoherent

detection with moderate computational complexity, even in adverse fading channel scenarios.
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Notation

For the sake of clarity, we apply the following rules on notation throughout this thesis:

• Lower case symbols in boldface denote vectors, e.g. x. Their elements are addressed using

subscripts, e.g. xn denotes the nth entry of the vector x. Conversely, an N–dimensional

vector can be defined as x = [xn]n=1,... ,N .

• Upper case symbols in boldface denote matrices, e.g. X. Their elements are addressed

using subscripts, e.g. xn,m denotes the element in the nth row and mth column of X.

For simplicity of notation, we at times also denote the element in the nth row and mth

column of a matrix X as [X]n,m. The nth row and the mth column of X are denoted

as [X]n,: and [X]:,m, respectively. Conversely, an (N ×M)–dimensional matrix can be

defined as X = [xn,m] n=1,... ,N
m=1,... ,M

.

• Upper case symbols in calligraphic typeface / boldface, denote sets of scalars / matrices,

respectively, e.g. X / X .

• To clearly distinguish between continuous– and discrete–time signals, we deploy round

and square brackets, respectively, to illustrate their dependence of the respective time

variable, e.g. s(t), t ∈ IR and s[k], k ∈ ZZ.

Further, in order to keep the notation as simple as possible, we do not distinguish between

random variables and particular realizations thereof. We also adopt the simplified notation that

the argument of a probability density function (PDF) corresponds to the random variable. We

emphasize that this simplified notation implies that the conditioned PDFs p(x |y) and p(x |z)

of x conditioned on y and on z, respectively, denote different functions, if y and z represent

different random variables.

A list of important symbols and frequently used mnemonics can be found in Appendix A.
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Chapter 1

Introduction and Outline

In many practical and especially in wireless communication systems, transmission channels

typically are time variant due to oscillator instabilities, phase noise and motion of transmitter,

receiver and / or scatterers. In digital communications, there are essentially two approaches to

signal detection:

Coherent Detection: Here, the instantaneous channel state is estimated explicitly, usually

based on the transmission of pilot symbols (cf. e.g. [MB84, ML89, Cav91, MD97]), and

signal detection is subsequently performed using the resulting channel estimate.

Noncoherent Detection: Here, the explicit estimation of the instantaneous channel state is

avoided. Instead channel estimation is either performed implicitly in signal detection

(cf. e.g. [WFM89, DS90, DSS90, LP91, LP92, HF92, DS94]), or even avoided entirely

(cf. e.g. [BN62, Hug00a, HM00]).

While the coherent approach to signal detection based on the (ad hoc) separation of the

detection problem into explicit channel estimation and signal detection is most commonly de-

ployed in digital transmission systems, the noncoherent approach appears to be more natural,

since the receiver is usually primarily interested in the transmitted information, but not in in-

formation about the current state of the channel. Furthermore, noncoherent detection schemes

are more robust in rapidly varying transmission scenarios than their coherent counterparts,

which rely on the accuracy of the externally obtained channel estimates. They are therefore

particularly apt for (i) discontinuous transmission, where coherent transmission would require

a relatively large portion of pilot symbols for accurate channel estimation, (ii) systems with

low–cost high–frequency components, where e.g. strong fluctuations of phase and frequency of

local oscillators may occur, and (iii) systems with time–variant interference, e.g. if transmission

takes place in unlicensed frequency bands such as the “industrial, scientific and medical” (ISM)

bands, where channel estimation would have to be repeated frequently.

2



CHAPTER 1. INTRODUCTION AND OUTLINE 3

The reason for the popularity of coherent schemes lies mainly in the fact that existing non-

coherent detection schemes are characterized either by poor power efficiency or by high com-

putational complexity for high power efficiency. In order to achieve good power efficiency by

means of noncoherent detection simultaneous processing of blocks of N received samples based

on knowledge of the statistical properties, such as power spectral density, power–delay profile

and noise variance, of the channel are required. So, given a transmit–symbol alphabet of size L

such block–based noncoherent detection involves finding the best out of LN possible transmit

sequences, whereas coherent detection with external channel estimation can be performed on

a symbol–by–symbol basis. Such block–based noncoherent detectors are commonly referred to

as multiple–symbol (differential) detectors (MS(D)D) and the block length N is called the ob-

servation window length, cf. e.g. [WFM89, DS90, DSS90, LP91, LP92, HF92, DS94, VCBT97].

Ever since the introduction of MSDD the search for noncoherent detectors that achieve a

comparable power efficiency at manageable computational complexity has been a subject of

continued research in the communications community. While Mackenthun proposed an MSDD

algorithm whose complexity is of the order N log(N) for the time–invariant channel in [Mac94],

other authors developed algorithms based on restricted tree search, cf. e.g. [AS89, LW90], or

reduced–state Viterbi decoding, cf. e.g. [MF90, LM90, YP95, VT95a, Rap96a, Ada96, CR99].

In particular the complete reduction of the states in the trellis has lead to popular decision–

feedback differential detection (DFDD), cf. e.g. [LP88, Edb92, AS93, AS95, SGH99, SL02].

However, these schemes leave room for improvement regarding the performance–complexity

tradeoff and the introduction of decision–feedback strategies impedes the application of such

detectors in coded transmission systems.

In this thesis, we deal with the design and analysis of noncoherent detection schemes, whose

power efficiencies are close to that of idealized coherent detection with perfect instantaneous

channel state information (CSI), while their complexities are very well comparable to those of

existing less power–efficient schemes such as DFDD. In particular, we consider highly time–

and / or frequency–selective multiple–input multiple–output (MIMO) channels, where coherent

detection becomes unattractive, as pilot symbols, which are required for frequent estimation of

a large number of channel coefficients, consume a substantial portion of the ever more precious

commodities signaling bandwidth and transmit power, cf. e.g. [Mar99].

Chapter 2 introduces a generic MIMO system model that shall serve as basis for our con-

siderations on computationally and power–efficient noncoherent detectors in Chapter 3. In

particular, we review a number of important unitary–matrix signal constellations, that were

originally developed for differential space–time modulation (DSTM) and are designed to ex-

ploit the diversity provided by the MIMO channel, while facilitating noncoherent detection.

Following the introduction of DSTM we review a number of standard coherent and noncoher-

ent detection strategies considered in this work. Based on the identification of a relationship
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between MSDD and linear minimum–mean squared error (MMSE) interpolation novel vari-

ants of MSDD are introduced that will be shown to achieve excellent complexity–performance

tradeoffs.

Chapter 3 is dedicated to the development of computationally highly efficient algorithms to

(approximately) solve the MSDD problem. Here, we consider two different approaches: The

first one makes use of tree–search algorithms, that were developed in the context of sequential

decoding of convolutional codes and in lattice theory. Based on a revision and classification

of the various tree–search methods, two promising algorithms are selected for application to

MSDD with arbitrary DSTM constellations. Further significant complexity savings are ob-

tained through optimization of the receiver structures for individual DSTM constellations.

The second approach is based on methods from combinatorial geometry and is applicable to

single–transmit antenna schemes employing differential phase–shift keying (DPSK) or simple

repetition transmit diversity schemes in conjunction with possibly multiple receive antennas.

In Chapter 4, we present a general time–variant MIMO channel model for a system with

NT transmit and NR receive antennas. This model serves as basis for our considerations on

detection for transmission over frequency–nonselective and frequency–selective MIMO channels

in Chapters 5 and 6, respectively.1

In Chapter 5 we relate the generic system model of Chapter 2 to a DSTM–based system for

transmission over a frequency–nonselective channel, which is derived from the general channel

model of Chapter 4. Here, we furthermore present the results of our in–depth analytical inves-

tigations regarding both the computational complexity and the achievable performance of the

novel noncoherent detection schemes of Chapter 3 when applied to DSTM–based transmission

over frequency–nonselective channels.

In Chapter 6 transmission over frequency–selective MIMO channels is considered, and we

investigate the usefulness of our methods in a system using orthogonal frequency division mul-

tiplexing (OFDM). We also develop a novel signal–allocation scheme, that allows us to benefit

from both spatial and spectral diversity. For power–efficient noncoherent detection we propose

to use MSDD with a two–dimensional observation window, such that correlation in both time

and frequency can be exploited in the detection process.

Chapter 7 summarizes the contributions of this thesis and provides a brief outlook to possible

directions for further related research.

Parts of the material presented in this work have been published in [PL05, PL07b, PL06,

PLH07b, PLSF06, PSL06, PL07a, PLH07a, PLSF07].

Finally, we would like to mention that in this work we concentrate on transmission without

forward error correction (FEC). However, extension to FEC coded transmission can be ac-

1Note that all results presented in this work trivially include popular DPSK with or without receive diversity

as special case with NT = 1. This case is therefore not treated separately in this work.
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complished by transforming the proposed detectors into soft–output, or soft–input soft–output

modules for iterative decoding, as shown in e.g. [PLS06] for the special case of DPSK trans-

mission.



Chapter 2

Differentially Encoded Space–Time

Transmission and Detection

In this section, we introduce a generic discrete–time multiple–input multiple–output (MIMO)

system model that will serve as basis for our considerations on low–complexity noncoherent

detection strategies in Chapter 3. This model is based on unitary–matrix signal constellations,

that were originally developed for differential space–time modulation (DSTM) and will be

reviewed in Section 2.1, together with differential encoding as discussed in Section 2.2. The

MIMO channel model will be introduced in Section 2.3. In Section 2.4, we will describe the

detection schemes considered in this work and present their respective decision rules.

At this, it is our full intention to remain fairly abstract, e.g. not relating the inputs and

outputs of the MIMO channel to transmit and receive antennas, respectively, in order to si-

multaneously cover the common aspects of the different transmission scenarios considered in

Chapters 5 and 6. While the MIMO channel model is introduced in a rather ad–hoc way in this

chapter and contains some assumptions made by the detection schemes, it will be related to a

physically motivated channel model in Chapter 4. The rather abstract variables introduced in

this chapter and Chapter 3 will be filled with life in Chapters 5 and 6, where we will consider

single–carrier transmission over frequency non–selective channels using DSTM and transmission

over frequency selective channels based on orthogonal frequency division multiplexing (OFDM),

respectively.

All of our considerations are set in the equivalent complex baseband (ECB) domain [Tre71],

i.e. all quantities involved in the channel model are in general represented by complex–valued

variables. In particular, we employ an energy–invariant baseband transformation, cf. e.g.

[Tre71].

6
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2.1 Signal Constellations

Differential space–time modulation (DSTM) using signal constellations

V
△
=
{
V (l) | l ∈ {1, . . . , L}

}
(2.1)

(
△
=: definition) consisting of L (NS × NS)–dimensional unitary matrices V (l), 1 ≤ l ≤ L, has

been introduced in [TJC99, Hug00a, HS00, HH02].1 Ever since, the design and analysis of good

constellations has been a field of very active research and various authors have presented results

on numerous signal constellations in e.g. [Hug99a, Hug99b, MHH00, ARU00, HM00, HMR+00,

CMH00, Hug00b, LX00, HHSS00, SHHS01, ARU01, LX01, HM01, Sho01b, Sho01a, LLLL01a,

LLLL01b, TC01, GS02, DADSC02, LX02, MHH02, Hug03, SY03, HSL05a, WWM05]. These

can be coarsely classified into two classes: (i) so–called group codes, where the set V forms a

group with respect to matrix multiplication and (ii) so–called non–group codes, where this is

not the case, i.e. where the product of two elements V (l1) and V (l2) of V does not necessarily

result in an element from V . Given this abundance of signal constellations, we chose to restrict

our attention to the four important representatives, reviewed briefly in the following.

2.1.1 Constellations from Group Codes

2.1.1.1 Cyclic (Diagonal) Codes

Cyclic DSTM codes (also often referred to as diagonal DSTM codes) were originally proposed

independently in [Hug00a] and [HS00]. Here, V is defined as

V
△
=

{

V (l) = diag
{

ej 2π
L

c1 , . . . , ej 2π
L

cNS

}l
∣
∣
∣
∣
l ∈ {1, . . . , L}

}

(2.2)

(diag{x1, . . . , xM}: (M×M)–dimensional diagonal matrix with the xi, 1 ≤ i ≤M , on its main

diagonal, ex, exp(x): exponential function, j
△
=
√
−1: imaginary unit). The integer coefficients

ci ∈ {1, . . . , L − 1}, 1 ≤ i ≤ NS, are optimized with respect to asymptotic2 power efficiency

of conventional differential detection (CDD, cf. Section 2.4.1) under the assumption that the

channel does not change significantly over time. Optimized coefficients for various values of NS

can be found in e.g. [HS00, Table I]. An example of a cyclic DSTM constellation with NS = 2

and L = 16 designed in [HS00] is given by the set

V =






V (l) =

[

ejπ
8 0

0 ej 3π
8

]l
∣
∣
∣
∣
∣
∣

l ∈ {1, . . . , 16}






(2.3)

1Many authors also refer to DSTM based on unitary–matrix signal constellations as unitary DSTM (UD-

STM).
2“Asymptotic” in the sense of high signal–to–noise ratio (SNR).
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of unitary matrices.

Note that differential phase–shift keying (DPSK, cf. e.g. [Pro00]) can be viewed as special

case of cyclic DSTM with NS = 1 and c1 = 1. Therefore, all results presented in this work are

in an obvious way also applicable to DPSK.

2.1.1.2 Dicyclic Codes

For NS even, dicyclic DSTM codes (also referred to as generalized quaternion DSTM codes)

were originally proposed in [Hug03]. Here, an (L/2)–ary variable l and a binary variable m

select an unitary matrix V (l+(m−1)L/2) from the set V of cardinality |V | = L defined as

V
△
=

{

V (l+(m−1) L
2
) = diag

{

ej 4π
L

c1 , . . . , ej 4π
L

cNS

}l

·
[

0NS/2,NS/2 −INS/2

INS/2 0NS/2,NS/2

]m ∣
∣
∣
∣
∣

l ∈ {1, . . . , L/2}
m ∈ {0, 1}

}

,

(2.4)

where cNS/2+l = −cl, 1 ≤ l ≤ NS/2, and X0 = IN for any (N ×N)–dimensional matrix X (IN :

(N ×N)–dimensional identity matrix, 0M,N : (M ×N)–dimensional all–zeros matrix). Integer

coefficients cl ∈ {1, . . . , L/2− 1} optimized with respect to asymptotic power efficiency under

CDD in very–slow–fading high–SNR regimes are listed in [Hug03, Table III]. An example of a

dicyclic DSTM constellation with NS = 4 and L = 16 designed in [Hug03] is given by the set

V =







V (l+8(m−1)) =









ejπ
8 0 0 0

0 ej 3π
8 0 0

0 0 e−jπ
8 0

0 0 0 e−j 3π
8









l 







0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0









m
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

l ∈ {1, . . . , 8}
m ∈ {0, 1}







(2.5)

of unitary matrices.

Note that for L being a power of two, every full–rank group DSTM code, i.e. every unitary

DSTM code that achieves full transmit diversity, is equivalent to either a cyclic or a dicyclic

DSTM code, cf. [Hug03, Theorem 2].

2.1.2 Constellations from Non–Group Codes

2.1.2.1 Orthogonal Codes

A DSTM scheme that is frequently considered in the literature is that of orthogonal DSTM codes

originally proposed in [TJC99]. While it is straightforward to extend our subsequently presented

results regarding orthogonal codes to NS > 2, we will restrict our attention to the interesting
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special case of NS = 2, where the orthogonal codes of [TJC99] coincide with Alamouti’s code

[Ala98]. Here, the set V is defined as

V
△
=

{

V (l) =
1√
2

[

a −b∗
b a∗

]∣
∣
∣
∣
∣
a, b ∈

{

1, e
j 2π√

L , . . . , e
j
2π(

√
L−1)√
L

}}

. (2.6)

(·∗: (elementwise) complex conjugate)

2.1.2.2 Cayley Codes

As second important representative of non–group codes we consider Cayley codes [HH02,

WWM05], which are particularly apt for high–rate data transmission. Here, the transmit data

is split into Q parallel streams and mapped to Q real–valued coefficients αq, 1 ≤ q ≤ Q, from

a Q
√
L–ary set Acay. Together with Q predefined Hermitian symmetric (NS ×NS)–dimensional

“basis matrices” Aq they define L Hermitian symmetric matrices

A(l)
cay

△
=

Q
∑

q=1

αqAq. (2.7)

Applying the Cayley transform to the skew–Hermitian symmetric matrices jA(l)
cay leads to the

L–ary unitary DSTM constellation

V
△
=

{

V (l) =
(

INS
+ jA(l)

cay

)−1 (

INS
− jA(l)

cay

)
∣
∣
∣
∣
l ∈ {1, . . . , L}

}

. (2.8)

An example of a 4096–ary constellation with NS = 2 for which we will show numerical results

in later chapters is specified by the set of coefficients (cf. [HH02])

Acay = {±5.0273,±1.4966,±0.6682,±0.1989} (2.9)

and basis matrices

A1 =

[

0.1785 0.0510 + j0.1340

0.0510− j0.1340 0.0321

]

A2 =

[

−0.1902 0.1230 + j0.0495

0.1230− j0.0495 −0.0512

]

A3 =

[

−0.2350 0.0515− j0.0139

0.0515 + j0.0139 0.1142

]

A4 =

[

0.0208 0.1143− j0.1532

0.1143 + j0.1532 0.0220

]

.

(2.10)

2.2 Differential Encoding

As we consider detection without instantaneous channel state information (CSI), i.e. without

knowledge of the current state of the channel at the receiver, it is not possible to successfully
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transmit information by mapping blocks of log2(L) bits to symbols V [k] ∈ V and transmit them

directly. As a remedy, a differential encoding technique for unitary–matrix signal constellations

(cf. Section 2.1) was proposed in [HS00, Hug00a]. It can be viewed as extension of classical

DPSK to unitary matrices. Here, blocks of log2(L) bits are mapped to matrix data symbols

V [k] ∈ V , which are differentially encoded into matrix transmit symbols S[k] via

S[k] = V [k]S[k − 1], S[0] = INS
. (2.11)

Consequently, the information to be transmitted is contained in the “differences” between

successive transmit symbols S[k] and can —provided that the channels over which S[k] and

S[k − 1] are transmitted are not statistically independent— be recovered without the need for

CSI at the receiver.

While the meaning of k may vary depending on the application derived from this generic

system model, we will in the following refer to it as “time index” of matrix symbols.

2.3 Generic Channel Model

The detection algorithms presented in Section 3 are based on the following generic “temporally”

correlated MIMO Rayleigh–fading channel model. The received signal R[k] corresponding

to the transmission of an (NS × NS)–dimensional transmit symbol S[k] is organized in an

(NS ×NR)–dimensional matrix

R[k] = S[k]G[k] + N [k]. (2.12)

Here, the elements gi,j [k] in the ith row and jth column of (NS × NR)–dimensional G[k] rep-

resenting the MIMO channel are modeled as independent identically distributed (iid) Rayleigh

fading processes, i.e. as iid Nc(0, 1) random variables (Nc(m,σ
2): circularly symmetric complex

Gaussian distribution with mean m and variance σ2). Their temporal correlation is described

by

E
{
gi1,j1 [k + κ]g∗i2,j2

[k]
}

=

{

ψgg[κ] i1 = i2, j1 = j2

0 otherwise
, (2.13)

(Ex{f(x)}: expectation of f(x) with respect to random variable x, where the subscript x is omit-

ted whenever possible). It models the temporally correlated non–amplifying channel, which is

assumed to be constant during the transmission of S[k]. A remark on denomination: Interpret-

ing k as “time index” we speak of (i) “rapid”, (ii) “slow” or (iii) “static” fading or time–variance

of the fading process, if G[k] statistically changes (i) significantly, (ii) hardly or (iii) not at all

from matrix symbol to matrix symbol.
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(NS × NR)–dimensional N [k] contains iid temporally uncorrelated Nc(0, σ
2
n) random vari-

ables ni,j [k], i.e.

E
{
ni1,j1 [k + κ]n∗

i2,j2
[k]
}

=

{

σ2
n i1 = i2, j1 = j2, κ = 0

0 otherwise
. (2.14)

It models the additive white Gaussian noise (AWGN) perturbing the reception of S[k].

Note that the organization of the received signal corresponding to the transmission of S[k]

in an (NS×NR)–dimensional matrix rather than in e.g. a vector of length NSNR is in principle

arbitrary. It follows from considerations on simplicity of notation and from intuitive arguments

regarding the interesting special case considered in Chapter 5, where (NS × NR)–dimensional

G[k] represents a time–variant spatially uncorrelated MIMO channel in a transmission system

employing NT = NS transmit and NR receive antennas.

2.4 Differential Detection

At the receiver various known detection schemes for noncoherent communication are considered.

For completeness, we briefly review them in the following.

2.4.1 Conventional Differential Detection (CDD)

Conventional differential detection (CDD) is most often considered in the abovementioned

publications on DSTM constellations. It is based on the assumption that temporal variations

between two successive channel realizations are negligible, i.e. that G[k] = G[k − 1]. On the

basis of this assumption and the Rayleigh–fading channel model of Section 2.3 the maximum–

likelihood (ML) decision rule for CDD can be deduced from the conditional probability density

function (PDF) (cf. e.g. [Mil74])

p(R[k − 1],R[k] |S[k − 1],S[k]) = (2.15)

1

((πNR)2σ2
n(2 + σ2

n))NSNR
· exp

(

− 1

NR

tr

{

[
RH[k − 1],RH[k]

]

[

S[k − 1] 0NS,NS

0NS,NS
S[k]

]

([

1 + σ2
n 1

1 1 + σ2
n

]

⊗ INS

)−1 [

SH[k − 1] 0NS,NS

0NS,NS
SH[k]

][

R[k − 1]

R[k]

]










(·H: Hermitian transposition, ⊗: Kronecker product (cf. e.g. [HJ91]), and tr{·}: trace). Insert-

ing (2.11) into (2.15) and recalling that S[k − 1] is unitary one can see that p(R[k − 1],R[k] |
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S[k − 1],S[k]) depends only on V [k] and we can write

p(R[k − 1],R[k] |S[k − 1],S[k]) = p(R[k − 1],R[k] |V [k]) = (2.16)

1

((πNR)2σ2
n(2 + σ2

n))NSNR
· exp

(

− 1

NR

tr

{

[
RH[k − 1],RH[k]

]

[

INS
0NS,NS

0NS,NS
V [k]

]





[

1 + σ2
n 1

1 1 + σ2
n

]−1

⊗ INS





[

INS
0NS,NS

0NS,NS
V H[k]

][

R[k − 1]

R[k]

]










and averaging with respect to S[k − 1] is not required. Using the identity (1N,N + xIN)−1 =
1
x
(IN− 1

N+x
1N,N) (1N,N : (N×N)–dimensional all–ones matrix), taking into account that exp(·)

is a monotonous function and neglecting all terms that do not depend on V [k] one obtains the

ML decision rule for estimation of the data symbol V [k] as (cf. e.g. [Hug00a])

V̂ [k] = argmax
Ṽ [k]∈V

{

Re
{

tr
{

Ṽ [k]R[k − 1]RH[k]
}}}

(2.17)

(argmaxx∈X{f(x)}: returns that element of a set X that maximizes the function f(x), Re {·},
Im {·}: real, imaginary part).

While CDD is capable of achieving reasonable performance when G[k] = G[k − 1] (cf. e.g.

[HS00]), growing temporal variations of the channel lead to poorer power efficiency of CDD

reflecting in an increasingly high error floor at high SNR, cf. [PS03, DB06]. To overcome these

limitations more sophisticated detection schemes such as multiple–symbol differential detec-

tion (MSDD, cf. Section 2.4.2) or low–complexity derivates thereof such as decision–feedback

differential detection (DFDD, cf. Section 2.4.3) or the algorithms described in Chapter 3 are

required.

2.4.2 Multiple–Symbol Differential Detection (MSDD)

MSDD processes blocks of N successively received symbols R[k − κ], 0 ≤ κ ≤ N − 1, to

detect the corresponding N transmit symbols S[k − κ], 0 ≤ κ ≤ N − 1, or equivalently by

reversal of (2.11) N − 1 differentially encoded data symbols V [k − κ], 0 ≤ κ ≤ N − 2, cf.

e.g. [WFM89, DS90, DSS90, LP91, LP92, HF92, DS94, KL94]. At this, N is referred to as

observation window length. Let us collect the data, transmit and received symbols and the

corresponding channel matrices G[k] and noise matrices N [k] in respective block matrices V̄ ,

S̄, Ḡ, N̄ and R̄, and define the ((N − 1)NS ×NS)–dimensional matrix

V̄ [k]
△
=

[
V H[k −N + 2], . . . ,V H[k]

]H
(2.18)

the (NNS ×NS)–dimensional matrices

S̄[k]
△
=

[
SH[k −N + 1], . . . ,SH[k]

]H
(2.19)
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(NNS ×NR)–dimensional

Ḡ[k]
△
=

[
GH[k −N + 1], . . . ,GH[k]

]H
(2.20)

N̄ [k]
△
=

[
NH[k −N + 1], . . . ,NH[k]

]H
(2.21)

R̄[k]
△
=

[
RH[k −N + 1], . . . ,RH[k]

]H
(2.22)

and the (NNS ×NNS)–dimensional unitary block–diagonal matrix

S̄D[k]
△
= diag

{
S̄[k]

}
=







S[k −N + 1] 0
. . .

0 S[k]






. (2.23)

With this notation, the channel can be described by

R̄[k] = S̄D[k]Ḡ[k] + N̄ [k]. (2.24)

For the sake of readability, we will in the following drop the reference [k] to time wherever

possible.

Based on the above Rayleigh–fading channel model the corresponding conditional PDF

p
(
R̄
∣
∣ S̄
)

is given by (cf. e.g. [Mil74])

p
(
R̄
∣
∣ S̄
)

=
1

det
{
πΨR̄R̄|S̄

}NR
· exp

(

−tr
{

R̄
H
Ψ−1

R̄R̄|S̄R̄
})

(2.25)

(det{·}: determinant). For the autocorrelation matrix ΨR̄R̄|S̄ of R̄ conditioned on S̄ we can

exploit the independence of zero–mean Ḡ and N̄ and write

ΨR̄R̄|S̄
△
= E

{
R̄R̄H

∣
∣ S̄
}

(2.26)

= E
{(

S̄DḠ + N̄
)
·
(

Ḡ
H
S̄H

D + N̄H

)}

(2.27)

= S̄DE
{
ḠḠH

}
S̄H

D + σ2
nINNS

NR. (2.28)

Taking further the correlation structure (2.13) of the fading channel into account we obtain for

the autocorrelation matrix of Ḡ

ΨḠḠ

△
= E

{

ḠḠ
H
}

(2.29)

= toeplitz{ψgg[0], . . . , ψgg[N − 1]} ⊗ INS
NR, (2.30)

△
= Ψgg ⊗ INS

NR, (2.31)

(toeplitz{x1, . . . , xN}: (N×N)–dimensional Hermitian symmetric Toeplitz matrix [Gra71] with

[x1, . . . , xN ]T as its first column, ·T: transposition) with ψgg[κ] as defined in (2.13). Finally,
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plugging (2.31) into (2.28) and using the identity det{AB} = det{A} det{B} for arbitrary

square matrices A and B we find that

det
{
ΨR̄R̄|S̄

}
= det

{
S̄D

((
Ψgg + σ2

nIN

)
⊗ INS

)
S̄H

D

}
(2.32)

= det
{
S̄D

}
· det

{(
Ψgg + σ2

nIN

)
⊗ INS

}
· det

{
S̄H

D

}
(2.33)

= det
{
Ψgg + σ2

nIN

}NS (2.34)

and with (2.25)

p
(
R̄
∣
∣ S̄
)

=
exp
(

− 1
NR

tr
{

R̄
H
S̄D

(

(Ψgg + σ2
nIN)

−1 ⊗ INS

)

S̄
H

DR̄
})

(

(πNR)N det{Ψgg + σ2
nIN}

)NRNS
. (2.35)

Neglecting terms that are irrelevant for the maximization, realizing that exp(·) is a mono-

tonous function, and recalling the relation between S̄ and V̄ due to the differential encoding

[cf. (2.11)] the ML–MSDD decision rule with respect to V̄ can be written as

ˆ̄V = argmin
˜̄V ∈VN−1

{

tr
{

R̄H ˜̄SD (M ⊗ INS
) ˜̄S

H

DR̄
}}

, (2.36)

with the (N ×N)–dimensional matrix

M
△
=
(
Ψgg + σ2

nIN

)−1
(2.37)

and the (NNS ×NNS)–dimensional unitary block–diagonal matrix

˜̄SD
△
= diag







[
N−2∏

κ=0

Ṽ [k − κ]
]H

,

[
N−3∏

κ=0

Ṽ [k − κ]
]H

, . . . ,

[
0∏

κ=0

Ṽ [k − κ]
]H

, INS






, (2.38)

(
∏u

i=l X[i]
△
= X[l]X[l + 1] · · ·X[u], argminx∈X{f(x)}: returns that element of a set X that

minimizes the function f(x)). Note that the last (NS×NS)–dimensional block–diagonal element

of ˜̄S can be fixed as INS
without loss of optimality. The reason for this lies in the fact that

the noncoherent detector can only determine the transmit signal up to a common unitary

transformation of all transmit symbols inside the MSDD observation window. This is however

not a problem due to the differential encoding (2.11), i.e. right–multiplication of ˜̄S with an

arbitrary unitary S̃[k] would not alter the decoding result (cf. also the step leading from (2.15)

to (2.16)). Note also that throughout this work we use accents to distinguish between (i) the

true data and transmit sequences V̄ and S̄, (ii) candidate sequences ˜̄V and ˜̄S, and (iii) decoder

output sequences ˆ̄V and ˆ̄S.

As MSDD returns N − 1 decisions on data symbols V [k − κ], 0 ≤ κ ≤ N − 2, successive

matrices R̄[k] must overlap by one symbol R[k], i.e. the so–called MSDD observation window

of length N must only slide forward by N − 1 symbols at a time, i.e. k := k +N − 1 (x := y:

assignment of a value y to a variable x). For illustration see Fig. 2.1.
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. . .. . .R[k−N+1] R[k−N+2] R[k−N+3] R[k] R[k+1] R[k+2] R[k+N−1]

Ŝ[k−N+1] Ŝ[k−N+2] Ŝ[k−N+3] Ŝ[k] Ŝ[k+1] Ŝ[k+2] Ŝ[k+N−1]

V̂ [k−N+2] V̂ [k−N+3] V̂ [k] V̂ [k+1] V̂ [k+2] V̂ [k+N−2]

Figure 2.1: Illustration of multiple–symbol differential detection (MSDD).

2.4.2.1 Relation between ML MSDD and Linear MMSE Interpolation

Let us briefly review a result from [PK88]. Given a vector x of N samples xn of a random

process with autocorrelation matrix Ψxx

△
= E

{
xxH

}
the interpolation error filter bn that leads

to the minimum–mean squared error (MMSE) variance E{|x̆n|2} with

x̆n
△
= xn − x̂n = bH

nx (2.39)

in the interpolation of an x̂n from the remaining N − 1 samples xν , 1 ≤ ν ≤ N , ν 6= n, is given

by

bn =
1

[
Ψ−1

xx

]

n,n

[
Ψ−1

xx

]

n,:
. (2.40)

Thus, the interpolation error vector x̆ if all N samples xn are interpolated from the respective

remaining N − 1 samples xν , 1 ≤ ν ≤ N , ν 6= n, can be written as

x̆
△
= x− x̂ (2.41)

= diag
{[

Ψ−1
xx

]

1,1
, . . . ,

[
Ψ−1

xx

]

N,N

}−1

Ψ−1
xxx. (2.42)

When considering

E
{
x̆x̆H

}
= diag

{[
Ψ−1

xx

]

1,1
, . . . ,

[
Ψ−1

xx

]

N,N

}−2

Ψ−1
xx (2.43)

we see that (i) the entries x̆n of the interpolation error x̆ are correlated and (ii) the interpolation

error variances σ2
i,n in the different positions n are equal to the respective diagonal elements of

Ψ−1
xx, i.e.

σ2
i,n =

1
[
Ψ−1

xx

]

n,n

. (2.44)

In view of the desired relation between linear MMSE interpolation and MSDD it is further

interesting to consider the correlation between the sample vector x and the interpolation error
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vector x̆. Using (2.42), (2.44) and the identity aHb = tr
{
baH

}
for arbitrary vectors a, b of

equal length we can write

E
{
xHx̆

}
= E

{
xHdiag

{
σ2

i,1, . . . , σ
2
i,N

}
Ψ−1

xxx
}

(2.45)

= E
{
tr
{
diag

{
σ2

i,1, . . . , σ
2
i,N

}
Ψ−1

xxxxH
}}

(2.46)

= tr
{
diag

{
σ2

i,1, . . . , σ
2
i,N

}}
(2.47)

=
N∑

n=1

σ2
i,n. (2.48)

In MSDD on the other hand, the candidate ˜̄S, which minimizes [cf. (2.36)]

tr
{

R̄HΨ−1

R̄R̄| ˜̄S
R̄
}

(2.49)

where [cf. (2.28) with (2.31) and (2.37)]

Ψ
R̄R̄| ˜̄S = ˜̄SD (M ⊗ INS

) ˜̄S
H

D, (2.50)

is chosen as decoder output ˆ̄S. With (2.42) we can now see that Ψ−1

R̄R̄| ˜̄S
R̄ in (2.49) can be

interpreted as the (NNS×NR)–dimensional matrix of interpolation errors under the hypothesis

that ˜̄S was transmitted, its entries being normalized by the respective interpolation error

variances.3 In other words, ML MSDD corresponds to choosing the hypothesis ˜̄S such that the

instantaneous correlation between the matrix R̄ of received samples and the matrix Ψ−1

R̄R̄| ˜̄S
R̄

of hypothetical linear MMSE interpolation errors is minimized.

Finally, we see by plugging (2.50) and (2.24) into (2.49) that for ˜̄V = V̄ the ML–MSDD

metric becomes

tr
{(

Ḡ + N̄
)H

(M ⊗ INS
)
(
Ḡ + N̄

)}

, (2.51)

where M [cf. (2.37)] denotes the inverse of the autocorrelation matrix that is common to the

NSNR iid fading–plus–noise processes gi,j [k] + ni,j [k], 1 ≤ i ≤ NS, 1 ≤ j ≤ NR. From (2.44)

it then follows that the inverse main diagonal elements m−1
n,n, 1 ≤ n ≤ N , of M are the

corresponding interpolation–error variances for the fading–plus–noise process.

Thus, we can summarize: MSDD can be interpreted as a concurrent interpolation of the

fading–plus–noise process for each of the N samples from the remaining N − 1 samples in

the observation window. At this, symbols V̂ [k − N + 1 + n], 1 ≤ n ≤ N − 1, are chosen

such that the sum of the squared interpolation errors in the N positions for each of the NSNR

individual subchannels is minimized. The inverse main diagonal elements m−1
n,n, 1 ≤ n ≤ N ,

of the (N × N)–dimensional matrix M [cf. (2.37)] are the interpolation–error variances for

3We note that if ˜̄S 6= S̄, this interpolation is mismatched.
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interpolating gi,j[k−N +n] +ni,j [k−N +n] from gi,j[k−N + ν] +ni,j [k−N + ν], 1 ≤ ν ≤ N ,

ν 6= n.

This connection between MSDD and linear interpolation is a new result of this work and

will be quite useful in the following. On the one hand, it allows us to exploit well–known

results from interpolation theory for the performance analysis of MSDD in later sections. On

the other hand, it motivates the introduction of a variant of MSDD we refer to as subset MSDD

(S–MSDD), cf. Section 2.4.2.2.

2.4.2.2 Subset MSDD (S–MSDD)

Based on the abovementioned relationship between MSDD and linear MMSE interpolation it

is intuitive that symbol decisions on the N − 1 data symbols in V̄ are not equally reliable.

Especially in relatively fast fading environments it can be expected that symbols located in the

center of the observation window can be detected more reliably than those at the edges.

This observation strongly suggests a variant of MSDD, which we refer to as subset MSDD

(S–MSDD). Like regular MSDD it processes blocks R̄[k] of N matrix symbols to find estimates
ˆ̄S[k] for corresponding blocks S̄[k] ofN transmit symbols. Contrary to regular MSDD, however,

it only returns estimates

V̂ [k − n], ⌈(N −N ′)/2⌉ − 1 ≤ n ≤ N − 2− ⌊(N −N ′)/2⌋, (2.52)

of N ′ ≤ N − 1 data symbols located in the center of the observation window, i.e. it discards

(N −N ′ − 1)/2 decisions at each end of the observation window. Accordingly, the observation

window must slide forward in steps of N ′, i.e. k := k + N ′, and the decoding complexity

compared to regular MSDD is increased by a factor of (N − 1)/N ′.

Note that S–MSDD can be viewed as generalization of regular MSDD as the latter is included

as special case with N ′ = N − 1.

2.4.2.3 Discussion

Note that the performance of MSDD improves if N is increased and approaches that of coherent

detection with perfect CSI as the channel memory is taken into account more and more com-

pletely. Unfortunately, its complexity increases exponentially in N as the number of relevant

candidate sequences is LN−1. Therefore, for arbitrary fading scenarios only relatively small

values of N were feasible. Only for certain fading scenarios more efficient implementations

have been developed, such as the algorithm of [Mac94] (cf. also [Swe01]), whose complexity is

of the order N log(N), for DPSK and a time–invariant fading channel.

Other authors have considered noncoherent sequence detection based on sparse tree search,

cf. e.g. [AS89, LW90] or by trellis search, cf. e.g. [MF90, LM90, MMB94, YP95, VT95a, VT95b,



CHAPTER 2. DIFFERENTIAL SPACE–TIME TRANSMISSION AND DETECTION 18

. . .. . . . . .

. . . . . .. . . R[k−N+1] R[k−N+2] R[k−N+3] R[k] R[k+1] R[k+2]

V̂ [k−N+2] V̂ [k−N+3] V̂ [k−N+4] V̂ [k]V̂ [k−1] V̂ [k+1] V̂ [k+2]

Figure 2.2: Illustration of decision–feedback differential detection (DFDD).

Rap96a, Ada96, CR99]. If the number of states in the trellis, in which detection is performed, is

reduced to its minimum L, decision–feedback differential detection (DFDD) results, cf. [LP88,

Edb92, AS93, AS95, SGH99, SL02].

2.4.3 Decision–Feedback Differential Detection (DFDD)

This detection scheme was developed for transmission over the single–input single–output

(SISO) AWGN channel in [LP88, Edb92, AS93, AS95]. In [Sve94, Ada98, SGH99] and [SL02] it

was then extended to the interesting scenarios of fading SISO and MIMO channels with DPSK

and DSTM, respectively.

DFDD is derived from MSDD by feeding back N − 2 previously decided symbols V̂ [k− κ],
1 ≤ κ ≤ N − 2, into the ML–MSDD metric in (2.36) and deciding only on V̂ [k]. Neglecting all

terms that do not depend on V [k], the DFDD decision rule reduces to [SL02]

V̂ [k] = argmax
Ṽ [k]∈V

{

Re
{

tr
{

Ṽ [k]Rref [k − 1]RH[k]
}}}

, (2.53)

where

Rref [k − 1]
△
=

N−1∑

κ=1

p
(N−1)
F,κ

κ−1∏

i=1

V̂ [k − i]R[k − κ]. (2.54)

The linear forward MMSE prediction filter coefficients p
(N−1)
F

△
=
[
p

(N−1)
F,1 , . . . , p

(N−1)
F,N−1

]T
can be

obtained (i) through solution of the corresponding (N − 1)–dimensional Yule–Walker equation

[Hay96]










ψgg[0]+σ2
n ψgg[−1] . . . ψgg[2−N ]

ψgg[1] ψgg[0]+σ2
n

. . .
...

...
. . .

. . . ψgg[−1]

ψgg[N − 2] . . . ψgg[1] ψgg[0]+σ2
n










(

p
(N−1)
F

)∗
=









ψgg[1]

ψgg[2]
...

ψgg[N − 1]









, (2.55)

with ψgg[κ] as defined in (2.13), (ii) equivalently as the sub–diagonal elements of the first column

of (N × N)–dimensional M [cf. (2.37)], or (iii) adaptively e.g. via the recursive least–squares
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. . .. . .. . .

. . .R[k−N+1] R[k]

V̂ [k−N+2] V̂ [k−κDF
U −1] V̂ [k−κDF

U ] V̂ [k−κDF
L ] V̂ [k−κDF

L +1] V̂ [k]

Figure 2.3: Illustration of decision–feedback multiple–symbol differential detection (DF–

MSDD). Observation window slides forward in steps of κDF
U −κDF

L +1, i.e. k := k+κDF
U −κDF

L +1.

(RLS) algorithm [YL95, SG00, SGH01]. Since DFDD returns only a single estimate V̂ [k] per

decoder run, the observation window of length N comprising the N received matrices R[k−κ],
0 ≤ κ ≤ N − 1, must slide forward by only one matrix–symbol at a time, i.e. k := k + 1. For

illustration see Fig. 2.2

A comparison of (2.15), (2.17), (2.36) and (2.53) confirms the intuitively expected result

that CDD, MSDD with N = 2 and DFDD with N = 2 are equivalent.

2.4.4 Decision–Feedback Multiple–Symbol Differential Detection

(DF–MSDD)

Decision–feedback differential detection (DFDD, cf. Section 2.4.3) allows for significant perfor-

mance gains compared to conventional differential detection (CDD, cf. Section 2.4.1), because

it can —due to its relation with MSDD— take information about the statistical properties of

the fading channel into account. However, given the relationship between MSDD and linear

MMSE interpolation (cf. Section 2.4.2.1) one can expect that in most cases the decisions at the

very edges of the MSDD observation window are the ones that are least reliable. DFDD returns

a decision on the last symbol of the observation window, thereby leaving room for improvement.

Therefore, it appears reasonable to combine ideas of DFDD and subset MSDD (S–MSDD,

cf. Section 2.4.2.2) by feeding back some previously decided symbols into the MSDD metric,

and returning decisions only on symbols that do not lie at the very edges of the observation

window.

More specifically, we propose the following noncoherent detection scheme: As in (S–)MSDD

and DFDD, we deploy an observation window extending over N received symbols summarized

in R̄[k] =
[
RH[k −N + 1], . . . ,RH[k]

]H
. Instead of optimizing the ML–MSDD metric, i.e. the

argument of the argmin function in (2.36), over all N−1 corresponding data symbols V [k−κ],
0 ≤ κ ≤ N−2, we feed back N−κDF

U −2 previous decisions V̂ [k−κ], κDF
U +1 ≤ κ ≤ N−2, and

optimize the ML–MSDD metric only over the remaining κDF
U +1 symbols V [k−κ], 0 ≤ κ ≤ κDF

U .

In order to exclude the often unreliable symbols at the end of the observation window, the
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decoder does not return decisions on all κDF
U + 1 symbols V [k − κ], 0 ≤ κ ≤ κDF

U , but only on

κDF
U − κDF

L + 1 symbols V [k − κ], κDF
L ≤ κ ≤ κDF

U , and discards the remaining κDF
L decisions at

the end of the observation window. In consequence, the observation window must slide forward

in steps of κDF
U − κDF

L + 1 symbols at a time, i.e. k := k + κDF
U − κDF

L + 1. For illustration see

Fig. 2.3.

Clearly, it can be expected that the power efficiency of this decoder is superior compare to

that of DFDD. At the same time, computational complexity is —through expedient choice of

the parameters κDF
U and κDF

L — significantly reduced compared to (S–)MSDD as the dimension

of the search space is κDF
U + 1 instead of N − 1. In fact, we will see that with κDF

U = κDF
L = 1,

i.e. a decision is returned only on the second to last symbol V [k− 1] in the current observation

window, leads to a power efficiency very close to that of S–MSDD, i.e. at times even better

than that of regular MSDD. At the same time, the dimension of the search space is reduced

from N − 1 to 2, i.e. there are L2 instead of LN−1 relevant candidates to be examined.

2.4.5 (Differentially) Coherent Detection

As ultimate benchmark decoders4 for the above noncoherent detection schemes, we consider

idealized symbol–by–symbol coherent detection with perfect channel state information (CSI)

at the receiver and with and without differential encoding at the transmitter.

Since, according to the above channel model, the entries of N [k] are iid Nc(0, σ
2
n) dis-

tributed random variables, the coherent symbol–by–symbol ML decision rule is obtained from

the conditional PDF

p(R[k] |S[k]) =
1

(πσ2
n)NRNS

· exp

(

−||R[k]− S[k]G[k]||2
σ2

n

)

, (2.56)

(||·||: Frobenius norm).

2.4.5.1 Coherent Detection

In a communication system, that does not deploy differential encoding at the transmitter, i.e.

the data to be transmitted is mapped directly to DSTM matrix symbols S[k] = V [k] ∈ V ,

coherent ML symbol–by–symbol detection is performed via

V̂ [k] = Ŝ[k] = argmin
S̃[k]∈V

{∣
∣
∣

∣
∣
∣R[k]− S̃[k]G[k]

∣
∣
∣

∣
∣
∣

2
}

. (2.57)

4We note that good noncoherent receivers may approach the power efficiency of the corresponding coherent

detectors, however they can not outperform the latter [SHL94].
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2.4.5.2 Differentially Coherent Detection

Differentially encoded transmission with DSTM group–codes in conjunction with differentially

coherent detection may also be an interesting alternative, because it resolves L–ary “phase

ambiguities”, i.e. rotations of G[k] by any one of the L unitary DSTM symbols. Here, the

detector must maintain an estimate Ŝ[k − 1] of S[k − 1] to perform detection via

V̂ [k] = argmin
Ṽ [k]∈V

{∣
∣
∣

∣
∣
∣R[k]− Ṽ [k]Ŝ[k − 1]G[k]

∣
∣
∣

∣
∣
∣

2
}

. (2.58)

Given the above idealized settings this entails an increase in the symbol–error rate (SER) due to

error propagation by a factor of approximately two compared to the non–differential coherent

detector for group–code DSTM constellations, whereas for non–group DSTM constellations

such a symbol–by–symbol detector incurs severe error propagation.



Chapter 3

Low–Complexity Multiple–Symbol

Differential Detection

In the previous chapter, we derived the decision rule for ML–MSDD ([cf. (2.36)] and also intro-

duced DF–MSDD (cf. Section 2.4.4). Because the evaluation of the ML–MSDD decision rule

involves a search in an (N − 1)–dimensional space of L–ary variables, the brute–force approach

of finding the ML–MSDD solution ˆ̄V by computing the ML–MSDD metric for all LN−1 can-

didates ˜̄V ∈ VN−1 quickly becomes intractable as N grows. Similarly, the complexity of the

brute–force approach to DF–MSDD is of the order LκDF
U +1. While DFDD (cf. Section 2.4.3)

achieves significantly better performance than CDD (cf. Section 2.4.1) at a comparable com-

plexity it still leaves ample room for improvement especially in fast fading scenarios. In this

chapter, we will therefore deal with the development of algorithms that (approximately) solve

ML MSDD at a computational receiver complexity that is comparable to those of CDD and

DFDD and significantly reduced compared to the abovementioned brute–force approach.

To this end, we consider two different approaches: The first one is based on a representation

of the MSDD problem in a tree and uses methods from tree–search decoding which encompasses

methods from (i) sequential decoding developed for the decoding of convolutional codes with

high memory, and (ii) algorithms developed for closest–point / shortest–vector search in lattice

theory, which include the frequently considered class of socalled sphere decoders (SpD). It is

presented in Section 3.1 along with more detailed background information on the origins and

methods of tree–search decoding.

The second approach makes use of methods from combinatorial geometry. Here, the (N−1)–

dimensional MSDD problem is cast into an Nλ–dimensional space, where Nλ denotes the rank

of the fading correlation matrix Ψgg [cf. (2.31)]. Using a number of (Nλ − 1)–dimensional

hyperplanes this space is partitioned into disjoint cells, each of which corresponds to one can-

didate V̄ . While the average complexity of this approach is in most scenarios higher than that

of the tree–search based approach, it has the appealing property that its computational com-

22
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plexity is (i) practically independent of the SNR, (ii) practically independent of the particular

channel state and (iii) polynomial in N if the rank Nλ of Ψgg is fixed. This approach will be

presented in Section 3.2.

The system model of Chapter 2 shall serve as basis for our considerations throughout this

chapter.

3.1 MSDD Based on Tree–Search Decoding

Tree–search methods have attracted considerable attention in the recent communications liter-

ature, as they have been found well apt for solving multi–dimensional optimization problems.

In this section, we shall investigate the application of tree–search methods to achieve power–

efficient noncoherent detection based on MSDD with low receiver complexity. To this end, we

begin by reviewing some preliminaries and important algorithms of tree–search decoding in

Section 3.1.1, before we develop representations of the MSDD metric amenable to tree–search

decoding in Section 3.1.2. In Section 3.1.3 we will then present highly efficient implementations

of MSDD based on tree–search decoding and further optimize them regarding individual DSTM

constellations in Section 3.1.4.

3.1.1 Preliminaries from Tree–Search Decoding

3.1.1.1 Trees

0

1

2

3

0

0

0000

0

1111

11

1
(0)

(00)

(1)

(01) (10) (11)

(000) (001) (010) (011) (100) (101) (110) (111)

Figure 3.1: Binary tree of maximal depth three. The branch and node / path labels are

indicated next to the branches and in brackets near the nodes, respectively. The depth of a

node is indicated on the right.

A tree consists of a single root(–node), branches and nodes at different depths of the tree.
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For illustration see Fig. 3.1. The root lies at depth zero of the tree. From every node at

depth i, i = 0, 1, 2, . . . , a number of branches emanate, each ending at a node at depth i + 1.

While in many applications the same number of branches emanate from each node, this is not

a prerequisite for the tree–search algorithms discussed in the following to be applicable. Nodes

at the end of the tree, i.e. nodes from which no branches emanate to nodes at greater depths,

are referred to as leaves and all nodes between the root and the leaves as intermediate nodes.

Again, while in the applications considered in this work all leaves lie at the same depth of the

tree, this is by no means necessary for the tree–search algorithms to be applicable. A path is

a sequence of branches that connect a node of the tree to its root. The number of branches

that make up a path to a node, i.e. its depth, is also referred to as length of this path. A path

is referred to as child of another path, if it results from the latter parent by extending it by

one branch. We refer to two paths as sisters if they have the same length and differ only in

the last branch. The same relations apply to nodes. Each branch shall be associated with a

real–valued branch metric and each path / node with a additive path metric given as the sum

of the corresponding branch metrics that form this path.1 In addition the different branches

emanating from the same node shall be labeled with different symbols, the meaning of which

depends on the application and is irrelevant at this point. Hence, each path / node of the tree

is uniquely identified by the sequence of symbols corresponding to the branches making up this

path / leading to this node.

3.1.1.2 Origins of Tree–Search Decoding

Many decoding and other optimization problems from various fields of scientific research can

be stated in tree structures as described above such that the optimization is transformed into

a search for the path from the root to a leaf of the tree that has optimal (minimal or maximal)

path metric. Two areas where major contributions have been made to the evolution of tree–

search decoding are lattice theory and sequential decoding.

3.1.1.2.1 Lattice Theory Research in this area evolved from number theory and was

initially concerned with convex quadratic optimization, cf. e.g. [Her50, Vor09, Min11]. For a

fundamental treatment of lattice theory and related topics cf. e.g. [vzGG99, Jou93, CS99] or

the more recent semi–tutorial paper [AEVZ02].

In lattice theory, a lattice is defined via

L △
= {GLu | u ∈ ZZ

n} , (3.1)

1Note that these “metrics” may not be metrics in the strongest mathematical sense of the word. However, we

still use this expression in place of the more appropriate expression cost function to conform with the relevant

literature, e.g. [AM84, JZ99].
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where the n linearly independent columns of the (m× n)–dimensional generator matrix GL ∈
IR

m×n, m ≥ n, constitute a basis of the lattice L (IR: set of real numbers, ZZ: set of integer

numbers).

A frequently considered problem in this context is the so–called closest lattice point problem

for the special case of m = n, where given some vector x ∈ IR
n one is interested in the vector

û ∈ ZZ
n such that of all c ∈ L, ĉ = GLû lies closest to x with respect to Euclidean distance,

i.e.

û = argmin
u∈ZZ

n

{
||GLu− x||2

}
. (3.2)

In the special case of x = 0n,1 and u ∈ ZZ
n\{0n,1} one obtains the closely related shortest–vector

problem. Using e.g. a QR–decomposition [GvL96] of GL the optimization problem (3.2) can

be brought into a form amenable to tree–search decoding. Algorithms such as those of [Die75,

FP85, Bab86, SE94, VB99, AEVZ02] that find an (approximate) solution to the shortest–vector

/ closest–point problem therefore fall into the broader class of tree–search algorithms.

3.1.1.2.2 Sequential Decoding Independently of the above lattice theory a class of algo-

rithms unifyingly referred to as sequential decoding algorithms has been developed for solving

tree–search problems in digital communications, cf. e.g. [AM84, Bau92] for an overview. Orig-

inal work in this field [Woz57, Fan63, Zig66, Jel69] was done for the decoding of convolutional

codes (cf. e.g. [JZ99]). Later these methods where enhanced and employed in various types

of source coding algorithms, cf. e.g. [Gal74, JBM75, MBA81]. Regarding the application to

decoding of convolutional codes sequential decoding was later displaced by the Viterbi algo-

rithm [Vit67] and received only minor attention until recently when the algorithms from lattice

theory where introduced into various fields of modern communications and researchers noticed

the close relation between the two classes of tree–search algorithms, cf. e.g. [MGDC06] for an

overview.

3.1.1.2.3 Classification of Tree–Search Algorithms Tree–search algorithms are also

often referred to as branch–and–bound algorithms, cf. e.g. [LW66]. The basic principle followed

by all of these algorithms is to consider paths to intermediate nodes of the tree and decide

based on a comparison of the corresponding path metric to some threshold ρ whether or not

this path is likely to be part of the optimal path and should therefore be extended or discarded.

Accordingly, the decoder either extends (branch) this path repeating the comparison for its

children (bound) or does not extend this path thereby pruning the entire subtree emanating

from the corresponding node from the decoding tree.

Whether or not the decoder can be guaranteed to find the optimal path or maybe only a

close–to–optimal path depends on the definition of the metric and whether the decoder uses
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other criteria for discarding paths. To assure that a tree–search decoder finds the optimal path

through the tree, it must not use any discard criteria besides the comparison of path metric and

threshold and the branch metrics must be strictly non–negative / non–positive if minimization

/ maximization of the path metric is desired, since in this case a shorter path whose metric

is already larger / smaller than that of a full–length path can never —upon extension to full

length— lead to a smaller / larger path metric. Accordingly, we will in the following distinguish

between optimal and suboptimal tree–search decoders, where a tree–search algorithm is referred

to as “optimal”, if —given an appropriate metric definition— it finds the optimal leaf at all

times.

The individual algorithms then differ essentially in their strategies regarding candidate enu-

meration and threshold adaptation. In [AM84] Anderson et al. classified the various sequential

decoding algorithms with respect to two criteria: (i) breadth first search versus depth first

search versus metric first search and (ii) sorting versus non–sorting. A similar classification

with respect to the first criterion was also presented in [MGDC06] based on a generic tree–search

algorithm.

The first criterion refers to the basic strategy a decoder uses in searching the tree, i.e. the

order in which it examines candidates and the use of discard criteria.

Breadth First Search (BFS): Algorithms that fall into this category use fixed discard

criteria.

An example for a breadth–first algorithm is the Fincke–Pohst sphere decoder (FP–SpD)

[FP85] which examines all paths up to the point where the metric of all of their children lie

above / below the fixed threshold ρ if minimization / maximization of metric is desired. Further

examples are the M– and the T–algorithm of [AH77] and [MA91], respectively, and Wozencraft’s

sequential decoder [Woz57].

Algorithms of this type typically have a relatively high average complexity as they examine

a relatively large number of (intermediate) nodes. On the upside this characteristic makes them

well apt for applications where soft output is required, cf. e.g. [Kuh06].

Depth First Search (DFS): The prominent characteristic of DFS–type algorithms is

that they are designed to reach a leaf of the tree as quickly as possible, even though this leaf

may not be the decoder output of an optimal tree–search algorithm. At this many of these

algorithms tighten / relax the threshold adaptively in the process of decoding.

Babai’s nearest plane algorithm [Bab86] for lattice decoding, which is equivalent to decision–

feedback equalization (DFE), cf. e.g. [Pro00], is an example of a suboptimal DFS algorithm.

It moves straight from the root to a leaf of the tree by always extending the single path under

consideration to its best child without ever checking any other branches. An example of an
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optimal DFS algorithms is the sphere decoder (SpD) of Agrell et al. [AEVZ02]. This algorithm

builds upon DFE in that it uses the DFE output as first preliminary result subsequently search-

ing the tree for leaves that have a better metric. At this, the threshold for discarding further

candidates is tightened whenever a better leaf has been found. For a detailed description of

this and the closely related single–stack algorithm [Gal74] see Section 3.1.1.3.3.

DFS–type algorithms usually investigate fewer nodes than comparable BFS algorithms.

In consequence, they are apt for hard output rather than soft output applications. Due to

their strategy of determining preliminary decoding results and subsequently checking for better

candidates these algorithms are particularly useful if the maximal decoder complexity is limited.

Metric First Search (MFS): Algorithms that use the MFS strategy typically do not

use a threshold at all, but maintain a list of candidate paths to intermediate nodes and from

this list always extend the path that presently has the best metric.2 As soon as a path of full

length is found to be the best of the current list, the search is terminated.

Examples of algorithms that follow this strategy are the stack algorithm [Zig66] and variants

thereof such as the bucket algorithm [Jel69] and the algorithm of [Vin84]. All of these algorithms

are discussed in detail in Section 3.1.1.3.1.

Among all optimal tree search algorithms, optimal MFS algorithms have the lowest com-

plexity in terms of considered nodes, since paths are only extended up to the point where their

metric is worse than that of the decoder output.

The main drawback of these algorithms is that theoretically an indefinite amount of memory

must be provided to keep track of the abovementioned list of candidates.

Sorting: Apart from classifying tree–search algorithms according to breadth / depth /

metric first they can also be categorized as sorting and non–sorting procedures.

Tree–search algorithms that fall into this category consider a number of candidate paths

simultaneously, and sort them according to their metric. Based on this sorting they decide

which paths are to be extended, stored for later extension or terminated.

Examples for sorting algorithms are the stack algorithm and its variants, where sorting is

used to identify the path to be extended in the next decoding step while the others are stored

for possible later extension, or the M– / T–algorithms, where a fixed / variable number of

best paths from a list of candidate paths is extended, respectively, while the remaining are

terminated.

Non–Sorting: Algorithms that do not compare paths to each other are referred to as

non–sorting algorithms. Algorithms of this type only consider one path at a time and search

2Accordingly, this strategy is also referred to as best first search, cf. e.g. [MGDC06].
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Breadth first search Depths first search Metric first search

sortin
g

M–alg. [AH77] Stack alg. [Zig66]

T–alg. [MA91] Bucket alg. [Jel69]

Merge Alg. [AM84]

n
on

–sortin
g

Fincke–Pohst SpD [FP85] ——Fano Alg. [Fan63]——

Single–stack alg. [Gal74]

A–SpD [AEVZ02]

Nearest plane alg. [Bab86]

Table 3.1: Classification of various important tree–search algorithms.

the tree by extending and moving back along this path in response to the value of its current

path metric relative to the threshold. They are therefore much more efficient with respect to

required memory than their sorting counterparts.

Examples for algorithms of this type are the single–stack algorithm, the sphere decoder and

Fano’s algorithm, all of which are discussed below.

Summary: The classification of various important tree–search algorithms according to

BFS versus DFS versus MFS and sorting versus non–sorting is summarized in Table 3.1. The

popular sequential decoding algorithm due to Fano [Fan63] discussed in detail below falls into

the category of non–sorting algorithms, but can not be classified as purely BFS, MFS or DFS.

3.1.1.3 Selected Tree–Search Algorithms

From the plethora of tree–search algorithms that have been devised by various researchers over

the past five decades we will in the following briefly describe a small number of algorithms

that turned out to be most useful for the applications considered in this work. While these

algorithms are applicable regardless of whether the path metric is to be maximized or minimized,

the following descriptions assume —in anticipation of the applications considered in this work—

minimization of the path metric.

3.1.1.3.1 (Modified) Stack Algorithm The stack algorithm is among the simplest yet

very efficient tree–search algorithms. It was originally proposed by Zigangirov in [Zig66] and

later by Jelinek in [Jel69] and is therefore also frequently referred to as Zigangirov–Jelinek

algorithm.

This algorithm, whose flowchart is presented in Fig. 3.2, maintains a list of candidate paths

from the root to intermediate nodes of the tree sorted in order of increasing path metric. At the
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Figure 3.2: Flowchart of the stack decoder.

beginning of the search process the list is initialized with the root of the tree whose metric is

without loss of generality chosen as zero. The algorithm then repeatedly extracts the currently

best path from the top of the sorted list and sorts all children into the list. This process is

terminated when the path at the top of the list has full length, i.e. when a leaf of the tree has

been found, whose metric is smaller than those of all other candidates in the current list, and

this candidate is returned as decoding result.

From this, it should be clear that the stack algorithm is optimal in the sense of Sec-

tion 3.1.1.2.3, i.e. provided that the branch metrics are strictly non–negative this algorithm

find the leaf that has them smallest metric of all leaves.

Despite its low complexity in terms of average number of examined branches, this simple

algorithm has the drawback that the list of paths it maintains may become very long especially

when the number of branches emanating from a node and / or the depth of the tree are large.

Apart from the fact that a large amount of storage has to be provided in order to not impair the

performance of this decoder this also poses a problem when it comes to sorting extensions into

the list. As remedy for the latter problem Jelinek proposed the bucket algorithm in [Jel69]. This

variant of the stack algorithm splits the support for the path metric into a number of disjoint

intervals (buckets) and merely sorts candidates into these fixed buckets.3 Instead of extracting

the best path of a long list, this algorithm then takes one of the paths in the first (in order of

3It should be clear, that through expedient choice of the boundaries between the buckets the problem of

finding the appropriate bucket for a candidate can be implemented such that the complexity of this sorting

operation is independent of the number of buckets.
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Figure 3.3: Flowchart of the modified stack decoder.

increasing metric) non–empty bucket and sorts its extensions into the buckets. If candidates

are not sorted within these buckets the performance is somewhat degraded and complexity is

increased slightly compared to the regular stack algorithm. When sorting is applied within

the individual buckets, the bucket algorithm can be viewed as an implementation of the stack

algorithm that uses a procedure similar to “quicksort” [PTV02] to sort the candidates into the

stack.

In order to reduce the number of candidates examined by the stack or the bucket algorithm,

i.e. to reduces the length of the list of candidates maintained by these decoders and thereby

lower the complexity of sorting operations, Vinck [Vin84] proposed another clever variant of the

stack algorithm. It differs from the regular stack algorithm only in the following way: Instead

of replacing a path from the list with all of its children, this algorithm only sorts the path’s

best child and —unless all sisters have been examined previously— the next–best sister of this

path into the list. For its flowchart see Fig. 3.3. Note that this enumeration strategy does not

lead to a degradation of decoder performance compared to the regular stack algorithm and is
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particularly useful for trees where a large number of branches emanate from each node. In fact,

this algorithm examines the least number of nodes required to achieve optimal performance at

all times.

3.1.1.3.2 Fano Algorithm The Fano algorithm was proposed together with the so–called

Fano metric for sequential decoding of convolutional codes in [Fan63]. Instead of maintaining

a list of candidate paths this algorithm considers only a single path at a time and searches

the tree by extending and backtracking along this single path. It is therefore advantageous

compared to the stack algorithm or its variants in cases where decoder memory is limited.

The flowchart of this algorithm is presented in Fig. 3.4. Here dc, db and df denote the path

metric of the current path, its parent (“look back”) and one of its children (“look forward”),

respectively. The essential idea behind this algorithm is that contrary to the stack algorithm,

which always extends the most promising path from a given list of paths, this algorithm pursues

a path from the root towards a leaf of the tree as long as it appears “promising” thereby

tightening a threshold ρ such that ρ := ⌈dc/∆F⌉∆F (⌈x⌉: ceiling function) with a stepsize

∆F > 0 and otherwise backtracks testing alternative paths.4 At this the question whether

a path is promising or not is decided adaptively using this variable threshold ρ, i.e. a path is

extended (move forward) as long as the path metric df of its child currently under consideration

(look forward) does not exceed the current threshold ρ. If at some point the decoder decides

due to df > ρ that a child of this path might not be that promising after all, it backtracks along

this path thereby looking for sister paths that might be more auspicious. This backtracking

is performed in a way that the decoder first looks back to see whether the path metric db of

the parent lies below the current threshold. If this is true, it will move back, i.e. the parent

of the current path will become the new current path, and —if there are any left— will look

forward to the next–best child again pursuing an alternative path as long as df ≤ ρ.5 Thus,

the decoder may come to the point where it can move neither forward nor backward, in which

case it has to relax the threshold, i.e. ρ := ρ + ∆F, and return to looking forward to the best

child. If this happens, it means that the decoder has found that there are no paths in the tree

that appear to be more promising than the path where it started backtracking for the last time

and therefore moves forward again along this path to see whether it can be extended further

given the relaxed threshold. At this point it should be clear that the above tightening of the

threshold is to be performed only if a particular path is visited for the first time. This is the

case when db > ρ − ∆F.6 When the decoder reaches a leaf (end of the tree) the search is

terminated and the current path is returned as decoder output.

Apparently, compared to the stack algorithm the savings in memory requirements are traded

4Note that in the step move forward dc := df , as the child of the current path becomes the new current path.
5To keep the decoder from moving back beyond the root of the tree, db =∞ is assumed if the decoder looks
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Figure 3.4: Flowchart of the Fano algorithm [JZ99].
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for an increased computational complexity as some paths may be considered repeatedly. The

latter effect is particularly pronounced if the path metric of the correct path has a positive drift

as the decoder is likely to backtrack to the root of the tree after every move forward even if it

proceeds along the correct path.

Due to the quantization of the threshold in multiples of ∆F > 0, there is a non–zero

probability that the Fano decoder leads to a suboptimal decoder output even when the branch

metrics are strictly non–negative. In [Gei73] a modified Fano algorithm was proposed, in which

the quantization of the threshold was eliminated, such that the decoder is optimal. However,

the difference in performance is usually negligible and the latter variant is more complex and

therefore not considered in the following.

3.1.1.3.3 Agrell Sphere Decoder The last algorithm we want to consider here is a rather

straightforward generalization of the algorithm presented by Agrell et al. in [AEVZ02] for finding

the closest point in an infinite lattice to tree search with arbitrary, i.e. (possibly varying) finite

or infinite, numbers of branches emanating from every node. It essentially combines the work

of Fincke and Pohst [Poh81, FP85], Schnorr and Euchner [SE94] and Babai [Bab86]. Since

the geometric interpretation of this algorithm is that it restrains the search to hyperspheres

of possibly decreasing radii we chose to subsequently refer to this algorithm as sphere decoder

(SpD), a term frequently used for this type of algorithm in the recent literature, cf. e.g. [VB99,

AEVZ02, BGBF03, DEC03, CT04a, GN04, JO05b, LXW+05, HV05, MGDC06, SVH06]. For

distinction from the Fincke–Pohst SpD (FP–SpD, cf. Section 3.1.1.2.3) we add the prefix Agrell,

i.e. subsequently refer to this algorithm as Agrell sphere decoder (A–SpD). The flowchart of this

tree–search algorithm is presented in Fig. 3.5. In order to highlight the algorithmic similarities

and differences when compared to the Fano algorithm we chose a graphical representation

based on the same functional blocks and variables as in the flowchart of the Fano algorithm,

cf. Fig. 3.4.

The sphere decoder is similar to the Fano algorithm in various ways:

• It does not maintain a list of candidate paths but only considers a single candidate

path, which it extends and along which it backtracks, plus a possibly previously found

preliminary result.

• A candidate path is extended (move forward) as long as the path metric df of its child

under consideration does not exceed the threshold, i.e. as long as df ≤ ρ.

back from the root.
6In the description of the Fano algorithm in [JZ99] an additional constraint corresponding to dc ≤ ρ−∆F was

introduced. While it does not provide any information regarding the first–visit question, it serves the purpose

of avoiding the computation of ρ := ⌈dc/∆F⌉∆F that is superfluous if ρ − ∆ < dc ≤ ρ as the threshold ρ is

already tight in this case.
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Figure 3.5: Flowchart of the Agrell sphere decoder (A–SpD).

• When looking forward from a particular node, the algorithm always tests the children in

order of increasing branch metric, i.e. the best child is tested before the second best and

so on. In the lattice / sphere decoding literature this strategy is commonly referred to as

Schnorr–Euchner enumeration as it was introduced in this field of research by Schnorr and

Euchner in [SE94]. Note however, that this enumeration strategy has been introduced

into the general field of tree–search decoding much earlier in e.g. Fano’s algorithm [Fan63]

and Gallager’s single–stack algorithm [Gal74].

However, the A–SpD differs from the Fano algorithm in the following major aspects:

• The threshold (in this context frequently referred to as sphere radius) ρ is tightened via

ρ := dc only when the decoder has found a (new) path of full length with dc ≤ ρ.
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• Rather than terminating the search at this point, the current path is stored as preliminary

result and the search continues by backtracking along the current path and pursuing

alternative paths until the metrics df of their best children exceed the current threshold ρ.

The search is terminated when the decoder has returned to the root and either (i) df > ρ,

or (ii) it has examined all branches emanating from the root.

• Since the threshold ρ is never increased during the search process the decoder never

examines branches more than once.

• As there is no quantization of the threshold ρ this algorithm is an optimal tree–search

algorithm.

The probably most prominent advantage of this algorithm compared to the above algorithms

from sequential decoding lies in the fact that it very quickly determines a preliminary decoding

result by moving directly, i.e. without any backtracking, from the root to a leaf of the tree

always choosing the best child. This candidate is in the lattice / sphere decoding literature

usually referred to as “Babai nearest plane point” as this part of the sphere decoder coincides

with an algorithm proposed by Babai in [Bab86]. In the context of communications this greedy

decoding process would be referred to as a sort of decision–feedback equalization (DFE), cf.

e.g. [Pro00]. After having determined the DFE solution the A–SpD continues to look for better

candidates until it either terminates as described above or is terminated externally e.g. when a

prescribed maximal decoding complexity is exceeded. Consequently, the decoder will contrary

to the above algorithms always produce an output when the maximal complexity is limited.7

For further illustration, Fig. 3.6 shows a random example of a search–tree generated by

the A–SpD in a quaternary tree of depth five. The branch metrics are assumed to be strictly

non–negative, i.e. an optimal tree–search decoder finds the leaf with minimal path metric.

Branches examined by the decoder are marked as solid lines and path metrics are written near

the corresponding nodes, while the numbers next to the branches indicate the order in which

branches have been examined. The full–length path with the smallest path metric is highlighted

using the bold line. The dotted lines represent unexamined sisters of examined paths. One can

observe that —even though the first path of full length found by the A–SpD is not the optimal

path— the algorithm in this example quickly terminates after examining 19 branches having

found the optimal path in step 15. For comparison the search–tree consisting only of branches

that must be examined to find the optimal leaf and to be sure of it is depicted in Fig. 3.7. This

search–tree would be generated e.g. by Vinck’s modified stack algorithm (cf. Section 3.1.1.3.1).

7Note that the minimal complexity in terms of the number of examined nodes of the Vinck–stack and the

Fano algorithm is equal to the complexity of the A–SpD determining the DFE solution. Limiting the complexity

to smaller values than this is meaningless.
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Figure 3.6: Example of a search–tree generated by the A–SpD for the example of a quaternary

tree of depth five.
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Labels xa and xb mark branches generated by Vinck’s algorithm as next–best sister and best

child of the path at the top of the stack in iteration x ∈ {1, . . . , 7} of the tree–search process,

respectively. It can be seen that the complexity of the A–SpD (19 examined branches) is quite

close to that of the most efficient optimal algorithm (13 branches) and significantly lower than

the number of leaves of the tree (1024 leaves).

Modification: Finite Initial Threshold: Due to the fact that the A–SpD heads straight

for the DFE solution in the first steps of the decoding process a finite threshold ρ is not required

at initialization. However, if the DFE path deviates early in the decision process, i.e. close to

the root, from the correct path, the first finite value of ρ will usually be relatively large and

thus the decoder will only converge slowly to the true solution. It may therefore be desirable to

“guide” the tree–search towards the correct path by using a finite initial radius ρ := ρinit <∞
chosen as small as possible, but such that the true solution has a path metric dc ≤ ρ with high

probability and restart the sphere decoder with an increased threshold ρ in case no leaf was

found with dc ≤ ρ, cf. e.g. [DEC03]. The appropriate choice of the finite initial threshold ρinit

when applying this algorithm to MSDD will be discussed in detail in Section 5.5.1.2.1.

Remark: The A–SpD as depicted in Fig. 3.5 is also quite closely related to Gallager’s

single–stack algorithm [Gal74], whose flowchart is depicted in Fig. 3.8. Recall that the A–SpD

repeatedly updates its threshold ρ and continues its search until all but one candidate path of

full length have been eliminated from the decoding tree. The single–stack algorithm on the

other hand uses a fixed threshold, and searches the tree until it has either found one path of

full length whose metric lies below the threshold ρ (end (success)) or has pursued all paths in

the tree up to the point where df > ρ without finding a path of full length, whose metric lies

below the threshold (end (failure)). Clearly, this algorithm is suboptimal and is discussed here

only due to its close relation to the A–SpD.8

3.1.1.3.4 Summary Let us briefly summarize the advantages and disadvantages of the

algorithms considered above.

Performance: The stack algorithm, its variant due to Vinck and the A–SpD as discussed in

Sections 3.1.1.3.1 and 3.1.1.3.3, respectively, are optimal in the sense that they find the leaf with

minimal metric, provided that the branch metrics are strictly non–negative and that neither

storage nor decoding time are limited. Due to the non–zero stepsize ∆F the Fano algorithm

operates at a loss in performance, which however is usually negligible.

Complexity: Among the above optimal tree–search algorithms, i.e. stack, Fano and A–

8When proposing this algorithm in [Gal74] Gallager was concerned with tree–search–based source coding

and content with finding a representation of the source data such that the distortion after decoding did not

exceed a desired maximal distortion.
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Figure 3.8: Flowchart of Gallager’s single–stack algorithm.

SpD algorithm, the stack algorithm has the lowest complexity in terms of average number of

examined branches, because it only extends paths whose metric lies below that of the final

decoder output, cf. also [XWZW04]. However, when storage space is limited the Fano and

the A–SpD algorithms are interesting alternatives especially for trees with a large number of

branches emanating from individual nodes. When the maximal decoder complexity is limited

the A–SpD is clearly preferable due to his strategy of successive refinement of preliminary

decoding results. Compared to the Fano algorithm the A–SpD may suffer from a too large

initial threshold, whereas it is advantageous in that it does not consider candidates repeatedly.

The earlier problem can be ameliorated by initializing the A–SpD with a finite threshold ρinit

that is increased later if no path of full length, whose metric lies below the initial threshold, is

found.
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3.1.2 Metric Calculation for Tree–Search MSDD

Having reviewed some fundamentals of tree–search decoding we will in this section derive a

representation of the MSDD decision rule (cf. Section 2.4.2) that is amenable to the application

of tree–search algorithms. More specifically, following some elementary definitions we will in

Section 3.1.2.2 present a metric structure, that allows for efficient ML MSDD based on tree–

search decoding. There, we also establish a relationship between the ML–MSDD metric and

linear MMSE prediction. The insights that can be derived from this connection lead to a

modification of the ML metric that is presented in Section 3.1.2.3 and leads to further often

significant savings in computational complexity at the expense of a slight loss in power efficiency.

3.1.2.1 Notation

Recall, that in Section 2.4.2 we collected the data, transmit and receive symbols, channel

coefficients and noise samples involved in the decision process for an MSDD block in block–

matrices V̄ , S̄, R̄, Ḡ and N̄ of dimensions ((N − 1)NS × NS), (NNS × NS), (NNS × NR),

(NNS×NR) and (NNS×NR), respectively, cf. (2.18)–(2.22). For the sake of readability, in the

following we use subscripts to address (NS×NS)–, (NS×NR)–dimensional sub–matrices V i, Si

and Ri, Gi, N i of the above block–matrices V̄ , S̄ and R̄, Ḡ, N̄ , respectively. This way, we

have e.g. S̄ =
[
SH

1 , . . . ,S
H

N

]
H, i.e. Sn

△
= S[k−N + n], 1 ≤ n ≤ N , but V̄ =

[
V H

1 , . . . ,V
H

N−1

]
H

with V n
△
= V [k −N + 1 + n], 1 ≤ n ≤ N − 1, and

Sn+1 = V nSn. (3.3)

Furthermore, we introduce the notation of

ñ
△
= N − n+ 1, (3.4)

((ñ− 1)NS ×NS)–dimensional

V̄ n
△
=
[
V H

n , . . . ,V
H

N−1

]
H , (3.5)

and (ñNS ×NS)–dimensional

S̄n
△
=
[
SH

n , . . . ,S
H

N

]
H . (3.6)

In generalization of (2.38) we further define the (ñNS×ñNS)–dimensional block–diagonal matrix

˜̄SD,n
△
= diag

{
˜̄Sn

}

=







S̃n 0
. . .

0 S̃N






, (3.7)
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with (ñNS ×NS)–dimensional

˜̄Sn
△
=
[

S̃
H

n , . . . , S̃
H

N

]H

(3.8)

△
=





(
N−1∏

i=n

Ṽ
H

i

)H

,

(
N−1∏

i=n+1

Ṽ
H

i

)H

, . . . ,

(
N−1∏

i=N−1

Ṽ
H

i

)H

, INS





H

(3.9)

=

[
N−n∏

i=1

Ṽ N−i,
N−n−1∏

i=1

Ṽ N−i, . . . ,
2∏

i=1

Ṽ N−i, Ṽ N−1, INS

]H

. (3.10)

These include (NNS×NNS)–dimensional ˜̄SD = ˜̄SD,1 and (NNS×NS)–dimensional ˜̄S = ˜̄S1 as

special cases, respectively.

3.1.2.2 ML–MSDD Metric

In Section 2.4.2 we showed that in ML MSDD the expression [cf. (2.36)]

d1

(
˜̄S
)

△
= tr

{

R̄H ˜̄SD (M ⊗ INS
) ˜̄S

H

DR̄
}

(3.11)

is to be minimized over all LN−1 ˜̄S corresponding to different data sequences ˜̄V ∈ VN−1. In

the sequel, we will refer to d1

( ˜̄S
)

as ML–MSDD metric (of ˜̄S).

In order to make ML–MSDD amenable to tree–search decoding, we apply the Cholesky

decomposition (cf. e.g. [GvL96]) to the matrix M [cf. (2.37)]

M = CHC, (3.12)

which yields an (N × N)–dimensional upper–right triangular matrix C. Using (XY ) ⊗ Z =

(X⊗Z) ·(Y ⊗Z) for arbitrary matrices X, Y , Z of appropriate dimensions and tr
{
XHX

}
=

||X||2 for any matrix X we obtain

d1

(
˜̄S
)

=
∣
∣
∣

∣
∣
∣(C ⊗ INS

) ˜̄S
H

DR̄

∣
∣
∣

∣
∣
∣

2

(3.13)

=
N∑

n=1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

N∑

j=n

cn,jS̃
H

j Rj

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

(3.14)

=
N∑

n=1

∣
∣
∣

∣
∣
∣R̆

H

n,nS̃n + Xn

∣
∣
∣

∣
∣
∣

2

(3.15)

△
=

N∑

n=1

δn

(
˜̄Sn

)

(3.16)

where

R̆n,j
△
= cn,jRj, and (3.17)

Xn
△
=

N∑

j=n+1

R̆
H

n,jS̃j, (3.18)
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for 1 ≤ n ≤ N, n ≤ j ≤ N .

It can be observed that the ML–MSDD metric in (3.16) is a sum of N strictly non–negative

scalar terms

δn

(
˜̄Sn

)
△
=
∣
∣
∣

∣
∣
∣R̆

H

n,nS̃n + Xn

∣
∣
∣

∣
∣
∣

2

, 1 ≤ n ≤ N, (3.19)

which depend only on ñ = N − n + 1 symbols S̃j, n ≤ j ≤ N , [cf. (3.18)]. Thus, ML

MSDD can be solved by means of tree–search decoding in a tree of maximal depth (N − 1).

At this, S̃n (or equivalently Ṽ n) are the labels of branches leading to nodes at depth (N − n),

1 ≤ n ≤ N − 1, of the tree, and a partial candidate sequence ˜̄Sn as defined in (3.8) (or

equivalently ˜̄V n
△
=
[
Ṽ H

n , . . . , Ṽ
H

N−1

]
H) represents a path to a node at depth (N − n) of the

tree. It is important to mark this reversed assignment between the subscript n of ˜̄Sn and the

depth (N − n) of the tree, i.e. the root of the tree corresponds to S̃N = INS
, whereas nodes

corresponding to candidates ˜̄Sn lie at depth (N − n) of the tree. In particular, leaves of the

tree represent “full–length” candidates ˜̄S. This is due to the upper triangular structure of the

matrix C [cf. (3.12)]. In this context δn
( ˜̄Sn

)
, 1 ≤ n ≤ N − 1, in (3.19) represents the metric

of a branch labeled by a symbol S̃n emanating from a node corresponding to ˜̄Sn+1. The path

metric corresponding to a path ˜̄Sn is then given by

dn

(
˜̄Sn

)
△
=

N∑

i=n

∣
∣
∣

∣
∣
∣R̆

H

i,iS̃i + X i

∣
∣
∣

∣
∣
∣

2

(3.20)

= dn+1

(
˜̄Sn+1

)

+ δn

(
˜̄Sn

)

, N − 1 ≥ n ≥ 1, (3.21)

where dN

( ˜̄SN

)
= δN

( ˜̄SN

)
=
∣
∣
∣
∣R̆N,N

∣
∣
∣
∣
2
.9 In these settings the leaf with the minimal metric

d1

( ˜̄S
)

corresponds to the ML–MSDD solution ˆ̄S or equivalently —through reversal of (2.11)—
ˆ̄V . The application of tree–search algorithms to MSDD will be discussed in more detail in

Section 3.1.3.

Finally, note that since the branch metrics δn
( ˜̄Sn

)
are strictly non–negative tree–search al-

gorithms that are optimal in the sense of Section 3.1.1.2.3 will achieve ML–MSDD performance.

Relation between ML MSDD and Linear MMSE Prediction: It is also worth

pointing out that ML MSDD is related to linear backward MMSE prediction in that

cn,j =
p

(N−n)
B,j−n

σ
(N−n)
p

, (3.22)

9Note that one could just as well choose dN

( ˜̄SN

)
= 0, without any impact on the complexity or performance

of the tree–search decoders. dN

( ˜̄SN

)
=
∣
∣
∣
∣R̆N,N

∣
∣
∣
∣
2

was chosen to facilitate the analysis of performance and

complexity of decoders in later sections as d1

( ˜̄S
)

= tr
{

R̄H ˜̄SD (M ⊗ INS
) ˜̄S

H

DR̄
}

in this case.
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where p
(n)
B,j, 1 ≤ j ≤ n, and σ

(n)
p denote the jth coefficient of the nth–order linear backward

MMSE predictor for the discrete time fading–plus–noise random process G[k] + N [k] and the

corresponding standard deviation of the prediction error, respectively, and p
(n)
B,0 = −1,∀n, cf.

e.g. [VT95a]. I.e. the non–zero entries cn,j , n ≤ j ≤ N in the nth row of C are the coefficients of

the (N −n)th order prediction error filter normalized by the corresponding standard deviation

of the prediction error. This means that —provided that all S̃j, n+ 1 ≤ j ≤ N , are correct up

to a common rotation with an arbitrary unitary matrix— the quantity Xnσ
(N−n)
p [cf. (3.18)]

represents the (N−n)th–order MMSE prediction of GH

n +NH

n and R̆
H

n,nS̃n +Xn can be viewed

as the corresponding prediction error. Since R̆
H

n,nS̃n =
(
GH

nSH

n + NH

n

)
S̃n and the distribution

of the AWGN matrix Nn is invariant to unitary transformations, choosing S̃n such that δn
( ˜̄Sn

)

in (3.19) is minimized, corresponds to (N − n)th–order linear backward MMSE prediction.

From this two conclusions can be derived that will prove useful later on. First, consider two

different values of N , namely N1 and N2 > N1. Then it is clear from the above discussion that

—under the assumption of identical statistical properties of the channel (ψgg[κ] and σ2
n)— the

(N1 × N1)–dimensional matrix C1 obtained from the (N1 × N1)–dimensional inverse fading–

plus–noise correlation matrix M 1 via Cholesky factorization (3.12) is a lower–right corner

submatrix of (N2 × N2)–dimensional C2 obtained from the respective (N2 × N2)–dimensional

matrix M 2, even though M 1 is not a submatrix of M 2. This means that results on full–length

candidate sequences ˜̄S and the statistical properties of d1

( ˜̄S
)

that can be derived based on the

representation d1

( ˜̄S
)

= tr
{
R̄H ˜̄SD (M ⊗ INS

) ˜̄S
H

DR̄
}

apply equally to partial candidates ˜̄Sn,

2 ≤ n ≤ N − 1, and their metrics dn

( ˜̄Sn

)
.

Second, it follows from the normalization of the prediction coefficients p
(n)
B,j with the corre-

sponding prediction–error standard deviation σ
(n)
p [cf. (3.22)] that the elements of R̆

H

n,nS̃n +Xn

[cf. (3.19)] along the correct path, i.e. with ˜̄S = S̄, are iid Nc(0, 1) distributed random vari-

ables. Hence, the δn
(
S̄n

)
are χ2(NSNR, 2NSNR) distributed (χ2(σ2,K): central χ2 distribution

with variance σ2 and K degrees of freedom), such that the expected branch metrics along the

correct path are given by

E
{
δn
(
S̄n

)}
= NSNR. (3.23)

It is important to note that this holds regardless of n andN , the SNR or the temporal correlation

ψgg[κ] of the fading process. Accordingly, the expected path metric along the correct path grows

linearly with ñ [cf. (3.4)], i.e.

E
{
dn

(
S̄n

)}
= ñNSNR. (3.24)

This has detrimental effects on the complexity of tree–search decoding, as it leads to an increas-

ing probability that other branches besides those that form the correct path are investigated

towards lower levels of the tree. Especially, towards lower SNR, where the normalized predictor
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coefficients p
(n)
B,j/σ

(n)
p , n+1 ≤ j ≤ N , become very small, dn

( ˜̄Sn

)
becomes less dependent on ten-

tative decisions Ṽ j, n+1 ≤ j ≤ N −1 represented by ˜̄Sn+1. Consequently, towards lower SNR

the probability Pr
(
dn

( ˜̄Sn

)
≤ d1

(
S̄
))

is increasingly close to one for all ˜̄Sn and 2 ≤ n ≤ N − 1,

which means that “optimal” tree–search decoders, that must (at least) examine all paths with

dn

( ˜̄Sn

)
≤ d1

(
S̄
)
, become computationally very inefficient. It is therefore advisable to use a

modified metric in tree–search decoding that takes the length of a path into account.

3.1.2.3 Fano–Type Metric

The problem with tree–search decoding based on the ML decision rule is that the probability

of a path is a monotonically decreasing function of its length, cf. Section 3.1.2.2. Thus, tree–

search decoders are likely to investigate shorter paths even though they have —considering their

shortness— already a rather poor metric and are therefore unlikely to be part of the ML path.

In order to solve this problem, i.e. to have a metric that allows for fair comparisons between

paths of different lengths, Fano proposed a metric for tree–search decoding of convolutional

codes in [Fan63], the well–known “Fano metric”. While his motivation appeared to be rather

heuristic, it was later justified by Massey [Mas72] by means of a probabilistic derivation to be

the appropriate means for comparing paths of different lengths.

The essential idea is to consider the a–posteriori probability Pr
( ˜̄Sn | R̄n

)
, even though

a–priori information, that is commonly included in the a–posteriori probability, is not taken

into account. In particular, we consider − log
(
Pr
( ˜̄Sn | R̄n

))
, and write using Bayes’ rule (cf.

e.g. [CT91])

− log
(

Pr
(

˜̄Sn

∣
∣
∣ R̄n

))

= − log




p
(

R̄n

∣
∣ ˜̄Sn

)

Pr
(

˜̄Sn

)

∑

∀ ˘̄Sn
p
(

R̄n

∣
∣ ˘̄Sn

)

Pr
(

˘̄Sn

)



 , 1 ≤ n ≤ N − 1, (3.25)

where ˘̄Sn is defined as ˜̄Sn [cf. (3.8)] and introduced only to avoid ambiguities in the formulas.

Assuming that all possible ˘̄Sn are a priori equally probable, i.e. Pr
( ˘̄Sn

)
= L−N+n, ∀ ˘̄Sn and

1 ≤ n ≤ N − 1, we obtain

= − log
(

p
(

R̄n

∣
∣ ˜̄Sn

))

+ log




∑

∀ ˘̄Sn

p
(

R̄n

∣
∣ ˘̄Sn

)



 . (3.26)

Note that minimizing (3.26) for n = 1 over all ˜̄S leads to the ML–MSDD solution. While

the second term in (3.26) does not influence the ML decision it plays an important role in

comparing paths of different lengths in tree–search decoding (see below).
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Still, using the expression in (3.26) as metric in a tree–search decoder is obviously impracticable,

as the evaluation of the second term of (3.26) involves the computation of LN−n probabilities

Pr
(
R̄n | ˘̄Sn

)
, i.e. the complexity of evaluating (3.26) for a single ˜̄Sn is of the same order as

a search over all LN−n different ˜̄Sn. However, it is reasonable to assume that the actually

transmitted signal S̄n has a relatively high probability p
(
R̄n | S̄n

)
such that

− log
(

p
(

R̄n

∣
∣ ˜̄Sn

))

+ log
(
p
(
R̄n

∣
∣ S̄n

))
(3.27)

appears to be a good approximation of (3.26). Still, this is not helpful as S̄n is unknown.

Therefore, we approximate (3.27) by taking the expectation of the second term of (3.27) with

respect to channel states and noise, i.e. we use

− log
(

p
(

R̄n

∣
∣ ˜̄Sn

))

+ E
{
log
(
p
(
R̄n

∣
∣ S̄n

))}
(3.28)

as an approximation of (3.26). Using the results of Sections 2.4.2 and 3.1.2.2 [cf. (3.24)] we

obtain the Fano–type path metric

dF,n

(
˜̄Sn

)
△
=

[
N∑

i=n

∣
∣
∣

∣
∣
∣R̆

H

i,iS̃i + X i

∣
∣
∣

∣
∣
∣

2
]

− ñNSNR (3.29)

= dF,n+1

(
˜̄Sn+1

)

+ δF,n

(
˜̄Sn

)

(3.30)

with R̆n,n and Xn as defined in (3.17) and (3.18), respectively. Based on (3.23), which tells

us that all branches along the correct path on average contribute equally to the path metric of

the correct path, the Fano–type branch metric reads

δF,n

(
˜̄Sn

)
△
=
∣
∣
∣

∣
∣
∣R̆

H

n,nS̃n + Xn

∣
∣
∣

∣
∣
∣

2

−NSNR. (3.31)

Due to the additive nature of this path metric, we can still directly employ the tree–search

algorithms of Section 3.1.1 with this Fano–type metric.

Note that we obtain the intuitively quite reasonable result that the Fano–type metric of a

candidate ˜̄Sn is equal to the difference between the regular ML–MSDD metric and the expected

ML–MSDD metric of the correct sequence S̄n, i.e.

dF,n

(
˜̄Sn

)

= dn

(
˜̄Sn

)

− E
{
dn

(
S̄n

)}
(3.32)

= dn

(
˜̄Sn

)

− ñNSNR (3.33)

and

δF,n

(
˜̄Sn

)

= δn

(
˜̄Sn

)

− E
{
δn
(
S̄n

)}
(3.34)

= δn

(
˜̄Sn

)

−NSNR, (3.35)
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i.e. the path metric is biased such that the expected metric of the correct path is always zero,

E
{
dF,n

(
S̄n

)}
= 0 and (3.36)

E
{
δF,n

(
S̄n

)}
= 0 (3.37)

for 1 ≤ n ≤ N − 1, while it tends to grow beyond zero for incorrect paths ˜̄Sn 6= S̄n after

diverging from the correct path. This way, a path in the decoding tree can be identified as “not

promising” and possibly terminated as soon as the metric dF,n

( ˜̄Sn

)
of the current candidate ˜̄Sn

exceeds the threshold ρ, as it can be expected due to (3.37), that the path metric of a path ˜̄S

generated upon extension of ˜̄Sn will at best —meaning if ˜̄Sn = S̄n— have a path metric that is

equal to that of ˜̄Sn. The other way around, a tree–search decoder based on this metric can be

interpreted to not simply compare the current ML–MSDD metric dn

( ˜̄Sn

)
to a threshold, but to

compare the current ML–MSDD metric dn

( ˜̄Sn

)
augmented by the expected metric (n−1)NSNR

of the remainder of this path —if this were the correct path— to the threshold. This strategy

is very beneficial with respect to decoder complexity in the low–SNR scenario discussed at the

end of Section 3.1.2.2.

On the downside, it is possible that the path that might eventually have turned out to

be optimal is terminated prematurely thereby leading to a performance that is suboptimal in

the ML–sense, even if a tree–search decoder that is optimal in the sense of Section 3.1.1.2.3 is

employed.

While the above branch metric bias b = NSNR was motivated based on probabilistic argu-

ments, it is possible to heuristically optimize the bias b, i.e. to use a branch metric δn
( ˜̄Sn

)
− b

with an arbitrary (positive) b, cf. e.g. [PH05b, PH05a]. In general, a smaller bias leads to bet-

ter performance but higher complexity while a larger bias decreases decoder complexity at the

expense of degraded performance. The extreme cases are (i) b = 0, in which case ML MSDD is

performed, and (ii) b→∞, where any optimal tree–search decoder degenerates to a DFE–type

algorithm. In the following, we will however restrict our considerations to the above case of the

probabilistically motivated branch metric bias b = NSNR.

It is worth mentioning that recently a comparable approach was considered for tree–search

decoding in coherent detection of space–time codes in e.g. [GN04, MGDC06, ZF06, BZRF06].

3.1.3 Algorithms for Tree–Search MSDD

For efficient (fast) tree search for MSDD and novel DF–MSDD, we concentrate on the applica-

tion of depth–first search (DFS) and metric–first search (MFS) algorithms, which achieve the

best performance–complexity tradeoff (cf. also the comparative study [MGDC06] for coherent

MIMO detection). In particular, we apply the Agrell Sphere Decoder (A–SpD) and the Fano

algorithm of Sections 3.1.1.3.3 and 3.1.1.3.2, respectively.
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Let us point out again that both algorithms can in principle be operated with either of the

metrics considered in Section 3.1.2, even though the combination of Fano algorithm and ML

metric (without bias term) is usually not very meaningful (see below).

3.1.3.1 Multiple–Symbol Differential Sphere Decoding (MSDSD)

We refer to the application of A–SpD to accomplish MSDD as multiple–symbol differential

sphere decoding (MSDSD), cf. [LSPW04] for DPSK. MSDD based on the A–SpD and the

Fano–type metric (cf. Section 3.1.2.3) is subsequently referred to as MSDSD–FM.

Let us for clarity very briefly summarize the application of A–SpD to MSDD, based on the

notation of ML branch and path metrics δn
( ˜̄Sn

)
and dn

( ˜̄Sn

)
, cf. (3.19) and (3.20), respectively.

For illustration see the flowchart of the A–SpD in Fig. 3.5. Starting at n = N , the SpD selects

candidates Ṽ n−1 (or equivalently S̃n−1 according to (3.8)) based on tentative decisions Ṽ j,

n ≤ j ≤ N − 1 represented by ˜̄Sn, and continues to decrement n, i.e. n := n − 1, as long as

the metric df = dn−1

( ˜̄Sn−1

)
of the child ˜̄Sn−1 currently under consideration does not exceed a

given threshold (radius) ρ, i.e.

df = dn−1

(
˜̄Sn−1

)

≤ ρ. (3.38)

If the decoder reaches the end of the tree, i.e. n = 1, ˜̄S is stored as (preliminary) decoding result
ˆ̄S, its metric is used to further reduce the size of the search space by updating ρ := d1

( ˜̄S
)
,

and the decoder increments n by two, i.e. n := n + 2, searching for alternative paths whose

metric lies below the updated threshold ρ. If dn−1

( ˜̄Sn−1

)
exceeds ρ for any value of n, n is

incremented, i.e. n := n+1, and a new candidate for Ṽ n is examined. If the decoder returns to

n = N , it means that all paths ˜̄Sn have been pursued up to the point, where dn−1

( ˜̄Sn−1

)
≥ ρ.

Consequently, the search is terminated and the decoder returns ˆ̄S = ˜̄S or through reversal of

(2.11) ˆ̄V . For the ordering of candidates for any V n, 1 ≤ n ≤ N − 1, the Schnorr–Euchner

(SE) enumeration strategy is employed, i.e. candidates are checked in order of increasing branch

metric δn
( ˜̄Sn

)
, as this allows for an initialization with ρ→∞ and an (usually) fast convergence

of the search process, cf. e.g. [LSPW04, AEVZ02, DEC03].

As pointed out in Section 3.1.1.3.3 it may still be useful to initialize the threshold ρ with a

finite value ρinit in order to “guide” the SpD towards the best path of full length and thereby

accelerate the convergence of the tree search. Determination of an optimal initial threshold

is not trivial. On the one hand, it should be chosen as small as possible in order to achieve

optimal “guidance”. On the other hand, if the initial threshold is chosen too small the decoder

will have to be restarted with an increased initial threshold frequently, such that the overall

complexity may be even higher than starting with ρ→∞ in the first place. Since for MSDSD

the metric d1

(
S̄
)

of the correct path is χ2(NNSNR, 2NNSNR) distributed, i.e. has meanNNSNR
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and variance NNSNR, regardless of the SNR or the temporal correlation, the initial threshold

should certainly be chosen proportional to NNSNR, i.e. as

MSDSD: ρinit = NNSNRcρ

MSDSD–FM: ρinit = NNSNR(cρ − 1)
cρ > 0. (3.39)

The result for MSDSD–FM follows directly from the above discussion based on the observation

that dF,1

(
S̄
)

= d1

(
S̄
)
−NNSNR. In case no candidate is found below the finite initial threshold

ρinit, the search is repeatedly restarted with an increased initial threshold

ρinit := ρinit +NNSNR (3.40)

until at least one candidate with d1

( ˜̄S
)
≤ ρinit is found.

For small values of N the optimal10 choice of cρ can only be determined based on simula-

tions. For large N on the other hand, it appears reasonable to choose cρ = 1 + ερ, with an

arbitrarily small positive constant ερ, since by the strong law of large numbers (cf. e.g. [CT91])

the probability of d1

(
S̄
)
/N deviating by more than an arbitrarily small positive constant ερ

from its mean NSNR decreases exponentially in N , such that we obtain in the limit of N →∞

lim
N→∞

Pr
(
d1

(
S̄
)
≤ NNSNR(1− ερ)

∣
∣ S̄
)

= 0 and (3.41)

lim
N→∞

Pr
(
d1

(
S̄
)
≤ NNSNR(1 + ερ)

∣
∣ S̄
)

= 1. (3.42)

For a detailed analysis of the dependence of Pr
(
d1

(
S̄
)
≤ ρ | S̄

)
on the system parameters see

Section 5.5.1.2.2.

3.1.3.2 Fano Multiple–Symbol Differential Detection (Fano–MSDD)

We refer to the application of the Fano algorithm to accomplish MSDD as Fano–MSDD.

Having described the Fano algorithm in detail in Section 3.1.1.3.2 and established the con-

nection between tree–search decoding and MSDD using the example of A–SpD in MSDSD the

application of the Fano algorithm to MSDD should be clear at this point. We therefore restrict

ourselves to identifying the variables of the MSDD metric with those of the description of the

general Fano algorithm in Section 3.1.1.3.2: If the current path of the decoder corresponds to
˜̄Sn, we have

db = dF,n+1

(
˜̄Sn+1

)

(3.43)

dc = dF,n

(
˜̄Sn

)

(3.44)

df = dF,n−1

(
˜̄Sn−1

)

. (3.45)

10Optimal with respect to minimal decoder complexity.
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For numerical results in later sections, we use a stepsize of ∆F = NTNR. For this interme-

diate value there is neither a noticeable effect of an increased complexity nor a performance

degradation that occur if ∆F is chosen too small or too large, respectively.

The combination of Fano–MSDD with the ML–MSDD metric is not meaningful, as this

results in a computationally quite inefficient decoder. The reason for this originates from the

fact that dn

( ˜̄Sn

)
is a strictly non–decreasing function of the path length N − n —even for

˜̄Sn = S̄n. Due to this property of the metric the Fano algorithm would be likely to move back

after every look–forward operation and examine all paths up to the point where their metrics

exceed the current threshold.11 Hence, we only consider Fano–MSDD based on the Fano–type

metric.

3.1.3.3 Decision–Feedback Multiple–Symbol Differential Sphere Decoding (DF–

MSDSD)

In this section, we apply tree–search algorithms to efficiently implement decision–feedback

multiple–symbol differential detection (DF–MSDD, cf. Section 2.4.4). We refer to the appli-

cation of A–SpD to accomplish DF–MSDD as decision–feedback multiple–symbol differential

sphere decoding (DF–MSDSD).

Recall that DF–MSDD is derived from MSDD by feeding back N − κDF
U − 2 previously

obtained decisions V̂ [k − κ], κDF
U ≤ κ ≤ N − 2, into the MSDD metric, optimizing the metric

only with respect to symbols V̂ [k − κ], 0 ≤ κ ≤ κDF
U , and returning estimates V̂ [k − κ],

κDF
L ≤ κ ≤ κDF

U , as decoder output whereas estimates V̂ [k−κ], 0 ≤ κ ≤ κDF
L −1, are discarded.

The observation window slides forward in steps of κDF
U − κDF

L + 1, i.e. k := k + κDF
U − κDF

L + 1.

A direct approach to DF–MSDSD would be to insert the feedback symbols in the ML–MSDD

metric representation of (3.16), such that the tree–search is performed only over the κDF
U + 1

lowest levels of the tree, whereas the remaining N −κDF
U − 2 levels are fixed. However, in terms

of computational complexity this is not a very efficient approach, as the branch metrics δn
( ˜̄Sn

)
,

n ≤ N−κDF
U −2, have to be recomputed for every investigated candidate

[
Ṽ [k−κDF

U ], . . . , Ṽ [k]
]
.

It therefore appears reasonable to reverse the orientation of the decoding tree, such that the

N − κDF
U − 2 feedback symbols fix a node at depth N − κDF

U − 2 of the tree and the decoder

has to perform its tree search only over a small subtree of depth κDF
U + 1 emanating from this

fixed node.

To derive the appropriate metric representation, we recall the relationship between the

elements of C [cf. (3.12)] and coefficients of linear backward MMSE predictors established in

Section 3.1.2.2. There, we showed that cn,j is the (j − n)th coefficient of the (N − n)th–order

11Note that since db ≤ dc ≤ ρ always for the ML–MSDD metric, the decoder would always move back all the

way to the root.
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linear backward MMSE predictor normalized by the standard deviation of the corresponding

prediction error [cf. (3.22)]. It is then easy to see that c∗n,j is the (N + 1 − j)th coefficient

p
(N−n)
F,N+1−j of the (N − n)th–order linear forward MMSE predictor normalized by the standard

deviation σ
(N−n)
p of the corresponding prediction error (cf. also [Hay96]), i.e.

cn,j =

(

p
(N−n)
F,N+1−j

σ
(N−n)
p

)∗

. (3.46)

This means that we can alternatively obtain the regular ML–MSDD estimate by solving

[cf. (3.13) with (3.22) and (3.46)]

ˆ̄V = argmin
˜̄V ∈VN−1







N∑

n=1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n∑

j=1

p
(n−1)
F,j

σ
(n−1)
p

S̃
H

forw,jRj

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2





(3.47)

= argmin
˜̄V ∈VN−1







N∑

n=1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n∑

j=1

cN+1−n,N+1−jR
H

j S̃forw,j

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2





(3.48)

with

˜̄Sforw
△
=
[

S̃
H

forw,1, . . . , S̃
H

forw,N

]H

(3.49)

and

S̃forw,n
△
=

N−2∏

κ=N−n

Ṽ [k − κ]. (3.50)

In this context, regular ML MSDSD could be performed in an (N −1)–dimensional tree, where

S̃forw,1 = INS
and the (NNS ×NS)–dimensional ˜̄Sforw correspond to the root and to the leaves

of the tree, respectively.

In DF–MSDSD on the other hand, the feedback of N −κDF
U −2 previous decisions V̂ [k−κ],

κDF
U + 1 ≤ κ ≤ N − 2, corresponds to fixing a node at depth N − κDF

U − 2 by fixing ˜̄Sforw,n
△
=

[
S̃

H

forw,1, . . . , S̃
H

forw,n

]H
as

˜̄Sforw,n = ˜̄SDF,n
△
=
[

S̃
H

DF,1, . . . , S̃
H

DF,n

]H

(3.51)

with

S̃DF,n
△
=

κDF
U∏

κ=N−n

Ṽ [k − κ] ·
N−2∏

κ=max(N−n, κDF
U +1)

V̂ [k − κ]. (3.52)

This node can be viewed as root of a (κDF
U + 1)–dimensional tree, and the remaining κDF

U + 1

symbols V̂ [k− κ], 0 ≤ κ ≤ κDF
U , are found by means of tree–search decoding in this (κDF

U + 1)–

dimensional tree.
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To provide more detail on the implementation, we plug (3.51) into the ML–MSDD decision

rule (3.47) and obtain the DF–MSDD decision rule as

[

V̂ [k − κDF
U ], . . . , V̂ [k]

]

= argmin
Ṽ [k−κ]∈V

∀κ∈{0,... ,κDF
U }

{

dDF,N

(
˜̄SDF,N

)}

(3.53)

with path metrics

dDF,n

(
˜̄SDF,n

)
△
= dDF,n−1

(
˜̄SDF,n−1

)

+ δDF,n

(
˜̄SDF,n

)

, N − κDF
U ≤ n ≤ N, (3.54)

and branch metrics

δDF,n

(
˜̄SDF,n

)
△
=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n∑

j=1

cN+1−n,N+1−jR
H

j S̃DF,j

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

(3.55)

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
cN+1−n,N+1−nRH

n S̃DF,n +

n−1∑

j=1

cN+1−n,N+1−jR
H

j S̃DF,j

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

(3.56)

=
∣
∣
∣

∣
∣
∣R̆

H

DF,n,nS̃DF,n + XDF,n

∣
∣
∣

∣
∣
∣

2

, N − κDF
U ≤ n ≤ N, (3.57)

where we defined

R̆DF,n,j
△
= c∗N+1−n,N+1−jRj (3.58)

XDF,n
△
=

n−1∑

j=1

R̆
H

DF,n,jS̃DF,j (3.59)

=
n−1∑

j=N−κDF
U

R̆
H

DF,n,jS̃DF,j + Y DF,n (3.60)

Y DF,n
△
=

N−κDF
U −1
∑

j=1

R̆
H

DF,n,jS̃DF,j . (3.61)

At this point a few observations can be made: (i) This metric structure is of the same form as

that of ML–MSDD [cf. (3.20)], where XDF,n (like Xn) reflects the impact of the path to a node

on the metric of a branch emanating from this node. (ii) The metric dDF,N−κDF
U −1

( ˜̄SDF,N−κDF
U −1

)

of the root of the (κDF
U +1)–dimensional tree need not be computed and can be fixed without loss

of optimality as dDF,N−κDF
U −1

( ˜̄SDF,N−κDF
U −1

)
≡ 0. (iii) The matrices Y DF,n, N − κDF

U ≤ n ≤ N ,

[cf. (3.61)] are independent of the particular candidate under consideration, which means that

they have to be computed only once at the beginning of the decoding process.

Compared to MSDSD the minimal complexity of DF–MSDSD is slightly increased if κDF
L >

0, as the depth of the search tree is greater than the number of decisions returned per decoder

use. This is however more than compensated for by the fact that the depth of the search tree
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in DF–MSDSD can usually be chosen much smaller than N − 1, which leads to tremendous

complexity savings under adverse channel conditions.

It should be clear, that all methods that can be applied to solve the ML–MSDD prob-

lem more efficiently, such as finite initial search radius or Fano–type metric, can be applied

equally well to DF–MSDD. In particular, following the above conventions on denomination, we

subsequently refer to DF–MSDSD based on the Fano–type metric as DF–MSDSD–FM and to

DF–MSDD based on the Fano algorithm (with Fano–type metric) as DF–Fano–MSDD.

3.1.4 Optimization for Various Signal Constellations

The application of tree–search algorithms to (DF–)MSDD as described in Section 3.1.3 helps

to significantly reduce the complexity of (DF–)MSDD by efficiently solving the (N − 1)– /

(κDF
U + 1)–dimensional optimization problem. Note that these MSDD algorithms are univer-

sally applicable to unitary DSTM constellations. However, the question of how the so–called

Schnorr–Euchner (SE) candidate enumeration strategy, where branches emanating from a par-

ticular node are processed in order of increasing branch metrics, is to be implemented in an

efficient way remains to be answered. In this section, we will address this issue first intro-

ducing a brute–force approach, that can be applied with arbitrary DSTM constellations, and

subsequently presenting computationally more efficient algorithms tailored to the four signal

constellations discussed in Section 2.1. At this, we will for clarity restrict our attention to

MSDD, but note that all methods described in the following are directly applicable to DF–

MSDD, as well. With the exception of orthogonal DSTM constellations, this leads to a nested

structure of search algorithms, where the outer decoder is implemented using one of the algo-

rithms introduced in Section 3.1.3, i.e. it solves the (N − 1)–dimensional tree–search problem,

whereas the inner decoder is responsible for SE candidate enumeration.

A simple approach that we subsequently refer to as full–search (FS) symbol enumeration

is the following: Whenever the best child ˜̄Sn−1 of a node corresponding to ˜̄Sn is required the

decoder computes the branch metrics of all L children ˜̄Sn−1 of ˜̄Sn, stores them in a list sorted in

order of non–decreasing branch metric and continues its tree search with the best branch from

this list. If the decoder —at some later stage of the tree–search process— has to examine further

branches emanating from the same parent node ˜̄Sn, it merely has to take them from the list

generated earlier. Note, that in the case of MSDSD it is not possible that a particular node is

visited again by the decoder after another node at the same depth has been examined since the

first visit to that node. Consequently, the decoder only has to maintain (at most) (N − 2) lists

of length L of branches S̃i, 2 ≤ n ≤ i ≤ N − 1, forming the currently investigated path in the

tree and their respective (L−1) sisters, which constitutes an affordable memory requirement.12

12Note that for n = 1, i.e. at the leaves of the tree, the decoder does not need to store the list, as further
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In the case of Fano–MSDD it is possible that individual nodes are visited more than once. In

order to avoid uncontrollable memory requirements by storing all lists corresponding to visited

nodes, we stick to maintaining only the lists corresponding to nodes along the current path

and recompute them if a node should be visited again. We identify tree–search decoders that

use this full–search approach by adding a suffix “–FS” to their abbreviation, i.e. MSDSD–

FS(–FM) and Fano–MSDD–FS. In this case, MSDD benefits from the efficiency of the outer

tree–search algorithm, but is still rather inefficient when L is large and particularly in high

SNR, because here it would in most cases be sufficient for the tree–search decoder to examine

only two candidates S̃n, 2 ≤ n ≤ N − 1, and one candidate S̃1 to identify the ML–MSDD

solution.

In [LSPW04] an efficient implementation of the SE enumeration strategy was proposed for

DPSK, cf. also Section 3.1.4.1.1. There, it was possible to determine the appropriate order

of candidates, i.e. in order of non–decreasing branch metric, for individual symbols directly by

mere examination of the argument of a single complex number, i.e. without explicit sorting of

candidates.

In order to see what can be done to reduce the complexity of symbol search in the general

DSTM case, we take a closer look at the branch metric δn
( ˜̄Sn

)
. Using ||X||2 = tr

{
XXH

}
and

tr{AB} = tr{BA} we can write [cf. (3.19)]

δn

(
˜̄Sn

)

=
∣
∣
∣

∣
∣
∣R̆

H

n,nS̃n + Xn

∣
∣
∣

∣
∣
∣

2

(3.62)

=
∣
∣
∣

∣
∣
∣R̆n,n

∣
∣
∣

∣
∣
∣

2

+ ||Xn||2 + 2Re
{

tr
{

S̃nX
H

nR̆
H

n,n

}}

. (3.63)

Since
∣
∣
∣
∣R̆n,n

∣
∣
∣
∣
2

and
∣
∣
∣
∣Xn

∣
∣
∣
∣
2

do not depend on S̃n we can see that the problem of finding the

S̃n that minimizes δn
( ˜̄Sn

)
is of the same form as CDD, cf. (2.17). This observation allows us

to implement MSDD for DSTM using a nested structure of an outer and N − 1 identical inner

CDD–type decoders. The outer decoder, which solves (3.16), initializes an inner decoder at

stage n, 1 ≤ n ≤ N−1, with matrices R̆n,n and Xn to find a new candidate S̃n that minimizes

δn
( ˜̄Sn

)
given R̆n,n and Xn. It further provides the inner decoder with (i) a list of candidates

S̃n that have been examined previously given the same parent path ˜̄Sn+1 and thus are to be

excluded from the search, and (ii) a threshold ρ − dn+1

( ˜̄Sn+1

)
to limit the symbol search to

candidates with

δn
( ˜̄Sn

)
≤ ρ− dn+1

(
˜̄Sn+1

)

, (3.64)

i.e. that satisfy dn

( ˜̄Sn

)
≤ ρ, cf. (3.38).

Due to (3.33) and (3.35) it is immediately clear that this approach is equally applicable to

the Fano–type metric δF,n

( ˜̄Sn

)
, i.e. can be used as inner decoder in a nested structure with

branches besides the best one are of no interest here.
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either MSDSD(–FM) or Fano–MSDD as outer decoder. In the following, we will —for the sake

of notational simplicity— only use the notation of the regular ML metric, keeping in mind that

δn
( ˜̄Sn

)
and dn

( ˜̄Sn

)
can be replaced with δF,n

( ˜̄Sn

)
and dF,n

( ˜̄Sn

)
throughout this section.

While the approach of applying appropriately optimized variants of CDD algorithms as inner

decoders for symbol search is applicable to any DSTM constellation, we will in the following only

derive inner decoders for the most common DSTM codes, which were introduced in Section 2.1.

3.1.4.1 Cyclic Codes

In Section 2.1.1.1 we pointed out that cyclic DSTM codes are a generalization of DPSK. Thus

one might wonder whether there is a similarly simple rule for enumerating candidates S̃n for

DSTM as was proposed for DPSK in [LSPW04]. Unfortunately, however, this is in general,

i.e. for arbitrary cyclic DSTM constellations, not the case. Only for the special case where all

diagonal elements of the matrix symbols are equal is this feasible. This special case is therefore

considered separately in Section 3.1.4.1.1 before two efficient candidate symbol enumeration

strategies for arbitrary cyclic codes based on adaptations of two different CDD algorithms for

cyclic codes are discussed in Sections 3.1.4.1.2 and 3.1.4.1.3.

3.1.4.1.1 Special Case [c1, . . . , cNS
] = [1, . . . , 1] The subclass of cyclic DSTM constella-

tions, where [c1, . . . , cNS
] = [1, . . . , 1], i.e. where

S̃n = ej 2π
L

l̃nINS
, (3.65)

is optimal for NS = 2 and L = 4 (cf. [Hug00a, HS00]). Substitution of (3.65) into (3.63) leads

to

δn

(
˜̄Sn

)

=
∣
∣
∣

∣
∣
∣R̆n,n

∣
∣
∣

∣
∣
∣

2

+ ||Xn||2 + 2Re
{

ej 2π
L

l̃ntr
{

R̆
H

n,nXH

n

}}

(3.66)

= γn + |αn| cos

(
2π

L
l̃n − angle(αn)

)

, (3.67)

(angle(x): from x = |x|exp(j · angle(x)) for x ∈ C\{0}, C: complex numbers) where

αn
△
= 2tr

{

R̆n,nXn

}

(3.68)

γn
△
=

∣
∣
∣
∣R̆n,n

∣
∣
∣
∣
2
+
∣
∣
∣
∣Xn

∣
∣
∣
∣
2
. (3.69)

We observe that the MSDD decoding problem with respect to unitary–matrix symbols is re-

duced to an (N − 1)–dimensional one with respect to L–PSK symbols, which means that the

SE strategy can be implemented as in the single–antenna case. I.e. given an R̆n,n and Xn the

decoder computes the “unconstrained solution”

lun =
L

2π
(angle(αn) + π) (3.70)

=
L

2π
angle(−αn) (3.71)
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for l̃n such that δn
( ˜̄Sn

)
attains its minimum γn− |αn| [cf. (3.67)]. It then examines candidates

S̃n = exp
(
j2π

L
l̃n
)
INS

by choosing l̃n as (cf. [LSPW04])

l̃n = ⌊lun⌉, ⌊lun⌉+ 1, ⌊lun⌉ − 1, ⌊lun⌉+ 2, . . . (3.72)

if lun > ⌊lun⌉ and

l̃n = ⌊lun⌉, ⌊lun⌉ − 1, ⌊lun⌉+ 1, ⌊lun⌉ − 2, . . . (3.73)

if lun ≤ ⌊lun⌉ (⌊x⌉: integer closest to x ∈ IR). This way candidates S̃n are implicitly sorted in order

of non–decreasing δn
( ˜̄Sn

)
, i.e. the decoder does not have to compute an often unnecessarily

large number of branch metrics at the time of the first visit to the parent node and sort them

to find the appropriate order, which is done in the FS approach.

3.1.4.1.2 Lattice–Decoder Symbol Search For arbitrary coefficients [c1, . . . , cNS
], an

equally simple sorting is not feasible. To see this and to derive efficient symbol enumeration

strategy, we consider the branch metric δn
( ˜̄Sn

)
of a candidate ˜̄Sn =

[
S̃

H

n ,
˜̄S

H

n+1

]
H, where S̃n

equals the l̃nth element of the group signal constellation V [cf. (2.2)], i.e.

S̃n = diag
{

ej 2π
L

c1 , . . . , ej 2π
L

cNS

}l̃n
. (3.74)

Starting again from (3.63) we can write

δn

(
˜̄Sn

)

=
∣
∣
∣

∣
∣
∣R̆n,n

∣
∣
∣

∣
∣
∣

2

+ ||Xn||2 + 2

NS∑

i=1

NR∑

j=1

|r̆n,n,i,j | · |xn,j,i| cos

(
2π

L
cil̃n − angle(r̆n,n,i,jxn,j,i)

)

(3.75)

with r̆n,n,i,j and xn,i,j denoting the elements in the ith row and jth column of R̆n,n and Xn,

respectively. Based on the general identity

N∑

i=1

|ai| cos(x+ angle(ai)) =

∣
∣
∣
∣
∣

N∑

i=1

ai

∣
∣
∣
∣
∣
cos

(

x+ angle

(
N∑

i=1

ai

))

, x ∈ C, ai ∈ C, 1 ≤ i ≤ N,

(3.76)

we can combine the cosines in (3.75) in groups of NR, which leads to

δn

(
˜̄Sn

)

=
∣
∣
∣

∣
∣
∣R̆n,n

∣
∣
∣

∣
∣
∣

2

+ ||Xn||2 + 2

NS∑

i=1

∣
∣
∣
∣
∣

NR∑

j=1

r̆n,n,i,jxn,j,i

∣
∣
∣
∣
∣
cos

(

2π

L
cil̃n − angle

(
NR∑

j=1

r̆n,n,i,jxn,j,i

))

.

(3.77)

At this point, it is in the general case of distinct coefficients ci , 1 ≤ i ≤ NS, not possible to

combine the remaining cosine terms into a single cosine based on (3.76). This would however
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be a prerequisite for an implicit candidate sorting rule as discussed in Section 3.1.4.1.1 for the

special case c1 = . . . = cNS
= 1.

In order to reduce the complexity of the symbol search in this general case we make use

of the observation discussed at the beginning of Section 3.1.4, that the problem of finding the

optimal S̃n given a certain R̆n,n and Xn is of the same form as CDD. In this context, two

approaches appear particularly well apt. One of them is based on the bound–intersect–detect

(BID) algorithm (cf. [CT05a, CT06]) and discussed in Section 3.1.4.1.3. The other considered in

this section is based on an adaptation of the lattice–based CDD algorithm proposed in [CSZ01]

(cf. also [LMLK05]). We will refer to this approach as inner lattice decoding (LD) and indicate

its deployment through a suffix “–LD”, i.e. MSDSD–LD(–FM) and Fano–MSDD–LD.

In order to derive the appropriate representation we continue from (3.77) introducing for

notational brevity

An,i
△
=

√
√
√
√

∣
∣
∣
∣
∣

NR∑

j=1

r̆n,n,i,jxn,j,i

∣
∣
∣
∣
∣
, 1 ≤ i ≤ NS (3.78)

φn,i
△
=

L

2π
angle

(
NR∑

j=1

r̆n,n,i,jxn,j,i

)

, 1 ≤ i ≤ NS (3.79)

and write

δn

(
˜̄Sn

)

=
∣
∣
∣

∣
∣
∣R̆n,n

∣
∣
∣

∣
∣
∣

2

+ ||Xn||2 + 2

NS∑

i=1

A2
n,i cos

(
2π

L

(

cil̃n − φn,i

))

(3.80)

=
∣
∣
∣

∣
∣
∣R̆n,n

∣
∣
∣

∣
∣
∣

2

+ ||Xn||2 − 2

NS∑

i=1

A2
n,i cos

(
2π

L

(

cil̃n − φn,i −
L

2

))

(3.81)

=
∣
∣
∣

∣
∣
∣R̆n,n

∣
∣
∣

∣
∣
∣

2

+ ||Xn||2 − 2

NS∑

i=1

A2
n,i cos

(
2π

L
mod∗

(

cil̃n − φn,i −
L

2
, L

))

. (3.82)

where we used cos(x) = − cos(x − π) in (3.81), and exploited the periodicity of the cosine

introducing a modified modulo function mod∗(x, L) = mod(x+ L/2, L) − L/2 that returns

values in the interval [−L/2, L/2) (mod(x, L)
△
= x − ⌊x/L⌋L: regular modulo function) in

(3.82). Since a candidate S̃n is more likely to be part of the desired candidate ˆ̄S if its branch

metric δn
( ˜̄Sn

)
is small, i.e. if the argument of the cosine in (3.82) is small, the deployment of

the cosine approximation for small arguments cos(x) ≈ 1− x2/2 in (3.82) appears reasonable.

With this, we obtain

≈
∣
∣
∣

∣
∣
∣R̆n,n

∣
∣
∣

∣
∣
∣

2

+ ||Xn||2 − 2

NS∑

i=1

A2
n,i +

4π2

L2

NS∑

i=1

[

An,imod∗
(

cil̃n − φn,i −
L

2
, L

)]2

.

(3.83)
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As y = mod∗(x, L) corresponds to adding integer–multiples of L to x such that |y| is minimized,

the problem of finding the minimizer for δn
( ˜̄Sn

)
can be viewed as an NS–dimensional lattice–

decoding problem (cf. [CSZ01, LMLK05] for the application to CDD)

x̂ = argmin
x̃∈ZZ

NS

{
||Lx̃− t||2

}
, (3.84)

with

L
△
=













An,1c1 0 . . . . . . 0

An,2c2 An,2L
. . .

...

An,3c3 0 An,3L
. . .

...
...

...
. . . . . . 0

An,NS
cNS

0 . . . 0 An,NS
L













(3.85)

t
△
=












An,1(φn,1 + L/2)

An,2(φn,2 + L/2)

An,3(φn,3 + L/2)
...

An,NS
(φn,NS

+ L/2)












(3.86)

and S̃n = diag
{
exp
(
j2π

L
c1
)
, . . . , exp

(
j2π

L
cNS

)}x̂1 .

Note that for candidates ˜̄Sn, for which the argument of the cosine in (3.82) is relatively

large, the small–argument approximation of the cosine increases the branch metric δn
( ˜̄Sn

)
even

further. This way branches in the outer decoder may be pruned from the tree, although they

might actually have lead to the (ML) solution. Thus, the performance of a MSDD decoder

using this approach to symbol search is degraded. However, we will see later that only very

small performance degradations result.

Clearly, (3.84) can be solved by means of tree–search decoding. The slightly extended task

compared to a regular tree–search problem is to find the optimal solution x̂ of (3.84) at first

call of the inner decoder by the outer decoder, the second best value for x at a possible second

call etc. Based on the inequality (3.64) that must be satisfied by a candidate ˜̄Sn for the latter

to be eligible for further consideration the search for (further) candidates x can be limited to

those, for which

||Lx̃− t||2 ≤ rLD. (3.87)

Plugging (3.83) into (3.64) one can see that rLD is given by

rLD △
=

(

ρ− dn+1

(
˜̄Sn+1

)

−
∣
∣
∣

∣
∣
∣R̆n,n

∣
∣
∣

∣
∣
∣

2

− ||Xn||2 + 2

NS∑

i=1

A2
n,i

)

L2

4π2
. (3.88)
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If this inner tree–search decoder does not find a (further) candidate given this threshold rLD,

the outer tree–search decoder need not pursue the corresponding branch in its decoding tree.

In [CSZ01, LMLK05] the use of lattice reduction (cf. e.g. [LLL82, Coh93, AEVZ02, Win04]

and references therein) was advocated to reduce the complexity of finding x̂ in (3.84). However,

we found that in most scenarios this only increases decoder complexity since it destroys the

unique sparse structure of L. Note that L only has entries in the first column and on the main

diagonal. Consequently, decisions on xi, 2 ≤ i ≤ NS, are mutually independent and (3.84)

is not exactly an NS–dimensional lattice decoding problem, but rather a degenerate version

thereof. This reflects in the fact that given a candidate x̃1 further candidates x̃i, 2 ≤ i ≤ NS,

besides the best candidate

x̂i
△
= ⌊(ti − li,1x̃1)/li,i⌉, 2 ≤ i ≤ NS, (3.89)

where li,j and ti denote the elements of L and t in (3.85) and (3.86), respectively, need not

be considered. We therefore consider two tree–search algorithms tailored to this particular

decoding problem.

Sphere Decoding Algorithm: The decoder may use the SE strategy for finding candi-

dates x̃1 ∈ ZZ, i.e. based on the unconstrained solution

xu
1 = t1/l1,1 (3.90)

choose x̃1 according to

x̃1 = ⌊xu
1⌉, ⌊xu

1⌉+ 1, ⌊xu
1⌉ − 1, ⌊xu

1⌉+ 2, . . . (3.91)

if xu
1 > ⌊xu

1⌉ and

x̃1 = ⌊xu
1⌉, ⌊xu

1⌉ − 1, ⌊xu
1⌉+ 1, ⌊xu

1⌉ − 2, . . . (3.92)

if xu
1 ≤ ⌊xu

1⌉, and increase i, 2 ≤ i ≤ NS, as long as

µi
△
= |l1,1x̃1 − t1|2 +

i∑

j=2

|lj,1x̃1 + lj,jx̂j − tj|2 < rLD (3.93)

with rLD and x̂j according to (3.88) and (3.89), respectively. Contrary to the regular SpD as

described in Section 3.1.1.3.3 this decoder jumps back to the root, i.e. examines the next–best

admissible13 candidate x1, if µi > rLD for 2 ≤ i ≤ NS. If µNS
< rLD the current x1 is stored

as tentative decoding result and the decoder checks the next candidate for x1 with updated

13Besides previously examined candidates, candidates x1 that are congruent modulo L with the former are

excluded from the search as well.
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rLD := µNS
. The decoder terminates, when |l1,1x̃1− t1|2 > rLD for some candidate x̃1. Thus the

decoder effectively searches only one dimension of the alleged NS–dimensional search space.

We also note that the lower–triangular structure of L is particularly advantageous for this

application, since inadmissible candidates are excluded from the search directly at the root,

which —for incorrect candidates— leads to fast growing metrics close to the root and thereby

rapid termination of the search process.

Stack Decoding Algorithm: One drawback of the SpD algorithm is that the search

restarts from i = 1 and x̃1 = ⌊xu
1⌉ [cf.(3.90)] every time the inner decoder is called to provide

the next–best candidate S̃n given the same Xn. Here, the stack algorithm appears to be an

appealing alternative for the inner decoder, since it maintains a sorted list of examined partial

paths and decoding can be continued if the inner decoder is called again.

In particular a degenerate variant of Vinck’s algorithm (cf. Section 3.1.1.3.1) is well apt for

the problem. This variant of the stack algorithm replaces the path xi = [x1, . . . , xi] currently

at the top of the stack with its best extension x(i+1) and —due to the sparse structure of the

matrix L— the next–best admissible candidate for xi only when i = 1. The search can be

terminated without loss of optimality, if the metric of the path at the top of the stack exceeds

the threshold rLD defined in (3.88). As for the regular stack algorithm, the first path of length

NS to reach the top of the stack is the (next–)best path corresponding to the (next–)best

candidate for S̃n. It remains to store the stack and to continue with this stack when the next

candidate given the same Xn is required.

In total, we therefore have to keep track of N−1 stacks, one for each tree depth in the outer

decoder. While, theoretically, limitation of the stack size may lead to decoding errors, we found

that stacks of maximal size 2L are sufficient to not impair decoder performance noticeably.

Remark: Numerical tests revealed that the use of a Fano–type metric in the inner decoder

in– rather than decreases the overall decoder complexity. This observation can be explained by

the fact that a Fano–type metric at times leads to suboptimal decoding results, which means

that the outer decoder has an increased risk of being needlessly mislead by the inner decoder

to incorrect paths.

3.1.4.1.3 Bound–Intersect–Detect Symbol Search As alternative to the above lattice–

decoder based algorithms for candidate enumeration (inner decoder in the nested structure) we

consider symbol search based on the bound–intersect–detect (BID) algorithm of Cui et al.,

cf. [CT05a, CT06].

The underlying idea is to form a set of promising candidates S̃n = diag
{
exp
(
j2π

L
c1
)
, . . . ,

exp
(
j2π

L
cNS

)}l̃n
by determining NS pairs of upper and lower bounds on mod

(
cil̃n, L

)
, 1 ≤

i ≤ NS, and intersecting the resulting NS sets of candidates l̃n to obtain a single smaller set
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of candidates that are returned to the outer tree–search decoder as potential candidates for

further examination.

Starting from (3.80) we can write

δn

(
˜̄Sn

)

=

NS∑

i=1

B2
n,i + 2A2

n,i cos

(
2π

L

(

cil̃n − φn,i

))

, (3.94)

for the branch metric of a candidate S̃n = diag
{
exp
(
j2π

L
c1
)
, . . . , exp

(
j2π

L
cNS

)}l̃n
with An,i and

φn,i, as defined in (3.78) and (3.79), respectively, and

Bn,i
△
=

√
√
√
√

NR∑

j=1

|r̆n,n,i,j |2 + |xn,j,i|2, 1 ≤ i ≤ NS. (3.95)

Bound: In [CT05a] it is argued, that a necessary condition for

δn
( ˜̄Sn

)
≤ rBID △

= ρ− dn+1

(
˜̄Sn+1

)

(3.96)

to hold is that

B2
n,i + 2A2

n,i cos

(
2π

L

(

cil̃n − φn,i

))

≤ rBID (3.97)

must hold for all i ∈ {1, . . . , NS}. With the definition of NS pairs of lower and upper bounds

BBID
L,n,i

△
=

⌈

L

2π
arccos

(

rBID −B2
n,i

2A2
n,i

)

+ φn,i

⌉

(3.98)

BBID
U,n,i

△
=

⌊

L− L

2π
arccos

(

rBID −B2
n,i

2A2
n,i

)

+ φn,i

⌋

, (3.99)

1 ≤ i ≤ NS, and a mapping function

map(i,mod(cij, L)) = j, 1 ≤ j ≤ L, (3.100)

which can be implemented using a look–up table, one can see that a set LBID
n,i of all l̃n that

satisfy (3.97) for a particular i ∈ {1, . . . , NS} is given by

LBID
n,i

△
=







{} if B2
n,i − 2A2

n,i > rBID

{0, 1, . . . , L− 1} if B2
n,i + 2A2

n,i < rBID

{
l̃n = map(i,mod(j, L)) | j ∈ {BBID

L,n,i, . . . , B
BID
U,n,i}

}
otherwise

.

(3.101)
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Intersect: In a second step the intersection is taken of all candidate sets LBID
n,i , 1 ≤ i ≤ NS,

i.e.

LBID
n =

NS⋂

i=1

LBID
n,i , (3.102)

to determine a set LBID
n , whose elements l̃n satisfy (3.97) for all i ∈ {1, . . . , NS}. For all

candidates in this set the metric δn
( ˜̄Sn

)
is computed and the candidates are sorted in order of

increasing δn
( ˜̄Sn

)
to facilitate SE enumeration in the outer decoder.

Detect: This part of BID is not required here. Instead the inner BID decoder passes the

set LBID
n along with the corresponding branch metrics to the outer decoder which stores the set

and processes its elements in order of increasing branch metric.

Note that BID symbol search can —like the symbol search algorithms proposed in Sec-

tion 3.1.4.1.2— be used in combination with any of the above algorithms as outer tree–search

decoder operating either on the ML or the Fano–type metric. We indicate its deployment by

means of a suffix “–BID”, e.g. MSDSD–BID(–FM). Note also that, since (i) LBID
n contains at

least all values of l̃n for which (3.96) is fulfilled, and (ii) there is no approximation involved

as in the case of LD symbol search, the deployment of BID symbol search does not inhere a

performance degradation compared to FS symbol search.

3.1.4.2 Dicyclic Codes

Due to the close relationship between dicyclic (cf. Section 2.1.1.2) and cyclic signal constella-

tions, we can make use of the various methods described in Section 3.1.4.1 for cyclic codes. In

addition, we can exploit that cNS/2+i = −ci, 1 ≤ i ≤ NS/2, in a way that the symbol search can

be performed using two separate decoders as for (NS/2)–dimensional cyclic signal constella-

tions, cf. Section 3.1.4.1, one for each value of m ∈ {0, 1} [cf. (2.4)]. These two decoders should

run concurrently with the same threshold (cf. (3.88) and (3.96) for LD– and BID–based symbol

search, respectively), as the metric of the decoder assuming the correct value of m ∈ {0, 1}
is likely to be much smaller than that of the other, which leads to a quicker termination of

decoding.

3.1.4.3 Orthogonal Codes

Here, we consider orthogonal DSTM codes with NS = 2, i.e. Alamouti’s space–time code, cf.

Section 2.1.2.1.

Since —differently from DSTM based on group codes— transmit symbols are in general not

chosen from a finite set, it is advisable to search directly for the data symbols V n. Thus taking
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the Hermitian transpose of the argument of the Frobenius norm in (3.62), multiplying it from

the left with unitary S̃n+1 and using the differential encoding rule (3.3), we can write

δn

(
˜̄Sn

)

=
∣
∣
∣

∣
∣
∣Ṽ nR̆n,n + Y n

∣
∣
∣

∣
∣
∣

2

, (3.103)

where

Y n
△
= S̃n+1

N∑

j=n+1

S̃
H

j R̆n,j . (3.104)

Using a number of fairly straightforward manipulations we eventually obtain

δn

(
˜̄Sn

)

=
∣
∣
∣

∣
∣
∣R̆n,n

∣
∣
∣

∣
∣
∣

2

+ ||Y n||2 + Re {ãnα
∗
n}+ Re

{

b̃nβ
∗
n

}

(3.105)

=
∣
∣
∣

∣
∣
∣R̆n,n

∣
∣
∣

∣
∣
∣

2

+ ||Y n||2 + |αn| cos

(
2π

L
l̃a,n − angle(αn)

)

+ |βn| cos

(
2π

L
l̃b,n − angle(βn)

)

,

(3.106)

for 1 ≤ n ≤ N − 1, and δN
( ˜̄SN

)
=
∣
∣
∣
∣R̆N,N

∣
∣
∣
∣
2
, where

αn
△
=
√

2

NR∑

j=1

r̆∗n,n,1,jyn,1,j + r̆n,n,2,jy
∗
n,2,j , (3.107)

βn
△
=
√

2

NR∑

j=1

r̆∗n,n,1,jyn,2,j − r̆n,n,2,jy
∗
n,1,j , (3.108)

r̆n,n,i,j and yn,i,j denote the elements in the ith row and jth column of R̆n,n and Y n, respectively,

and

ãn = e
j 2π√

L
l̃a,n (3.109)

b̃n = e
j 2π√

L
l̃b,n (3.110)

represent the two
√
L–PSK symbols that form Ṽ n, cf. (2.6). Apparently, the matrix–symbol

search decomposes into two independent SE enumerations regarding
√
L–PSK symbols ãn and

b̃n, and outer and inner decoder for MSDD can be integrated into a single decoder searching

a (2N − 2)–dimensional tree of
√
L–PSK symbols, where decision ons ãn and b̃n may be made

e.g. at depths ν = 2n− 1 and ν = 2n, 1 ≤ n ≤ N − 1, respectively. Therefore, the tree–search

algorithms as discussed in Section 3.1.1 can be applied directly.

Clearly, the SE candidate enumeration for ãn and b̃n can be implemented in analogy to the

single–antenna case, i.e. based on the unconstrained solution

lua,n =

√
L

2π
angle(−αn) (3.111)
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the order of candidates ãn = exp
(
j 2π√

L
l̃a,n

)
is determined by sequences

l̃a,n = ⌊lua,n⌉, ⌊lua,n⌉+ 1, ⌊lua,n⌉ − 1, ⌊lua,n⌉+ 2, . . . (3.112)

if lua,n > ⌊lua,n⌉ and

l̃a,n = ⌊lua,n⌉, ⌊lua,n⌉ − 1, ⌊lua,n⌉+ 1, ⌊lua,n⌉ − 2, . . . (3.113)

if lua,n ≤ ⌊lua,n⌉, and equivalently for b̃n based on βn.

3.1.4.4 Cayley Codes

In the case of Cayley codes, the inner decoder can either perform a full–scale (FS) or lattice–

decoder (LD) based symbol search. The LD is based on an efficient CDD decoder for this

constellation proposed in [HH02], which relies on a “linear approximation” (LA) and thus is

suboptimal. The lattice decoder solves the Q–dimensional minimization problem [HH02, Eqs.

(19), (21)] with respect to the real–valued coefficients α
△
= [α1, . . . , αQ]T (cf. Section 2.1.2.2)

α̂ = argmin
α̃∈AQ

cay

{
||Bcayα̃− tcay||2

}
, (3.114)

with a (2NSNR × Q)–dimensional, non–sparse matrix Bcay (see [HH02] for details).14 Differ-

ent LD algorithms consisting of a preprocessing and a tree–search stage could be applied, cf.

e.g. [AEVZ02, MGDC06]. Since, we found that the computational burden of preprocessing

dominates the overall complexity, we concentrate on minimal preprocessing performing the QR

decomposition Bcay = QcayRcay with upper–right triangular Rcay. Based on this, it is conve-

nient to apply the modification of Vinck’s stack decoder as described in Section 3.1.4.1.2 to

find candidates α̃ ∈ AQ
cay in order of non–decreasing values of

∣
∣
∣
∣Rcayα̃− t̆cay

∣
∣
∣
∣
2

with t̆cay
△
=
(
Qcay

)T
tcay. (3.115)

Finally, it is worth pointing out that it is helpful to let the inner decoder return the true value

of δn
( ˜̄Sn

)
to the outer decoder rather than the result obtained from the linear approximation.

This both accelerates the convergence of the entire MSDD decoder and improves the error

performance as it reduces the effect of the approximation involved in (3.114).15

14Bcay and tcay are computed as described in Section II-D of [HH02] by replacing —what is there denoted

as— Xτ and Xτ−1 with −Y n and R̆n,n, cf. (3.104) and (3.17) respectively, when searching for candidates

for V n.
15Modifying the inner sphere decoder such that it computes the true δn

( ˜̄Sn

)
whenever a new full candidate

vector α is found and only updates its tentative best candidate when δn
( ˜̄Sn

)
of the current candidate is smaller

than that of the best so far, does not lead to further improvements in the performance of the overall decoder.
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3.2 MSDD Based on Combinatorial Geometry

The tree–search based MSDD algorithms presented in Section 3.1 succeed nicely in drasti-

cally reducing the complexity required to perform MSDD over wide ranges of SNR and ob-

servation window lengths N . However, these algorithms also have a number of drawbacks.

(i) Their instantaneous computational complexity is a random variable, which is considered

disadvantageous for practical implementation. If the ML–MSDD solution is desired at all times

their (ii) average computational complexity may become prohibitively large in low SNRs and

(iii) worst–case complexity increases exponentially with N .

In this section, we therefore take a completely different approach to MSDD. We are inspired

by the recent work by Manglani and Chaturvedi [MC06], who expressed the multiuser detection

problem in code–division multiple access (CDMA) as the quadratic maximization problem

x̂ = argmax
x∈{0,1}n

{
xTQx

}
, (3.116)

with an (n×n)–dimensional positive semidefinite matrix Q of rank d ≤ n, and applied methods

from combinatorial geometry (CG) [Ede87] to solve it. In particular, Ferrez et al. [FFL05]

proposed an efficient algorithm that solves this quadratic maximization problem in polynomial

time O(nd−1). In this section, we show that in the popular special case of binary and quaternary

phase–shift keying (BPSK and QPSK) modulation, i.e. for

NS = 1, (3.117)

also MSDD can be cast in the form of (3.116). The matrix Q is then related to the inverse M of

the (N×N)–dimensional fading–plus–noise autocorrelation matrix. By applying the algorithm

in [FFL05] the MSDD problem is solved in practically constant —meaning independent both of

the SNR and the instantaneous channel state— polynomial time with respect to N , provided

that the rank of the fading autocorrelation matrix is fixed, i.e. independent of N . We refer

to this MSDD making use of the algorithm from [FFL05] as CG–MSDD. What makes this

approach to MSDD attractive, is the fact that the rank of the autocorrelation matrix Ψgg of

the fading process, which is closely related to the above parameter d, is usually much smaller

than N .

After a brief introduction into the fundamentals of convex quadratic maximization based

on combinatorial geometry in Section 3.2.1, we apply these methods to MSDD in Section 3.2.2.

3.2.1 Preliminaries from Convex Quadratic Maximization

In [FFL05] the unconstrained quadratic maximization problem

x̂ = argmax
x∈{0,1}n

{
xTQx

}
(3.118)
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with a real–valued, symmetric, and positive semidefinite (n×n)–dimensional matrix Q of fixed

rank d was considered and shown to be solvable in time polynomial in n. The essential steps

towards this result are as follows. Since the matrix Q is normal, we can factorize it —e.g. by

means of an eigenvalue decomposition— as

Q = T TT (3.119)

with (d × n)–dimensional T . Furthermore, taking the convexity of the Frobenius norm into

account [FFL05], (3.118) is equivalent to maximizing ||Tx|| over the hypercube [0, 1]n, i.e.

x̂ = argmax
x∈[0,1]n

{
||Tx||2

}
. (3.120)

The image

Z(T )
△
= {z = Tx | x ∈ [0, 1]n} ⊂ IR

d (3.121)

of the hypercube [0, 1]n is a convex polytope also referred to as zonotope, cf. e.g. [FFL05]. In

these terms the optimization (3.118) is equivalent to finding the element z = Tx of Z that

lies farthest (in terms of Euclidean distance) from the origin. Due to the definition of Z the

maximum of ||Tx|| lies at some corner (or extreme point) of the zonotope Z, each of which

corresponds one–to–one to some vector x ∈ {0, 1}n. Consequently, the optimization problem

(3.118) can be solved by enumerating the extreme points of the zonotope and evaluating the

Frobenius norm for these points. Note however, that the number of extreme points of the

zonotope is not equal to 2n, but of the order O(nd−1), as some of the linear combinations of

the columns of T lead to points that lie inside the convex zonotope.

For illustration Fig. 3.9 shows the zonotope corresponding to a randomly chosen (3 × 4)–

dimensional matrix

T =







7 11 −12 14

−2 16 13 −2

8 −3 15 7






. (3.122)

“Visible” edges are drawn as solid lines, “hidden” edges as dashed lines. For clarity, we high-

lighted the four edges of the zonotope corresponding to the four columns

ti
△
= T :,i, 1 ≤ i ≤ n, (3.123)

(X :,i: ith column of a matrix X) of T (generators of Z) and exemplarily marked the extreme

point of Z corresponding to x = [1, 1, 1, 0]T.

In combinatorial geometry many results are based on the dual representation in a central

arrangement

A(T )
△
= {P i | 1 ≤ i ≤ n} (3.124)
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Figure 3.9: Zonotope Z corresponding to (3× 4)–dimensional T .

of n hyperplanes P i through the origin of the IR
d with ti as normal vector, i.e.

P i
△
=
{
y ∈ IR

d | yTti = 0
}
. (3.125)

These hyperplanes partition the IR
d into a number of convex faces

Cσ

△
=
{
y ∈ IR

d | sgn
(
yTti

)
= σi,∀i ∈ {1, . . . , n}

}
, (3.126)

(sgn(x): sign of x) where σ ∈ {−1, 0, 1}n. Values of−1, 1 and 0 for σi indicate that the elements

of a face Cσ lie on one side or the other of, or directly on the hyperplane P i corresponding to ti,

respectively. This results in (d + 1) types of faces of different dimensions (point, lines, planes,

etc.) depending on the number of indeces i, for which σi = 0. However, the d–dimensional

faces, subsequently referred to as cells, are of particular interest. Here, σ ∈ {−1, 1}n indicates,

on which side of each hyperplane P i, 1 ≤ i ≤ n, the cell Cσ lies. For these cells a one–to–

one correspondence to one extreme point of the zonotope can be proven, cf. [Zie94]. More

specifically, the extreme point corresponding to a cell Cσ specified by the sign vector σ is given

by the sum over all columns ti of T corresponding to hyperplanes P i, for which the sign σi is
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Figure 3.10: Central arrangement A(T ) corresponding to (3× 4)–dimensional T (shown as cut

section with the unit–sphere).

positive. I.e. the corresponding extreme point is given by [Zie94]

n∑

i=1

ti(σi + 1)/2. (3.127)

Thus, by definition of the zonotope [cf. (3.121)] a one–to–one correspondence between sign

vectors σ and binary vectors x exists via

xi = (σi + 1)/2, 1 ≤ i ≤ n, (3.128)

and the hyperplanes P i can be viewed as decision boundaries for xi, but in the IR
d rather than

in the IR
n.

For illustration see Fig. 3.10, which shows the central arrangement A(T ) corresponding to

the zonotope of Fig. 3.9. Visible contours are plotted as solid, whereas hidden ones are visualized

as dotted lines. The n hyperplanes are depicted through the contour of their intersection with

the unit–sphere and for each a pair of −1, 1 for σi is given to indicate the orientation of ti. We

also highlighted the cell corresponding to the extreme point of the zonotope in Fig. 3.9, i.e. to

x = [1, 1, 1, 0]T.
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Based on this duality, the problem of optimizing (3.118) can also be solved through enu-

meration of the cells of the central arrangement and evaluation of the Frobenius norm of the

corresponding extreme points of the zonotope [cf. (3.127)].

In order for this approach to lead to the solution in polynomial time, essentially two things

are required. (i) The number of cells must be polynomial in n, since the complexity of evaluating

the Frobenius norm of an individual candidate is linear in n if d is fixed. (ii) The complexity

of finding these cells must also be polynomial in n.

The first prerequisite has been known to be fulfilled for a long time. It has been shown in

[Buc43, Zas75] that the number of cells in the central arrangement of n hyperplanes in the IR
d

or equivalently the number of extreme points of a zonotope generated by n column vectors in

the IR
d is upper bounded by

2
d−1∑

i=0

(
n− 1

i

)

, (3.129)

and that this upper bound is achieved with equality if the columns ti of T are in general

position, meaning if any d–tuple of columns tij , 1 ≤ j ≤ d, of T spans the IR
d. The probability

of the latter event equals one as the algorithm operates on real numbers. Thus, the number of

cells is given by (3.129), i.e. it is of order O(nd−1).

Second, algorithms to enumerate these cells in polynomial, more specifically O(nd−1) time

can be found in e.g. [EOS86, Ede87, FFL05].16 Having enumerated all cells, it remains to com-

pute ||Tx|| for these O(nd−1) candidates to find the best one. As the complexity of evaluating

||Tx|| is linear in n if d is fixed, the overall complexity is of order

O(nd). (3.130)

For more details on the complexity analysis of these algorithms when applied to noncoherent

transmission over fading channels see Section 5.5.2.

Remark: For CG–MSDD for BPSK and QPSK, we shall apply the above result to the case

that the support {0, 1}n of x is replaced by {−1,+1}n in (3.118). It is important to note that

one should not change variables to deal with this case, as such an operation might increase the

rank d of the associated matrix Q, i.e. the number of columns in T and thereby the complexity

of the decoder. Fortunately, we can treat this case directly. In fact, the image Z ′ of the linear

map Tx of the centrally symmetric cube x ∈ {−1,+1}n is simply a scaled and shifted version

of the zonotope Z in (3.121), more specifically

Z ′ = 2Z −
d∑

i=1

ti. (3.131)

16Implementation of the cell enumeration algorithm by Fukuda et al. in C can be found under [FFL, FF].
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Thus, the extreme points of Z ′ can be computed in exactly the same manner, i.e. based on the

same central arrangement A, as those of Z .

3.2.2 Application to MSDD

In order to efficiently apply the above methods of combinatorial geometry, we proceed as follows.

Let the (N ×N)–dimensional fading autocorrelation matrix Ψgg [cf. (2.31)] be real–valued and

of rank

Nλ
△
= rank{Ψgg} . (3.132)

Then we can factorize Ψgg using the eigenvalue decomposition as

Ψgg = UΨgg
ΛΨgg

UT

Ψgg
(3.133)

(ΛX: (rank{X} × rank{X})–dimensional matrix containing the non–zero eigenvalues λX,i,

1 ≤ i ≤ rank{X} of X, sorted in order of decreasing magnitude on its main diagonal, UX: (N×
rank{X})–dimensional unitary matrix whose columns are given by the eigenvectors of (N×N)–

dimensional X). With this and with the help of Woodbury’s identity for matrix inversion (cf.

e.g. [HJ85]) the inverse of the fading–plus–noise autocorrelation matrix M [cf. (2.37)] can be

written as

M = σ−2
n

(

IN −UΨgg
AUT

Ψgg

)

, (3.134)

where

A
△
= ΛΨgg

(
ΛΨgg

+ σ2
nINλ

)−1
. (3.135)

Consequently, we can express the ML–MSDD decision rule as

ˆ̄S = argmax
˜̄S∈VN ,S̃N=1

{
˜̄S

H
Qc

˜̄S
}

, 17 (3.136)

where

Qc

△
= R̄DUΨgg

AUT

Ψgg
R̄

H

D (3.137)

is an (N ×N)–dimensional positive semidefinite matrix of rank Nλ,

R̄D
△
= diag

{
R̄
}
, (3.138)

and R̄ as N–dimensional vector of received samples [cf. (2.22)].

For the following derivation of CG–MSDD, we consider the two cases of BPSK (L = 2) and

QPSK (L = 4) separately and subsequently address the issue of transmit and receive diversity.
17Note, that although many quantities have singular dimensions in the single–antenna case, e.g. S̄ is now a

vector of length N and Sn is a scalar, we stick to the general denomination of the MIMO system, to avoid

confusion by introducing new variable names.
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3.2.2.1 Binary Phase–Shift Keying

In the case of BPSK the imaginary part of Qc is irrelevant. Therefore, defining

Q
△
= Re {Qc} , (3.139)

the decision rule (3.136) is equivalent to

ˆ̄S = argmax
˜̄S∈{−1,+1}N ,S̃N=1

{
˜̄S

T
Q ˜̄S

}

. (3.140)

It is not difficult to show that Q = T TT with the (2Nλ ×N)–dimensional matrix

T =
(

I2 ⊗
√

AUT

Ψgg

)

·
[

Re
{
R̄D

}

Im
{
R̄D

}

]

, (3.141)

and R̄D, UΨgg
and A as defined in (3.138), (3.134) and (3.135), respectively. Hence, the

ML–MSDD problem can be represented using a central arrangement of N hyperplanes in the

IR
2Nλ , and we can solve it applying the methods from combinatorial geometry described in

Section 3.2.1. Note that the complexity of the eigenvalue decomposition of Ψgg is negligible as

it needs to be performed only once provided that the channel statistics do not change. Thus

decoder complexity is of order O(N2Nλ) [cf. (3.130) with n = N and d = 2Nλ].

Remark: It should be noted that if 2Nλ > N a decomposition Q = T TT with an (N ×N)–

dimensional matrix T different from that in (3.141) can be found. In this case however, the

computational complexity of CG–MSDD is of the same order as that of brute–force MSDD,

and thus it is not of interest here.

3.2.2.2 Quaternary Phase–Shift Keying

For QPSK the transmit signal S̄ can be expressed as S̄ = ejπ
4 (sRe + jsIm)/

√
2 with sRe, sIm ∈

{−1,+1}N , and the MSDD decision rule becomes

ˆ̄S = argmax
[s̃Re,s̃Im]∈{−1,+1}2N

s̃Re,N=1,s̃Im,N=0

{
[

s̃T

Re s̃T

Im

]

Q

[

s̃Re

s̃Im

]}

, (3.142)

where

Q
△
=

[

Re {Qc} −Im {Qc}
Im {Qc} Re {Qc}

]

(3.143)

and Qc according to (3.137). The factorization Q = T TT leads to the (2Nλ×2N)–dimensional

matrix

T =
(

I2 ⊗
√

AUT

Ψgg

)

·
[

Re
{
R̄D

}
Im
{
R̄D

}

−Im
{
R̄D

}
Re
{
R̄D

}

]

, (3.144)
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with R̄D, UΨgg
and A as defined in (3.138), (3.134) and (3.135), respectively. Similar to

the case of BPSK, this factorization is based on the eigenvalue decomposition of Ψgg, which is

performed only once assuming that the channel is stationary. Hence, (3.142) can be solved using

the methods from combinatorial geometry based on a central arrangement of 2N hyperplanes

in the IR
2Nλ and the complexity of CG–MSDD is of the order O((2N)2Nλ) [cf. (3.130) with

n = 2N and d = 2Nλ].

3.2.2.3 Transmit and Receive Diversity

CG–MSDD can also be applied to repetition transmit diversity in a system with NS inputs to

the channel, such that the same PSK symbol is fed into each of the NS inputs exactly once

while the remaining NS − 1 inputs are inactive (compare cyclic DSTM codes as reviewed in

Section 2.1.1.1). In addition receive diversity with NR > 1 receive antennas. Based on the

assumption of NSNR iid subchannels between different input–output pairs it is fairly straight-

forward to extend the derivations above to the MIMO case. Let the (N × 1)–dimensional

ri,j =
[
ri,j [k−N +1], . . . , ri,j [k]

]T
with ri,j[k−κ] as the element in the ith row and jth column

of R[k − κ] [cf. (2.12)] denote the signal received at channel output j upon transmission from

channel input i, R̄D,i,j
△
= diag{ri,j} and R̃D

△
= [R̄D,1,1, . . . , R̄D,NS,1, R̄D,1,2, . . . , R̄D,NS,NR

]T.

Then T in Q = T TT can be expressed as (2NSNRNλ ×N)–dimensional

T =
(

I2NSNR
⊗
√

AUT

Ψgg

)

·
[

Re
{
R̃D

}

Im
{
R̃D

}

]

, (3.145)

for BPSK and (2NSNRNλ × 2N)–dimensional

T =
(

I2NSNR
⊗
√

AUT

Ψgg

)

·
[

Re
{
R̃D

}
Im
{
R̃D

}

−Im
{
R̃D

}
Re
{
R̃D

}

]

. (3.146)

for QPSK, respectively, where UΨgg
and A are computed as before from the (N×N)–dimensional

autocorrelation matrix Ψgg of the channel coefficients corresponding to the received samples

collected in ri,j [cf. (3.133) and (3.135)]. One can see that the dimension of the parameter

space in which the central arrangement is set and thereby the complexity exponent is in-

creased by a factor of NSNR, which was to be expected as the number of degrees of freedom

in the channel is increased by the factor NSNR. Thus, the decoder complexity is of the order

O((log2(L)N)2NλNSNR), L ∈ {2, 4} for BPSK and QPSK, respectively.

3.2.2.4 Relation to MAPSqD from [MAKA07]

In [MAKA07, Section II] Motedayen–Aval et al. proposed an MSDD algorithm, referred to

as maximum a–posteriori sequence detection (MAPSqD), for PSK modulation that relies on
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the same principles as the algorithm presented above. As in our case the detection problem

is moved from the N–dimensional signal space to an Nλ–dimensional parameter space, where

Nλ is the rank of the channel autocorrelation matrix Ψgg. Rather than exploiting the binary

structure underlying BPSK and QPSK to define a central arrangement of hyperplanes based

on its relation to a zonotope, Motedayen–Aval et al. define hyperplanes in the parameter space

separating cells based on the metric difference between the respective candidate transmit se-

quences associated with the individual cells. Depending on the sign of the metric difference,

a point is identified as lying on one side of a hyperplane or the other (cf. meaning of σi in

Section 3.2.1), and detection is essentially performed based on combinatorial geometry in this

Nλ–dimensional space. While MAPSqD is more general in that it is also applicable to PSK

modulation with L > 4, CG–MSDD is not a special case of MAPSqD, because the definitions of

the Nλ–dimensional parameter spaces are different. For example, CG–MSDD is advantageous

over MAPSqD for QPSK since the resulting central arrangement has only 2N hyperplanes in-

stead of 6N for MAPSqD, which corresponds to significant savings in computational complexity

[cf. (3.130)].



Chapter 4

Multiple–Input Multiple–Output

Channel Model

Recall, that in Section 2.3 we have introduced in a rather ad–hoc fashion a generic (NS×NR)–

dimensional multiple–input multiple–output (MIMO) channel model for the derivation of the

detection schemes in Section 2.4 and Chapter 3. In this chapter, we now present the general

MIMO channel model for a system with NT transmit and NR receive antennas, that serves as

basis for the discrete–time channel models considered in Chapters 5 and 6. The connection

between the (NS × NR)–dimensional and the (NT × NR)–dimensional channel models of Sec-

tion 2.3 and this section, respectively, will be established separately for the two transmission

scenarios considered in Chapters 5 and 6.

In general all of our considerations shall be set in the equivalent complex baseband (ECB)

[Tre71], i.e. all quantities involved in the channel model are in general represented by complex–

valued variables.

In the following, we consider the general case of transmission using NT ≥ 1 transmit and

NR ≥ 1 receive antennas over time–variant spatially correlated MIMO channels perturbed by

additive white Gaussian noise (AWGN). The classical single–input single–output (SISO) case,

where both transmitter and receiver use only a single antenna is apparently included as special

case for NT = NR = 1 and all results presented subsequently are therefore equally applicable

here.

Fig. 4.1 shows the MIMO channel model under consideration. Information is mapped to

transmit symbols xi[k], 1 ≤ i ≤ NT, k ∈ IN, in a way that is to be specified later. After

transmit pulse shaping with a
√

Nyquist [Pro00] pulse hT(t) the xi[k] are transmitted at a rate

1/T , where T is referred to as modulation interval, in the form of the continuous–time signal

xi(t) =
∞∑

k′=0

xi[k
′]hT(t− k′T ). (4.1)

72
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Figure 4.1: Multiple–input multiple–output channel model.

The received signal rj(t) at receive antenna j after matched filtering with

hR
△
= cnormh

∗
T(−t), (4.2)

reads

rj(t) =

∫ ∞

−∞

[
∫ ∞

−∞

NT∑

i=1

xi(η − τ)h̃i,j(η, τ) dτ + ñj(η)

]

hR(t− η) dη (4.3)

=

NT∑

i=1

∞∑

k′=0

xi[k
′]

∫ ∞

−∞

∫ ∞

−∞
hT(η − τ − k′T )h̃i,j(η, τ)hR(t− η) dτ dη

+

∫ ∞

−∞
ñj(η)hR(t− η) dη, (4.4)

where h̃i,j(t, τ) denotes the complex–valued time–variant input delay–spread function [Ste99,

Hub97] of the channel between transmit antenna i and receive antenna j, ñj(t) represents

the circularly symmetric complex additive spatially and temporally white Gaussian noise with

double–sided power spectral density (PSD) N0 effective at receive antenna j,1 and cnorm is a
1Note that based on Grettenberg’s theorem [Mil74] this corresponds to a zero–mean real–valued AWGN

passband process with single–sided PSD N0.
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normalization constant to be discussed below. For a list PSDs and corresponding temporal

correlation functions of common fading models, see Appendix 4.A. We assume that h̃i,j(t, τ)

remains approximately constant for twice the period of time, where hT(t) deviates significantly

from zero. This assumption is justified if the normalized single–sided bandwidth BhT of the

fading process h̃i,j(t, τ) satisfies BhT ≤ 0.03 . . . 0.05, where the value of this upper bound

depends on the roll–off factor of the transmit pulse, cf. [CH92]. With this, we can express the

received signal as

rj(t) =

NT∑

i=1

∞∑

k′=0

xi[k
′]

∫ ∞

−∞
h̃i,j(t, τ)

∫ ∞

−∞
hT(η − τ − k′T )hR(t− η) dτ dη + nj(t), (4.5)

where we introduced

nj(t)
△
= ñj(t) ∗ hR(t) (4.6)

(x(t) ∗ y(t) △
=
∫∞
−∞ x(τ)y(t− τ) dτ : convolution).

In mobile communications a general frequency–selective channel is typically modeled using

a sequence of Lh mutually independent time–variant random channel taps h
(l)
i,j(t) at delays τl,i,j ,

1 ≤ l ≤ Lh, 1 ≤ i ≤ NT, 1 ≤ j ≤ NR, [Ste87, Rap96b, Hub97]. For simplicity, we assume

that all spatial subchannels have identical power delay profiles, i.e. the variances of h
(l)
i,j(t) and

delays τl,i,j are independent of i and j. Thus, we simply write τl for the delay of the lth channel

tap, such that the channel is modeled by

h̃i,j(t, τ) =

Lh∑

l=1

h
(l)
i,j(t)δ(τ − τl) (4.7)

(δ(x− y): Dirac–δ function). To describe the spatial correlation of the MIMO channel we use

the frequently considered Kronecker correlation model (cf. e.g. [SFGK00, CRTP03]), i.e. we

jointly model matrices of channel coefficients as

H (l)(t)
△
=
[

h
(l)
i,j(t)

]

i=1,... ,NT
j=1,... ,NR

=
√

ΨTxW (l)(t)
√

ΨRx
T

, (4.8)

(
√

X: from X =
√

X
√

X
H
)2 with constant (NT×NT)–dimensional and (NR×NR)–dimensional

matrices

ΨTx △
=
[
ψTx[i, j]

]

i=1,... ,NT
j=1,... ,NT

(4.9)

ΨRx △
=
[
ψRx[i, j]

]

i=1,... ,NR
j=1,... ,NR

(4.10)

2Note that this square–root decomposition is not uniquely defined. The Cholesky decomposition is one

example of such a square–root matrix decomposition.
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representing spatial correlation at transmitter and receiver side, respectively. In particular,

ψTx[i, j] represents the correlation between spatial subchannels from two different transmit

antennas i and j to the same receive antenna. For ψRx[i, j] a dual meaning exists. The

Lh mutually independent (NT × NR)–dimensional matrices W (l)(t), 1 ≤ l ≤ Lh, contain iid

circularly symmetric complex Gaussian random processes with identical temporal correlation

functions. Consequently, the Lh matrices H(l)(t) contain NTNR circularly symmetric complex

Gaussian random processes and have the same spatial correlation structure. Based on the

vector operator

vec {X} △
=
[
(X :,1)

H, (X :,2)
H, . . . , (X :,m)H

]H
(4.11)

and the identity

vec {XY } = (In ⊗X)vec {Y } (4.12)

holding for arbitrary matrices X and Y , where m and n denote the numbers of columns of

X and Y , respectively, the spatial correlation can be described using the (NTNR × NTNR)–

dimensional spatial correlation matrix

ΨHH

△
=

Et
{

vec
{

H(l)(t)
}

vec
{

H(l)(t)
}H
}

Et
{∣
∣
∣h

(l)
i,j(t)

∣
∣
∣

2
} = ΨRx ⊗ΨTx, (4.13)

with ΨRx and ΨTx as defined in (4.10) and (4.9), respectively. The normalized temporal

correlation function that is common to all channel taps is denoted by

ψt(τ)
△
=
Et
{(

h
(l)
i,j(t)

)∗
h

(l)
i,j(t+ τ)

}

Et
{∣
∣
∣h

(l)
i,j(t)

∣
∣
∣

2
} =

Et
{(

w
(l)
i,j (t)

)∗
w

(l)
i,j (t+ τ)

}

Et
{∣
∣
∣w

(l)
i,j (t)

∣
∣
∣

2
} . (4.14)

Plugging (4.7) into (4.5) and with the definition of

hG(t)
△
= hT(t) ∗ hR(t), (4.15)

which due to the fact that hT(t) and hR(t) are
√

Nyquist pulses is a Nyquist pulse, we obtain

for the continuous–time received signal at antenna j

rj(t) =

NT∑

i=1

∞∑

k′=0

xi[k
′]

Lh∑

l=1

h
(l)
i,j(t)hG(t− τl − k′T ) + nj(t). (4.16)

After sampling of rj(t) at time instants t = kT + τ1 for appropriate symbol synchronization the

discrete–time received signal reads

rj[k]
△
= rj(kT + τ1) (4.17)

=

NT∑

i=1

∞∑

k′=0

xi[k
′]

Lh∑

l=1

h
(l)
i,j(kT + τ1)hG((k − k′)T + τ1 − τl) + nj[k], (4.18)
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where

nj[k]
△
= nj(kT + τ1). (4.19)

Based on (i) the assumption that the continuous–time process ñj(t) is circularly symmetric

complex spatially and temporally white Gaussian distributed and (ii) the fact that the matched

filter hR(t) at the receiver is a
√

Nyquist pulse, the noise process nj[k] is discrete–time circularly

symmetric complex spatially and temporally white Gaussian distributed.

In accordance with the organization of the present work we distinguish between two channel

models, namely frequency non–selective and frequency selective Rayleigh fading channels if

Lh = 1 and Lh > 1, respectively.3 These are discussed separately at the beginning of Chapters 5

and 6, respectively.

3Throughout this work, the attributes “frequency selective” and “dispersive” (channel), “frequency non–

selective”, “flat fading” and “non–dispersive” (channel), and “time varying”, “time selective” and “fading”

(channel) are used interchangeably.
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4.A Fading Models

In this appendix, we list the power spectral densities (PSD) Ψt
c(f) and temporal correlation

functions ψt(t) of a number of fading models considered in this work. Bh denotes the fading

bandwidth also referred to as Doppler spread.

Rectangular model:

Ψt
c(f) =







1

2Bh

, |f | ≤ Bh

0, Bh < |f |
(4.20) ψt(t) =

sin(2πBht)

2πBht
(4.21)

Clarke’s model (land–mobile model):

Ψt
c(f) =







1

π
√

B2
h − f 2

, |f | ≤ Bh

0, Bh < |f |
(4.22) ψt(t) = J0(2πBht) (4.23)

Gaussian PSD model:

Ψt
c(f) =

1√
πBh

exp

(

−
(
f

Bh

)2
)

(4.24) ψt(t) = exp
(
−(πBht)

2
)

(4.25)

First–order Butterworth PSD model:

Ψt
c(f) =

1

πBh

(

1 + f
Bh

)2 (4.26) ψt(t) = exp(−2π |Bht|) (4.27)

Second–order Butterworth PSD model:

Ψt
c(f) =

2
√

2

πBh

(

1 +
(

2 f
Bh

)4
) (4.28)

ψt(t) = exp

(

−π |Bht|√
2

)

(4.29)

·
(

cos

(
πBht√

2

)

+ sin

(
π |Bht|√

2

))

Table 4.1: Power spectral densities (PSD) Ψt
c(f) and temporal correlation functions ψt(t) for

various fading models [SA05].



Chapter 5

Multiple–Symbol Differential Detection

for Frequency–Nonselective Channels

In narrowband digital communications the transmission channel can often be modeled as fre-

quency nonselective. For this scenario the unitary–matrix signal constellations reviewed in

Section 2.1 have —in conjunction with differential encoding (cf. Section 2.2)— been developed

as a means for power–efficient transmission without the need for accurate channel state in-

formation (CSI) at the receiver. As the unitary–matrix symbols extend over time and space

this transmission scheme whose details are given below is commonly referred to as (unitary)

differential space–time modulation (U)DSTM.

In this chapter, we apply the methods of Chapter 3 to the scenario of DSTM–based trans-

mission over frequency–nonselective channels. In Sections 5.1 and 5.2 we present the system

model, whose connection with the generic system model of Chapter 2 will be established in

Section 5.3.

Section 5.4 provides an in–depth analysis of the performance of the various detection schemes

considered in this work under spatially uncorrelated and correlated frequency–nonselective fad-

ing. To analyze the case of spatially correlated channels we resort to standard methods based

on characteristic functions. For the spatially uncorrelated case we derive expressions for the

error rates of the various detection schemes that facilitate a number of interesting and intuitive

insights, such as interdependencies between the various detection schemes and dependence of

their performance on system parameters such as SNR, fading bandwidth, numbers of antennas

at both ends of the channel and observation window length.

Section 5.5 is concerned with a complexity analysis of the detection schemes based on tree–

search decoding and combinatorial geometry considered in Sections 3.1 and 3.2, respectively.

While we will prove that for standard fading models the complexity of both approaches to

MSDD is in general exponential in the length N of the observation window, we will show that

that tree–search methods are more suitable for fast fading scenarios, whereas the approach

78
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based on combinatorial geometry is preferably used in slower fading scenarios.

5.1 Differential Space–Time Modulation (DSTM)

DSTM for noncoherent transmission over frequency–nonselective MIMO fading channels as-

sumes

NT = NS (5.1)

transmit antennas. Here, groups of NTR bits are mapped to (NT × NT)–dimensional signal

matrices V [k] taken from a set V of

L = 2NTR (5.2)

unitary matrices, which are differentially encoded according to (2.11) to yield (NT × NT)–

dimensional unitary transmit matrices S[k]. These matrices are transmitted in a row–by–row

fashion over the (NT × NR)–dimensional MIMO channel in NT modulation intervals. Conse-

quently, R denotes the information transmission rate in bit per MIMO channel use, i.e. per

modulation interval not per DSTM symbol.

5.2 Time–Selective Channel Model

In this section, we derive —building upon Chapter 4— the time–selective and frequency–

nonselective discrete–time model of the communication system deploying NT transmit and NR

receive antennas considered in this chapter.

The (NT × NT)–dimensional unitary transmit matrices S[k] are transmitted in a row–

by–row fashion in NT modulation intervals over the (NT × NR)–dimensional MIMO channel

(cf. Chapter 4) such that sν,i[k] is transmitted from antenna i at discrete time (kNT + ν)T , i.e.

(cf. Fig. 4.1)

xi[kNT + ν] = sν,i[k]. (5.3)

Since the channel is frequency–nonselective, we have from (4.7) that

h̃i,j(t, τ) = h
(1)
i,j (t)δ(τ − τ1) . (5.4)

Plugging this into (4.17) and recalling that hG(t) is a Nyquist pulse, the discrete–time intersym-

bol–interference–free received signal rj[kNT + ν] at antenna j sampled at time (kNT + ν)T + τ1

is given by

rj[kNT + ν] =

NT∑

i=1

sν,i[k]hi,j [kNT + ν] + nj[kNT + ν], (5.5)
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where

hi,j [k]
△
= h

(1)
i,j (kT + τ1)hG(0) (5.6)

and nj[k] as defined in (4.19).

In order to obtain dimensionless discrete–time signals, the normalization constant cnorm of

the receiver’s matched filter hR(t) [cf. (4.2)] is chosen such that the variance of the noise–free

component of the received signal rj[k] is one. Thus, the variance of the discrete–time AWGN

nj[k] is given by σ2
n

△
= E{|nj[k]|2} = N0/Es = N0/(EbR) (Es: average received energy per

MIMO–channel use, Eb: average received energy per transmitted bit, R: transmission rate in

bit per MIMO–channel use), i.e. the signal–to–noise ratio (SNR) will subsequently be quantified

by

Eb

N0

=
Es

N0R
=

1

σ2
nR

. (5.7)

Based on the spatial correlation model (4.8) the (NT × NR)–dimensional MIMO–channel

matrix Hc[k] at discrete time kT can be modeled as

Hc[k]
△
= [hi,j [k]] i=1,... ,NT

j=1,... ,NR

=
√

ΨTxW [k]
√

ΨRx
T

, (5.8)

where constant (NT × NT)–dimensional ΨTx and (NR × NR)–dimensional ΨRx as defined in

(4.9) and (4.10) model the correlation at transmitter and receiver side, respectively. Due to

the normalization of the received signal, the (NT ×NR)–dimensional matrix W [k] contains iid

Nc(0, 1) distributed random variables with identical temporal correlation functions [cf. (4.14)]

ψt[κ]
△
= E

{
hi,j[k + κ]h∗i,j [k]

}
= E

{
wi,j [k + κ]w∗

i,j [k]
}

= ψt(κT ). (5.9)

It is shown in Appendix 5.A.1 that the autocorrelation function of hi,j [κ] is separable into a

temporal and two spatial components as

ψhh[κ, i1, i2, j1, j2]
△
= E

{
hi1,j1 [k + κ]h∗i2,j2

[k]
}

= ψt[κ]ψTx[i1, i2]ψ
Rx[j1, j2], (5.10)

where ψt[κ] as introduced in (5.9) specifies the temporal correlation of the NTNR individual

fading processes, and ψTx[i, j] and ψRx[i, j] are the elements in the ith row and jth column of

ΨTx and ΨRx [cf. (4.9) and (4.10)] representing spatial correlation at transmitter and receiver

side, respectively. Note, that we did not make any simplifying assumptions on the geometry of

the transmit and receive antenna arrays. This leads to the general form of the autocorrelation

function with pairs of indeces i1, i2 and j1, j2 to model the correlation between the spatial

subchannel from transmit antenna i1 to receive antenna j1 and the spatial subchannel from

transmit antenna i2 to receive antenna j2.



CHAPTER 5. MSDD FOR FREQUENCY–NONSELECTIVE CHANNELS 81

5.2.1 Continuous–Fading Channel Model

Recall that the MIMO fading channel changes “continuously” over time, i.e. the channel coeffi-

cients hi,j[k] change from modulation interval to modulation interval. In order to describe the

transmission of one DSTM symbol S[k] we therefore proceed as follows. Let R[k], Hc[kNT +ν]

and N [k] each contain rj[kNT + i], hi,j[kNT +ν] and nj[kNT + i] in the ith row and jth column,

1 ≤ i ≤ NT, 1 ≤ j ≤ NR. Since the νth row of S[k] is transmitted over the (NT × NR)–

dimensional MIMO channel at discrete time (kNT + ν)T , i.e. over Hc[kNT + ν], we obtain

the (NT × NR)–dimensional received matrix R[k] corresponding to the transmission of one

space–time symbol S[k] as [cf. (5.5)]

R[k] = Sc[k]H̆c[k] + N [k] , (5.11)

where we defined (N2
T ×NR)–dimensional

H̆c[k]
△
=
[
HH

c [kNT + 1], . . . ,HH

c [(k + 1)NT]
]H

(5.12)

and (NT ×N2
T)–dimensional block–diagonal matrix

Sc[k]
△
=





S1,:[k] 0
. . .

0 SNT,:[k]



 (5.13)

(X i,:: ith row of a matrix X).

Furthermore, the (NNT ×NR)–dimensional block matrix R̄[k] of N consecutively received

matrix symbols, that are processed simultaneously in MSDD and DFDD, is easily obtained as

R̄[k]
△
=

[
RH[k −N + 1], . . . ,RH[k]

]H
(5.14)

= S̄D,c[k]H̄c[k] + N̄ [k], (5.15)

with the (NNT ×NN2
T)–dimensional block–diagonal matrix of transmit signals

S̄D,c[k]
△
=







Sc[k −N + 1] 0
. . .

0 Sc[k]






, (5.16)

the (NN2
T ×NR)–dimensional channel matrix

H̄c[k]
△
=
[

H̆
H

c [k −N + 1], . . . , H̆
H

c [k]
]H

(5.17)

and the (NNT ×NR)–dimensional AWGN matrix

N̄ [k]
△
=
[
NH[k −N + 1], . . . ,NH[k]

]H
. (5.18)

In order to distinguish this fading model from other fading models considered below, we

refer to this model as continuous–fading channel (CFC) model, an expression used in [HM00].
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5.2.2 Quasi–Static–Fading Channel Model

While the continuous–fading channel model will be used for analytical purposes and perfor-

mance evaluation in later sections, the derivation of low–complexity DSTM detectors requires

the assumption of a quasi–static fading channel (QSFC), i.e. the channel is assumed to be

constant during NT consecutive modulation intervals (cf. e.g. [BS02, CT05b]).1 Defining the

(NT ×NR)–dimensional QSFC matrix

H [k]
△
= [hi,j[kNT]] i=1,... ,NT

j=1,... ,NR

, (5.19)

transmission over the QSFC is described by

R[k] = S[k]H [k] + N [k]. (5.20)

With the (NNT ×NR)–dimensional QSFC matrix

H̄ [k]
△
=
[
HH[k −N + 1], . . . ,HH[k]

]H
(5.21)

(NNT ×NNT)–dimensional block–diagonal matrix [cf. (2.23)]

S̄D[k]
△
=







S[k −N + 1] 0
. . .

0 S[k]






, (5.22)

of N transmit symbols and N̄ [k] as defined in (5.18), the (NNT × NR)–dimensional block

matrix R̄[k]
△
=
[
RH[k −N + 1], . . . ,RH[k]

]H
of N consecutively received matrix symbols as

introduced in Section 2.4.2 is given by

R̄[k] = S̄D[k]H̄ [k] + N̄ [k]. (5.23)

The assumption of the channel being approximately constant for NT consecutive modulation

intervals is justified for BhTNT ≤ 0.01 only. In faster fading scenarios the noncoherent detection

schemes operating based on (5.23) suffer a performance loss due to a metric mismatch, cf. also

Section 5.4.5. However, it is important to note that for cyclic and dicyclic DSTM, where every

spatial subchannel is used exactly once per DSTM symbol, the CFC and QSFC models coincide

and thus, the QSFC model accurately describes transmission over continuously fading channels

when cyclic and dicyclic constellations are employed for DSTM. This reflects in the fact that

all but NT out of the N2
T rows of Sc[k] [cf. (5.13)] are exclusively filled with zeros. If one

1The reason for this is that while the PDF p
(
R̄
∣
∣ S̄
)

can be given in a form similar to (2.25) the ML–MSDD

decision rule can not be brought into the form of (2.36) since a simplification as in (2.32)–(2.34) is not feasible

for the CFC.
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removes the corresponding rows from (N2
T×NR)–dimensional Hc[k] [cf. (5.12)] an (NT×NR)–

dimensional channel matrix H [k] results. In this case, the QSFC model is —again based on

the arguments of [Cav92]— valid for BhT ≤ 0.03 . . . 0.05 and using this model as basis for

MSDD or DFDD does not incur a metric mismatch and thereby a performance degradation if

BhTNT > 0.01.

Note however, that different from cyclic DSTM, for dicyclic DSTM the time between two

consecutive transmissions from the same antenna may vary depending on the parameter m

[cf. (2.4)]. Consequently, optimal MSDD would have to adapt the prediction coefficients ac-

cording to the parameters m associated with tentative decisions Ṽ j, n + 1 ≤ j ≤ N − 1, and

the current candidate Ṽ n, which would complicate the detection process significantly. Alterna-

tively, prediction coefficients can be based on an average time between consecutive transmissions

from the same antenna, which is equivalent to using the QSFC model.

We would also like to point out that the QSFC model considered in (5.20) is different from

the block–fading channel (BFC) model (cf. also [Hug00a, HS00, TJ00, HH02, HMR+00]) which

stipulates that the channel remains constant during the transmission of N consecutive DSTM

symbols and changes from block to block.

5.3 Application of Efficient MSDD Algorithms

Note that (5.23) is exactly of the form of (2.22). This means that we can directly apply the

receiver algorithms of Chapter 3 based on the generic system model of Chapter 2. At this H̄ [k]

[cf. (5.21)] now plays the role of Ḡ[k] [cf. (2.20)]. With the help of Appendix 5.A.1, where

an expression for E
{
h∗i1,j1

[k]hi2,j2 [k + κ]
}

is derived, it is fairly straightforward to see that the

(NNT ×NNT)–dimensional correlation matrix of H̄ [k] is given by

ΨH̄H̄

△
= E

{

H̄H̄
H
}

= Ψt ⊗ΨTxNR, (5.24)

with ΨTx as defined in (4.9) and (N ×N)–dimensional Ψt modeling temporal correlation.2

For computational efficiency of the receivers we only consider algorithms that operate based

on the assumption of absence of spatial correlation. In this case ΨH̄H̄ reduces to Ψt ⊗ INT
NR

and the (N ×N)–dimensional matrix M that appears in the ML–MSDD metric [cf. (2.36)] can

be identified as

M =
(
Ψt + σ2

nIN

)−1
, (5.25)

thus allowing for application of the algorithms described in Chapter 3.

2Note that spatial correlation at the receiver side does not have an impact on this expression, because in

H̄H̄
H

only channel coefficients corresponding to the same receive antenna are multiplied with each other.
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5.3.1 Spatial Correlation

Note that in the presence of spatial correlation ML MSDD using tree–search decoding is still

feasible. However, the ci,j in (3.14) obtained from the Cholesky decomposition of M would

have to be replaced with (NT×NT)–dimensional matrices Ci,j computed via the Cholesky de-

composition
(
Ψt ⊗ΨTx + σ2

nINNT

)−1
= C̃

H
C̃, where upper–right triangular C̃ = [Ci,j ] i=1,... ,N

j=1,... ,N

,

to describe correlation at the transmitter side. As matrices are in general not commutative

under regular matrix multiplication, the introduction of R̆i,j, 1 ≤ i, j ≤ N , [cf. (3.17)] which

needs to be computed only once at the beginning of the decoding process, would not be possi-

ble. In addition, the efficient symbol–search strategies as discussed in Section 3.1.4 would not

be feasible, such that decoder complexity would be increased significantly. We shall therefore

not pursue this further in this work, and only present some numerical results in Section 5.4

that illustrate the minor performance loss due to spatial correlation of the proposed detection

algorithms compared to detectors that take spatial correlation into account.

5.3.2 Effective Fading Process

Note that the use of regular DSTM as introduced in Section 5.1 increases the normalized fading

bandwidth relevant to the noncoherent detector by a factor of NT, cf. [SL02, DB06]. This is due

to the fact that transmissions of symbols si,j[k] and si,j [k+ 1] are separated by NT modulation

intervals. While this temporal “channel decorrelation” impedes power–efficient detection it can

be avoided through application of blockwise DSTM (BDSTM) [DB06] based on cyclic DSTM.

Here the elements si,i[k] are blockwise interleaved prior to transmission, such that si,i[k] and

si,i[k + 1] are transmitted in successive modulation intervals. More details on BDSTM can be

found in Appendix 5.C.

In order to avoid repetitive distinction between DSTM and BDSTM, we will subsequently

consider an effective discrete–time fading process with temporal autocorrelation matrix Ψt

Ψt = toeplitz
{
ψt[0], ψt[x], . . . , ψt[x(N − 1)]

}
,

{

x = NT, DSTM

x = 1, BDSTM
(5.26)

with ψt[κ] as introduced in (5.9). Accordingly, its PSD is given by

Ψt(f)
△
=

∞∑

κ=−∞
ψt[κx]e−j2πκfT =

1

T

∞∑

k=−∞
Ψt

c(f/x− k/T ),

{

x = NT, DSTM

x = 1, BDSTM
, (5.27)

where Ψt
c(f) denotes the PSD of the continuous–time fading process with bandwidth Bh un-

derlying the discrete–time fading process hi,j[k] [cf. (5.6)], and an effective normalized fading

bandwidth

Bh,effT
△
= xBhT,

{

x = NT, DSTM

x = 1, BDSTM
(5.28)
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can be introduced.

5.4 Performance Analysis

In this section, we provide tight symbol–error rate (SER) approximations for the different

detection schemes, which are computed using truncated union bounds over the pairwise error

probabilities (PEP) of the dominant error events. While a cast–iron proof is yet to be found

it is generally accepted, cf. e.g. [HF92, LLK04, PL07b], that single–transmit–symbol errors,

which have been shown in [DS90] to dominate the error rate of MSDD when transmitting over

the AWGN channel, are also the most probable error events when transmitting over fading

channels (cf. Section 5.4.4 for more details). Therefore, we will in the performance analysis of

MSDD restrict our attention to candidates of the form

ˆ̄S
(
l, l̂
)

=
[
SH

1 , . . . ,S
H

n−1,S
H

n·
(
V (l)

)
H·V (l̂),SH

n+1, . . . ,S
H

N

]H
, (5.29)

with V (l), V (l̂) ∈ V and V (l̂) 6= V (l).

In the following analysis, we distinguish three different cases. (i) In cases where the QSFC

model is inaccurate, we compute the PEPs based on the CFC model, using standard methods

for the analysis of quadratic forms. This is done in Section 5.4.1. (ii) In Section 5.4.2 we present

a novel analysis for the QSFC model which represents an accurate image of reality for slow and

moderately fast fading (Bh,effT ≤ 0.01) when using non–(di–)cyclic DSTM codes and also for

fast fading (Bh,effT ≤ 0.03NT . . . 0.05NT) when (di–)cyclic DSTM codes are considered, cf.

discussion of the validity of the QSFC model at the end of Section 5.2.2. This analysis provides

us with many novel and interesting theoretical insights, e.g. regarding asymptotic performance

for high SNR and / or large N and the comparison between the different detection schemes

based on the definition of an effective SNR. (iii) The PEPs for suboptimal MSDD based on

combinatorial geometry, if the autocorrelation matrix Ψt of the fading process is approximated

by a matrix of smaller rank to reduce decoder complexity, are computed in Section 5.4.3.

The SER approximations for the various detection schemes considered in this work will

then be presented in Section 5.4.4, followed by numerical examples to illustrate our analytical

findings in Section 5.4.5.

We note, that the PEPs for DF–MSDD and S–MSDD are the same as those for regular ML

MSDD. Separate expressions for the approximation of their SERs will be given in Section 5.4.4.

5.4.1 Pairwise Error Probabilities Based on the CFC Model

To analyze the PEPs for the general case of a spatially correlated continuous–fading channel,

we apply standard methods based on the characteristic function of Hermitian quadratic forms,

cf. e.g. [Bar87, HF92, BCTV98, BV01, SFG02].
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5.4.1.1 (DF–)MSDD

To compute the PEPs based on the CFC, it is convenient to first vectorize the channel model

(5.15) as

r̄
△
= vec

{
R̄
}

(5.30)

= vec
{
S̄D,cH̄c + N̄

}
. (5.31)

Using the identity (4.12) we obtain

=
(
INR
⊗ S̄D,c

)
h̄c + n̄, (5.32)

where

h̄c
△
= vec

{
H̄c

}
(5.33)

n̄
△
= vec

{
N̄
}
. (5.34)

With S̄D,cS̄
H

D,c = INNT
it is fairly straightforward to show that the conditioned correlation

matrix Ψr̄r̄|S̄ of the received vector r̄ is given by

Ψr̄r̄|S̄
△
= E

{
r̄r̄H | S̄

}
(5.35)

=
(
INR
⊗ S̄D,c

)
T c

(
INR
⊗ S̄H

D,c

)
(5.36)

with the (NN2
TNR ×NN2

TNR)–dimensional channel–plus–noise autocorrelation matrix

T c
△
= ΨRx ⊗Ψt

c ⊗ΨTx + σ2
nINN2

TNR
, (5.37)

with ΨTx and ΨRx [cf. (4.9) and (4.10)] describing spatial correlation at transmitter and re-

ceiver, respectively, and the (NNT×NNT)–dimensional temporal fading autocorrelation matrix

Ψt
c

△
= toeplitz

{
ψt[0], ψt[1], . . . , ψt[NNT − 1]

}
.3 (5.38)

Similarly, it is easy to see that the metric of the ML estimate ˆ̄S can be written as [cf. (3.11)]4

d1

(
ˆ̄S
)

= r̄H

(

INR
⊗
(

ˆ̄SD (M ⊗ INT
) ˆ̄S

H

D

))

r̄. (5.39)

Thus, if we define

F
△
= ˆ̄SD (M ⊗ INT

) ˆ̄S
H

D − S̄D (M ⊗ INT
) S̄H

D (5.40)

3In the case of BDSTM with blocklength LBDSTM the temporal correlation is described by Ψ
t
c =

toeplitz
{
Ψ

t
c,0, Ψ

t
c,1, . . . ,Ψ

t
c,N−1

}
with Ψ

t
c,i

△
= toeplitz

{
ψt[i], ψt

[
i+LBDSTM

]
, . . . , ψt

[
i+ (NT− 1)LBDSTM

]}
.

4Clearly, this holds for any ˜̄S, but we write ˆ̄S here, because we are concerned with the probability that the

decoder decides in favor of ˆ̄S rather than S̄.
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we can write

∆
△
= d1

(
ˆ̄S
)

− d1

(
S̄
)

(5.41)

= r̄H (INR
⊗ F ) r̄ (5.42)

for the difference between the metrics of the ML estimate ˆ̄S and the true signal S̄. Thus, we

can see that the pairwise error probability PEP
(
S̄ → ˆ̄S

)
, i.e. the probability of the decoder

deciding in favor of ˆ̄S 6= S̄ in a binary decision between S̄ and ˆ̄S disregarding all other

candidates ˜̄S 6∈
{
S̄, ˆ̄S

}
, can be computed via

PEP
(

S̄ → ˆ̄S
)

= Pr(∆ ≤ 0) . (5.43)

We observe that ∆ is a Hermitian quadratic form in zero–mean complex Gaussian random

variables. Hence, the characteristic function Φ∆(v)
△
= E

{
ejv∆

}
of ∆ is given by [SBS66]

Φ∆(v) = det
{
INNTNR

− jvΨr̄r̄|S̄(INR
⊗ F )

}−1
(5.44)

=

NNTNR∏

j=1

(

1− jvλΨr̄r̄|S̄ (INR
⊗F ),j

)−1

, (5.45)

(λX,i: ith eigenvalue of X) with Ψr̄r̄|S̄ and F as defined in (5.35) and (5.40), respectively.

Based on (5.43) and (5.44) the PEP can then be computed via (cf. e.g. [Pro00])

PEP
(

S̄ → ˆ̄S
)

= − 1

2πj

∫ ∞+jc

−∞+jc

Φ∆(v)

v
dv (5.46)

= −
Nv∑

i=1

Res
v=jv+

i

{
Φ∆(v)

v

}

(5.47)

= −
Nv∑

i=1

Res
v=jv+

i

{

1

v

NNTNR∏

l=1

−jvl

v − jvl

}

, (5.48)

(Resx=x̂{f(x)}: residue of f(x) corresponding to the pole at x = x̂) with

vl
△
= − 1

λΨr̄r̄|S̄F ,l

, 1 ≤ l ≤ NNTNR, (5.49)

and jv+
i , 1 ≤ i ≤ Nv ≤ NNTNR, denoting those Nv poles of Φ∆(v) that lie in the upper half

of the complex v–plane. The constant c ∈ IR that must satisfy 0 ≤ c ≤ min1≤i≤Nv
(Re

{
v+

i

}
)

is introduced to move the path of integration away from the pole at v = 0. Consequently,

the PEP can be evaluated —with arbitrarily high accuracy as n → ∞— through numerical

integration of (5.46) using a Gauss–Chebyshev quadrature rule [BCTV98, HF92]

PEP
(

S̄ → ˆ̄S
)

≈ 1

n

n/2
∑

k=1

Re {Φ∆(cτk + jc)} − τkIm {Φ∆(cτk + jc)} (5.50)
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with

τk
△
= tan

(
(2k − 1)π

2n

)

. (5.51)

Alternatively, the PEP can be computed based on (5.48) using the standard formula (cf.

e.g. [BV01])

Res
v=jv+

i

{
Φ∆(v)

v

}

= lim
v→jv+

i

1

Γ(li)

dli−1

dvli−1

Φ∆(v)(v − jv+
i )li

v
(5.52)

(Γ(y)
△
=
∫∞
0
xy−1e−x dx for y ∈ IR and Γ(y) = (y− 1)! for y ∈ IN: Gamma function) to compute

the residue corresponding to a pole jv+
i of multiplicity li. As this may be quite difficult to

evaluate if a pole jv+
i has multiplicity li > 1, Siwamogsatham et al. [SFG02] proposed a simple

yet very accurate approximation technique, where different small constants are added to jv+
i to

disperse the multiple pole into a small cloud of distinct single poles and the individual residues

are evaluated using (5.52) with li = 1.

5.4.1.2 CDD and DFDD

Due to the close relation between CDD, DFDD and MSDD, the expressions derived above for

the PEPs of MSDD extend to CDD (N = 2) and DFDD as well.

5.4.1.3 (Differentially) Coherent Detection

The PEPs for coherent detection can be derived in complete analogy to the case of MSDD and

a detailed derivation is therefore omitted. Based on a vectorization of the channel model as in

(5.30) the difference between the metrics of the true transmit signal S[k] and an estimate Ŝ[k]

reads [cf. (2.56)]

∆coh = z̄H (INR
⊗ F ′

coh) z̄ (5.53)

with

z̄
△
=

[

vec {H [k]}
vec {R[k]}

]

(5.54)

F coh
△
=

[

0NT,NT

(
S[k]− Ŝ[k]

)H

S[k]− Ŝ[k] 0NT,NT

]

. (5.55)

One can see that ∆coh is again a Hermitian quadratic form in zero–mean complex Gaussian

random variables z̄ whose autocorrelation matrix can be found as

Ψz̄z̄|S
△
= E

{
z̄z̄H | S[k]

}
(5.56)

=

[

ΨHH ΨHH

(
INR
⊗ SH[k]

)

(INR
⊗ S[k])ΨHH (INR

⊗ S[k])ΨHH

(
INR
⊗ SH[k]

)
+ σ2

nINTNR

]

,
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where [cf. (4.13)]

ΨHH = ΨRx ⊗ΨTx, (5.57)

with ΨTx and ΨRx [cf. (4.9) and (4.10)] describing spatial correlation at transmitter and re-

ceiver, respectively. Therefore, the characteristic function of ∆coh reads

Φ∆coh
(v) = det

{
INTNR

− jvΨz̄z̄|SF coh

}−1
(5.58)

=

NTNR∏

j=1

(

1− jvλΨz̄z̄|SF coh,j

)−1

, (5.59)

and the PEPs can be computed using one of the methods described in Section 5.4.1.1.

Note that the individual PEPs of coherent and differentially coherent detection are the

same. The difference in average SER is caused by error propagation in differentially coherent

detection, which is accounted for in the SER approximation, cf. Section 5.4.4.

5.4.2 Pairwise Error Probabilities Based on the QSFC Model

The PEP analysis presented in Section 5.4.1 is valid for arbitrary MIMO fading channel scenar-

ios, i.e. regardless of the fading bandwidth and in the presence of spatial correlation. However,

it does not permit much theoretical and intuitive insight regarding issues such as diversity order,

possible error floors at high SNR or comparisons between the different detection schemes.

In order to gain such insights, we present a novel approach to evaluate the PEPs based on

the QSFC, which is a valid model for arbitrary DSTM with slow to moderately fast fading and

with (di–)cyclic DSTM for fast fading as well (cf. discussion in Section 5.2.2). In particular, we

consider the interesting special case of a MIMO channel without spatial correlation, i.e.

ΨTx = INT
and ΨRx = INR

. (5.60)

As basis for our considerations serves a generalization of a classical result from [Pro00,

Appendix B] for sums of Gaussian quadratic forms to the case, where the individual terms in

the sums are multiplied by non–identical weights. This is presented in Appendix 5.B.

5.4.2.1 Exact PEP of Various Detection Algorithms

5.4.2.1.1 (DF–)MSDD As mentioned at the beginning of Section 5.4, we are only inter-

ested in the dominant error events, which correspond to single–transmit symbol errors, i.e. to

candidates ˆ̄S
(
l, l̂
)

of the form of (5.29). The difference ∆n between the ML–MSDD metrics

of such a candidate ˆ̄S
(
l, l̂
)

with an error in position n and the true transmit signal S̄ can be
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derived from (5.41) using a number of rather straightforward manipulations as

∆n
△
= d1

(
ˆ̄S
(
l, l̂
))

− d1

(
S̄
)

(5.61)

= 2

NT∑

i=1

Re

{

θi

(
l, l̂
)

NR∑

j=1

[F n]i,j

N∑

µ=1,µ 6=n

mµ,n[En,µ]∗i,j

}

, (5.62)

where mi,j are the elements of M [cf. (5.25)],

F n
△
=

(
Q
(
l, l̂
))H

Rn (5.63)

En,µ
△
=

(
Q
(
l, l̂
))H

SnSH

µRµ (5.64)

and where θi

(
l, l̂
)

and unitary Q
(
l, l̂
)

are obtained from the eigenvalue decomposition

(V (l))HV (l̂) − INT

△
= Q

(
l, l̂
)
diag

{

θ1

(
l, l̂
)
, . . . , θNT

(
l, l̂
)} (

Q
(
l, l̂
))H

.5 (5.65)

Then PEP
(
S̄ → ˆ̄S

)
, which will be briefly denoted as PEPn, is given by

PEPn = Pr(∆n ≤ 0) . (5.66)

Identifying

xi,j
△
=

N∑

µ=1,µ 6=n

mn,µ[En,µ]∗i,j (5.67)

yi,j
△
= [F n]∗i,j (5.68)

it can be shown (cf. Appendix 5.A.2) that {xi,j , yi,j} are —regardless of Q
(
l, l̂
)
— iid pairs

of correlated zero–mean complex Gaussian random variables with variances and covariance

[cf. (5.325)]

σ2
x = mn,n[mn,n(1 + σ2

n)− 1] (5.69)

σ2
y = 1 + σ2

n (5.70)

µxy = 1−mn,n(1 + σ2
n). (5.71)

Further, let NΘ ≤ NT denote the number of different values θι

(
l, l̂
)
, 1 ≤ ι ≤ NT, and let |Θi| and

li, 1 ≤ i ≤ NΘ, be defined as these different values and as the numbers of eigenvalues θι

(
l, l̂
)
,

1 ≤ ι ≤ NT, that lead to the same value of |Θi|, respectively. Then, we can see that (5.62) is

of the form of the general quadratic form (5.324). Thus, using the results of Appendix 5.B the

5We note that the related literature usually considers the singular value decomposition of (V (l))HV (l̂),

cf. e.g. [SHHS01, HS00]. However, for our purpose the eigenvalue decomposition of (V (l))HV (l̂) − INT
is more

convenient and leads to a diagonal matrix
(
Q
(
l, l̂
))H(

(V (l))HV (l̂) − INT

)
Q
(
l, l̂
)

since (V (l))HV (l̂) is unitary

[HJ85].
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exact pairwise error probability PEPn can be computed in closed form and without eigenvalue

decompositions of large matrices via [cf. (5.326)]

Pr(∆ < 0) =

NΘ∑

i=1

(−1)

∑NΘ
j=1
j 6=i

lj
li−1∑

k1,0=0

k1,0∑

k1,1=0

. . .

k1,NΘ−1
∑

k1,NΘ
=0

k2,0∑

k2,1=0

. . .

k1,i−2∑

k2,i−1=0

k1,i−1∑

k2,i+1=0

. . .

k1,NΘ−2
∑

k2,NΘ−1=0

(5.72)

v
k1,0

2,i

(
li+k1,i−1−k1,i−1

li−1

)
vli

1,i

(v2,i + v1,i)li+k1,i−1−k1,i

NΘ∏

j=1
j 6=i

(
lj+k1,j−1−k1,j−1

lj−1

)(
lj+k2,j−1−k2,j−1

lj−1

)
(v1,jv2,j)

lj

(v2,i + v1,j)lj+k1,j−1−k1,j(v2,i − v2,j)lj+k2,j−1−k2,j
,

with

v1|2,i =
1

2

(√

1 +
4

|Θi|2ρn

∓ 1

)

(5.73)

ρn
△
=

|µxy|2
σ2

xσ
2
y − |µxy|2

= mn,n(1 + σ2
n)− 1, (5.74)

where the “−” and “+” of “∓” in (5.73) correspond to v1,i and v2,i, respectively. Interestingly,

(5.73)–(5.74) reveal that PEPn depends on the statistical properties of the channel only through

the diagonal element mn,n of the inverse autocorrelation matrix M of the fading–plus–noise

process and the noise variance.6

Special Case DPSK: For DPSK (5.72) can be considerably simplified. Assuming the

general DPSK case with NR receive antennas, only one residue corresponding to a pole of

order NR needs to be computed, i.e. NΘ = 1 and l1 = NR, and (5.72) reduces to

PEPn =




1

2



1− 1
√

1 + 4

|v(l̂)−v(l)|2ρn









NR
NR−1∑

k=0

(
NR + k − 1

NR − 1

)
1

2k



1 +
1

√

1 + 4

|v(l̂)−v(l)|2ρn





k

,

(5.75)

where v(l) and v(l̂) represent the true and the estimated data PSK symbol, respectively. For

NR = 1 (5.75) is a closed–form solution for [HF92, Eq. (9)] for the dominant error event. For

NR ≥ 1 (5.75) is a generalization of the results in [SA98, SA01, KHR05] which are limited to

static fading.

5.4.2.1.2 CDD and DFDD The analytical performance evaluation of DFDD is usually

performed by considering “genie–aided” DFDD, i.e. under the assumption that previous de-

cisions that are fed back into the metric (2.53) are always correct, and accounting for error

6Note, that this derivation also extends to arbitrary matrices M 6=
(
Ψ

t + σ2
nIN

)−1
, i.e. to the case of

mismatched receivers. In this case, however the resulting analytical expressions for σ2
x, σ2

y and µxy and thereby

for the PEPs are less insightful.
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propagation occurring typically with “real–world” DFDD by multiplying the resulting error

rates with a factor of two, cf. e.g. [SGH99, SL02].

Consequently, the error–rate analysis of DFDD can be performed using the above results

for MSDD, i.e. the PEP for an error event (V (l) → V (l̂)) of genie–aided DFDD is given by

PEP
(
V (l) → V (l̂)

)
= PEPN , (5.76)

which allows us to calculate the PEP of DFDD for general unitary DSTM, whereas the results

in [SL02, DB06] are limited to cyclic DSTM.

Due to the close relation between MSDD, DFDD and CDD, the PEP for CDD can be

computed by setting N = 2 in (5.76).

5.4.2.1.3 (Differentially) Coherent Detection In analogy to the MSDD case, it is

straightforward to show that the metric difference corresponding to an error event
(
V (l) → V (l̂)

)

can be written as

∆coh = 2σ2
n

NT∑

i=1

Re

{

θi

(
l, l̂
)

NR∑

j=1

xi,jy
∗
i,j

}

, (5.77)

with xi,j and yi,j as elements in the ith row and jth column of

X
△
= − 1

σn

(
Q
(
l, l̂
))H

H (5.78)

Y
△
=

1

σn

(
Q
(
l, l̂
))H(

V (l)
)H

H , (5.79)

respectively, and Q
(
l, l̂
)

as defined in (5.65). It can be shown in analogy to the proof given in

Appendix 5.A.2 for MSDD that {xi,j, yi,j} are —regardless of Q
(
l, l̂
)
— iid pairs of correlated

zero–mean complex Gaussian random variables with [cf. (5.325)]

σ2
x =

1

σ2
n

(5.80)

σ2
y = 1 +

1

σ2
n

(5.81)

µxy = − 1

σ2
n

. (5.82)

Consequently, the PEPs of (differentially) coherent detection can be computed in closed form

using (5.72) with

v1|2,i =
1

2

(√

1 +
4σ2

n

|Θi|2
∓ 1

)

(5.83)

and Θi as defined in Section 5.4.2.1.1.
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5.4.2.1.4 Comparison A comparison of (5.73) and (5.83) reveals that the v1|2,j , 1 ≤ j ≤
NΘ, for noncoherent, i.e. MSDD, DFDD and CDD, and coherent detection are formally very

similar. As the expressions to compute the PEPs from the v1|2,j are identical for the different

detection schemes, it is reasonable to regard ρn of (5.74) as a sort of effective SNR (ESNR)

for position n, 1 ≤ n ≤ N , of the MSDD observation window and ρN at the same time as

the ESNR for DFDD which is to be compared to the true SNR 1/σ2
n relevant for coherent

detection with perfect CSI. We can therefore consider the PEPs for the different detection

schemes simultaneously using the general effective SNR ρeff defined as

ρeff
△
=







ρn = mn,n(1 + σ2
n)− 1, 1 ≤ n ≤ N, MSDD

ρN = mN,N (1 + σ2
n)− 1, DFDD, CDD

1/σ2
n, coherent detection

(5.84)

and

v1|2,i =
1

2

(√

1 +
4

|Θi|2ρeff

∓ 1

)

. (5.85)

This holds for transmission over spatially uncorrelated MIMO channels using arbitrary DSTM

constellations when the assumption of quasi–static fading is justified and for cyclic DSTM

constellations under any flat–fading conditions. Similar ESNR approaches have been pursued

previously in [PS03, DB06]. In particular, the ESNR ρeff for the special case of N = 2, i.e. CDD,

can be shown to equal ρeff = ([Ψt]1,2)
2/[(1 + σ2

n)2 − ([Ψt]1,2)
2], with Ψt as defined in (5.26),

which is the same as the ESNR derived in [DB06, Eq. (33)]. Furthermore, extending upon

[PS03] Du et al. presented in [DB06] expressions for the ESNR of DFDD that are equivalent

to those derived here. Hence, our definition of the ESNR for arbitrary positions in the MSDD

observation window can be viewed as a generalization of the ESNRs of [PS03, DB06].

5.4.2.1.5 Performance for Very Slow Fading In the limit of very slow fading, i.e. when

the channel remains practically constant during the transmission of N consecutive DSTM

symbols, the inverse fading–plus–noise autocorrelation matrix converges to M = (IN − (N +

σ2
n)−11N,N)/σ2

n. Thus, the mn,n can be given in closed form as

mn,n =
N + σ2

n − 1

σ2
n(N + σ2

n)
, (5.86)

i.e. the loss in SNR of MSDD and DFDD compared to differentially coherent detection with

perfect CSI is [cf. (5.84)]

ρn

1/σ2
n

=
N − 1

N + σ2
n

(5.87)
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and we obtain the well–known result that for static fading the performance of MSDD and

DFDD in the limit of N → ∞ converges to that of differentially coherent detection with

perfect CSI, cf. [DS90, Edb92, SL02] for PSK with MSDD, PSK with DFDD and DSTM with

DFDD, respectively.

5.4.2.2 Asymptotic Performance for Very High SNR (σ2
n → 0)

In this section, we consider the performance of the different detection schemes in the limit of

infinite SNR. We assume for the moment that σ2
n → 0 implies ρeff → ∞ for any detection

scheme and come back with detailed comments on this in Section 5.4.2.2.1.

In Appendix 5.A.3 we prove that the asymptotic behavior of the pairwise error probability

PEP for arbitrary DSTM constellations is in the limit of [σ2
n, ρeff ]→ [0,∞] given by

PEP ≍ ρ−NTNR
eff

(
2NTNR−1

NTNR

)

∏NT

i=1 |θi

(
l, l̂
)
|2NR

, [σ2
n, ρeff ]→ [0,∞] (5.88)

with ρeff as defined in (5.84) (f(x) ≍ g(x), x → x̂: “asymptotic equality” in the sense that

limx→x̂
f(x)
g(x)

= 1 and limx→x̂
d
dx
f(x) = limx→x̂

d
dx
g(x)).

5.4.2.2.1 (DF–)MSDD, DFDD, CDD

Validity of ρeff → ∞: Eq. (5.88) is based on the assumption that σ2
n → 0 implies that

ρeff = ρn → ∞. Therefore, a discussion of the behavior of ρeff in dependence of σ2
n is in order

at this point. Here, we want to distinguish two different regions: We are interested in (i) how

ρeff behaves in dependence of σ2
n as the latter decreases, and (ii) the limiting case of σ2

n = 0.

To this end, let us consider the matrix M = (Ψt + σ2
nIN)−1. Based on the eigenvalue

decomposition Ψt = UΨ
tΛΨ

tUH

Ψ
t we can express M as

M = UΨ
tdiag

{
1

λΨ
t,1 + σ2

n

, . . . ,
1

λΨ
t,N + σ2

n

}

UH

Ψ
t . (5.89)

Recalling the notation that the eigenvalues λΨ
t,i are returned in order of decreasing magni-

tude, M depends predominantly on σ2
n and the smallest eigenvalue λΨ

t,N of Ψt and can be

approximated coarsely via7

M ≈ 1

λΨ
t,N + σ2

n

[UΨ
t ]:,N

(

[UΨ
t ]:,N

)H

. (5.90)

From this we can see that M and by (5.84) the effective SNR ρeff grow roughly linearly with

the SNR σ−2
n as long as σ2

n > λΨ
t,N . On the other hand, if σ2

n < λΨ
t,N it becomes irrelevant

and M converges to (Ψt)−1 the magnitude of its elements depending mainly on the smallest

7The behavior of the eigenvalues of a correlation matrix will be discussed in detail in Section 5.5.2.
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eigenvalue λΨ
t,N of the fading correlation matrix Ψt. In the latter case, the ESNR approaches

[cf. (5.84)]

ρ∞
△
= lim

σ2
n→0

ρeff =
[(

Ψt
)−1
]

n,n
− 1. (5.91)

For typical fading bandwidths (i.e. Bh,effT ≤ 0.1) Ψt is rather ill conditioned and ρ∞ =
[(

Ψt
)−1]

n,n
− 1 ≫ 1 holds even for small observation window sizes N . Thus, the PEPn are

very well approximated by (5.88). This will also be confirmed in Section 5.4.5 by comparing

this asymptotic result with the exact result of Section 5.4.2.1 by means of numerical examples.

Error Floor for Bh,effT > 0: From (5.88) and (5.91) it is immediately clear that MSDD

entails an error floor, which for growing diagonal elements of
(
Ψt
)−1

is increasingly well ap-

proximated by

lim
σ2

n→0
PEPn ≈

([(
Ψt
)−1
]

n,n
− 1

)−NTNR
(
2NTNR−1

NTNR

)

∏NT

i=1 |θi

(
l, l̂
)
|2NR

. (5.92)

Interestingly, we prove in Appendix 5.A.4 for band–limited PSDs (i.e. Ψt(f) = 0, Bh,eff <

|f | ≤ 1/(2T )), that are bounded in the sense that max0≤f≤Bh,eff
{Ψt(f)Bh,effT} < ∞, the

asymptotic relation

[(
Ψt
)−1
]

n,n
≍ c · (Bh,effT )−2(N−1), Bh,effT → 0, (5.93)

where c is a constant which depends on the particular shape of the PSD. Although Clarke’s

fading spectrum (4.22) is not bounded in the above sense, (5.93) holds in this case as well,

cf. Appendix 5.A.4. For standard fading models with PSDs that are not band–limited, such as

the “Gaussian”, “First–” and “Second–order Butterworth” PSDs, cf. Table 4.1, the “width” of

the PSD scales effectively linearly in Bh,effT . Consequently, the same kind of behavior as for

band–limited PSDs can be expected for small Bh,effT .

Since the above result also applies to DFDD for n = N , we infer that for Bh,effT ≪ 1 and

σ2
n = 0 the ESNRs of DFDD and MSDD decrease exponentially with N , whereas the PEP

and SER error floors decrease exponentially with NNTNR [cf. (5.88)]. This is a new result

and explains the observations made in many papers based on simulation or numerical results,

cf. e.g. [HF92, SGH99, SL02, LLK04], that increasing N rapidly reduces the error floor of

DFDD and MSDD. Again, all of these results apply equally to the error–rate analysis of CDD

with N = 2.

5.4.2.2.2 (Differentially) Coherent Detection For the sake of completeness, we point

out that the asymptotic PEP of coherent detection can be obtained by letting ρeff = 1/σ2
n in
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(5.88), i.e.

PEP ≍ (σ2
n)NTNR

(
2NTNR−1

NTNR

)

∏NT

i=1 |θi

(
l, l̂
)
|2NR

, σ2
n → 0, (5.94)

a result that has been derived previously in an alternative fashion in [BV01, SFG02].

We also note that —due to (5.84)— the height of the MSDD PEP error floor is equal to the

PEP of coherent detection (cf. Section 5.4.1.3) with σ2
n = 1/

([(
Ψt
)−1]

n,n
− 1
)

even for small

ESNRs, i.e. where the approximation (5.92) is inaccurate.

5.4.2.2.3 Special Case and DSTM Design

Cyclic DSTM: It can be seen from (5.88) that for cyclic DSTM the PEP of any of the

considered detection schemes associated with some error event (V (l) → V (l̂)) is asymptotically

equal to the product of the NT corresponding PSK–PEPs of error events (v
(l)
i,i → v

(l̂)
i,i ), 1 ≤ i ≤

NT, taken to the power of NR and multiplied by a correction factor
(
2NTNR−1

NTNR

)
≥ NTNR. This

reflects the intuitively reasonable result that a cyclic DSTM constellation achieves maximal

diversity if and only if the same PSK symbol is not transmitted from the same antenna in any

two different DSTM symbols.

DSTM Design: From (5.88) one can also see that the PEPs of the dominant single–

symbol error events depend on V (l) and V (l̂) only through the term
∏NT

i=1 |θi

(
l, l̂
)
|. The closely

related “diversity product” 1
2
min1≤l<l̂≤L

{
∏NT

i=1 |θi

(
l, l̂
)
|1/NT

}

constitutes the primary optimiza-

tion criterion in the design of (full–rank) DSTM codes assuming CDD or coherent detection, cf.

[SHHS01, HS00]. Thus, our analysis clearly shows that DSTM codes designed to yield optimal

performance under CDD and coherent detection are also optimal under MSDD and DFDD. A

common assumption that —to our knowledge— has not been proven before.

5.4.2.3 Asymptotic Performance for N →∞

The above description of the PEPs furthermore facilitates an elegant analysis of the asymptotic

performance of MSDD and DFDD for arbitrary DSTM constellations and fading channels and

for N → ∞. We note that for N → ∞ “edge effects” in MSDD, i.e. the increase in error

probabilities in positions near the edges of the observation window mentioned in Section 2.4.2.1,

are negligible and

lim
N→∞

1

N

N∑

n=1

PEPn = lim
N→∞

PEP⌈N/2⌉. (5.95)

A similar statement is true for the ESNR. Hence, we will in the following consider PEP⌈N/2⌉

and PEPN as measure of asymptotic performance of MSDD and DFDD, respectively.
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Due to the relation between MSDD and linear interpolation (cf. Section 2.4.2.1) we can

make use of the results of [PK88] on infinite–order interpolation. Consequently, m⌈N/2⌉,⌈N/2⌉

converges to

lim
N→∞

m⌈N/2⌉,⌈N/2⌉ = T

∫ 1/(2T )

−1/(2T )

1

Ψt(f) + σ2
n

df, (5.96)

where Ψt(f) [cf. (5.27)] denotes the PSD of the effective fading process. Provided that the

fading PSD is band–limited, i.e. Ψt(f) = 0, for Bh,eff < |f | ≤ 1/(2T ), we directly obtain

= T

∫ Bh,eff

−Bh,eff

1

Ψt(f) + σ2
n

df +
1− 2Bh,effT

σ2
n

. (5.97)

Similarly, it was shown in the analysis of DFDD in [SGH99] using the results of [PK88] for

infinite–order prediction that

lim
N→∞

mN,N = exp

(

−T
∫ 1/(2T )

−1/(2T )

log
(
Ψt(f) + σ2

n

)
df

)

, (5.98)

and for PSDs with Ψt(f) = 0, for Bh,eff < |f | ≤ 1/(2T ),

= exp

(

−T
∫ Bh,eff

−Bh,eff

log
(
Ψt(f) + σ2

n

)
df

)

·
(

1

σ2
n

)1−2Bh,effT

. (5.99)

5.4.2.3.1 Very High SNR (σ2
n → 0)

Ψt(f) = 0, for Bh,eff ≤ |f | ≤ 1/(2T ) with Bh,eff < 1/(2T ): Assuming a general band–

limited PSD with Bh,eff < 1/(2T ) we obtain from (5.84), (5.97), and (5.99) the asymptotic

ESNR

MSDD: lim
N→∞

ρ⌈N/2⌉ ≍
1− 2Bh,effT

σ2
n

, σ2
n → 0, (5.100)

DFDD: lim
N→∞

ρN ≍ xPSD

(
σ2

n

)−(1−2Bh,effT )
, σ2

n → 0,

(5.101)

where xPSD is a constant factor that depends on the PSD, e.g. xPSD = (2πBh,effT/e)
−2Bh,effT

(cf. [SGH99]) for Clarke’s fading model or xPSD = (2Bh,effT )−2Bh,effT for the rectangular PSD.

While (5.101) is known from [SGH99], the MSDD result (5.100) is new and shows that,

similar to DFDD, MSDD does not —in the limit of N → ∞— suffer from an irreducible

error floor if the PSD Ψt(f) of the effective fading process is zero over a non–countable set of

frequencies. Thus, if the sampling theorem of the effective fading process is over–fulfilled an

error floor can always be avoided regardless of the particular shape of the PSD.
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Ψt(f) 6= 0, for 0 ≤ |f | ≤ 1/(2T ): If, on the other hand, Ψt(f) 6= 0, for 0 ≤ |f | ≤
1/(2T ), e.g. if the fading process has a “Gaussian”, “1st–order Butterworth” or “2nd–order

Butterworth” PSD (cf. Table 4.1), we directly obtain from (5.84), (5.96) and (5.98) that

MSDD: lim
N→∞,σ2

n→0
ρ⌈N/2⌉ = T

∫ 1/(2T )

−1/(2T )

(
Ψt(f)

)−1
df (5.102)

DFDD: lim
N→∞,σ2

n→0
ρN = exp

(

−T
∫ 1/(2T )

−1/(2T )

log
(
Ψt(f)

)
df

)

. (5.103)

From this it can be inferred that if Ψt(f) 6= 0, for 0 ≤ |f | ≤ 1/(2T ), an error floor is inevitable

with MSDD and DFDD unless (Ψt(f))
−1

and log(Ψt(f)) are not integrable, respectively.8

Discussion: In summary, we can conclude that for integrable (Ψt(f))
−1

and log(Ψt(f))

the circumstances under which there is an irreducible error floor for MSDD are the same as for

DFDD, cf. (5.99) or [SGH99, Section VI-A]. However, the height of the error floor of MSDD

may be lower by several orders of magnitude than that of DFDD.

Provided that Ψt(f) = 0 over a non–countable set of frequencies, e.g. if the sampling theorem

for the fading process is over–fulfilled, we obtain the following asymptotic expressions for the

PEPs of MSDD, DFDD and coherent detection by plugging ρeff = 1/σ2
n, (5.100), and (5.101)

into (5.88), respectively,

coherent: PEP
(
V (l) → V (l̂)

)
≍

(
2NTNR−1

NTNR

)

∏NT

i=1 |θi

(
l, l̂
)
|2NR

(
σ2

n

)NTNR , σ2
n → 0, (5.104)

MSDD: lim
N→∞

PEP⌈N/2⌉ ≍
(
2NTNR−1

NTNR

)

∏NT

i=1 |θi

(
l, l̂
)
|2NR

(
σ2

n

1− 2Bh,effT

)NTNR

, σ2
n → 0, (5.105)

DFDD, CDD: lim
N→∞

PEPN ≍
(
2NTNR−1

NTNR

)

∏NT

i=1 |θi

(
l, l̂
)
|2NR

xPSD

(
σ2

n

)(1−2Bh,effT )NTNR , σ2
n → 0, (5.106)

where xPSD is a constant factor that depends on the PSD, e.g. xPSD = (2πBh,effT/e)
−2Bh,effTNTNR

(cf. [SGH99]) for Clarke’s fading model or xPSD = (2Bh,effT )−2Bh,effTNTNR for the rectangular

PSD.

Based on (5.104)–(5.106) one can now easily compare the asymptotic performance of MSDD

and DFDD to that of coherent detection with perfect CSI. Apparently, MSDD with infinite

observation window length only suffers from a loss in SNR by a factor of (1−2Bh,effT ), whereas

the performance of DFDD is —as noted previously in [DB06]— more severely degraded due to

a loss in diversity by a factor of (1− 2Bh,effT ), i.e. the error rate of DFDD when plotted over

the SNR ultimately diverges from those of coherent and MSD detection.

8E.g. the PSD Ψt
c(f) = (α+ 1)T (2|f |T )α for |f | ≤ 1/(2T ) and zero otherwise with α ≥ 1 [PK88] would lead

to an error floor for DFDD but not for MSDD, since log(Ψt(f)) is integrable, whereas (Ψt(f))
−1

is not.
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5.4.2.3.2 Clarke’s Fading Model In this section, we evaluate (5.97) and (5.99) for finite

σ2
n for the popular special case of Clarke’s fading model, cf. (4.22). In particular, after tedious

but straightforward integration we obtain for MSDD

lim
N→∞

m⌈N/2⌉,⌈N/2⌉ =
1

σ2
n

[

1 +
1

σ2
n

(

1− 2
π

arcsin(πBh,effTσ
2
n)

√

1− (πBh,effTσ2
n)2

− 1

)]

, (5.107)

and for DFDD

lim
N→∞

mN,N = (5.108)

(
1

σ2
n

)1−2Bh,effT

(2πBh,effT )2Bh,effT exp

(√

1− (πBh,effTσ2
n)2
(
1− 2

π
arcsin (πBh,effTσ

2
n)
)
− 1

σ2
n

)

.

Eqs. (5.107) and (5.108) can be combined with (5.84) and (5.85), (5.72) to obtain closed–form

results for the ESNR and the PEP, respectively. We note that while limN→∞mN,N was also

considered in [SGH99, SL02, DB06], (5.108) is a new result as numerical integration was used

in [SGH99, SL02, DB06] to solve (5.99).

5.4.3 Pairwise Error Probabilities for CG–MSDD

In Section 3.2, we presented an MSDD algorithm based on combinatorial geometry, so–called

CG–MSDD, and showed that its complexity is exponential in the rank Nλ of the temporal

correlation matrix Ψt of the fading channel. While this is promising, we note that especially

for small observation window lengths N and moderately fast fading the rank of Ψt is often close

to N . Hence, CG–MSDD is computationally inefficient in these cases. At the same time the

number Ñλ of dominant eigenvalues λΨ
t,i, 1 ≤ i ≤ Ñλ, is usually significantly smaller than the

rank Nλ of Ψt.9 It therefore appears reasonable to approximate Ψt using only its Ñλ largest

eigenvalues, i.e. by means of the rank–Ñλ matrix

Ψt
CG

△
=

Ñλ∑

i=1

λΨ
t,i [UΨ

t ]:,i

(

[UΨ
t ]:,i

)T

(5.109)

with [UΨ
t ]:,i denoting the eigenvector of Ψt corresponding to the eigenvalue λΨ

t,i, and to let

CG–MSDD operate on this approximate Ψt
CG rather than the true Ψt. I.e. we replace Qc in

Section 3.2.2 with its rank–Ñλ approximation [cf. (3.137) with (3.135)]

Q̃c

△
= R̄D





Ñλ∑

i=1

λΨ
t,i

λΨ
t,i + σ2

n

[UΨ
t ]:,i

(

[UΨ
t ]:,i

)T



 R̄
H

D. (5.110)

9The behavior of the eigenvalues of a correlation matrix will be discussed in detail in Section 5.5.2.
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Clearly, this brings about a metric mismatch, which we will subsequently refer to as rank

mismatch. In order to gain insight into its effect on performance, we consider the PEPs of CG–

MSDD under rank mismatch. It should be clear now that the situation at hand is in principle the

same as that of Section 5.4.1, where a metric mismatch was caused by the decoders assumption

of quasi–static fading. In both cases the decision metric is generally not matched optimally to

the fading process. Since furthermore the fading process and the received signal are apparently

the same in both cases, we can compute the PEPs of CG–MSDD as described in Section 5.4.1,

merely replacing M in (5.40) with [cf. (3.134) and (3.135)]

M̃
△
=

1

σ2
n



IN −
Ñλ∑

i=1

λΨ
t,i

λΨ
t,i + σ2

n

[UΨ
t ]:,i

(

[UΨ
t ]:,i

)T



 . (5.111)

5.4.4 Approximation of Symbol–Error Rate

An exact computation of the symbol–error rates (SER) is usually not feasible due to the complex

structure of the decision regions. Thus, having derived expressions for the PEPs of various

detection schemes, we will in this section present approximations for the corresponding SERs,

that are based on truncated union bounds over the PEPs of the dominant error events and

therefore amenable to computationally very efficient evaluation. These approximations turn

out to be quite tight.

5.4.4.1 (S–)MSDD and DF–MSDD

In Section 2.4.2.2 we argued based on the relationship between MSDD and linear MMSE

interpolation (cf. Section 2.4.2.1) that decisions in different positions of the observation window

should be unequally reliable. Therefore, we will first consider the SERs of the individual

positions of the observation window and present approximations for the average SERs of (S–

)MSDD and DF–MSDD later on.

In general the symbol–error rate SERn for data symbols V n in position n of the observation

window can be upper bounded using the union bound averaged over all LN−1 relevant transmit

sequences:

SERn ≤
1

LN−1

∑

∀S̄

∑

∀ ˆ̄S, V̂ n 6=V n

PEP
(

S̄ → ˆ̄S
)

, (5.112)

where the LN−1 S̄ and the LN−1 − L ˆ̄S with V̂ n 6= V n are formed from V ν and V̂ ν , 1 ≤ ν ≤
N − 1, respectively, as in (3.8).

Evaluation of (5.112) is computationally tractable only for small constellations and obser-

vation window sizes N . In order to obtain a simpler approximation for SERn we examine the
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PEP of (5.47) for the general case of the spatially correlated CFC more closely. Based on the

definition

P
△
= S̄H

DS̄D,c (5.113)

it is shown in Appendix 5.A.5 that the PEP
(
S̄ → ˆ̄S

)
depends on S̄ and ˆ̄S only through the

matrix

T c

(

INR
⊗
(

P H

(

S̄H

D
ˆ̄SD (M ⊗ INT

) ˆ̄S
H

DS̄D − (M ⊗ INT
)
)

P
))

, (5.114)

with T c and M as defined in (5.37) and (5.25), respectively.

5.4.4.1.1 Group Constellations For L being a power of two, cyclic and dicyclic codes

fully represent full–rank unitary group constellations, cf. [Hug03]. In both cases P is a sparse

matrix with a single one in each row. Whereas P is constant and independent of S̄D for cyclic

constellations, there are 2N−1 different matrices P in case of dicyclic constellations accounting

for the two different types of matrices appearing in the dicyclic–DSTM signal constellation,

cf. Section 2.1.1.2. This means that the set of LN−1 matrices S̄ can be partitioned into NP

equivalence classes S̄
k
P with respect to P , 1 ≤ k ≤ NP , where NP = 1 and NP = 2N−1 for cyclic

and dicyclic constellations, respectively. Furthermore, since S̄H

D
ˆ̄SD = diag

{
SH

1 Ŝ1, . . . ,S
H

N ŜN

}

with SH

n Ŝn ∈ V , 1 ≤ n ≤ N , for group constellations, the inner sum of (5.112) is independent

of which class representative S̄ ∈ S̄
k
P is chosen. Forming a set S̄ of NP representatives one

for each of the NP different equivalence classes S̄
k
P , 1 ≤ k ≤ NP , we can thus limit the outer

summation to only NP ≪ LN−1 terms (NP = 1 or NP = 2N−1).

To reduce the number of terms of the inner sum in (5.112), we propose to take only the

dominating instead of all LN−1−L relevant error events into account. As motivated at the be-

ginning of Section 5.4.2, we consider single–transmit–symbol errors as dominating error events,

i.e. error events, where ˆ̄S differs from S̄ in only one DSTM symbol Ŝn 6= Sn. In particular,

we further restrict our attention to error events (S̄ → ˆ̄S) that dominate the asymptotic perfor-

mance of MSDD for σ2
n → 0. Using the results of Section 5.4.2.2 on the behavior of the PEPs

under spatially uncorrelated fading in very high SNR [cf. (5.88)] these are given by

ˆ̄Sn,l
△
=

{

ˆ̄S =
[

SH

1 , . . . ,S
H

n−1, Ŝ
H

n ,S
H

n+1, . . . ,S
H

N

]H ∣
∣
∣Ŝn =

(
V (l̂)

)
H
V (l)Sn, l̂ ∈ L̂l

}

, (5.115)

with

L̂l
△
=

{

l̂ = argmin
l̃∈{1,... ,L}\{l}

{
NT∏

i=1

∣
∣
∣θi

(
l, l̃
)
∣
∣
∣

}}

(5.116)

and θi

(
l, l̃
)

as eigenvalues from the eigenvalue decomposition of
(
V (l̂)

)
H
V (l) − INT

, cf. (5.65).
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With this, and the observation that due to differential encoding a data–symbol error occurs

in position n if either the transmit–symbol in position n or in position n + 1 is detected

erroneously we can approximate SERn by

SERn ≈
1

NP

∑

∀S̄∈S̄






∑

∀ ˆ̄S∈ ˆ̄Sn,l

PEP
(

S̄ → ˆ̄S
)

+
∑

∀ ˆ̄S∈ ˆ̄Sn+1,l

PEP
(

S̄ → ˆ̄S
)




 , 1 ≤ n ≤ N − 1,

(5.117)

where the subscript l in the inner sums in governed by the choice of S̄ as lth element, 1 ≤ l ≤
NP , of the set S̄.

Consequently, the SER of general S–MSDD (cf. Section 2.4.2.2), which returns decisions on

symbols V n, ⌊(N −N ′)/2⌋+ 1 ≤ n ≤ N − ⌈(N −N ′)/2⌉, can be approximated via

SER ≈ 1

NPN ′

∑

∀S̄∈S̄

N−
⌈

N−N′
2

⌉

∑

n=
⌊

N−N′
2

⌋
+1






∑

∀ ˆ̄S∈ ˆ̄Sn,l

PEP
(

S̄ → ˆ̄S
)

+
∑

∀ ˆ̄S∈ ˆ̄Sn+1,l

PEP
(

S̄ → ˆ̄S
)




 . (5.118)

Similarly, we approximate the SER of DF–MSDD (cf. Section 2.4.4), which returns decisions

on symbols V n, N − 1− κDF
U ≤ n ≤ N − 1− κDF

L , using

SERDF–MSDD ≈
1

NP (κDF
U −κDF

L +1)

∑

∀S̄∈S̄

N−1−κDF
L∑

n=N−1−κDF
U






∑

∀ ˆ̄S∈ ˆ̄Sn,l

PEP
(

S̄ → ˆ̄S
)

+
∑

∀ ˆ̄S∈ ˆ̄Sn+1,l

PEP
(

S̄ → ˆ̄S
)




 ,

(5.119)

i.e. under the assumption of perfect feedback.

5.4.4.1.2 Non–Group Constellations For non–group constellations such as orthorgonal

and Cayley codes a simplification of (5.112) based on equivalence classes with respect to P is not

possible. Furthermore —contrary to the case of DSTM from group codes— it is not guaranteed

for non–group DSTM codes that the combination Hn
△
= {Sn−1, Ŝn−1,Sn, Ŝn,Sn+1, Ŝn+1} with

Ŝn−1 = Sn−1, Ŝn = V̂
H

nV n

(
V (l̂)

)
H
V (l)Sn, Ŝn+1 = Sn+1, and V̂ n = V (l̂), l̂ ∈ L̂l [cf. (5.116)] is

admissible, i.e. that there is a V̂ n−1 ∈ V such that Ŝn = V̂ n−1Sn−1. Hence, the minimization

criterion in (5.116) is not necessarily an appropriate indicator for the dominant error events

for every realization of S̄. However, we found from numerical evaluations that the SER of

non–group codes is approximated quite accurately using (5.117) and (5.118) with L candidates

S̄ =
[
INT

, (V (l))H, INT
, (V (l))H, . . .

]H
, 1 ≤ l ≤ L, for which Hn is admissible, and with ˆ̄S from

the corresponding set ˆ̄Sn,l, 1 ≤ n ≤ N − 1, as defined in (5.115) with (5.116).
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5.4.4.2 DFDD

For a fair comparison with the SER approximation of MSDD, we approximate the SER of

DFDD by forming a truncated union bound over the set ˆ̄SN,l [cf. (5.115)] of dominant error

events of DFDD with perfect feedback and averaging over V (l) ∈ V . Contrary to DF–MSDD,

error propagation is more pronounced in DFDD and accounted for by a factor of two. I.e. we

consider [SL02]

SER ≈ 2

L

L∑

l=1

∑

∀l̂∈L̂l

PEP
(

S̄ → ˆ̄S
)

, (5.120)

where the PEPs are computed using the expressions for MSDD with

S̄ =
[
SH

1 , . . . ,S
H

N−1, (V
(l)SN−1)

H
]H
, 1 ≤ l ≤ L, (5.121)

ˆ̄S =
[
SH

1 , . . . ,S
H

N−1, (V
(l̂)SN−1)

H
]H
, l̂ ∈ L̂l, (5.122)

and L̂l as defined in (5.116). Furthermore, averaging with respect to V (l) ∈ V can be omitted

for group DSTM codes.

5.4.4.3 CDD

Due to the close relationship between CDD, MSDD and DFDD, the SER of CDD can be

approximated using

SER ≈ 1

L

L∑

l=1

∑

∀l̂∈L̂l

PEP
(

S̄ → ˆ̄S
)

, (5.123)

with the PEPs computed using the expressions for MSDD with

S̄ =
[
SH

1 , (V
(l)S1)

H
]H
, 1 ≤ l ≤ L, (5.124)

ˆ̄S =
[
SH

1 , (V
(l̂)S1)

H
]H
, l̂ ∈ L̂l, (5.125)

and L̂l as defined in (5.116). Note that contrary to DFDD with N > 2 there is no error

propagation here. Again, averaging with respect to V (l) ∈ V can be omitted for group DSTM

codes.

5.4.4.4 (Differentially) Coherent Detection

For a fair comparison with the above SER approximations, we approximate the SER of (differ-

entially) coherent detection via

SER ≈ xe

L

L∑

l=1

∑

∀l̂∈L̂l

PEP
(
V (l) → V (l̂)

)
, (5.126)
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with xe = 1 and xe = 2, for coherent and differentially coherent detection, respectively, L̂l as

defined in (5.116), and averaging with respect to V (l) ∈ V can be omitted for group DSTM

codes.

5.4.5 Numerical Results

In this section, we complement our mathematical performance analysis using a number of illus-

trative numerical examples. At this, we concentrate on three major aspects. In Section 5.4.5.1

we compare ML MSDD with reference schemes such as conventional differential detection (CDD,

N = 2), decision–feedback differential detection (DFDD) and (differentially) coherent detection

with perfect channel state information (CSI), cf. Sections 2.4.1, 2.4.3 and 2.4.5, respectively. In

the second part presented in Section 5.4.5.2, we turn to investigating the impact of the differ-

ent (suboptimal) implementations of MSDD, e.g. the effect of the use of the Fano–type metric

(cf. Section 3.1.2.3), the efficient symbol–search algorithms of Section 3.1.4, or rank mismatch

in CG–MSDD. The performance of the various MSDD implementations as a function of the

maximum admissible complexity per decoded symbol will follow in Section 5.5.3.

Unless explicitly stated otherwise, we present results obtained from the analytical expres-

sions derived above and only resort to simulations when analytical expressions are not available

or when the tightness of an approximation is to be illustrated. We refer to them as “analytical”

and “simulation” results, respectively. Also, unless explicitly stated otherwise, the results are

based on the frequently considered fading model due to Clarke [Cla68].

5.4.5.1 ML MSDD

In this section, we consider the performance of ML MSDD when solved by means of some

optimal algorithm (e.g. MSDSD–FS) in comparison with the benchmark detection schemes.

Most of the results in this section will be presented in terms of the effective normalized

fading bandwidth Bh,effT [cf. (5.28)] and effective SNR ρeff [cf. (5.84)], because it allows for

general statements regardless of system parameters such as numbers of antennas, transmis-

sion rate or individual DSTM constellations. Furthermore, we illustrate the tightness of the

SER approximations given in Section 5.4.4 and present some results on the effects of spatial

correlation in the MIMO channel.

5.4.5.1.1 Spatially Uncorrelated Channel

ESNR vs. Position n for Different N : Fig. 5.1 shows the effective SNR ρeff = ρn in

the individual positions of the MSDD observation window for an effective fading bandwidth

Bh,effT = 0.1, an SNR of 10 log10(σ
−2
n ) = 40 dB and different values of N . For comparison,
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Figure 5.1: ESNR ρeff vs. position n of observation window for different values of N , Bh,effT =

0.1 and 10 log10(σ
−2
n ) = 40 dB.

we included the true SNR 1/σ2
n, i.e. the effective SNR for coherent detection with perfect CSI

and an “average” effective SNR ρ̄eff of MSDD as dash–dotted and dashed lines, respectively.

Since (i) the average transmit–symbol error rate of MSDD is given by the arithmetic mean

1/N
∑N

n=1 PEPn of the error rates PEPn in the individual positions of the observation window

and (ii) the PEPs are asymptotically proportional to ρ−NTNR
eff [cf. (5.88)], it is easy to see that

1/N
∑N

n=1 PEPn is asymptotically proportional to ρ̄−NTNR
eff with

ρ̄eff
△
=

NTNR

√
√
√
√N

(
N∑

n=1

ρ−NTNR
eff

)−1

. (5.127)

Therefore, we included ρ̄eff with NTNR = 1 in the figure to reflect the average performance of

MSDD, noting that ρ̄eff decreases if NTNR increases.

First, it can be seen that the effective SNR in the center of the observation window is

higher than at the edges, as was to be expected based on the relationship between MSDD

and linear interpolation (cf. Section 2.4.2.1). More specifically, the individual effective SNRs

ρn of MSDD are almost identical for 2 ≤ n ≤ N − 1, but deteriorate significantly at the
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Figure 5.2: ESNR ρeff vs. position n of observation window for N = 20, different fading

bandwidths Bh,effT and SNRs.

very edges of the observation window, i.e. for n = 1 and n = N , with differences of up to

10 dB when comparing non–edge and edge positions. As the detection error rates are by (5.88)

asymptotically proportional to ρ−NTNR
eff the performance of MSDD is dominated by the relatively

poor reliability of the decisions at the edges of the observation window. This is a strong

argument for the use of S–MSDD with N ′ = N − 3, i.e. MSDD where the two decisions at the

very edges of the observation window are discarded. With respect to DF–MSDD, this suggests

to deploy DF–MSDD with some κDF
U ≥ 1 and κDF

L = 1, such that κDF
U decisions are returned

in positions N − κDF
U − 1, . . . , N − 2 of the observation window, i.e. on V N−1−κ = V [k − κ],

κDF
U ≤ κ ≤ 1.

Second, Fig. 5.1 illustrates how the performance of MSDD with growing observation window

size approaches that of coherent detection with perfect CSI, as the number N of samples, based

on which the implicit channel estimation is performed, increases.

Finally, one can observe that —even in this rapid effective fading scenario— the use of

moderate observation window sizes suffices to achieve close to optimal noncoherent detection

performance, as the loss in power efficiency compared to the limiting case of N →∞ is 1.3 dB
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Figure 5.3: ESNR ρeff vs. the SNR 1/σ2
n for Bh,effT = 0.001, different values of N and n ∈

{⌈N/2⌉, N}.

and 0.7 dB for N = 10 and N = 20 in center positions of the observation window, respectively.

ESNR vs. Position n for Different Bh,effT : Fig. 5.2 shows the ESNR of the individual

positions n of the MSDD observation window for different values of Bh,effT and σ2
n for N = 20.

For comparison, we included the true SNR (dash–dotted line). Note that the ESNR of DFDD

is equal to that of MSDD for n = N . One can clearly observe how —as Bh,effT increases— the

ESNR deteriorates significantly at the edges of the observation window compared to its center,

hinting at the large gains in power efficiency achievable with MSDD compared to DFDD (cf. also

Fig. 5.11 for symbol error rates). For the non–edge positions 2 ≤ n ≤ N − 2 on the other hand

there is only a noteworthy loss in power efficiency compared to coherent detection with perfect

CSI for normalized effective fading bandwidths of the order of Bh,effT = 0.1. Hence, we will in

the following concentrate on comparing the ESNR for n = ⌈N/2⌉ and n = N associating them

with the performance of (S–)MSDD and DFDD, respectively.
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Figure 5.4: ESNR ρeff vs. the SNR 1/σ2
n for Bh,effT = 0.1, different values of N and n ∈

{⌈N/2⌉, N}.

ESNR vs. SNR: Figs. 5.3 and 5.4 illustrate the loss in SNR of MSDD (n = ⌈N/2⌉, solid

lines) and DFDD (n = N , dashed lines) with different values of N for Bh,effT = 0.001 and

Bh,effT = 0.1, respectively.

In the case of Bh,effT = 0.001 even very small observation windows such as N = 3 are

sufficient for MSDD to achieve nearly optimum power efficiency and full diversity, whereas

DFDD requires an observation window of size N = 10 to achieve the same performance and

the effective SNR of CDD saturates at approximately 46 dB.

For Bh,effT = 0.1 on the other hand the ESNR of CDD saturates well below 10 dB and even

N = 4 leads to a saturation of ESNR in the considered SNR range for both MSDD and DFDD.

Still, MSDD significantly outperforms DFDD for any observation window length N > 2. One

can also clearly observe, how MSDD with N ≥ 10 practically provides full diversity, while

DFDD —even in the limit of N →∞— suffers from a significant diversity loss and achieves a

maximum asymptotic slope of 1− 2Bh,effT = 0.8 [cf. (5.106)].
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Figure 5.5: ESNR ρeff vs. the length N of the observation window for different fading band-

widths Bh,effT and SNRs 1/σ2
n, and n ∈ {⌈N/2⌉, N}.

ESNR vs. Observation Window Length N : Fig. 5.5 shows the ESNR as a function

of the observation window length N for n ∈ {⌈N/2⌉, N}, different values of Bh,effT and SNRs.

In this figure, one can observe the rapid convergence of the ESNR as N increases, and that

a significant gap even for large N remains only for DFDD in fast–fading environments, i.e. for

Bh,effT of the order of 0.1.

ESNR vs. Bh,effT for σ2
n = 0: Figs. 5.6 and 5.7 show the effective SNR ρeff for σ2

n = 0 as

a function of Bh,effT for n ∈ {⌈N/2⌉, N}, different values of N and Clarke’s and the Gaussian–

PSD fading models, respectively. We compare ML MSDD [(5.91), solid and dashed lines]

with the asymptotic result (5.262) for the suboptimal decoder whose coefficients are computed

according to (5.253) (dash–dotted and dotted lines).

One can observe (i) that —as expected from our analysis in Section 5.4.2.2.1— the asymp-

totic slopes of the curves for both the optimal ML MSDD and the suboptimal (5.262) decoder

are −2(N − 1) on the adopted double–logarithmic scale, (ii) that the curves for (5.262) are

asymptotic (for Bh,effT → 0) lower bounds for the optimal curves, (iii) that positions around
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Figure 5.6: ESNR ρeff vs. Bh,effT for σ2
n = 0, Clarke’s fading model, different values of N and

n ∈ {⌈N/2⌉, N}.

the center of the observation window are also for σ2
n = 0 more reliably detected than those at

the edges, and (iv) that lim[N,σ2
n]→[∞,0] ρeff →∞ for Bh,effT < 0.5 regardless of n.

Furthermore, Fig. 5.7 for ML MSDD and the Gaussian–PSD fading model supports our

conjecture made in Section 5.4.2.2.1 that even for fading models with PSDs that are not band–

limited the same kind of behavior, i.e. ρeff ∝ (Bh,effT )−2(N−1), is obtained.

PEP vs. SNR for Finite N : Fig. 5.8 compares the PEPs for one of the dominant error

events for n = ⌈N/2⌉ (solid lines), n = N (dashed lines), coherent detection (dash–dotted lines)

and the corresponding asymptotes according to (5.88) (dotted lines) for finite N . We adopted a

cyclic (B)DSTM [HS00, Table I] with NT = 3, R = 1, NR = 1, Bh,effT = 0.1 and N ∈ {4, 6, 10}.
The horizontal and vertical lines mark the asymptotic ESNR limσ2

n→0 ρeff =
[
(Ψt)−1

]

n,n
−1 and

the corresponding error floor (5.92) for N ∈ {3, 4}, respectively.

This numerical example nicely confirms our analytical findings in Section 5.4.2.2 regarding

the asymptotic performance of the detection schemes for σ2
n → 0. In particular, one can observe

the accuracy of the approximation of the error floor in (5.92). Only for relatively high error
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Figure 5.7: ESNR ρeff vs. Bh,effT for σ2
n = 0, the Gaussian–PSD fading model, different values

of N and n ∈ {⌈N/2⌉, N}.

floors there is a small deviation, which is due to the fact that ρ∞ is finite, while the asymptotic

result (5.92) was derived based on the assumption that σ2
n → 0 implies ρ∞ → ∞. This figure

also shows that even for Bh,effT = 0.1 quite small values of N are sufficient to lower the error

floor below the PEP–region of interest.

PEP vs. SNR for N → ∞: Fig. 5.9 compares the PEPs for one of the dominant error

events for n = ⌈N/2⌉ (solid lines), n = N (dashed lines), coherent detection (dash–dotted

lines), and the corresponding asymptotes according to (5.88) (dotted lines) for various Bh,effT

and N →∞. As exemplary parameters we chose cyclic (B)DSTM [HS00, Table I] with NT = 5,

R = 1, and NR = 1.

Fig. 5.9 clearly shows that for large Bh,effT even in the limit of N →∞ the PEP of DFDD

(n = N) is severely affected by the diversity loss of (1−2Bh,effT ), whereas the SNR loss entailed

by MSDD (n = ⌈N/2⌉) has a far less detrimental effect on the PEP.
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Figure 5.8: PEPs of dominant error event vs. SNR for cyclic (B)DSTM with NT = 3, R = 1,

NR = 1, Bh,effT = 0.1, N ∈ {3, 4, 6, 10} and n ∈ {N/2, N}. For comparison: coherent detection

with perfect CSI and asymptotes for σ2
n → 0. Horizontal lines: approximation of error floor

according to (5.92).

5.4.5.1.2 Symbol–Error Rate Approximation Having presented numerous results on

the various detection schemes using the general framework of the effective SNR, we will in the

following illustrate the tightness of the symbol–error rate (SER) approximations of Section 5.4.4

using a few numerical examples.

Required SNR for SER = 10−5 vs. Position n for Different N : Fig. 5.10 shows

the SNR required by ML MSDD to achieve, respectively, SERn = 10−5 (solid lines) and an

average error rate SER = 1
N−1

∑N−1
n=1 SERn = 10−5 (dashed lines) as function of the position

n, 1 ≤ n ≤ N − 1, for different window sizes N . As an example, we consider cyclic (B)DSTM

with R = 1, NT = 3, NR = 1. Also included is the SER for differentially coherent detection

assuming perfect CSI (dash–dotted line).

First, we observe a good agreement between the SER approximation from (5.117) and the

simulated SER. Second, it can be seen that the individual error rates SERn are almost identical
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Figure 5.9: PEPs of dominant error event vs. SNR for cyclic (B)DSTM with NT = 5, R = 1,

NR = 1 for N →∞. For comparison: coherent detection with perfect CSI and asymptotes for

σ2
n → 0.

for symbols V n and 2 ≤ n ≤ N − 2, but significantly deteriorate for symbols V n at the edges

of the observation window, i.e. n = 1 and n = N − 1. More specifically, there are differences of

5− 8 dB in power efficiency when comparing non–edge and edge positions. This complies with

the observations made when considering a similar plot in terms of ESNR in Fig. 5.1.

Required SNR for SER = 10−5 vs. Bh,effT , Cyclic (B)DSTM: Fig. 5.11 compares the

various detectors in terms of the SNR required to achieve SER = 10−5 as function of Bh,effT

for cyclic (B)DSTM with R = 1, NT = 3, NR = 1. For MSDD and DFDD an observation

window length of N = 10 was used. Both analytical results according to Section 5.4.4 (lines)

and simulation results (markers) are plotted. As reference curves, the SNR for MSDD and a

very–slow–fading model (Bh,effT → 0) and for (differentially) coherent detection with perfect

CSI are shown, as well.

First, we note the good match of the SER approximation from Section 5.4.4 and the sim-

ulated SER. Only for decision–feedback MSDD (DF–MSDD) with κDF
U = κDF

L = 1 and subset
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Figure 5.10: Required 10 log10(Eb/N0) to achieve SER = 10−5 for position n in observation

window of ML MSDD. Parameters: Cyclic (B)DSTM constellation, NT = 3, NR = 1, R = 1,

and Bh,effT = 0.09.

MSDD (S–MSDD) with N ′ = 7 there is a noteworthy deviation in fast–fading scenarios as

apparently decisions close to the edges of the observation window are somewhat less reliable

than predicted by SER approximation from Section 5.4.4, cf. also Fig. 5.10. In the case of

DF–MSDD this deviation is increased by the fact that we assume perfect feedback in our SER

approximation.

Second, we observe that CDD suffers from a relatively high error floor already in moderately

fast fading with Bh,effT ≥ 0.018. While DFDD significantly improves power efficiency compared

to CDD, it is still outperformed by MSDD by about 2−6 dB depending on the fading bandwidth.

Finally, it can be seen that DF–MSDD and S–MSDD significantly improve performance in

the fast–fading regime. Almost the entire gain in power efficiency achievable with S–MSDD is

already accomplished with N ′ = 7, which corresponds to a moderate complexity increase by a

factor of 1.29 compared to MSDD with N = 10.
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Figure 5.11: Comparison of various decoders, MSDD and DFDD with N = 10. Required

10 log10(Eb/N0) to achieve SER = 10−5 vs. Bh,effT . Cyclic constellation with NT = 3, NR = 1,

R = 1. Lines: analytical results, Markers: simulation results.

Required SNR for SER = 10−5 vs. BhT , Orthogonal DSTM: Cyclic DSTM as

considered above plays a special role for noncoherent detection, because the detector’s QSFC

assumption, i.e. the assumption of the channel being constant during the transmission of each

DSTM symbol, does not lead to a performance degradation even in fast–fading scenarios (cf.

Section 5.2.2 for more details). For non–diagonal DSTM constellations, such as orthogonal

DSTM constellation, this leads to a metric mismatch, which ultimately limits the performance

of detectors in high SNR regimes.

Fig. 5.12 shows the performance of DSTM with orthogonal DSTM with R = 1, NT = 2,

NR = 1 in terms of the SNR required to achieve SER = 10−5 vs. BhT . MSDD is compared

with DFDD and CDD. For MSDD and DFDD an observation window length of N = 10 was

used. Analytical results (see Section 5.4.4, lines) and simulation results (markers) are plotted.

In order to illustrate the degradation due to the discrepancy between the QSFC model as

assumed by the detectors and the CFC model, that serves as basis for our results, analytical

and simulation results for a channel that actually follows the QSFC model are also included as
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Figure 5.12: Comparison of various decoders, MSDD and DFDD with N = 10. Required

10 log10(Eb/N0) to achieve SER = 10−5 vs. BhT . Orthogonal design with NT = 2, NR = 1,

and R = 1. CFC model (solid lines) and QSFC model (dashed lines). Lines: analytical results,

Markers: simulation results.

dashed lines in the figure.

First, we observe that SERs from the approximation in Section 5.4.4 and simulated SERs

closely match also for this non–group constellation. MSDD and DFDD can cope with much

faster fading than CDD. However, it can be seen that the performance of the detectors is limited

by channel variations during the transmission of one ST symbol, which are not accounted for

in the decision metrics, as the noncoherent detectors are based on the QSFC model. Clearly,

the impact of this metric mismatch on the reliability of decisions in the individual positions of

the observation window is the same. This explains, why the use of S–MSDD (or DF–MSDD,

not shown) does not lead to the expected significant gains in rapid fading scenarios.
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5.4.5.1.3 Spatially Correlated Channel To illustrate the impact of spatial correlation

in the MIMO channel [cf. (4.8) with (4.9) and (4.10)], we use the simple exponential correlation

model [CRTP03]

ψTx[i, j] = e−α||xTx
i −xTx

j ||, (5.128)

ψRx[i, j] = e−α||xRx
i −xRx

j ||, (5.129)

where xTx
i and xRx

j denote the position vectors of transmit antenna i and receive antenna j in

multiples of the carrier wavelength, respectively, and α ∈ IR
+. In accordance with the commonly

acknowledged fact that spatial subchannels from two different transmit antennas to the same

receive antenna or from one transmit antenna to two different receive antenna are practically

uncorrelated if the elements of the antenna arrays are separated by at least half of the carrier

wavelength (cf. e.g. [SFGK00]), we choose the parameter α of this model as α = 0.8. While

other array geometries may at times be more appropriate, we restrict our attention to linear

equispaced antenna arrays.

Comparison of Receivers Aware / Unaware of Spatial Correlation: Fig. 5.13

compares the power efficiency of the various detection algorithms for cyclic DSTM with NT = 3,

R = 1, NR = 1 and a linear equispaced transmit–antenna array with normalized interelement

spacing
∣
∣
∣
∣xTx

i − xTx
i+1

∣
∣
∣
∣ = 0.01 such that ψTx[i, i + 1] = 0.992, i ∈ {1, 2}, i.e. in the presence of

strong spatial correlation in the MIMO channel. The normalized fading bandwidth is chosen as

BhT = 0.03 and N = 10. Fig. 5.13 shows analytical results for receivers that are unaware (solid

lines) and aware (dashed lines) of the spatial correlation.10 Simulation results for the receivers

that are unaware of the spatial correlation are depicted as dash–dotted lines. For comparison,

we also included analytical results for the SERs in the case of a spatially uncorrelated channel

(dotted lines).

First, Fig. 5.13 shows that our SER approximation of Section 5.4.4 is quite tight also in

the case of a spatially correlated MIMO channel. We further can observe that the performance

degradation due to the detectors’ ignorance of spatial correlation is particularly pronounced

for CDD, whereas for DFDD and MSDD only a moderate loss occurs. For S–MSDD (N ′ = 7)

and DF–MSDD (not shown) the receiver unaware of spatial correlation achieves practically the

same power efficiency as the one taking spatial correlation into account, which means that the

ignorance of spatial correlation has a particularly strong impact on the reliability of decisions

at the very edges of the observation window. Note, that in the case of coherent detection with

10“Unaware of spatial correlation” means that the receivers assume that spatial correlation is not present. All

noncoherent detectors considered in this work belong to this class of algorithms. “Aware of spatial correlation”

means that the receivers take the spatial correlation into account, i.e. use matrix coefficients C̃i,j instead of

scalar coefficients ci,j as discussed in Section 5.3.1.
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Figure 5.13: SER of the various detectors vs. SNR for linear equispaced transmit–antenna array

with
∣
∣
∣
∣xTx

i − xTx
i+1

∣
∣
∣
∣ = 0.01, cyclic DSTM with NT = 3, R = 1, NR = 1, N = 10, BhT = 0.03.

Dotted lines with markers: simulation results for receivers unaware of spatial correlation.

perfect CSI the detector is naturally aware of spatial correlation. Hence, the dashed and the

solid lines coincide in this case.

Furthermore, a comparison with the results for a spatially uncorrelated channel (dotted

lines) reveals, that the strong spatial correlation hardly influences the asymptotic diversity

order achieved by the detection schemes. Instead it mainly causes a (significant) loss in SNR.

Finally, it is worth mentioning that BDSTM helps to avoid detrimental effects of spatial

correlation on the performance of the detectors, since different elements of a DSTM symbol are

transmitted in modulation interval that are usually separated by several modulation intervals.

Therefore, the temporal variations of the fading channel decorrelate the respective channel

coefficients.

Required SNR vs. Interantenna Spacing: Fig. 5.14 shows analytical results for the

SNR required to achieve SER = 10−5 vs. the interantenna spacing
∣
∣
∣
∣xTx

i − xTx
i+1

∣
∣
∣
∣ of a linear

equispaced transmit–antenna array of various numbers NT of antennas. In particular, we
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Figure 5.14: Required SNR to achieve SERn = 10−5 vs. interantenna spacing
∣
∣
∣
∣xTx

i −xTx
i+1

∣
∣
∣
∣ for

cyclic DSTM with R = 1, NR = 1, N = 10, BhT = 0.03 and linear equispaced transmit–antenna

array.

plotted the required SNR for center and edge positions of an MSDD observation window of

length N , when the receiver is unaware of the spatial correlation, for the example of cyclic

DSTM with R = 1, NR = 1, BhT = 0.03.

One can observe that there is consistent improvement in the reliability of decisions in the

center of the observation window with increasingNT for spatially dense transmit–antenna arrays

due to the increased diversity. Note, that this holds despite the fact that the effective fading

bandwidth Bh,effT increases as NT grows. Even for very dense arrays, when the interantenna

spacing is only 1% of the carrier wavelength, our model predicts significant gains in power

efficiency, when using a larger number of transmit antennas.

Interestingly, matters at the edges of the observation window are fundamentally different

for spatially dense antenna arrays. Here, the spatial correlation seriously impairs the reliability

of the decoder output. Especially for large values of NT the loss in power efficiency of edge

positions (DFDD) compared to center position (S–MSDD and DF–MSDD) is tremendous.

Thus S–MSDD and DF–MSDD are contrary to DFDD or regular MSDD very robust against
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Figure 5.15: Required SNR to achieve SERn = 10−5 vs. length
∣
∣
∣
∣xTx

1 −xTx
NT

∣
∣
∣
∣ of linear equispaced

transmit–antenna array for cyclic DSTM with R = 1, NR = 1, N = 10, BhT = 0.03.

impairment due to spatial correlation in the MIMO channel.

Required SNR vs. Length of Antenna Array: Fig. 5.15 shows analytical results for

the SNR required to achieve SER = 10−5 vs. the physical length
∣
∣
∣
∣xTx

1 − xTx
NT

∣
∣
∣
∣ of a linear

equispaced transmit–antenna array of various numbers NT of antennas. As in Fig. 5.14, we

plotted the required SNR for center and edge positions of an MSDD observation window of

length N = 10, when the receiver is unaware of the spatial correlation, for the example of cyclic

DSTM with R = 1, NR = 1, BhT = 0.03.

The different options for the outer decoder, i.e. for the (usually) (N − 1)–dimensional tree–

search decoding problem, are listed in Table 5.2. This figure shows, that while matters in

center positions, i.e. for S–MSDD and DF–MSDD are not fundamentally different from the

scenario considered in Fig. 5.14, the performance at edge positions, i.e. for DFDD and also

regular MSDD, deteriorates even more significantly. Here, antenna arrays of larger numbers of

antennas are advantageous only for physically relatively long antenna arrays. For small array

lengths
∣
∣
∣
∣xTx

1 − xTx
NT

∣
∣
∣
∣ it would —for DFDD— even be better to use a single antenna only.
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Variants of MSDD

Name: Mnemonic: Section:

Subset (MSDD) S 2.4.2.2

Decision–feedback (MSDD) DF 2.4.4

Table 5.1: Summary of variants of MSDD.

Outer MSDD decoders (Section 3.1.3)

Name: Mnemonic: Section:

Agrell–SpD MSDSD 3.1.3.1

Fano–algorithm Fano–MSDD 3.1.3.2

Table 5.2: Summary of outer decoders for MSDD.

Inner MSDD decoders (Section 3.1.4)

Name: Mnemonic: Section: Restrictions:

Full search FS 3.1.4 —

Lattice decoder LD 3.1.4.1.2 only for (di–)cyclic DSTM

Bound intersect detect BID 3.1.4.1.3 only for (di–)cyclic DSTM

Linear approximation LA 3.1.4.4 only for Cayley Codes

Table 5.3: Summary of inner decoders for MSDD.

MSDD metrics (Section 3.1.2)

Name: Mnemonic: Section:

Maximum–likelihood ML 3.1.2.2

Fano–type FM 3.1.2.3

Table 5.4: Summary of metrics for tree–search MSDD.
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5.4.5.2 Implementation–Dependent Performance Analysis

In the following, we present some results based on our analysis and results obtained via Monte–

Carlo simulation to illustrate the difference between the performance of the various optimal

and suboptimal detection algorithms introduced in Chapters 2 and 3.

For the sake of clarity, let us briefly summarize the various options of implementation. The

variants of MSDD proposed in this work are listed in Table 5.1 along with their respective

mnemonics and the section where they were introduced. For inner decoding, i.e. for the search

for the (next–)best extension in the outer tree–search decoder, we consider the options sum-

marized in Table 5.3. Recall, that for the orthogonal DSTM MSDD can be cast into the form

of a single 2(N − 1)–dimensional tree–search decoding problem with respect to PSK symbols,

which can therefore be solved as in the single antenna case, cf. [LSPW05] or Section 3.1.4.1.1.

Finally, the possible metrics for the outer MSDD decoder are given in Table 5.4. Based on

Tables 5.1–5.4 individual implementations of MSDD are identified using the following code:

[Variant]–[Outer decoder]–[Inner decoder]–[Metric]

This way DF–MSDSD–LD–FM refers to an implementation of decision–feedback MSDD

using the Agrell–SpD as outer tree–search decoder, the lattice–decoder–based symbol search

and the Fano–type metric. In the case of Fano–MSDD the Fano–type metric is used always,

since —as discussed in Section 3.1.3.2— the combination with the ML metric would lead to a

computationally quite inefficient decoder.

As benchmark algorithms, we also consider CDD (N = 2) and DFDD and their LD–based

implementations proposed in [CSZ01] and [SL02], respectively. Unless specified otherwise, the

CFC model from Section 5.2.1 is applied for simulations.

Comparison of Inner Decoders: Fig. 5.16, exemplarily shows simulation results for the

performance with LD–based symbol search for cyclic (B)DSTM with NT = 3, R = 1, NR = 1,

Bh,effT = 0.09 and N = 10. A–SpD–based MSDD, i.e. MSDSD, its variants S–MSDSD and

DF–MSDSD (κDF
U = κDF

L = 1), DFDD and CDD are considered, and suboptimal LD (dashed

lines) is compared with optimal FS or BID–based symbol search, i.e. ML MSDD, (solid lines).

It can be seen that the cosine–approximation applied in LD causes only small performance

degradations in the order of 0.2 − 0.3 dB compared to BID or FS symbol search regardless of

the particular detector.

Comparison of MSDD Metrics: Fig. 5.17 compares the power efficiency of MSDSD

and its variants S–MSDSD (N ′ = 7) and DF–MSDSD (κDF
U = κDF

L = 1) with Fano–type metric

(MSDSD–FM) to optimal MSDSD and Fano–MSDD. As example, we consider cyclic (B)DSTM

with NT = 3, R = 2, NR = 1 and N = 10. Since L = 64 in this scenario, FS inner decoding is
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Figure 5.16: Comparison of FS and LD–based inner decoding. SER vs. 10 log10(Eb/N0) for

MSDSD with N = 10, S–MSDSD withN = 10 and N ′ = 7, DFDD, and CDD. Cyclic (B)DSTM

with NT = 3, NR = 1, R = 1 and Bh,effT = 0.09. Solid lines: FS, BID, Dashed lines: LD.

computationally complex and we consider LD–based symbol search in all cases. The respective

curves for CDD–LD and DFDD–LD are also included for comparison. MSDSD–LD–FM clearly

outperforms CDD–LD, which suffer from a very high error floor in this relatively fast fading

scenario, and DFDD–LD. We further observe that the deployment of the suboptimal Fano–

type metric results in relatively small performance losses of about 0.5 − 1.0 dB. Interestingly,

the performance loss due to the Fano–type metric is almost negligible for DF–MSDSD–LD,

which must be a result of the very low dimension (two) of the tree–search decoding problem

in this case. This way, DF–MSDSD–LD–FM achieves almost the same performance as S–

MSDSD–LD–FM. Also —as expected— MSDSD–LD–FM shows a very similar performance as

Fano–MSDD–LD.

Finally, a comparison between the results for MSDSD–LD and MSDSD–BID and the re-

spective lines in Fig. 5.16 reveals that the performance loss due to the cosine–approximation

in LD–based symbol search is even smaller for larger signal constellations. This is because

the difference between PSK–components of the DSTM symbols that lie next to each other on



CHAPTER 5. MSDD FOR FREQUENCY–NONSELECTIVE CHANNELS 124

10 15 20 25 30 35
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

 

 

S
E

R
−→

CDD–LD

MSDSD–BID
MSDSD–LD
DF–MSDSD–LD
Fano–MSDD–LD
S–MSDSD–LD
CDD–LD
DFDD–LD

ML–MSDD metric
Fano–type metric

10 log10(Eb/N0) −→

Figure 5.17: Comparison of various decoders with N = 10 (CDD with N = 2) and LD–based

inner decoding. SER vs. 10 log10(Eb/N0) for cyclic (B)DSTM with NT = 3, NR = 1, R = 2,

and Bh,effT = 0.09.

the unit–circle and thereby the inaccuracy of the cosine–approximation are reduced for larger

constellations.

Error Floor of CG–MSDD with Rank Mismatch: Recall, that we suggested to use

a rank–reduced approximation of the (N × N)–dimensional autocorrelation matrix Ψt of the

fading process based on its Ñλ largest eigenvalues, cf. Section 5.4.3. We referred to the resulting

metric mismatch as “rank mismatch”. In Fig. 5.18, we consider the performance of CG–MSDD

with rank mismatch. In particular, we are interested in the resulting error floor for this non–

ML–MSDD. For this purpose, the PEP obtained from evaluation of (5.47) for the dominant

error event, i.e. a single–transmit–symbol error at the edge of the observation window, and

σ2
n → 0 is plotted as function of the normalized fading bandwidth BhT . Fading according to

Clarke’s (left subplot) and the Gaussian–PSD (right subplot) model are assumed, cf. Table 4.1.

Exemplarily, we consider BPSK and observation window lengths N = 10 and N = 20.

We observe that the error floor is monotonically lowered with increasing Ñλ and especially
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Figure 5.18: Pairwise error probability of dominant error event vs. BhT for BPSK, very high

SNR (σ2
n → 0) and different values of Ñλ and N .

that reductions by orders of magnitude are achieved with relatively small values Ñλ ≪ N .

Clearly, the error floor increases with the fading bandwidth for fixed Ñλ as the rank mismatch

becomes more pronounced. It is also interesting to note that the error floor with N = 20 is

higher than that with N = 10, as the number of dominant eigenvalues of the corresponding

(N ×N)–dimensional autocorrelation matrix Ψt is lower in the latter case. Therefore, using a

smaller N may in the case of CG–MSDD be not only advantageous from a complexity point of

view, but also with respect to performance. Since the error floor with respect to BER follows

closely the error floor considering the dominant PEP, the PEP–based analysis may serve as

quick guideline for choosing an appropriate value for Ñλ given N , BhT , and the target error

rate for which near ML–MSDD performance is desired.

Performance of CG–MSDD with Rank Mismatch: Figs. 5.19 and 5.20 show for

N = 10 and N = 20, respectively, the SERs from an approximation as in Section 5.4.4 (solid)

and simulations (dashed) vs. the SNR 10 log10(Eb/N0) for CG–MSDD with rank mismatch and
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Figure 5.19: SER of CG–MSDD vs. SNR 10 log10(Eb/N0) for BPSK and Clarke’s fading model

with N = 10, and different values of Ñλ and BhT . Solid lines: analytical results. Dotted lines

with markers: simulation results. For comparison: ML–MSDD.

for ML–MSDD. Contrary to the other MSDD detection schemes further error events besides the

single–transmit–symbol error events, which are mainly caused by AWGN, have to be taken into

account to get a reasonably tight approximation of the SER of CG–MSDD with rank mismatch.

The reason is that the rank–reduced approximation of Ψt corresponds to an underestimation

of the fading bandwidth. This in turn leads to an increased number of errors caused by rapid

channel variations. These error events, which correspond to single–data–symbol errors, are

therefore included in the SER approximation as well. Clarke’s fading model is considered, with

different values of BhT . It can be seen that the performance of CG–MSDD with Ñλ < N is

very close to that of ML–MSDD until the error floor due to the rank approximation of Ψt

kicks in. For example, to achieve ML–MSDD performance down to SER = 10−4, Ñλ = [2, 4]

and Ñλ = [3, 4] are required for BhT = [0.001, 0.03] and N = 10 and N = 20, respectively.

These results strongly motivate the application of CG–MSDD based on the rank–reduced fading

model, while keeping in mind that with CG–MSDD a larger N does not necessarily lead to
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Ñλ = 3
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Figure 5.20: SER of CG–MSDD vs. SNR 10 log10(Eb/N0) for BPSK and Clarke’s fading model

with N = 20, and different values of Ñλ and BhT . Solid lines: analytical results. Dotted lines

with markers: simulation results. For comparison: ML–MSDD.

improved performance. We also observe that analytical and simulated SER results match quite

well, except for small values of Ñλ, where the rank mismatch causes a high error floor and

the analytical approximation overestimates the height of the error floor. This is because the

abovementioned single–data–symbol error events are due to their connection with the fading

process highly correlated. However, predictions for the Ñλ required to lower the error floor

below SER = 10−4 from the PEP analysis (see Fig. 5.18) are quite accurate.
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5.5 Complexity Analysis

In the previous section, we analyzed the performance of the various detection schemes. We

showed that MSDD and its variants can achieve a power efficiency very close to that of co-

herent detection with perfect channel state information, if the observation window length N is

chosen sufficiently large. Since the complexity of the brute–force approach to MSDD is expo-

nential in N , the question that remains to be answered is what the complexity of the alleged

computationally efficient implementations proposed in this work is.

As it is customary in the literature (cf. e.g. [HV02, JO05a, FFL05, JZ99, Chapter 6]), we

consider the average number Cblo of candidates examined per decoder use, i.e. in the case of

MSDD per block of (N − 1) decoded data symbol V [k], as fundamental measure of decoder

complexity in the complexity analysis of the various detection algorithms. Note, that in the case

of tree–search decoding, this also includes all partial candidates ˜̄Sn =
[
S̃

H

n , . . . , S̃
H

N

]H
, 1 ≤ n ≤

N−1, examined in the process of tree–search decoding. The average number Csym of examined

candidates ˜̄Sn per decoded symbol, which is the relevant quantity when comparing algorithms

that return different numbers of decisions per decoder use, is trivially derived from Cblo by

division with the number of decisions returned per decoder use, i.e. (N − 1) for MSDD, N ′ for

S–MSDD and κDF
U −κDF

L +1 for DF–MSDD. While other quantities such as the average number

of floating–point operations (flops) per decoded symbol may be more accurate in describing

decoder complexity, because the complexity of considering a candidate may vary from algorithm

to algorithm, the latter depends very much upon implementation raising questions such as “How

many flops are required to perform a certain algebraic computation?”, which are of no interest

at this point. On the other hand, Cblo as introduced here is uniquely specified by the properties

of the algorithms as described above and does not depend on programming skills or the like.

In case one is actually interested in e.g. the average number of flops one must merely weigh the

number of candidates with the number of flops required in the consideration of each candidate.

In this section, we first provide analytical expressions for the average complexity of MSDD

based on sphere decoding and combinatorial geometry in Sections 5.5.1 and 5.5.2, respectively.

These are then evaluated in Section 5.5.3 —augmented by simulation results where an analytical

evaluation appears to be intractable. We will reveal a number of interesting characteristics of

the complexity of the MSDD–based detection schemes, showing that a power efficiency close to

that of coherent detection with perfect CSI is attainable at average and maximal complexity

comparable to that of simple CDD.
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5.5.1 Tree–Search MSDD

In this section, we provide a complexity analysis of tree–search–based MSDD. In the case of

tree–search decoding, the average total complexity per decoder use is given by the sum

Cblo =
N−1∑

n=1

Cblo
n , (5.130)

where Cblo
n denotes the average number of partial candidates ˜̄Sn consisting of ñ = N − n + 1

DSTM symbols, 1 ≤ n ≤ N − 1, that are examined by the tree–search decoder per block of

(N − 1) decoded data symbols.

For reasons of analytical tractability, we consider the spatially uncorrelated QSFC model

and ML MSDD based on the Fincke–Pohst refinement of the SpD (cf. Page 26), referring to

it as FP–MSDSD and discuss implications of the following results on other tree–search–based

MSDD algorithms later.

FP–MSDSD examines all (partial) candidate sequences ˜̄Sn, 1 ≤ n ≤ N − 1, that “lie inside

the sphere of radius ρ”, i.e. for which [cf. (3.20)]

dn

(
˜̄Sn

)

=
N∑

i=n

∣
∣
∣

∣
∣
∣R̆

H

i,iS̃i + X i

∣
∣
∣

∣
∣
∣

2

≤ ρ (5.131)

holds. Contrary to the Agrell–SpD the FP–SpD does not updated ρ via ρ := d1

( ˜̄S
)

when a

sequence ˜̄S is found with d1

( ˜̄S
)
≤ ρ (see also [HV02, JO05a]). It is therefore bound to using a

finite initial search radius ρ, which has to be chosen as small as possible to minimize decoder

complexity, but at the same time sufficiently large, to guarantee that the ML estimate ˆ̄S is

found inside the sphere with high probability thereby avoiding frequent repetition of the search

with an increased search radius. Note that keeping the search radius ρ fixed is not a complexity–

optimal variant in practice, but it (i) renders a complexity analysis feasible and (ii) serves as

an upper bound for decoders which update the search radius during decoding.

Consequently, the quantity Cblo
n denotes the average number of candidates ˜̄Sn, 1 ≤ n ≤

N − 1, that fulfill (5.131) for an appropriately chosen ρ.

In Section 5.5.1.1 we derive a lower bound for Cblo, which shows that the complexity of FP–

MSDSD is exponential in the length of the observation window N regardless of the SNR and the

temporal channel correlation. In Section 5.5.1.2 we present expressions for exact computation

of Cblo. In Section 5.5.1.3 we derive an analytical expression for the asymptotic complexity

of FP–MSDSD for the block–fading channel and group DSTM codes and motivate why these

results should also extend to non–group DSTM codes.
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5.5.1.1 Lower Bound on Complexity

In [JO05a] a simple lower bound was given for the computational complexity of FP–SpD when

applied to coherent MIMO detection. In order to derive a corresponding bound for the decoding

problem at hand, we first recall that ρ should be chosen according to

ρ = (1 + ερ)E
{
d1

(
S̄
) ∣
∣S̄
}

= (1 + ερ)NNTNR, ερ > 0, (5.132)

with some arbitrarily small but positive constant ερ, to assure that —in the limit of N →∞—

the probability of finding S̄ inside the sphere tends to one, whereas for ρ ≤ (1−ερ)NNTNR the

probability of finding S̄ inside the sphere would eventually tend to zero as N grows, cf. (3.41)

and (3.42).

Let us introduce the search depth

δs
(

˜̄S
)

△
= sup

{

k ∈ ZZ

∣
∣
∣ k ∈ [1, N − 1], dN−k

(
˜̄SN−k

)

≤ ρ
}

. (5.133)

It indicates the depth k up to which a particular path corresponding to ˜̄SN−k is pursued in the

decoding tree, i.e. the maximal depth k, where dN−k

( ˜̄SN−k

)
≤ ρ still holds.

Let us further introduce an indicator function Ik
( ˜̄SN−k

)
that equals one if dN−k

( ˜̄SN−k

)
≤ ρ

and zero otherwise, i.e.

Ik

(
˜̄SN−k

)

=

{

1 if dN−k

( ˜̄SN−k

)
≤ ρ

0 if dN−k

( ˜̄SN−k

)
> ρ

, 1 ≤ k ≤ N − 1. (5.134)

In analogy to [JO05a, Lemma 1] we can sum over all possible candidates using the indicator

function and write for the instantaneous complexity C inst, i.e. the total number of examined

candidates excluding the root for a particular received sequence

C inst =
N−1∑

k=1

∑

∀ ˜̄SN−k

Ik

(
˜̄SN−k

)

(5.135)

=
N−1∑

k=1

L−(N−k−1)
∑

∀ ˜̄S

Ik

(
˜̄SN−k

)

, (5.136)

where the second line follows from the fact that due to the change ∀ ˜̄SN−k → ∀ ˜̄S each addend

of the second sum in (5.135) is accounted for LN−k−1 times. Interchanging the sums we can

write

= L−(N−1)
∑

∀ ˜̄S

N−1∑

k=1

LkIk

(
˜̄SN−k

)

, (5.137)
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with the definitions (5.133) and (5.134) for the search depth and indicator functions, respec-

tively,

= L−(N−1)
∑

∀ ˜̄S

δs
(

˜̄S
)

∑

k=1

Lk (5.138)

and with the definitions of the finite geometric series and expectation

= L−(N−1)
∑

∀ ˜̄S

Lδs
(

˜̄S
)
+1 − L

L− 1
(5.139)

=
E ˜̄S

{
Lδs
(

˜̄S
)
+1
}
− L

L− 1
, (5.140)

where the expectation is taken with respect to ˜̄S only.

Averaging C inst over all received sequences, i.e. over all S̄, H̄ and N̄ , we obtain

Cblo △
= ES̄,H̄,N̄

{
C inst

}
(5.141)

=

(

E ˜̄S,S̄,H̄,N̄

{

Lδs
(

˜̄S
)}

− 1

)
L

L− 1
(5.142)

for the average total number of examined candidates ˜̄Sn, 1 ≤ n ≤ N−1, examined by the sphere

decoder. Applying Jensen’s inequality (cf. e.g. [CT91]) to the convex exponential function, one

can see that the expected number Cblo of candidates inside the sphere is lower bounded by

Cblo ≥
(

L
E ˜̄S,S̄,H̄ ,N̄

{δs
(

˜̄S
)
} − 1

)
L

L− 1
. (5.143)

Thus in order to prove that the lower bound (5.143) is exponential in N , we need to show that

the expected search depth E
{
δs
( ˜̄S
)}

grows asymptotically linearly in N . While we indicated

the random variables, with respect to which expectation is taken in the above expressions, using

subscripts, we will in the following drop the subscripts noting that all expectations are taken

with respect to ˜̄S, S̄, H̄ and N̄ .

In analogy to [JO05a] we compute a lower bound on E
{
δs
( ˜̄S
)}

by considering Pr
(
δs
( ˜̄S
)
≥

k
)
, which by (5.133) and Markov’s inequality (cf. e.g. [CT91]) can be written as

Pr
(

δs
(

˜̄S
)

≥ k
)

= 1− Pr
(

dN−k

(
˜̄SN−k

)

> ρ
)

(5.144)

≥ 1−
E
{

dN−k

(
˜̄SN−k

)}

ρ
. (5.145)
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With the definition of dN−k

( ˜̄SN−k

)
from (3.20) and ||X||2 = tr

{
XXH

}
we can write

E
{

dN−k

( ˜̄SN−k

)}

=
N∑

i=N−k

N∑

j1=i

N∑

j2=i

E
{

tr
{(

c∗i,j1H
H

j1
SH

j1
S̃j1 + c∗i,j1N

H

j1
S̃j1

)

·
(

ci,j2S̃
H

j2
Sj2Hj2 + ci,j2S̃

H

j2
N j2

)}}

=
N∑

i=N−k

N∑

j=i

|ci,j|2NTNR(1 + σ2
n), (5.146)

where we exploited (i) that Si, H i and N i are mutually independent, (ii) the power constraint

E
{∑NT

j=1 |si,j[k]|2
}

= 1, and (iii) E{S[k]} = 0NT,NT
such that

E
{

tr
{

HH

j1
SH

j1
S̃j1S̃

H

j2
Sj2Hj2

}}

=

{

E
{
||Hj1 ||2

}
= NTNRσ

2
n if j1 = j2

0 if j1 6= j2
(5.147)

E
{

NH

j1
S̃j1S̃

H

j2
N j2

}

=

{

E
{
||N j1 ||2

}
= NTNRσ

2
n if j1 = j2

0 if j1 6= j2
(5.148)

E
{

HH

j1
SH

j1
S̃j1S̃

H

j2
N j2

}

= 0 . (5.149)

Recall that ci,j, i ≤ j ≤ N , are the coefficients of the (N − i)th order linear backward MMSE

prediction error filter for the fading–plus–noise process normalized by the corresponding stan-

dard deviation of the prediction error, cf. Section 3.1.2.2 for details. As the noise process is

assumed temporally uncorrelated with variance σ2
n we obtain

∑N
j=i |ci,j|

2 ≤ σ−2
n , 1 ≤ i ≤ N ,

where equality holds only for static fading and (N−i)→∞, cf. also Section 5.4.2.1.5. Plugging

this into (5.146) we obtain the upper bound

E
{

dN−k

( ˜̄SN−k

)}

≤ 1 + σ2
n

σ2
n

NTNR(k + 1), (5.150)

which by (5.145), with the definitions

β
△
=

1 + σ2
n

σ2
n

NTNR (5.151)

K
△
= ⌊ρ/β⌋ (5.152)

and δs
( ˜̄S
)

being an integer in turn leads to

Pr
(

δs
(

˜̄S
)

≥ k
)

≥ 1− β

ρ
(k + 1) (5.153)

= 1− k + 1

K
. (5.154)

Let us further —quite arbitrarily— introduce a K–ary random variable ν, which is uniformly

distributed over the set {−1, 0, 1, . . . ,K − 2}. With this, we can continue from (5.154) writing
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for 0 ≤ k ≤ K − 2

Pr
(

δs
(

˜̄S
)

≥ k
)

≥ 1− Pr(ν < k) (5.155)

= Pr(ν ≥ k) . (5.156)

Note that this also holds for K − 1 ≤ k ≤ N as in this case (5.156) trivially states that

Pr
(
δs
( ˜̄S
)
≥ k

)
≥ 0. Consequently, E

{
δs
( ˜̄S
)}

can be bounded via

E
{

δs
(

˜̄S
)}

≥ E{ν} =
K−2∑

ν=−1

ν

K
=
K − 3

2
(5.157)

>
ρ

2β
− 2 = γN − 2, (5.158)

where we used K = ⌊ρ/β⌋ > ρ/β − 1, ρ = (1 + ερ)NNTNR and defined

γ
△
=
σ2

n(1 + ερ)

2(1 + σ2
n)
. (5.159)

Clearly, by (5.158) E
{
δs
( ˜̄S
)}

asymptotically grows at least linearly in N . Plugging (5.158) into

(5.143) we obtain a lower bound for the average complexity

Cblo ≥ LNγ−1 − L
L− 1

. (5.160)

This bound shows that the complexity of FP–MSDSD with an appropriately chosen radius

ρ = (1 + ερ)NNTNR, ερ > 0, is exponential in N regardless of the noise variance or the

bandwidth of the fading process. It thus represents a non–trivial extension of [JO05a, Theorem

2, Ineq. (29)] to the case of MIMO MSDD considered here.

Since the bound (5.160) turns out to be quite loose (cf. Section 5.5.3) for observation window

lengths of interest, we consider the problem of exact computation of the complexity of FP–

MSDSD in the next section.

5.5.1.2 Computing the Exact Complexity

In order to compute the complexity of FP–MSDSD we proceed as follows. In Section 5.5.1.2.1

we derive an expression for the probability Pr
(
dn

( ˜̄Sn

)
≤ ρ | S̄n

)
that a particular candidate ˜̄Sn,

1 ≤ n ≤ N − 1, lies inside the sphere of radius ρ given that a particular S̄n was transmitted.

In Section 5.5.1.2.2 we determine how to appropriately choose ρ such that the transmitted

sequence S̄ lies inside the sphere with a desired probability pdes. Finally, in Section 5.5.1.2.3

we provide an expression for the complexity Cblo and we devise simplifications for efficient

evaluation of this expression for special fading–channel scenarios.
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5.5.1.2.1 Calculation of Pr
(
dn

( ˜̄Sn

)
≤ ρ | S̄n

)
To compute the probability that a partic-

ular ˜̄Sn lies in the sphere of radius ρ given that a particular S̄n was transmitted we use the

same methods applied in the performance analysis in Section 5.4.1. It is convenient to vectorize

the channel model. With ñ = N − n+ 1 [cf. (3.4)] and the definitions of ñNTNR–dimensional

vectors

r̄n
△
= vec

{[
RH

n , . . . ,R
H

N

]
H

}

(5.161)

h̄n
△
= vec

{[
HH

n , . . . ,H
H

N

]
H

}

(5.162)

n̄n
△
= vec

{[
NH

n , . . . ,N
H

N

]
H

}

(5.163)

and (ñNT × ñNT)–dimensional

S̄D,n
△
= diag

{
Sn, . . . ,SN

}
, (5.164)

the received signal corresponding to the last ñ transmit symbols of the observation window can

be expressed as

r̄n =
(
INR
⊗ S̄D,n

)
h̄n + n̄n , 1 ≤ n ≤ N. (5.165)

The correlation matrix of the received vector r̄n conditioned on S̄n is given by

Ψr̄r̄|S̄,n
△
= E

{
r̄nr̄

H

n |S̄n

}
= INR

⊗Ψrr|S̄,n, (5.166)

where

Ψrr|S̄,n
△
= S̄D,n

((
Ψt

n + σ2
nIñ

)
⊗ INT

)
S̄H

D,n (5.167)

Ψt
n

△
= toeplitz

{
ψt

1,1, ψ
t
2,1, . . . , ψ

t
ñ,1

}
(5.168)

and ψt
i,j as element in the ith row and jth column of Ψt [cf. (5.26)] describing the temporal

correlation of the effective fading process.

With (5.165) the difference ηn between the MSDD metric dn

( ˜̄Sn

)
of a candidate ˜̄Sn and

the radius ρ can be written as

ηn

(
˜̄Sn

)
△
= dn

(
˜̄Sn

)

− ρ (5.169)

= r̄H
n (INR

⊗ F n) r̄n − ρ , 1 ≤ n ≤ N − 1 , (5.170)

where

F n
△
= ˜̄SD,n

((
Ψt

n + σ2
nIñ

)−1 ⊗ INT

)
˜̄S

H

D,n. (5.171)
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We observe that ηn

( ˜̄Sn

)
includes a Hermitian quadratic form in zero–mean complex Gaussian

random variables with correlation matrix Ψr̄r̄|S̄,n [cf. (5.166)]. Hence, its characteristic function

Φηn
(v)

△
= E

{
ejvηn

}
is given by [SBS66]

Φηn
(v) = e−jvρdet

{
IñNT

− jvΨrr|S̄,nF n

}−NR (5.172)

= e−jvρ

ñNT∏

i=1

(

1− jvλΨrr|S̄,nFn,i

)−NR

(5.173)

= e−jvρ

ñNT∏

i=1

( −jvηn,i

v − jvηn,i

)NR

(5.174)

with poles jvηn,i, where

vηn,i
△
= − 1

λΨrr|S̄,nFn,i

, 1 ≤ i ≤ ñNT, (5.175)

λΨrr|S̄,nFn,i denoting the ith eigenvalue of Ψrr|S̄,nF n and Ψrr|S̄,n and F n as defined in (5.167)

and (5.171), respectively. Using Φηn
(v), the probability that a candidate ˜̄Sn lies inside the

sphere of radius ρ given that S̄n was transmitted, can be expressed as

Pr
(

dn

(
˜̄Sn

)

≤ ρ
∣
∣
∣ S̄n

)

= Pr
(

ηn

(
˜̄Sn

)

≤ 0
∣
∣
∣ S̄n

)

(5.176)

= − 1

2πj

∫ ∞+jc

−∞+jc

Φηn
(v)

v
dv (5.177)

= −
Nηn,v∑

i=1

Res
v=jv+

ηn,i

{
Φηn

(v)

v

}

, (5.178)

with jv+
ηn,i, 1 ≤ i ≤ Nηn,v ≤ ñNT, denoting the Nηn,v poles of Φηn

(v) [cf. (5.174)] that lie

in the upper half of the complex v–plane. The constant c ∈ IR that must satisfy 0 ≤ c ≤
min1≤i≤Nηn,v

(
Re
{
v+

ηn,i

})
is introduced to move the path of integration away from the pole at

v = 0.

Consequently, the same methods as deployed in the performance analysis in Section 5.4.1

can be used here to compute Pr
(
dn

( ˜̄Sn

)
≤ ρ | S̄n

)
, i.e. e.g. through numerical integration of

(5.177) [cf. (5.50) and (5.51)] or analytically applying (5.52) to (5.178) with (5.174) and (5.175).

5.5.1.2.2 ρ such that Pr
(
d1

(
S̄
)
≤ ρ | S̄n

)
= pdes As pointed out earlier it is important to

properly choose the radius ρ. On the one hand, choosing ρ too small results in a high decoder

complexity, because the decoder is likely to not find a candidate ˆ̄S inside the sphere, i.e. with

d1

(
S̄
)
≤ ρ, and will subsequently have to repeat the search with an increased ρ. On the other

hand, choosing ρ too large will lead to a high probability of the decoder finding an ˆ̄S inside the

sphere, but at the same time to a high computational complexity, since many other candidates

lie inside the sphere as well. Hence, the objective must be to find an intermediate value for ρ,
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Figure 5.21: Required normalized radius ρ/(NNTNR) versus NNTNR such that S̄ lies inside

the sphere with probability pdes.

such that the decoder succeeds in finding a candidate with high probability pdes, but in doing

so does not examine too many other candidates.

ForN →∞ this problem has a simple solution, as ρ should be chosen as ρ := (1+ερ)NNTNR

with an arbitrarily small positive constant ερ, cf. (3.41) and (3.42).

For the proper choice of the radius ρ in case of finite N we consider ˜̄S = S̄ and the

corresponding metric d1

(
S̄
)
. As d1

(
S̄
)

is χ2(NNTNR, 2NNTNR) distributed in this case (cf.

Section 3.1.2.2), we can use well–known results from stochastics (cf. e.g. [Pro00]) and obtain

from (5.176)

Pr
(
d1

(
S̄
)
≤ ρ

∣
∣ S̄
)

=
γ(NNTNR, ρ)

Γ(NNTNR)
(5.179)

(γ(A, x)
△
=
∫ x

0
yA−1e−y dy: (lower) incomplete Gamma function). Using (5.179) we can compute

the radius ρ such that S̄ is found inside the sphere with a given probability pdes. Note that

this result depends neither on the SNR nor on the temporal correlation of the fading channel

which is very convenient for decoder design. It also depends on the system parameters N , NT,
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NR only through the product NNTNR of the three quantities.

For illustration Fig. 5.21 shows the normalized radius ρ/(NNTNR) required for the true

S̄ to lie inside the sphere with a given probability pdes as a function of the product NNTNR.

It illustrates, how the required value of ρ converges from above to NNTNR in the sense that

limNNTNR→∞ ρ/(NNTNR) = 1 for any fixed pdes < 1.

5.5.1.2.3 Complexity Given ρ such that Pr
(
d1

(
S̄
)
≤ ρ | S̄

)
= pdes according to (5.179)

for some desired pdes and the probabilities Pr
(
dn

( ˜̄Sn

)
≤ ρ | S̄n

)
= Pr

(
ηn( ˜̄Sn) ≤ 0 | S̄n

)
from

(5.176), the expected number Cblo
n

(
S̄n

)
of candidates ˜̄Sn, 1 ≤ n ≤ N − 1, examined by the

FP–MSDSD provided that S̄n was transmitted is given by

Cblo
n

(
S̄n

)
=
∑

∀ ˜̄Sn

Pr
(

dn

( ˜̄Sn

)
≤ ρ

∣
∣
∣ S̄n

)

, 1 ≤ n ≤ N − 1. (5.180)

Thus, the overall complexity given S̄ was transmitted reads

Cblo
(
S̄
)

=

N−1∑

n=1

∑

∀ ˜̄Sn

Pr
(

dn

( ˜̄Sn

)
≤ ρ

∣
∣
∣ S̄n

)

. (5.181)

The complexity Cblo is finally obtained from averaging Cblo
(
S̄
)

over all S̄.

For DSTM with group codes, however, we find from inserting (5.167) and (5.171) into

(5.172) that Φηn
(v) depends on S̄n and ˜̄Sn only through

Z̄n
△
=
[
ZH

n , . . . ,Z
H

N−1

]H
(5.182)

with

Zi
△
= S̃

H

i Si. (5.183)

Consequently, the set of all Z̄n is equal to the set of all
[
S̃H

n , . . . , S̃
H

N

]
H regardless of S̄n and

averaging over S̄ is thus not required, i.e.

Cblo
(
S̄
)

= Cblo. (5.184)

5.5.1.2.4 Special Fading Scenarios Evaluation of (5.181) can be computationally expen-

sive for arbitrary fading channels and large (non–group) constellations and observation window

sizes N . Therefore, it is interesting to consider DSTM with group constellations in two partic-

ular fading scenarios, (i) block fading and (ii) an artifical scenario which we refer to as “semi–

block fading” to approximate very slow and slow fading, respectively. In these cases it is possible

to determine sets of sequences ˜̄Sn that are equivalent with respect to Pr
(
dn

( ˜̄Sn

)
≤ ρ | S̄n

)
,

such that only a relatively small number of set representatives need to be considered in (5.180).
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Block Fading: For this classical special case, the channel is assumed to be constant over

the entire observation window, i.e.

H̄ = 1N,1 ⊗H (5.185)

and Ψt = 1N,N . Using the identity (1N,N +xIN)−1 = (IN−(N+x)−11N,N)/x the MSDD metric

of (3.20) reduces to

dn

(
˜̄Sn

)

=
1

σ2
n

(
∣
∣
∣
∣R̄n

∣
∣
∣
∣
2 − 1

ñ+ σ2
n

||ΞnH + N ′
n||

2

)

, (5.186)

where

N ′
n

△
= ˜̄S

H

nN̄n (5.187)

Ξn
△
= INT

+
N−1∑

i=n

Zi (5.188)

with Zi as defined in (5.183) were introduced. As the distributions of H and N i are invariant to

unitary transformations, Pr
(
dn

( ˜̄Sn

)
≤ ρ | S̄n

)
depends on the true and the candidate transmit

signal only through the singular values ζΞn,m of Ξn, 1 ≤ m ≤ NT, 1 ≤ n ≤ N − 1.

While, for general DSTM group codes, it does not appear to be feasible to give closed–form

expression for sets of sequences ˜̄Sn that lead to the same ζΞn,m, equivalence sets with respect

to Ξn can be determined as follows. Ξn is the sum of an identity matrix and ñ − 1 random

matrices Zi uniformly iid over the set V , i.e. its support is given by the Cartesian product

of (N − n) sets V and shifted by INT
. Formally, we can therefore determine the distribution

fΞn
(Ξ) of Ξn by (N − n)–fold convolution, which leads to

fΞn
(Ξ) =

ñ−1∑

ν1=0

· · ·
ñ−1−∑l−1

i=1 νi∑

νl=0

· · ·
ñ−1−∑L−2

i=1 νi∑

νL−1=0

(
L−1∏

l=1

(
ñ−1−∑l−1

i=1 νi

νl

))

· δM
[

Ξ−
(

INT
+

L∑

l=1

νlV (l)

)]

,

(5.189)

where νL
△
= ñ − 1 −∑L−1

i=1 νi (δM [X − Y ]: generalized Kronecker–δ with respect to complex–

valued matrix arguments, which equals one if X = Y and zero if X 6= Y ). Every summand

in (5.189) represents a set T (n)
q , q

△
= [ν1, . . . , νL]T/(ñ − 1), of sequences Z̄n that consist of

ν1 symbols V (1), ν2 symbols V (2), etc. in arbitrary order, i.e. that are equivalent with respect

to Ξn. The product of binomial coefficients in (5.189) gives the number of possible ways to

arrange those symbols, i.e. the cardinality |T (n)
q | of each set T (n)

q .

Thus, the expected number Cblo
n of candidates ˜̄Sn inside the sphere can be computed by

Cblo
n =

∑

Z̄n∈T
(n)

q ,∀q

|T (n)
q |Pr

(

dn

( ˜̄Sn

)
≤ ρ

∣
∣
∣ S̄n

)

, (5.190)
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with ˜̄Sn = diag
{
ZH

n , . . . ,Z
H

N−1, INT

}
S̄n, some fixed S̄n and only one representative per set

T (n)
q . This approach of computing Cblo

n is similar to that of [HV02] in that equivalence sets

of candidate sequences are used to compute the expected complexity. However, the criterion

with respect to which equivalence sets are formed is different from that in [HV02] and thus the

methods used in [HV02] are not applicable here.

LPSK: For the special case of single–antenna transmission, i.e. L–ary phase–shift keying

(LPSK), the metric dn

( ˜̄Sn

)
depends on the candidate ˜̄Sn and the true transmit signal S̄n only

through the quantity [cf. (5.186) and (5.188)]

ζΞn,1 =

∣
∣
∣
∣
∣
1 +

N−1∑

i=n

Zi

∣
∣
∣
∣
∣

2

. (5.191)

Again, the exact distribution of ζΞn,1 does not appear to be analytically tractable for arbitrary

L, whereas the distribution of Ξn is again of the form of (5.189). For L = 2 (BPSK) and L = 4

(QPSK), on the other hand, solutions for the distribution of ζΞn,1 can be given in closed form.

In particular, we obtain in the case of BPSK

fζ1(ζ) =







⌈(ñ−1)/2⌉−1
∑

ν=0

(
ñ

ν

)

δ [ζ− (ñ−2ν)] +

(
ñ− 1
⌈

ñ−1
2

⌉

)

δ

[

ζ−
(

ñ−2

⌈
ñ− 1

2

⌉)]

ñ even

⌈(ñ−1)/2⌉
∑

ν=0

(
ñ

ν

)

δ [ζ−(ñ−2ν)] ñ odd

(5.192)

(δ [i− j]: Kronecker–δ function which returns 1 if i = j and 0 otherwise), i.e. we can compute

the average complexity Cblo
n based on the evaluation of Pr

(
dn

( ˜̄Sn

)
≤ ρ | S̄n

)
for ⌈(ñ+1)/2⌉+1

representatives ˜̄S for which Z̄n consists of (ñ−1−ν) entries 1 and ν entries −1, 0 ≤ ν ≤ ñ−1.

This means that the complexity of computing Cblo
n is only linear in (N − n) for BPSK.

In the case of QPSK one finds that with respect to ζΞn,1 there are 1
2
(⌈(ñ+ 1)/2⌉+ 1)(⌈(ñ+

1)/2⌉+2) equivalence sets T (n)
q , with q = [ñ− 1− ν, ν−µ, µ, 0]T/(ñ− 1), 0 ≤ ν ≤ ⌈(ñ− 1)/2⌉,

0 ≤ µ ≤ ν, whose representatives Z̄n consist of (ñ− 1− ν) entries 1, µ entries −1 and (ν − µ)

entries j. The cardinalities of these sets read

∣
∣
∣T

(n)

[ñ−1−ν,ν−µ,µ,0]T/(ñ−1)

∣
∣
∣ =

(
ñ

ν

)

·
(
ñ

µ

)

·







1
4

if Re {Ξn} = Im {Ξn} = 0

1 elseif Re {Ξn} = Im {Ξn} 6= 0 or Im {Ξn} = 0

2 otherwise

,

(5.193)

0 ≤ ν ≤ ⌈(ñ − 1)/2⌉, 0 ≤ µ ≤ ν. This means that the complexity of computing Cblo
n is only

quadratic in (N − n) for QPSK.
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Semi–Block Fading: This artificial model is supposed to approximate slow and mod-

erately fast fading while allowing to determine equivalence sets to reduce the complexity of

assessing the complexity of FP–MSDSD. Here, the channel is constant for the transmission

of N/NSB ∈ IN successive symbols S[k] and the correlation among the NSB channel states is

described by the (NSB ×NSB)–dimensional correlation matrix Ψt
SB such that

Ψt = Ψt
SB ⊗ 1N/NSB,N/NSB

.11 (5.194)

Based on the eigenvalue decomposition

Ψt
SB = UΨ

t
SB

ΛΨ
t
SB

UH

Ψ
t
SB

(5.195)

Ψt has rank NSB and can be expressed as

Ψt = (UΨ
t
SB
⊗ 1N/NSB,1)ΛΨ

t
SB

(UH

Ψ
t
SB
⊗ 11,N/NSB

). (5.196)

Consequently, the channel matrix H̄ [cf. (5.21)] can —based on the Karhunen–Loève expansion—

be written as

H̄ =
(((

UΨ
t
SB
⊗ 1N/NSB,1

)√

ΛΨ
t
SB

)

⊗ INT

)

W̄ (5.197)

where W̄ denotes an (NSBNT ×NR)–dimensional matrix of iid Nc(0, 1) entries. Furthermore,

we can apply Woodbury’s identity for matrix inversion (cf. e.g. [HJ85]) to obtain

M =
1

σ2
n

(

IN − (UΨ
t
SB
⊗ 1N/NSB,1)ΛΨ

t
SB

(

ΛΨ
t
SB

+ σ2
nINSB

)−1

(UH

Ψ
t
SB
⊗ 11,N/NSB

)

)

. (5.198)

Based on the assumption that the non–zero eigenvalues of Ψt
SB are distinct, such that ΛΨ

t
SB

and thereby ΛΨ
t
SB

(
ΛΨ

t
SB

+σ2
nINSB

)−1
are diagonal matrices we can then express the ML–MSDD

path metric as

dn

(
˜̄Sn

)

= (5.199)

1

σ2
n




∣
∣
∣
∣R̄n

∣
∣
∣
∣
2 −

NSB∑

i=1

λΨ
t
SB,i

λΨ
t
SB,i + σ2

n

NR∑

j=1

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

NSB∑

l=1

√

λΨ
t
SB,l





NSB∑

k=⌈n/NSB⌉
u∗k,iun,lΞk,n



wj,l + ni,j

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

,

where ui,j and λΨ
t
SB,i are the elements of UΨ

t
SB

and ΛΨ
t
SB

as introduced in (5.195), wj,l and

ni,j are mutually independent NT–dimensional vectors of iid Nc(0, 1) and Nc(0, σ
2
n) distributed

11For an appropriate choice of NSB and Ψ
t
SB one can consider the eigenvalues of the autocorrelation matrix

Ψ
t of the fading process to be approximated by the semi–block fading model and determine NSB as the smallest

number that (i) is greater than the number of dominant eigenvalues of Ψ
t and (ii) satisfies N/NSB ∈ IN. Ψ

t
SB

should then be chosen as Ψ
t
SB = toeplitz{ψt[0], ψt[xN/NSB], . . . , ψt[xN(NSB − 1)/NSB]}, where x = NT and

x = 1 for DSTM and BDSTM, respectively.
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random variables, respectively, and

Ξk,n
△
=

kN/NSB∑

i=max(n,(k−1)N/NSB+1)

Zi , 1 ≤ k ≤ NSB − 1 (5.200)

ΞNSB,n
△
= INT

+
N−1∑

i=max(n,N−N/NSB+1)

Zi, (5.201)

with Zi as defined in (5.183). Consequently, sequences Z̄n for which all Ξk,n, 1 ≤ k ≤ NSB,

are equal lead to the same metric dn

( ˜̄Sn

)
and therefore lie inside the sphere with the same

probability. Representatives

Z̄k,n
△
=

[

ZH

max(n,(k−1)N/NSB+1), . . . ,Z
H

kN/NSB

]H

, 1 ≤ k ≤ NSB − 1 (5.202)

Z̄NSB,n
△
=

[

ZH

max(n,N−N/NSB+1), . . . ,Z
H

N−1

]H

(5.203)

and cardinalities of equivalence sets with respect to Ξk,n, 1 ≤ k ≤ NSB, are obtained in the

same way as for block fading [cf. (5.189)].

In order to determine representatives for and cardinalities of equivalence sets with respect

to dn

( ˜̄Sn

)
one has to form the Cartesian product of the above equivalence sets, i.e. form all

possible concatenations Z̄n =
[
Z̄H

1,n, . . . , Z̄
H

NSB,n

]
H of representatives Z̄k,n, 1 ≤ k ≤ NSB, and

multiply the cardinalities of the respective constituent equivalence sets. Thus, choosing a larger

NSB increases the complexity of the computation and in the limiting case of NSB = N this leads

naturally to the result that all “equivalence sets” are of size one, which means that all LN−n

relevant ˜̄Sn have to be considered individually.

5.5.1.3 Asymptotic Complexity Analysis

The complexity analysis presented in the previous sections is —when considering arbitrary

constellations and fading scenarios— useful for exact computation of the complexity of FP–

MSDSD for moderate observation window lengths N and constellation sizes L. In this section,

we derive an expression Cas for the asymptotic complexity Cblo of FP–MSDSD for N → ∞
that is tight in the sense that

lim
N→∞

Cblo

Cas

= 1 (5.204)

and provides interesting insights into the dependence of the complexity on system parameters.

Although we do not have stringent proof our numerical results strongly suggest that the com-

plexity of FP–MSDSD grows with increasing memory of the fading process (see Section 5.5.3).

This conjecture is also supported by an interpretation of the result derived in the following. For

this reason, and for analytical tractability, we consider the block–fading channel case. While we
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only give an explicit proof for DSTM with group codes, it should become clear in the following

that this result can be expected to also hold for non–group codes, as it hinges on the fact that

Ξn/ñ in the limit of ñ → ∞ tends to zero for almost all pairs of sequences ˜̄Sn and S̄n (see

below).

Derivation: The derivation of Cas consists of two major steps. In the first step, we

consider dn

( ˜̄Sn

)
and determine, which terms can be neglected in the limit of N →∞, thereby

obtaining a significantly simplified expression for dn

( ˜̄Sn

)
. In the second step, we make use of

the method of types (cf. e.g. [CT91]) to group the ˜̄Sn into “type classes”. Based on this, we

determine a so–called “strongly typical set” [CT91] of ˜̄Sn that lie inside the sphere with the

same probability. A proof that the contribution to the average complexity of the ˜̄Sn that do

not belong to the strongly typical set is negligible concludes the derivation.

Using (5.183), (5.185)–(5.188), and S̄H

n S̄n = ñINT
with ñ = N − n+ 1, we can write12

dn

(
˜̄Sn

) σ2
n

ñ
=

1

ñ

∣
∣
∣
∣R̄n

∣
∣
∣
∣
2 − 1

ñ(ñ+ σ2
n)

∣
∣
∣

∣
∣
∣ΞnH + ˜̄S

H

nN̄n

∣
∣
∣

∣
∣
∣

2

(5.205)

= ||H ||2 +
1

ñ

∣
∣
∣
∣N̄n

∣
∣
∣
∣
2
+

2

ñ
Re
{

tr
{

HN̄
H

n S̄n

}}

(5.206)

− 1

ñ(ñ+ σ2
n)

(

||ΞnH||2 + 2Re
{

tr
{

ΞnHN̄
H

n
˜̄Sn

}}

+
∣
∣
∣

∣
∣
∣
˜̄S

H

nN̄n

∣
∣
∣

∣
∣
∣

2
)

.

Later in this section, we will show that terms Cblo
n with n close to N are in the limit of N →∞

negligible in Cblo. Let us therefore discuss the asymptotic behavior of some of the terms in

(5.206) for ñ→∞.

•
∣
∣
∣
∣N̄n

∣
∣
∣
∣
2
/ñ: As the elements of N̄n are iid Nc

(
0, σ2

n

)
random variables,

∣
∣
∣
∣N̄n

∣
∣
∣
∣
2
/ñ is a

χ2
(
NTNRσ

4
n/ñ, 2ñNTNR

)
random variable. As its variance for ñ→∞ tends to zero this

term converges in distribution to its mean NTNRσ
2
n.

•
∣
∣
∣
∣ ˜̄S

H

nN̄n

∣
∣
∣
∣
2
/(ñ(ñ+ σ2

n)): The elements of ˜̄S
H

nN̄n/ñ are Nc

(
0, σ2

n/ñ
)

random variables, as

the S̃n are unitary matrices. Thus
∣
∣
∣
∣ ˜̄S

H

nN̄n

∣
∣
∣
∣
2
/(ñ(ñ+ σ2

n))→ 0 in the limit of ñ→∞.

• Based on similar arguments, it is easy to see that the two remaining terms

2/ñRe
{
tr
{
S̄nHN̄H

n

}}
and 2/(ñ(ñ + σ2

n)) Re
{
tr
{
ΞnHN̄H

n
˜̄Sn

}}
can be neglected for

ñ→∞, as well.

In summary, we obtain

lim
ñ→∞

Pr
(

dn

(
˜̄Sn

)

≤ ρ
∣
∣
∣ S̄n

)

= lim
ñ→∞

Pr

(

||H||2 − 1

ñ2
||ΞnH ||2 ≤ σ2

n

(ρ

ñ
−NTNR

))

. (5.207)

12We consider the normalized version dn

( ˜̄Sn

)σ2

n

ñ of the metric dn

( ˜̄Sn

)
because this clarifies the notion of

what contributions to the metric can be neglected.
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Based on (5.207) and the “method of types” [CT91], we prove in Appendix 5.A.6 that for

DSTM with group constellations the asymptotic approximation

Cas =
γ (NTNR, σ

2
n (ρ/N −NTNR))

Γ(NTNR)
· L

L− 1
· LN−1 (5.208)

is tight in the sense of (5.204).

Approximation: Recalling that a reasonable choice of the sphere radius is ρ = (1 +

ερ)NNTNR, with a small positive constant ερ, we see that for not too large σ2
n the second

argument of the incomplete Gamma function is small and we can approximate Cas using (5.296)

by

Cas ≈
(σ2

n (ρ/N −NTNR))
NTNR

(NTNR)!
· L

L− 1
· LN−1 (5.209)

=
(σ2

nερNTNR)
NTNR

(NTNR)!
· L

L− 1
· LN−1 . (5.210)

Discussion: Interestingly, (5.204) together with (5.208) and (5.210) states that the asymp-

totic computational complexity of FP–MSDSD (i) differs fundamentally from that of FP–SpD

applied to coherent MIMO detection, cf. [JO05a, Section VII] in that the exponential rate

of growth of complexity is independent of the SNR and (ii) is equal to that of brute–force

MSDD which examines LN−1 candidates. This can be explained intuitively by looking back

at the above derivation, from which we have that for large N and ρ = (1 + ερ)NNTNR,

d1

( ˜̄S
)
− ρ = N(||H||2 /σ2

n − ερNTNR) for all but a negligible number of pairs
{ ˜̄Sn, S̄n

}
. This

means that for ||H ||2 smaller than ερNTNRσ
2
n practically all LN/(L − 1) (partial) candidate

vectors lie inside the sphere and are thus examined by the FP–MSDSD algorithm. The prob-

ability for this event is given by the first factor in (5.208), which for ρ = (1 + ερ)NNTNR

is independent of N and by (5.296) approximately proportional to σ2NTNR
n , cf. (5.210). This

means that the average complexity of FP–MSDSD for the block–fading channel is dominated

by the worst–case complexity, whereas for FP–SpD applied to coherent MIMO detection the

instantaneous complexity converges in distribution to the average complexity, cf. [JO05a].

Clearly, in continuous fading the probability of all matrices Hn containing only small entries

reduces as N grows. Hence, we may —based on the above arguments— speculate that block

fading represents the worst case fading scenario as far as detection complexity is concerned.

Non–Group Codes: The above result hinges on the fact that Ξn/ñ [cf. (5.188)] in the

limit of ñ→∞ converges in distribution, i.e. for all but a negligible number of pairs
{ ˜̄Sn, S̄n

}
,

to 0NT,NT
. Clearly, in the case of non–group codes a stringent proof based on the method of

types is not feasible, as the support of the Zi is usually not a finite set of elements. Still, it is not
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difficult to show that the sequences S1,S2, . . . and S̃1, S̃2, . . . can both be interpreted as output

of a memoryless random source generating zero–mean unitary matrices. Thus, one can see that

by the law of large numbers Ξn/ñ [cf. (5.188)] converges in distribution to 0NT,NT
, even for

non–group codes. So while we did not give an explicit proof that the rate of this convergence is

sufficiently fast to justify the disregard of pairs
{ ˜̄Sn, S̄n

}
for which Ξn/ñ deviates significantly

from 0NT,NT
it can be expected that the asymptotic behavior of the complexity for non–group

codes does not differ fundamentally from that for group codes. This was also confirmed by

means of numerical examples.

5.5.2 MSDD Based on Combinatorial Geometry

In Section 3.2 we derived CG–MSDD assuming that the channel autocorrelation matrix Ψt

has a reduced rank Nλ. We also found that its computational complexity is of the order

O((log2(L)N)2NλNTNR), L = {2, 4}, which means it would be polynomial in N if Nλ was

independent of N . We note that the latter assumption has also been made in [MAKA07],

where the related MAPSqD algorithm was proposed, cf. Section 3.2.2.4. To shed light on its

validity, we study the relation between Nλ and N considering the eigenvalue distribution of Ψt

for asymptotically large N . In fact, we will give insightful exact expressions for the complexity

of CG–MSDD and show that for various popular fading models Nλ grows linearly with N . This

clarifies that the complexity of combinatorial–geometry based MSDD, i.e. CG–MSDD and the

algorithm of [MAKA07], is effectively exponential in N for these fading models.

Recall that the number of examined candidates ˜̄S is equal to the number of cells in the

central arrangement, as there is an one–to–one correspondence between each cell and a ˜̄S.

Due to the symmetry of the central arrangement and the fact that S̃N can be fixed as phase

reference, the value of Cblo equals half the number of cells in the central arrangement. Thus,

provided that Ψt has Nλ non–zero eigenvalues λΨ
t,n, Cblo is given by [cf. (3.129)]

Cblo =

2NλNTNR−1∑

n=0

(
Nx− 1

n

)

, x =

{

1, BPSK

2, QPSK
. (5.211)

As already established before, Cblo is polynomial in N if Nλ is fixed.

The questions that need to be answered now are (i) how many eigenvalues need to be

considered to have (near) ML–MSDD performance and (ii) what is the asymptotic behavior

of Cblo. We will in the following answer the second question and come back to the first one

with comments later on.
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5.5.2.1 Asymptotic Complexity

Provided that the discrete–time fading process is such that its PSD

Ψt(f)
△
=

∞∑

k=−∞
ψt[k]e−j2πfTk = lim

N→∞

N−1∑

k=−N+1

ψt[k]e−j2πfTk (5.212)

exists and that |Ψt(f)| is measurable in the sense of Lebesgue the eigenvalues of the autocorre-

lation (Toeplitz) matrix Ψt converge to those of the corresponding circulant matrix circ
{
Ψt

:,1

}
,

[GS58, Section 5.2], see also [Gra71] for a tutorial treatment (circ{x}: circulant matrix with

vector x as first column). It can further be shown that these eigenvalues converge to the spec-

trum of the corresponding autocorrelation function as the dimensions of the matrix grow to

infinity [GS58, Gra71], i.e. the sequence

βn
△
= Ψt(n/(NT )), 1 ≤ n ≤ N, (5.213)

and the sequence λΨ
t,n, 1 ≤ n ≤ N , of eigenvalues of Ψt (sorted in order of decreasing

magnitude) are for N →∞ asymptotically equally distributed. Since

Ψt(f) =
1

T

∞∑

k=−∞
Ψt

c(f − k/T ), (5.214)

where Ψt
c(f) is the PSD of the continuous–time fading process, we conclude from (5.213) and

(5.214) that if Ψt
c(f) is non–zero over a continuous set of frequencies, the number of non–zero

eigenvalues Nλ grows linearly with N , i.e. complexity of CG–MSDD is exponential in N .

Remark: Note that if repetition transmit diversity is employed and the different transmit

antennas operate in an alternating fashion (compare regular cyclic DSTM versus BDSTM as

discussed in Section 5.3.2) the sequence of eigenvalues λΨ
t,n and the sequence Ψt(n/(NTNT)),

1 ≤ n ≤ N , are asymptotically equally distributed.

5.5.2.2 Further Discussion and Examples

For fading processes with effective normalized fading bandwidthBh,effT there are asymptotically

Nλ = 2⌊NBh,effT ⌋+ 1 (5.215)

non–zero eigenvalues and Cblo is of the order

O((log2(L)N)2(2⌊NBh,effT ⌋+1)NTNR−1). (5.216)

Besides fading models, such as the “rectangular” and Clarke’s model, that have strictly band–

limited PSDs Ψt
c(f), there are a number of fading models, such as the “Gaussian”, the “1st–

order Butterworth” and the “2nd–order Butterworth” models, whose PSDs are not band–

limited, cf. Table 4.1 for a list of these common fading models. Consequently, all eigenvalues
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of Ψt are non–zero, i.e. λΨ
t,n > 0, 1 ≤ n ≤ N , and nothing would be gained in terms of

complexity if optimal ML–MSDD was desired. However, the latter fading models exhibit quite

a strong concentration of spectral power at low frequencies, i.e.

1

N

Ñλ∑

n=1

λn = 1− ελ, (5.217)

with a small positive constant ελ and Ñλ ≪ N . Consequently, Ψt is, depending on ελ, well

approximated using only its largest (dominant) Ñλ eigenvalues λΨ
t,n, and thus near ML–MSDD

performance can be achieved in this case as well. (See Section 5.4 for a performance analysis

of CG–MSDD with Ñλ < Nλ.)

Table 5.5 contains the (approximate) asymptotic eigenvalue distributions for the above–

mentioned commonly used fading models, “approximate” in the sense that we used Ψt(f) ≈
1
T
Ψt

c(f) for |f | ≤ Ñλ/(NT ) also for non–band–limited PSDs. We also listed Ñλ as a function

of ελ [cf. (5.217)], and the number of relevant eigenvalues λΨ
t,n if ελ = 10−4 is desired.14

Interestingly, we see from (5.211) in conjunction with Table 5.5 that the complexity of

CG–MSDD is independent of the SNR, which is in stark contrast to tree–search based MSDD.

Instead the complexity exponent is in all cases directly proportional to the normalized Doppler

spread Bh,effT and the observation window length N . This means that while the complexity of

CG–MSDD is polynomial in N if the number of (dominant) eigenvalues λΨ
t,n is fixed, the com-

plexity of (near–ML) CG–MSDD for all these standard fading scenarios is in fact exponential

in N , as the number Nλ / Ñλ of non–zero / dominant eigenvalues λΨ
t,n asymptotically grows

linearly in N . Only for certain pathological fading models such as the block–fading model,

where the channel remains constant and Ψt has only a single non–zero eigenvalue regardless of

N , the complexity of CG–MSDD is truly polynomial in N .

For further illustration see Figs. 5.22 and 5.23, where we exemplarily plotted the eigenvalues

λΨ
t,n sorted in order of decreasing magnitude for N = 1000 and different values of Bh,effT for

Clarke’s and the Gaussian–PSD fading model, respectively. One can observe that for finite

window length N , a slightly larger number Nλ > 2⌊NBh,effT ⌋+1 of eigenvalues than suggested

by the asymptotic results in Table 5.5 has to be taken into account to achieve near ML–MSDD

performance.

13Only ελ(Ñλ) can be given in closed form: ελ = 1 − 1
π

(
1
2 log

(
x2+x/

√
2+1/4

x2−x/
√

2+1/4

)

+ arctan
(
2
√

2x+ 1
)

+

arctan
(
2
√

2x− 1
) )

with x
△
= Ñλ−1

2NBh,effT
.

14We have verified that this is sufficient to achieve ML–MSDD performance for error rates down to at least

10−4.
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Asymptotic eigenvalue distribution
Ñλ(ελ) [see (5.217)]

(Ñλ(ελ = 10−4))

Rectangular model:

λΨ
t,n =







1

2BhT
, 1 ≤ n ≤ Ñλ

0, otherwise

2⌊NBh,effT ⌋+1 (= Nλ)

(2⌊NBh,effT ⌋+1)

Clarke’s model (land–mobile model):

λΨ
t,n =







N

π
√

(NBh,effT )2 − ⌊n/2⌋2
, 1 ≤ n ≤ Ñλ

0, otherwise

(5.218)

2⌊NBh,effT ⌋+1 (= Nλ)

(2⌊NBh,effT ⌋+1)

Gaussian–PSD model:

λΨ
t,n ≈







exp

(

−
(

⌊n/2⌋
NBh,effT

)2
)

√
πBhT

, 1 ≤ n ≤ Ñλ

0 otherwise

(5.219)

2
⌊
NBh,effT erfc−1

(
ελ

)⌋
+1

(2⌊2.75NBh,effT ⌋+1)

First–order Butterworth PSD model:

λΨ
t,n ≈







N2Bh,effT

π ((NBh,effT )2 + ⌊n/2⌋2) , 1 ≤ n ≤ Ñλ

0 otherwise

2
⌊

NBh,effT tan
(

(1−ελ)π
2

)⌋

+1

(2⌊6366NBh,effT ⌋+1)

Second–order Butterworth PSD model:

λΨ
t,n ≈







2
√

2(Bh,effT )3N4

π
(
(NBh,effT )4 + 16 ⌊n/2⌋4

) , 1 ≤ n ≤ Ñλ

0 otherwise

—13

(2⌊7.21NBh,effT ⌋+1)

Table 5.5: Asymptotic distributions of the eigenvalues λΨ
t,n for various fading models, cf. Ta-

ble 4.1 and number Ñλ of “dominant” eigenvalues for approximation of Ψt in CG–MSDD (in

brackets the value of Ñλ when ελ = 10−4).
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Figure 5.22: Eigenvalues λΨ
t,n sorted according to their magnitude for Clarke’s fading model,

N = 1000 and different values of Bh,effT .
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Figure 5.23: Eigenvalues λΨ
t,n sorted according to their magnitude for the Gaussian PSD,

N = 1000 and different values of Bh,effT .
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5.5.3 Numerical Results

In this section, we provide numerical results to augment our analytical results from Sec-

tions 5.5.1 and 5.5.2. At this, our focus lies on tree–search methods. Here, we will first

present some results to illustrate our analytical findings from Section 5.5.1, before we move on

to simulation results for the complexity of the more involved tree–search methods such as MS-

DSD and Fano–MSDD, for which closed–form expressions to describe their complexity appear

inaccessible. This is concluded by a comparison of the various MSDD implementations with

respect to achievable performance when the instantaneous complexity per decoded symbol is

limited, i.e. if the search may be truncated.

In the second part of this section, we compare the computational complexity of tree–search

MSDD with that of CG–MSDD.

Unless explicitly stated otherwise, we consider a spatially uncorrelated MIMO fading channel

with temporal correlation according to Clarke’s fading model.

5.5.3.1 Tree–Search MSDD

Cblo vs. SNR: Fig. 5.24 compares the exact complexity of FP–MSDSD with N = 10

computed as described in Section 5.5.1.2 for different fading scenarios as a function of the SNR.

In particular, DQPSK transmission (NT = NR = 1) over block, semi–block with NSB = 2, and

continuous fading channels is considered. In the semi–block fading model, where in general the

channel remains constant over NNT/NSB modulation intervals, the off–diagonal element ψt
SB,1,2

of (2 × 2)–dimensional Ψt
SB describing the correlation between the channel coefficients of the

two fading blocks is chosen as J0(2π0.01N/2) = 0.975 to approximate continuous fading with

normalized fading bandwidth BhT = 0.01. The radius ρ is chosen such that Pr
(
d1

(
S̄
)
≤ ρ |

S̄
)

= 0.99, i.e. the correct transmit sequence is found inside the sphere with 99 % probability.

Simulation results for 10 log10(Eb/N0) ≥ 15 dB (not shown in the figure) coincide with those

obtained from our analysis.

It can be seen that the number of candidate signals inside the sphere rapidly decreases

as the SNR increases and converges to the lowest possible complexity for successful decoding

Cblo
min(N)

△
= N −1. Except for the high–SNR region the semi–block fading model serves as good

approximation for the continuous fading model. We further find our intuitive reasoning at the

end of Section 5.5.1.3 confirmed, as the complexity of FP–MSDSD is largest for the case of

block fading and reduces with decreasing memory of the fading process.

Cblo vs. N : In Fig. 5.25 we consider the complexity of FP–MSDSD for dicyclic DSTM with

NT = 4, R = 0.5 and NR = 1 when transmitting over a block–fading and a QS–fading channel

with normalized fading bandwidth BhT = 0.01 at various SNR values. The different types of
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Figure 5.24: Complexity Cblo of FP–MSDSD vs. SNR for different fading scenarios. Parameters:

DQPSK, NT = NR = 1, N = 10, ρ such that Pr
(
d1(S̄) ≤ ρ | S̄

)
= 0.99.

curves in Fig. 5.25 are (i) the exact complexity for the block–fading (solid lines) and the QS–

fading channel with BhT = 0.01 (dashed lines), (ii) the lowest possible complexity Cblo
min(N) =

N − 1 (dash–dotted line), and (iii) the complexity of brute–force ML MSDD Cblo
bf (N)

△
= LN−1

(dash–dotted line). One can observe that while the complexity for the block–fading channel is

lower for small values of N and low SNR, it grows at a far higher rate towards larger N than for

the QS fading channel. It can be suspected that long backtrackings to levels close to the root

of the search tree occur more frequently for the block–fading channel with strong dependencies

between all channel coefficients considered in the observation window, while for the QS–fading

channel the dependences are limited due to the non–zero bandwidth, i.e. finite memory, of

the fading process. Comparisons with Cblo
bf and Cblo

min illustrate the complexity savings feasible

compared to brute–force ML MSDD and the increase in complexity compared to a DFE–type

decoder.

The lower complexity bound (cf. Section 5.5.1.1) and the asymptotic complexity (cf. Sec-

tion 5.5.1.3) are illustrated and compared in Fig. 5.26 for the example of cyclic codes with

NT = 3, R = 1, NR = 1, and a block–fading channel. Again, the search radius ρ is adjusted
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Figure 5.25: Exact complexity Cblo for QS fading with BhT = 0.01 (dashed lines) vs. block

fading (solid lines) over length of observation window N . For comparison: Complexity of

brute–force ML MSDD (Cblo
bf = LN−1) and of DFE–type decoder (Cblo

min = N − 1). Parameters:

Dicyclic DSTM with NT = 4, R = 0.5, NR = 1, 10 log10(Eb/N0) = [10, 15, 20, 25], ρ such that

Pr
(
d1(S̄) ≤ ρ | S̄

)
= 0.99.

such that Pr
(
d1

(
S̄
)
≤ ρ | S̄

)
= 0.99. In particular, the different types of curves are (i) the ex-

act complexity (Section 5.5.1.2, solid lines), (ii) the lower bound (Section 5.5.1.1, dotted lines),

(iii) the approximation (5.209) for Cas (Section 5.5.1.3, dashed lines), (iv) Cblo
min(N) = N − 1

(dash–dotted line), and (v) Cblo
bf (N) = LN−1 (dash–dotted line). It can be observed that the

complexity bound derived in Section 5.5.1.1 is quite loose for N ≤ 30. This is similar to the

bound found in [JO05a, Section VI] for sphere decoding in MIMO detection with CSI. The

exponential growth of complexity with increasing N is clearly visible from the exact results

for Cblo. Also, there is good agreement between the asymptotic approximation and the ex-

act complexity of FP–MSDSD for almost any value of N and SNR as long as the complexity

exceeds Cblo
min. Consequently, max(Cas, C

blo
min) with Cas according to (5.209) represents a very

easy to evaluate yet reasonably accurate approximation of the complexity of FP–MSDSD. Fur-

thermore, one can observe the reduction of complexity in the exponential region by a factor
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Figure 5.26: Complexity vs. observation window size N . Parameters: Cyclic DSTM with NT =

3, R = 1, NR = 1, static fading, 10 log10(Eb/N0) = [0, 20, 40, 60], ρ such that Pr
(
d1(S̄) ≤ ρ |

S̄
)

= 0.99.

of 103 per 10 dB difference in SNR, as was to be expected from (5.209) for this example with

NT = 3 and NR = 1. Fig. 5.26 also again illustrates the tremendous complexity savings with

FP–MSDSD compared to brute–force ML MSDD (Cblo
bf ).

Cblo vs. NT = NR and SNR: Fig. 5.27 compares the complexity of FP–MSDSD for

different rate–1 DSTM codes transmitted over a block–fading channel with equal numbers of

transmit and receive antennas. It shows (on a logarithmic scale) the approximate complexity

max(Cas, C
blo
min) with Cas according to (5.209) over the SNR and the number of transmit and

receive antennas NT = NR for observation windows of lengths N = 10, 20, 30. Note that

according to the power normalization of S[k] and the definition (5.7) of the SNR the total

average received power is independent of NT and scales linearly with NR. Interestingly, it

can be seen that an increase in the number of antennas at both ends of the channel not only

increases reliability of transmission but may also be beneficial in terms of detection complexity.

The minimum number of antennas required at both ends of the channel to push Cblo towards
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Figure 5.27: Complexity max(Cas, C
blo
min) with Cas according to (5.209) vs. SNR and NT = NR

for cyclic DSTM over block–fading channel for different values of N . Parameters: R = 1 and

ρ such that Pr
(
d1(S̄) ≤ ρ | S̄

)
= 0.99.

Cblo
min strongly depends on N and the SNR and it grows towards larger N and lower SNR. This

behavior can be understood based on the discussion at the end of Section 5.5.1.3, where it

was pointed out that the exponential increase in the average complexity Cblo of FP–MSDSD is

dominated by the worst–case complexity if all NTNR coefficients of the MIMO channel happen

to be small compared to the power of the AWGN. From basic stochastics, it is clear that the

probability of this event decreases (exponentially) in NTNR, since the channel coefficients are

uncorrelated. Therefore, the point, where the worst–case complexity becomes dominant, moves

towards lower SNR, i.e. higher power of the AWGN, as NT and / or NR increase.

While FP–MSDSD is particularly interesting from an analytical point of view, it is in many

cases not optimal in the sense of minimal decoder complexity. In the following, we will therefore

direct our attention at the computationally more efficient MSDD algorithms developed in this

work. For a fair comparison with the benchmark decoders CDD and DFDD, we subsequently

consider the average number Csym of examined (partial) candidates per decoded symbol, which
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Figure 5.28: Complexity of MSDSD–LD with N = 10 vs. parameter cρ (initial radius ρinit =

NNTNRcρ). Cyclic (B)DSTM with NT = 3, NR = 1, R = 2, and Bh,effT = 0.09.

for S–MSDD is given by Cblo/N ′ and for DF–MSDD by Cblo/(κDF
U − κDF

L + 1).

Initial Radius: To study the effect of the initial radius ρinit = NNTNRcρ on the complex-

ity of regular MSDSD, i.e. MSDSD based on the A–SpD (cf. Section 3.1.3.1), we exemplarily

consider MSDSD–LD (the results are very similar for other MSDSD algorithms) for cyclic

(B)DSTM with NT = 3, R = 2, NR = 1 and Bh,effT = 0.09. Fig. 5.28 depicts the complexity

Csym for different SNRs as a function of the constant cρ introduced in (3.39). While com-

plexity increases if the initial radius is chosen too small, substantial complexity savings of up

to 70 % compared to ρinit → ∞ can be obtained by choosing an optimal finite start radius.

It is interesting to note that the optimal choice of the parameter cρ ≈ 2 is roughly indepen-

dent of the observation window length N (not shown in the figure), whereas the probability

Pr
(
d1

(
S̄1

)
≤ cρNNTNR | S̄

)
of the true S̄ lying inside the sphere of radius ρinit increases with

N .15 It can also be observed that, for this relatively fast fading example, the complexity of

15This follows from evaluation of Pr
(
d1

(
S̄1

)
≤ cρNNTNR | S̄

)
, cf. (3.116).
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Figure 5.29: Results for DF–MSDSD–LD with N = 10, cρ = 2, κDF
L = 1 and different values of

κDF
U . Left: SER, center: average complexity Csym, right: minimal allowed limiting complexity

C̃lim (see text). Cyclic (B)DSTM with NT = 3, NR = 1, R = 2, and Bh,effT = 0.09. With

ML–MSDD metric (solid) and with Fano–type metric (dashed).

MSDSD with infinite initial radius may increase for larger SNR. This is due to the fact that

the radius after the first tentative decision ˆ̄S may be much larger than the metric for the ML

decision for high SNR. A finite start radius, on the other hand, leads to the more intuitive

result that the decoding complexity decreases monotonically with the SNR. All of the following

results assume the optimal finite start radius with

cρ = 2. (5.220)

Results for DF–MSDSD: Before we compare the different MSDD algorithms, we take a

look at appropriate choices for the parameters κDF
U and κDF

L of DF–MSDSD (cf. Section 2.4.4).

The evaluation of the effective SNR and the SER in the individual positions of the MSDD

observation window (cf. Figs. 5.2 and 5.10, respectively), revealed that the reliability of the

decisions is roughly independent of the position in the observation window, with the exception



CHAPTER 5. MSDD FOR FREQUENCY–NONSELECTIVE CHANNELS 156

of the edge positions in fast–fading scenarios. Since the complexity (normalized by the depth

of the tree) of a tree–search decoder typically is an increasing function of the tree depth, it is

therefore reasonable to choose κDF
L = 1, i.e. regardless of the choice of κDF

U , such that only the

decision on the last symbol in the observation window is discarded.

In Fig. 5.29 we therefore plotted the results as a function of κDF
U , which for κDF

L = 1 is equal

to the number of decisions returned per decoded block. As exemplary system parameters, we

consider cyclic (B)DSTM with NT = 3, R = 2, DF–MSDSD with N = 10, cρ = 2, with regular

ML–MSDD metric (solid lines) and with Fano–type metric (dashed lines), Bh,effT = 0.09,

various values of Eb/N0 and NR = 1. In particular, we consider (i) the SER (left), (ii) the

average number Csym of examined (partial) candidates per decoded symbol (center), and (iii) a

quantity C̃lim defined as the minimal number of examined (partial) candidates per decoded

symbol, after which the tree–search can be terminated without noteworthy impact on the

SER.16

The SER results in the left subplot show that the performance improves slightly if κDF
U is

increased, which is (i) due to the fact that the reliability of the decisions improves (slightly)

from the second–to–last position towards the center of the observation window (cf. Fig. 5.10),

and (ii) because the effect of error propagation is reduced if fewer previous decisions are fed

back into the DF–MSDD metric.

The results on Csym show that for low SNR, the average complexity of DF–MSDSD shows

the behavior typical for tree–search algorithms, i.e. the complexity is an increasing function of

the tree depth κDF
U +1. In high SNR (cf. lines for 10 log10(Eb/N0) = 27 dB), on the other hand,

the average complexity of DF–MSDSD even decreases with growing κDF
U . This is because in the

considered range of parameters the average complexity per decoder use is close to its minimum

2κDF
U + 1. As κDF

U decisions are returned per decoder use, the minimal complexity per decoded

symbol of (unlimited) DF–MSDSD is given by 2 + 1/κDF
U .

Finally, the results on C̃lim clearly show that small values of κDF
U are preferable. Interestingly,

while the average complexity Csym grows towards lower SNR, we can see that the tree–search can

be terminated after only 2 and even after only 1 examined candidate(s) per decoded symbol for

DF–MSDSD operating based on the ML–MSDD or the Fano–type metric, respectively, without

noteworthy impact on the power efficiency. I.e. while DF–MSDSD with unlimited search would

require 8.4 (ML metric) and 4.3 (Fano–type metric) metric computations per decoded symbol

at 10 log10(Eb/N0) = 7 dB an implementation where the average complexity is equal to the

maximal complexity of 2 (ML metric) and 1 (Fano–type metric) would achieve practically the

same power efficiency. Towards higher SNR, C̃lim grows rapidly with κDF
U . However, for κDF

U = 1

it is still practically equal to the average complexity. Hence, for practical implementation, where

16More specifically, C̃lim is determined such that the SER is increased by no more than a factor of 1.1 compared

to the unlimited search.
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Figure 5.30: Complexity vs. 10 log10(Eb/N0) for various detection algorithms with N = 10 and

optimal cρ = 2. Cyclic (B)DSTM with NT = 3, NR = 1, R = 2, and Bh,effT = 0.09. Solid lines:

without Fano–type metric, Dashed lines: with Fano–type metric.

maximal complexity plays a very important role, κDF
U = 1 is the appropriate choice. In the

following, we consider

κDF
U = κDF

L = 1 (5.221)

in our comparison of the various detection schemes, i.e. the tree searched in DF–MSDSD is of

depth two.

Average Complexity: Fig. 5.30 compares the different possibilities to reduce the com-

plexity of MSDSD, i.e. deployment of ML–MSDD (solid lines) or Fano–type metric (dashed

lines) and different implementations for outer and inner decoders. As example, we again con-

sider cyclic (B)DSTM with NT = 3, NR = 1, R = 2, Bh,effT = 0.09, and N = 10. For

comparison, we also included the complexities of CDD–LD and DFDD–LD, which are con-

stant one. The corresponding performance results can be found in Fig. 5.17. It can be seen

that the complexity of all implementations decreases rapidly with increasing SNR, since the
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search quickly terminates for small enough noise. The variants MSDSD–BID and especially

MSDSD–LD with improved symbol–search strategies operate at significantly reduced average

complexity compared to MSDSD–FS. Furthermore, applying the Fano–type metric speeds up

the search especially in the lower SNR range, as was anticipated in Section 3.1.2.3. Combining

Fano–type metric with inner LD, i.e. MSDSD–LD–FM, and Fano–MSDD–LD yield tremendous

complexity reductions by approximately two decimal powers compared to MSDSD–FS. This

gain comes at the expense of a loss in power efficiency of less than 1 dB (cf. Fig. 5.17). However,

due to the large size of the signal constellation (L = 64) and the depth of the search tree, the

average complexity of MSDSD–LD–FM and Fano–MSDD–LD is still quite high in low–SNR

regimes. DF–MSDSD–LD on the other hand, when based on the ML–MSDD and on the Fano–

type metric on average requires no more than approximately 4 and 6 metric computations per

decoded symbol, respectively, even in very low SNR, where the SER already lies well above

10−1. The reason for this lies in the fact that the depth of the search tree is only two. At

higher SNR, the average complexity of DF–MSDSD is slightly increased compared to the other

MSDD implementations included in this comparison. This is because —contrary to the other

implementations— for DF–MSDSD the depth of the search tree is larger (by one) than the step

size, in which the observation window slides forward from decoder use to decoder use.

Taking into account that the performance of DF–MSDD is even better than that of regular

ML–MSDD (cf. Fig. 5.17) DF–MSDSD(–LD–FM) clearly has the most appealing average–

complexity–to–performance tradeoff of all algorithms considered in this work.

Performance with Limited Maximal Complexity: For practical implementation the

maximal decoder complexity is of great importance. Therefore, in Figs. 5.31–5.33 we consider

the performance that can be achieved by the different MSDD implementations if the maximal

number of examined (partial) candidates per decoded symbol is limited to a finite Clim, i.e. if

the tree–search process in the outer decoder is terminated after (N − 1)Clim (MSDSD, Fano–

MSDD) and (κDF
U − κDF

L + 1)Clim = Clim (DF–MSDSD) examined candidates. In all cases, we

again considered the example of cyclic (B)DSTM with NT = 3, R = 2, NR = 1, N = 10 and

Bh,effT ∈ {0.003, 0.09}. The short vertical lines with markers indicate the average complexity

Csym of the detection schemes.

Fig. 5.31 shows results for MSDSD with FS, LD and BID and for DF–MSDSD with LD

inner decoding, when the ML–MSDD metric and cρ = ∞, i.e. ρinit → ∞, are used. One can

observe that for relatively slow fading (cf. left subplot with Bh,effT = 0.003) all algorithms

find very good first estimates and only minor gains are achieved if the decoder is granted more

decoding complexity. For MSDSD–FS and MSDSD–BID a very steep cliff occurs at Clim =

L = 64, because with ρinit →∞MSDSD–BID like MSDSD–FS examines all candidate branches

emanating from a considered node before the radius is updated for the first time. In faster fading
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Figure 5.31: Performance of MSDSD with various symbol–search strategies vs. maximal allowed

complexity per decoded symbol for different SNRs 10 log10(Eb/N0) and fading bandwidths

Bh,effT . Parameters: Cyclic (B)DSTM with NT = 3, R = 2, NR = 1, N = 10, cρ → ∞,

ML–MSDD metric. Vertical lines: average complexity Csym.

(cf. right subplot with Bh,effT = 0.09) the first estimate obtained by the (regular) MSDSD

is far from optimal. Here, both MSDSD–LD and MSDSD–BID do not suffer a noteworthy

performance degradation if the maximal complexity is limited to Clim = 103 . . . 104, with higher

values for higher SNR. For MSDSD–FS the behavior is very similar to that of MSDSD–LD

when Clim is multiplied by a factor of 40. For all three symbol–search algorithms the required

maximal complexity is higher by orders of magnitude than the average complexity Csym, which

is considered very inconvenient for practical implementation. DF–MSDSD–LD on the other

hand in all cases converges very quickly to its final solution. After only one examined candidate

per decoded symbol, DF–MSDSD–LD achieves practically the same power efficiency as regular

MSDSD. Further improvements are also realized quite quickly, so that the complexity can be

limited to values Clim ≈ Csym, which also lies well below the average complexity of the other

MSDSD algorithms considered here.
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Figure 5.32: Performance of MSDSD with various symbol–search strategies vs. maximal allowed

complexity per decoded symbol for different SNRs 10 log10(Eb/N0) and fading bandwidths

Bh,effT . Parameters: Cyclic (B)DSTM with NT = 3, R = 2, NR = 1, N = 10, cρ = 2,

ML–MSDD metric. Vertical lines: average complexity Csym.

Fig. 5.32 shows results for the same transmission scenario, but with cρ = 2, i.e. a finite

initial sphere radius ρ := ρinit = 2NNTNR. Here, the convergence of the tree–search in regular

MSDSD is accelerated significantly in rapid fading (right subplot). Now limitations of maximal

complexity to Clim = 300 . . . 600 are feasible for MSDSD–LD and MSDSD–BID. In the case of

DF–MSDSD–LD the performance–complexity tradeoff for cρ →∞ was already so good that the

use of a finite threshold actually slightly increases the SER when limiting the complexity per

symbol to very small values. The same effect can be observed for MSDSD–FS and MSDSD–LD

in the case of very slow fading (left subplot).

If, in addition the Fano–type metric is used, the speed of convergence of all algorithms

is increased further, as can be seen in Fig. 5.33. However, this improvement is only minor,

showing that the importance of the Fano–type metric lies mainly in the reduction of the average

complexity when the maximal complexity is unlimited. For comparison, we also included Fano–
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Figure 5.33: Performance of various MSDD implementations vs. maximal allowed complexity

per decoded symbol for different SNRs 10 log10(Eb/N0) and fading bandwidths Bh,effT . Pa-

rameters: Cyclic (B)DSTM with NT = 3, R = 2, NR = 1, N = 10, cρ = 2, Fano–type metric.

Vertical lines: average complexity Csym.

MSDD–LD. The SER when the maximal complexity is limited consistently lies above that of

MSDSD–LD–FM. Especially in slow–fading scenarios (left subplot) Fano–MSDD–LD requires

a significantly larger value of Clim than MSDSD–LD–FM, although the average complexities

are practically identical. Interestingly, the SERs of MSDSD–LD–FM, MSDSD–BID–FM and

Fano–MSDD–LD all converge around Clim ≈ 100. While the average complexities of these

algorithms are now of the same order of magnitude as that of DF–MSDSD–LD, the latter is

still superior by far with respect to required Clim.

Having clearly identified DF–MSDSD–LD as most promising algorithm for power–efficient

tree–search–based noncoherent detection we want to investigate the influence of the length of

the observation window on the performance–complexity tradeoff. To this end Fig. 5.34 shows

the SER for DF–MSDSD–LD–FM with cρ = 2 and N ∈ {6, 10} as a function of the maximally

allowed complexity Clim per decoded symbol for the example of cyclic (B)DSTM with NT = 3,
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Figure 5.34: Performance of DF–MSDSD–LD–FM vs. maximal allowed complexity per decoded

symbol for different SNRs 10 log10(Eb/N0) and N . Parameters: Cyclic (B)DSTM with NT = 3,

R = 2, NR = 1, Bh,effT = 0.09, cρ = 2. Vertical lines: average complexity Csym.

R = 2, Bh,effT = 0.09, NR = 1.

One can observe that a larger N not only improves the power efficiency of the unlimited

tree search, but also leads to better performance for any value of Clim. The reason for this

is that the reference symbols Y DF,n, N − 1 ≤ n ≤ N , [cf (3.61)] computed from the N − 3

feedback symbols facilitate the inherent channel estimation on the remaining two positions

of the observation window. Despite common perception regarding MSDD we here observe

the effect that increasing the length N of the observation window not only leads to better

performance, but also to lower complexity, as both Csym and the required Clim are (slightly)

lower.
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Figure 5.35: Complexity of CG–MSDD vs. SNR 10 log10(Eb/N0) for N = 10 (left) and N = 20

(right), different values of Ñλ and DBPSK. For comparison: average (dash–dotted) and 0.1%–

complexity (dashed) of FP–MSDSD for Clarke’s fading model and different values of BhT .

5.5.3.2 CG–MSDD

Having illustrated the complexity of the various tree–search–based MSDD implementations in

the previous section, we now direct our attention at MSDD based on combinatorial geometry,

so–called CG–MSDD and compare its performance–complexity tradeoff to that of tree–search–

based MSDD.

Complexity vs. SNR: Figures 5.35 and 5.36 compare the computational complexity of

CG–MSDD according to (5.211) with those of FP–MSDSD and MSDSD (based on the A–

SpD), respectively, as function of SNR for DBPSK, N ∈ {10, 20}. In particular, the average

complexity Csym and the complexity that is exceeded by MSDSD in 0.1% of all blocks are plotted

for FP–MSDSD (Fig. 5.35) and MSDSD (Fig. 5.36). We observe that, if average complexity

of MSDSD is considered, CG–MSDD is superior only for relatively low SNR and slow fading,

where small values of Ñλ are sufficient to achieve low SERs (see Figs. 5.19 and 5.20). However,



CHAPTER 5. MSDD FOR FREQUENCY–NONSELECTIVE CHANNELS 164

0 10 20 30 40
10

0

10
1

10
2

10
3

10
4

10
5

 

 

0 10 20 30 40
10

0

10
1

10
2

10
3

10
4

10
5

C
sy

m
−→

10 log10(Eb/N0) −→

BhT =0.001
BhT =0.01
BhT =0.03
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Figure 5.36: Complexity of CG–MSDD vs. SNR 10 log10(Eb/N0) for N = 10 (left) and N = 20

(right), different values of Ñλ and DBPSK. For comparison: average (dash–dotted) and 0.1%–

complexity (dashed) of MSDSD for Clarke’s fading model and different values of BhT .

when the comparison is made with respect to the 0.1%–complexity of MSDSD, CG–MSDD

turns out to be a far more attractive alternative, as e.g. the 0.1%–complexity of FP–MSDSD

attains its maximum of
∑N−1

n=1 L
n for SNRs up to 10 log10(Eb/N0) = 10 dB, 15 dB, and 25 dB

for BhT = 0.03, 0.01, and 0.001, respectively. Such a comparison is particularly relevant for

practical implementations where the variable complexity and thus processing delay inherent to

sphere decoding is a problem.

Simulations for DF–MSDSD (not shown in the figure) revealed that in this transmission

scenario each run of DF–MSDSD with κDF
U = κDF

L = 1 and N ∈ {10, 20} can be terminated

without any performance penalty after only two examined candidates per decoded symbol, i.e.

both Csym and the 0.1%–complexity do not exceed two in this case. This clearly illustrates the

superiority of DF–MSDSD in cases where Ñλ > 1 is required for CG–MSDD.
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lines). For comparison: complexity of brute–force MSDD Cblo
bf = LN−1 (dash–dotted), and

C(Ñλ) according to (5.211) for fixed Ñλ = 1, 2, 3, . . . (dotted).

Asymptotic Complexity vs. N : Finally, we consider the asymptotic complexity of

CG–MSDD as N grows large. Figure 5.37 shows the average complexity as function of N for

CG–MSDD with rank mismatch, where Ñλ is chosen such that the error floor of the PEP for

the dominant error event lies below 10−4. Also plotted is the complexity Cblo
bf for brute–force

MSDD. It can be seen that the required value of Ñλ —depending on the fading bandwidth

BhT— increases with N , which means that complexity is exponential in N . On the other

hand, this exponential growth is much smaller than that for brute–force MSDD or FP–MSDSD

in the block–fading channel. Thus, CG–MSDD has an asymptotic advantage over FP–MSDSD

and it can be expected that the same holds when compared to MSDSD.
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5.A Derivations and Proofs

5.A.1 Derivation of Eq. (5.10)

In this appendix, we show that ψhh[κ, i1, i2, j1, j2] = ψTx[i1, i2]ψ
Rx[j1, j2]ψ

t[κ]. Using (5.8) and

introducing for notational simplicity A
△
=
√

ΨTx and B
△
=
√

ΨRx
∗

we can write:

ψhh[κ, i1, i2, j1, j2]
△
= E

{
hi1,j2 [k + κ]h∗i2,j2

[k]
}

(5.222)

= E
{
Ai1,:W [k + κ](Bj1,:)

HBj2,:W
H[k](Ai2,:)

H
}

(5.223)

= Ai1,:

NR∑

x=1

NR∑

y=1

b∗j1,xbj2,yE
{
W :,x[k + κ]W H

:,y[k]
}

(Ai2,:)
H. (5.224)

Exploiting the fact that the elements of W [k] are iid with temporal correlation ψt[κ]:

= Ai1,:(Ai2,:)
H

NR∑

x=1

b∗j1,xbj2,xψ
t[κ] (5.225)

= Ai1,:(Ai2,:)
HB∗

j1,:(Bj2,:)
Tψt[κ] (5.226)

△
= ψTx[i1, i2]ψ

Rx[j1, j2]ψ
t[κ] (5.227)

with ψTx[i, j] and ψRx[i, j] denoting the elements in the ith row and jth column of ΨTx = AAH

and ΨRx = (BBH)T, respectively.

5.A.2 Derivation of Eqs. (5.69)–(5.71)

In order to prove that {xi,j , yi,j} are iid pairs of correlated zero–mean complex Gaussian random

variables with variances and covariance as given in (5.69)–(5.71) we recall that xi,j and yi,j are

the elements in the ith row and jth column of
∑N

µ=1,µ 6=nm
∗
µ,nEn,µ and F n as defined in (5.64)

and (5.63), respectively. Consequently, we have

[x1,1, x2,1, . . . , xN,1, x1,2, . . . , xN,N ]H = vec

{
N∑

µ=1,µ 6=n

m∗
µ,nEn,µ

}

(5.228)

[y1,1, y2,1, . . . , yN,1, y1,2, . . . , yN,N ]H = vec {F n} . (5.229)

Due to the definitions of En,µ and F n in (5.64) and (5.63) it is clear that xi,j and yi,j are

zero–mean complex Gaussian random variables.
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5.A.2.1 Variance σ2
x

To show that the xi,j are mutually independent with equal variance we write with (5.64)

E






vec

{
N∑

µ=1,µ 6=n

m∗
µ,nEn,µ

}[

vec

{
N∑

µ=1,µ 6=n

m∗
µ,nEn,µ

}]H





(5.230)

=

N∑

µ1=1,µ1 6=n

m∗
µ1,n

N∑

µ2=1,µ2 6=n

mµ2,n

(

INR
⊗
((

Q
(
l, l̂
))H

SnS
H

µ1

))

(5.231)

· E
{

vec {Rµ1} vec {Rµ2}H
}(

INR
⊗
(

Sµ2S
H

nQ
(
l, l̂
)))

.

Since the channel coefficients are spatially uncorrelated so are the elements of Rµ. Exploiting

that both Sµ, 1 ≤ µ ≤ N , and Q
(
l, l̂
)

are unitary, and introducing the nth unit vector en we

can write

= INTNR

N∑

µ1=1,µ1 6=n

m∗
µ1,n

N∑

µ2=1,µ2 6=n

mµ2,n

(
ψt

µ1,µ2
+ δ [µ1 − µ2] σ

2
n

)
(5.232)

= INTNR
(M :,n − enmn,n)H

(
Ψt + σ2

nIN

)
(M :,n − enmn,n) . (5.233)

Recalling that M =
(
Ψt + σ2

nIN

)−1
[cf. (5.25)] we obtain

= INTNR
(M :,n − enmn,n)H

(
en −mn,n

(
Ψt

:,n + σ2
nen

))
(5.234)

= INTNR
mn,n

(
mn,n

(
ψt

n,n + σ2
n

)
− 1
)
, (5.235)

(en: nth unit vector, δ [i− j]: Kronecker–δ function which returns 1 if i = j and 0 otherwise).

Thus, with ψt
n,n = 1 and (5.228) we obtain the desired result that the xi,j are iid with variance

σ2
x = mn,n(mn,n(1 + σ2

n)− 1).

5.A.2.2 Variance σ2
y

With (5.229), (5.63), the absence of spatial correlation in the channel and unitary Q
(
l, l̂
)

and

Sn we quickly find that

E
{
yyH

}
=
(

INR
⊗
(
Q
(
l, l̂
))H
)

E
{

vec {Rn} vec {Rn}H
}(

INR
⊗Q

(
l, l̂
))

(5.236)

= INTNR
(1 + σ2

n), (5.237)

proving that the yi,j are mutually independent with equal variance σ2
y = 1 + σ2

n.
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5.A.2.3 Covariance µxy

Similar to the above proofs, we can write

E
{
xyH

}
=

N∑

µ=1,µ 6=n

m∗
µ,n

(

INR
⊗
((

Q
(
l, l̂
))H

SnSH

µ

))

E
{

vec {Rµ} vec {Rn}H
}(

INR
⊗Q

(
l, l̂
))

(5.238)

= INTNR

(
Ψt

:,n + σ2
nen

)∗
(Mn,: − enmn,n)∗ (5.239)

= INTNR

(
1−mn,n

(
1 + σ2

n

))
, (5.240)

i.e. µxy = 1−mn,n (1 + σ2
n), which concludes the proof.

5.A.3 Derivation of Eq. (5.88)

It follows from (5.85) and
√

1 + 1/x ≍ 1+1/(2x), x→∞, that in the limit of infinite (effective)

SNR

v1,i ≍
1

|Θi|2ρeff

, [σ2
n, ρeff ]→ [0,∞] (5.241)

v2,i ≍ 1, [σ2
n, ρeff ]→ [0,∞]. (5.242)

Hence, the characteristic function Φ∆(v) [cf. (5.331)] of ∆ has one pole at v = j of multiplicity

NTNR and NΘ poles at v = −j/(|Θi|2ρeff) of multiplicities li, 1 ≤ i ≤ NΘ, and the expression

for the PEP simplifies to

PEP ≍ −Res
v=j

{

1

v

1

(v − j)NTNR

NΘ∏

i=1

(
v1,i

v + jv1,i

)li
}

, [σ2
n, ρeff ]→ [0,∞]. (5.243)

The remainder of the proof is done in analogy to that of the general error–probability result

presented in Appendix 5.B based on repeated application of (5.333)–(5.334) with definitions

P (v)
△
=

1

(v − j)NTNR

NΘ∏

i=1

(
v1,i

v + jv1,i

)li

(5.244)

Q(n)(v)
△
=

NΘ∏

i=n

(
v1,i

v + jv1,i

)li

, 1 ≤ n ≤ NΘ − 1, (5.245)

and with
∏NΘ

i=1 |Θi|li =
∏NT

i=1 |θi

(
l, l̂
)
| leading directly to (5.88).

5.A.4 Derivation of Eq. (5.93)

In order to prove (5.93) we assume a suboptimal interpolation filter, prove that it fulfills (5.93)

and show that the optimal filter can not do better than (5.93).
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Let en denote the interpolation error in the interpolation of
[
Hn

]

i,j
from

[
Hν

]

i,j
using a

filter with coefficients pn = [p1, . . . , pn−1, pn+1, . . . , pN ]T, i.e.

en
△
=
[
Hn

]

i,j
−

N∑

ν=1,ν 6=n

pν

[
Hν

]

i,j
. (5.246)

Then, it is well known from fundamentals of stochastic processes (cf. e.g. [Kay98]) that the

interpolation–error variance is given by

σ2
i,n

△
= E

{
|en|2

}
= T

∫ 1/(2T )

−1/(2T )

Ψt(f)P (f) df, (5.247)

where Ψt(f) denotes the PSD of the effective discrete–time fading process [cf. (5.27)] and

P (f)
△
=

∣
∣
∣
∣
∣
1−

N∑

ν=1,ν 6=n

pνe
j2πfT (n−ν)

∣
∣
∣
∣
∣

2

(5.248)

is the power transfer function of the filter p.

Recall that we are interested in the asymptotic behavior for very slow fading, i.e. fading

PSDs with very small bandwidths. Hence, in order to achieve a small interpolation error

variance σ2
i,n [cf. (5.247)] it appears reasonable to choose the interpolation coefficients such that

the minimal power of f in (a series expansion of) P (f) is maximized. Therefore, we use the

series expansion exp(x) =
∑∞

i=0 x
i/i! of the exponential function and write

P (f) =

∣
∣
∣
∣
∣
1−

N∑

ν=1,ν 6=n

∞∑

i=0

pν
(j2πfT (n− ν))i

i!

∣
∣
∣
∣
∣

2

(5.249)

=

∣
∣
∣
∣
∣
PN−2(f)−

N∑

ν=1,ν 6=n

∞∑

i=N−1

pν
(j2πfT (n− ν))i

i!

∣
∣
∣
∣
∣

2

, (5.250)

where

PN−2(f)
△
= 1−

N∑

ν=1,ν 6=n

N−2∑

i=0

pν
(j2πfT (n− ν))i

i!
. (5.251)

Following our above goal, we choose the coefficients in pn such that

PN−2(f) = 0 ∀f. (5.252)

Since PN−2(f) is a polynomial in f of degree N − 2, this can be achieved by choosing pn such

that all N − 1 coefficients of this polynomial are zero. I.e. pn is determined as solution of the
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((N − 1)× (N − 1))–dimensional system of equations












1 1 . . . 1 1 . . . 1

n− 1 n− 2 . . . 1 −1 . . . n−N
(n− 1)2 (n− 2)2 . . . 1 (−1)2 . . . (n−N)2

...
...

...
...

...
...

...

(n− 1)N−2 (n− 2)N−2 . . . 1 (−1)N−2 . . . (n−N)N−2












·

















p1

p2

...

pn−1

pn+1

...

pN

















=












1

0
...
...

0












(5.253)

Plugging this into (5.250) it is straightforward to see that in the limit of fT → 0

P (f) ≍ c0 · (fT )2(N−1), fT → 0, (5.254)

where

c0
△
=

∣
∣
∣
∣
∣

2π

Γ(N)

N∑

ν=1,ν 6=n

pν(n− ν)N−1

∣
∣
∣
∣
∣

2

. (5.255)

Provided that Ψt(f) = 0, for Bh,eff < |f | ≤ 1/(2T ) we therefore obtain

σ2
i,n ≍ c0T

∫ Bh,eff

−Bh,eff

Ψt(f) · (fT )2(N−1) df, Bh,effT → 0, (5.256)

which for PSDs that are bounded in the sense that

max
0≤f≤Bh,eff

{Ψt,n(f)} <∞, with Ψt,n(f)
△
= Ψt(f)Bh,effT (5.257)

is trivially upper bounded by

2c0
2N − 1

max
0≤f≤Bh,eff

{Ψt,n(f)}(Bh,effT )2(N−1). (5.258)

This result does apparently not apply to the interesting special case of Clarke’s fading model,

as the magnitude of its PSD is not bounded in the sense of (5.257), cf. (4.22). Here however,

the exact solution can be given in closed form as

T

∫ Bh,eff

−Bh,eff

Ψt(f) · (fT )2(N−1) df =
2T 2(N−1)

π

∫ Bh,eff

0

f 2(N−1)

√

B2
h,eff − f 2

df (5.259)

=
2T 2(N−1)

(2N − 1)π
B

2(N−1)
h,eff 2F1

(

N − 1

2
;
1

2
;N +

1

2
; 1

)

,(5.260)
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where 2F1(a, b, c, z) denotes the hypergeometric function, cf. e.g. [AS72, Ch. 15]. With Gauss’

hypergeometric theorem 2F1(a; b; c; 1) = Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

, σ2
i,n is for Clarke’s fading model asymp-

totically given by

σ2
i,n ≍

2c0〈N〉1/2

(2N − 1)
√
π
· (Bh,effT )2(N−1), Bh,effT → 0. (5.261)

As these results apply to a suboptimal filter, whose coefficients pn are chosen according to

(5.253), it is clear —by definition— that linear MMSE interpolation can not lead to higher

interpolation–error variances. At the same time, as the number of degrees of freedom in the

design of the filter is limited by the number N − 1 of coefficients pν , there can not be a filter

that achieves σ2
i,n ≍ c · (Bh,effT )x, Bh,effT → 0 with x > 2(N − 1).

Due to the relationship between MSDD and linear MMSE interpolation (cf. Section 2.4.2.1)

we therefore obtain in the limit of Bh,effT → 0

[(
Ψt
)−1
]

n,n
≍ c · (Bh,effT )−2(N−1), Bh,effT → 0, (5.262)

with some constant c, which concludes our proof of (5.93).

5.A.5 Derivation of Eq. (5.114)

Plugging the definitions of Ψr̄r̄|S̄ and F from (5.35) and (5.40), respectively, into expression

(5.44) for the characteristic function Φ∆(v) and making use of the identities det{Ia + AB} =

det{Ib + BA} and (IN ⊗ A)(IN ⊗ B) = IN ⊗ (AB), where a and b denote the numbers of

rows of A and B, respectively, and we can write

Φ∆(v) = det
{
INNTNR

− jvΨr̄r̄|S̄(INR
⊗ F )

}−1
(5.263)

= det
{

INNTNR
− jv

(
INR
⊗ S̄D,c

)
T c

(
INR
⊗ S̄H

D,c

)
(5.264)

·
[

INR
⊗
(

ˆ̄SD (M ⊗ INT
) ˆ̄S

H

D − S̄D (M ⊗ INT
) S̄H

D

)]}−1

= det
{

INNTNR
− jvT c

[

INR
⊗
(

S̄H

D,c
ˆ̄SD (M ⊗ INT

) ˆ̄S
H

DS̄D,c

−S̄H

D,cS̄D (M ⊗ INT
) S̄H

DS̄D,c

)]}−1

. (5.265)

If we further introduce

P
△
= S̄H

DS̄D,c (5.266)

and exploit that S̄D is unitary, we obtain

Φ∆(v) = det
{

INNTNR
− jvT c

[

INR
⊗
(

P HS̄H

D
ˆ̄SD (M ⊗ INT

) ˆ̄S
H

DS̄DP − P H (M ⊗ INT
) P
)]}−1

.

(5.267)
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From this, one can see that the characteristic function Φ∆(v) of the metric difference between

S̄ and ˆ̄S and through (5.46) also the PEP
(
S̄ → ˆ̄S

)
depends on S̄ and ˆ̄S only through the

matrix

T c

(

INR
⊗
(

P H

(

S̄H

D
ˆ̄SD (M ⊗ INT

) ˆ̄S
H

DS̄D − (M ⊗ INT
)
)

P
))

(5.268)

as stated in (5.114).

5.A.6 Proof of Eq. (5.208)

In this appendix, we prove (5.208) by showing that for DSTM group codes

1 ≤ lim
N→∞

C

Cas

≤ 1 + εas, (5.269)

with Cas given in (5.208) and some arbitrarily small positive constant εas. At this, it is intuitively

convenient, to regard Z̄n as defined in (5.182) as a sequence of ñ−1 random matrices uniformly

iid over the signal constellation V and Cblo
n /Lñ−1 as the expectation of Pr

(
dn

( ˜̄Sn

)
≤ ρ | S̄n

)

with respect to Z̄n, i.e.

Cblo
n = EZ̄n

{

Pr
(
dn

( ˜̄Sn

)
≤ ρ | S̄n

)}

Lñ−1. (5.270)

For the proof, we make use of the method of “types” [CT91].

A type qZ̄n
(or empirical probability distribution) of Z̄n ∈ V ñ−1 is defined as an L–

dimensional vector whose lth component is given by qZ̄n,l = P (V (l)|Z̄n)/(ñ − 1), where

P (V (l)|Z̄n) denotes the number of occurrences of the symbol V (l) as submatrices in Z̄n. The

set of all Z̄n of a particular type qZ̄n
= q is referred to as “type class” and denoted by

T (n)
q

△
=
{
Z̄n ∈ V ñ−1

∣
∣ qZ̄n

= q
}
. (5.271)

Let us further define the “strongly typical set” [CT91]

A(n)
µas

△
=
{

Z̄n ∈ V ñ−1
∣
∣
∣

∣
∣qZ̄n,l − pl

∣
∣ <

µas

L
, l ∈ {1, . . . , L}

}

, (5.272)

where p = 1L,1/L denotes the true distribution of the elements of V (or “typical type” of Z̄n)

and µas is an usually arbitrarily small positive constant which specifies how “typical” a Z̄n has

to be to be admitted to the strongly typical set. Further, let

Q(n) △
=

{
qZ̄n

∣
∣ Z̄n ∈ V ñ−1

}
, (5.273)

Q(n)
µas

△
=

{

qZ̄n

∣
∣
∣ Z̄n ∈ A(n)

µas

}

, (5.274)

denote the set of all types qZ̄n
and the set of the different types of Z̄n that belong to the

strongly typical set A(n)
µas

, respectively. Finally, let us with (5.207) introduce for convenience

α(n)
q

△
= Pr

(

||H||2 − 1

ñ2
||ΞnH||2 ≤ σ2

n(ρ/ñ−NTNR)

)

with Z̄n ∈ T (n)
q , (5.275)
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which due to ||ΞnH||2 ≤ ||Ξn||2 · ||H||2 can be upper bounded by

α(n)
q ≤ Pr

(

||H||2 ≤ σ2
n(ρ/ñ−NTNR)

1− ||Ξn||2 /ñ2

)

. (5.276)

For Ξn as defined in (5.188) we have for any q,

lim
ñ→∞

Ξn/ñ = lim
ñ→∞

1

ñ

(

INT
+

L∑

l=1

ql(ñ− 1)V (l)

)

=

L∑

l=1

(ql − pl)V
(l), (5.277)

where we used
∑L

l=1 V (l) = 0, and in particular limñ→∞ Ξn/ñ = 0 for q = p. Plugging this

into (5.276) and recalling that the norm ||H||2 is a χ2
(
NTNR, 2NTNR

)
random variable, as the

elements of H are iid Nc

(
0, 1
)

random variables, we obtain

lim
ñ→∞

γ (NTNR, σ
2
n(ρ/ñ−NTNR))

Γ(NTNR)
= limñ→∞ α

(n)
p (5.278)

≤ limñ→∞ α
(n)
q ≤ lim

ñ→∞

γ

(

NTNR,
σ2

n(ρ/ñ−NTNR)

1−||∑L
l=1(ql−pl)V

(l)||2
)

Γ(NTNR)
.

With this and (5.208) we can write

lim
N→∞

Cblo

Cas

=
L− 1

L
lim

N→∞

Cblo

α
(1)
p LN−1

(5.279)

and we will in the following prove (5.204) with Cas as defined in (5.208) by deriving bounds on

limN→∞Cblo/(α
(1)
p LN−1).

Remark: Note that the “typical” sequences Z̄n are not those few that represent strongly

correlated pairs
{ ˜̄Sn, S̄n

}
, i.e. for which ||Ξn|| is large, but those that correspond to the vast

majority of ˜̄Sn that are not correlated with S̄n. Since MSDD is essentially an estimator–

correlator structure [Kai60] it is intuitively reasonable that these candidates are unlikely to

become the ML solution, i.e. to lie inside a sphere of given radius with higher probability than

other “untypical” ˜̄Sn that are strongly correlated with S̄n. This fact is expressed by (5.278).
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Lower Bound: Using the definition of types we can write

lim inf
N→∞

Cblo

α
(1)
p LN−1

= lim inf
N→∞

∑N−1
n=1

∑

Z̄n∈T
(n)

q ,∀q∈Q(n) |T (n)
q |Pr

(
dn

( ˜̄Sn

)
≤ ρ | S̄n

)

α
(1)
p LN−1

(5.280)

≥ lim inf
N→∞

∑N−1
n=1

∑

Z̄n∈T
(n)

q ,∀q∈Q(n) |T (n)
q |Pr

(
d1

( ˜̄S
)
≤ ρ | S̄

)

α
(1)
p LN−1

(5.281)

≥ lim inf
N→∞

∑N−1
n=1

∑

∀q∈Q(n) |T (n)
q |α(1)

q

α
(1)
p LN−1

(5.282)

≥ lim inf
N→∞

∑N−1
n=1

∑

∀q∈Q(n) |T (n)
q |

LN−1
(5.283)

= lim inf
N→∞

N−1∑

n=1

L−n+1 (5.284)

=
L

L− 1

△
= BL . (5.285)

where we used (i) the fact that Pr
(
dn

( ˜̄Sn

)
≤ ρ | S̄n

)
≥ Pr

(
d1

( ˜̄S
)
≤ ρ | S̄

)
, ∀ ˜̄S, S̄ ∈ VN and

the corresponding ˜̄Sn, S̄n, 1 ≤ n ≤ N − 1 to obtain (5.281), (ii) the relations (5.207), (5.275)

and (5.276) to get to (5.282), (iii) (5.278) for writing (5.283), (iv) the identity
∑

∀q∈Q(n) |T (n)
q | =

LN−n in (5.284), and the fact that the limit is (5.284) is well–known to exist.

Upper Bound: We distinguish between ñ for 1 ≤ n ≤ N/2 where (5.207) is valid and for

N/2 + 1 ≤ n ≤ N − 1, where we use a simple upper bound on Pr
(
dn

( ˜̄Sn

)
≤ ρ | S̄n

)
. At this,

the choice of the value N/2 is rather arbitrary.

For 1 ≤ n ≤ N/2, i.e. N →∞ implies ñ→∞, we can write with (5.275)

lim sup
N→∞

Cblo
n

α
(1)
p LN−1

= lim sup
N→∞

∑

∀q∈Q(n)

α
(n)
q

α
(1)
p

|T (n)
q |L−N+1 (5.286)

= lim sup
N→∞






∑

∀q∈Q
(n)
µas

α
(n)
q

α
(1)
p

|T (n)
q |




·



1 +

∑

∀q 6∈Q
(n)
µas
α

(n)
q |T (n)

q |
∑

∀q∈Q
(n)
µas
α

(n)
q |T (n)

q |



L−N+1 (5.287)

≤ lim sup
N→∞

∣
∣
∣A

(n)
µas

∣
∣
∣ max

q∈Q
(n)
µas

{

α
(n)
q

α
(1)
p

}

1 +

∑

∀q 6∈Q
(n)
µas
α

(n)
q 2(ñ−1)H(q)

α
(n)
p ñ−L2(ñ−1)H(p)



L−N+1 (5.288)

≤ lim sup
N→∞

max
q∈Q

(n)
µas

{

α
(n)
q

α
(1)
p

}



1 + ñL

∑

∀q 6∈Q
(n)
µas

α
(n)
q

α
(n)
p

2−(ñ−1)(H(p)−H(q))




L

−n+1 (5.289)

= lim sup
N→∞

max
q∈Q

(n)
µas

{

α
(n)
q

α
(1)
p

}

L−n+1, (5.290)

where we used [CT91, Theorem 12.1.3], which states that the size of a type class T (n)
q is

bounded by ñ−L2(ñ−1)H(q) ≤ |T (n)
q | ≤ 2(ñ−1)H(q) with the entropy H(q)

△
= −∑L

l=1 ql log2(ql) of
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a memoryless source whose distribution is given by the type or empirical probability distribution

q, to get to (5.288). To obtain (5.289) we used the trivial upper bound |A(n)
µas
| ≤ Lñ−1. The

second addend in the squared brackets in (5.289) tends to zero as ñ → ∞, because (i) 1 <

α
(n)
q /α

(n)
p < 1/α

(n)
p [cf. (5.278)], (ii) H(q) < H(p), ∀q 6∈ Q(n)

µas
, 1 ≤ n ≤ N − 1, for any

arbitrarily small positive constant µas, and (iii) the number of different types q is according to

[CT91, Theorem 12.1.1] at most polynomial in ñ. With (5.278) we therefore obtain

lim sup
N→∞

Cblo
n

α
(1)
p LN−1

≤ lim sup
N→∞

γ
(
NTNR, σ

2
n(ρ/ñ−NTNR)β(n)

)

γ (NTNR, σ2
n(ρ/N −NTNR))

· L−n+1, 1 ≤ n ≤ N/2, (5.291)

where

β(n) △
= max

q∈Q
(n)
µas









1−
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

L∑

l=1

(ql − pl)V
(l)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2




−1




. (5.292)

Note that, since |ql − pl| < µas/L, ∀q ∈ Q(n)
µas

, β(n) can by choice of µas be brought arbitrarily

close to 1, regardless of ñ.

For N/2 + 1 ≤ n ≤ N − 1 we use the trivial upper bound Pr
(
dn

( ˜̄Sn

)
≤ ρ | S̄n

)
≤ 1,

∀Z̄n ∈ V ñ−1, i.e.

lim sup
N→∞

Cblo
n

α
(1)
p LN−1

≤ lim sup
N→∞

Γ(NTNR)

γ(NTNR, σ2
n(ρ/N −NTNR))

· L−n+1, N/2 + 1 ≤ n ≤ N − 1.

(5.293)

We thus have

lim sup
N→∞

Cblo

α
(1)
p LN−1

≤ lim sup
N→∞

BU(N) , (5.294)

where

BU(N)
△
=

N/2
∑

n=1

γ(NTNR, σ
2
n(ρ/ñ−NTNR)β(n))

γ(NTNR, σ2
n(ρ/N−NTNR))

L−n+1

︸ ︷︷ ︸

△
=BU,1(N)

+
N−1∑

n=N/2+1

Γ(NTNR)

γ(NTNR, σ2
n(ρ/N−NTNR))

L−n+1

︸ ︷︷ ︸

△
=BU,2(N)

.

(5.295)

Let us first consider the term BU,1(N). Using the series expansion of the incomplete Gamma

function

γ(N, x) =
xN

N

(

1 +

∞∑

k=1

N + 1

N + k + 1

(−x)k

k!

)

(5.296)

we obtain with β(n) ≥ 1

γ(NTNR, σ
2
n(ρ/ñ−NTNR)β(n))

γ(NTNR, σ2
n(ρ/N −NTNR))

≤
(

(ρ/ñ−NTNR)β(n)

ρ/N −NTNR

)NTNR

, (5.297)
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which is increasingly tight for small arguments of the incomplete Gamma function. With

(5.297), ρ = (1 + ερ)NNTNR and

εas
△
= max

n∈{1,... ,N/2}
{β(n)} − 1 (5.298)

we can upper bound BU,1(N) via

BU,1(N)

(1 + εas)NTNR
≤

N/2
∑

n=1

(
ρ/ñ−NTNR

ρ/N −NTNR

)NTNR

L−n+1 (5.299)

=

N/2
∑

n=1

(

1 +

NTNR∑

k=1

(
NTNR

k

)

·
(

ρ(n− 1)

(ρ−NNTNR)ñ

)k
)

L−n+1 (5.300)

=
L(1− L−N/2)

L− 1
+

NTNR∑

k=1

(
NTNR

k

)

·
(

1 +
1

ερ

)k N/2
∑

n=1

(
n− 1

N − n+ 1

)k

L−n+1 .

(5.301)

In the limit N →∞ the first term in (5.301) converges to L/(L− 1) while the second vanishes,

as

lim
N→∞

N/2−1
∑

n=1

(
n

N − n

)k

L−n ≤ lim
N→∞

1

(N/2 + 1)k

(
L

L− 1

)k+1 k∑

i=1

c
(k)
i L−i = 0, k ∈ IN, (5.302)

where we used (cf. Appendix 5.A.7)

∞∑

n=1

nkxn = (1− x)−(k+1)

k∑

i=1

c
(k)
i xi, |x| < 1, k ∈ IN, (5.303)

with coefficients c
(k)
i that can be computed recursively via

c
(k)
1 = c

(k)
k = 1 (5.304)

c
(k)
i = ic

(k−1)
i + (k − i+ 1)c

(k−1)
i−1 . (5.305)

With ρ = (1 + ερ)NNTNR the second addend BU,2(N) of the upper bound (5.295) can be

rewritten as

BU,2(N) =
Γ(NTNR)

γ(NTNR, σ2
nερNTNR)

· L
−N/2+1 − L−N+2

L− 1
. (5.306)

Since the first factor in (5.306) is independent of N , BU,2(N) becomes zero for N →∞.

Hence, the upper bound (5.294) converges as

lim sup
N→∞

BU(N) = lim sup
N→∞

BU,1(N) + lim sup
N→∞

BU,2(N) =
L

L− 1
(1 + εas)

NTNR , (5.307)

which together with the lower bound (5.285) and εas arbitrarily small establishes (5.204) as

desired.
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5.A.7 Proof of Eq. (5.303)

In this appendix, we prove that

∞∑

n=1

nkxn = (1− x)−(k+1)

k∑

i=1

c
(k)
i xi, |x| < 1, k ∈ IN (5.308)

with coefficients c
(k)
i that can be computed recursively via

c
(k)
1 = c

(k−1)
1 = 1 (5.309)

c
(k)
k = c

(k−1)
k = 1 (5.310)

c
(k)
i = ic

(k−1)
i + (k − i+ 1)c

(k−1)
i−1 . (5.311)

To this end we deploy the technique of complete induction, i.e. we show that (5.308) holds

for k = 1, k = 2 and that it holds for k if it holds for k − 1. At this, we repeatedly make use

of the relations

∞∑

n=1

nkxn = x
d

dx

∞∑

n=1

nk−1xn. (5.312)

For k = 1 we can write

∞∑

n=1

nxn = x
d

dx

∞∑

n=1

xn (5.313)

= x
d

dx

x

1− x (5.314)

=
x

(1− x)2
, (5.315)

which satisfies (5.308)–(5.311).

For k = 2 we obtain using the result for k = 1

∞∑

n=1

n2xn = x
d

dx

∞∑

n=1

nxn (5.316)

= x
d

dx

x

(1− x)2
(5.317)

=
x+ x2

(1− x)3
(5.318)

which also satisfies (5.308)–(5.311).



CHAPTER 5. MSDD FOR FREQUENCY–NONSELECTIVE CHANNELS 178

Finally, for arbitrary k we can write
∞∑

n=1

nkxn = x
d

dx

∞∑

n=1

nk−1xn (5.319)

= x
d

dx

[

(1− x)−k

k−1∑

i=1

c
(k−1)
i xi

]

(5.320)

= x(1− x)−2k

[

(1− x)k

k−1∑

i=1

c
(k−1)
i ixi−1 + (1− x)k−1

k−1∑

i=1

c
(k−1)
i xik

]

(5.321)

= x(1− x)−(k+1)

[
k−1∑

i=1

c
(k−1)
i ixi−1 −

k−1∑

i=1

c
(k−1)
i ixi +

k−1∑

i=1

c
(k−1)
i kxi

]

(5.322)

= (1− x)−(k+1)

[

xc
(k−1)
1 + xkc

(k−1)
k−1 +

k−1∑

i=2

(

ic
(k−1)
i (k − i+ 1)c

(k−1)
i−1

)

xi

]

.(5.323)

A comparison with (5.308)–(5.311) shows that (5.308)–(5.311) hold for any k if (5.308)–(5.311)

hold for k − 1 as assumed in (5.320). This concludes our proof.

5.B Error–Probability Result for Multichannel Signal-

ing

In multichannel communication systems the metric difference between a pair of transmit sym-

bols can often be expressed as a special case of the quadratic form

∆
△
=

NΘ∑

i=1

Re

{

Θi

li∑

j=1

xi,jy
∗
i,j

}

, (5.324)

where {xi,j, yi,j}, 1 ≤ j ≤ li, 1 ≤ i ≤ NΘ, are iid pairs of correlated zero–mean complex

Gaussian random variables with

E
{[

xi,j

yi,j

]

·
[
x∗i,j y

∗
i,j

]

}

△
=

[

σ2
x µxy

µ∗
xy σ2

y

]

(5.325)

and Θi, 1 ≤ i ≤ NΘ, are distinct constants usually related in some way to the difference between

two elements of the signal constellation (see below). The li, 1 ≤ i ≤ NΘ, may or may not be

equal.

Theorem: Given a random variable ∆ as defined in (5.324) the probability that ∆ < 0 can

be given in closed form as

Pr(∆ < 0) =

NΘ∑

i=1

(−1)

∑NΘ
j=1
j 6=i

lj
li−1∑

k1,0=0

k1,0∑

k1,1=0

. . .

k1,NΘ−1
∑

k1,NΘ
=0

k2,0∑

k2,1=0

. . .

k1,i−2∑

k2,i−1=0

k1,i−1∑

k2,i+1=0

. . .

k1,NΘ−2
∑

k2,NΘ−1=0

(5.326)

v
k1,0

2,i

(
li+k1,i−1−k1,i−1

li−1

)
vli

1,i

(v2,i + v1,i)li+k1,i−1−k1,i

NΘ∏

j=1
j 6=i

(
lj+k1,j−1−k1,j−1

lj−1

)(
lj+k2,j−1−k2,j−1

lj−1

)
(v1,jv2,j)

lj

(v2,i + v1,j)lj+k1,j−1−k1,j(v2,i − v2,j)lj+k2,j−1−k2,j
,
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where

v1,i
△
=

√

w2
i +

1

|Θi|2(σ2
xσ

2
y − |µxy|2)

− wi (5.327)

v2,i
△
=

√

w2
i +

1

|Θi|2(σ2
xσ

2
y − |µxy|2)

+ wi (5.328)

wi
△
=

Re {µxyΘ
∗
i }

|Θi|2(σ2
xσ

2
y − |µxy|2)

(5.329)

and k2,NΘ
≡ 0, k2,0 ≡ k1,NΘ

, k2,i ≡ k2,i−1.

Proof: The probability Pr(∆ < 0) can be computed via (cf. e.g. [Pro00])

Pr(∆ < 0) = −
NΘ∑

i=1

Res
v=jv+

i

{
Φ∆(v)

v

}

(5.330)

where Φ∆(v)
△
= E

{
ejv∆

}
and jv+

i , 1 ≤ i ≤ NΘ, denote the characteristic function of ∆ and the

poles of Φ∆(v) on the positive imaginary axis of the complex v–plane, respectively. As ∆ is a

sum of iid contributions δi,j
△
= Re

{
Θixi,jy

∗
i,j

}
, 1 ≤ i ≤ NΘ, 1 ≤ j ≤ li, in pairs {xi,j , yi,j} of

correlated Nc(0, σ
2
x) and Nc

(
0, σ2

y

)
with µxy

△
= E

{
xi,jy

∗
i,j

}
, we can write

Φ∆(v) =

NΘ∏

i=1

(v1,iv2,i)
li

(v + jv1,i)li(v − jv2,i)li
, (5.331)

with v1|2,i and wi as defined in (5.327)–(5.329), respectively. Note, that both v1,i and v2,i are

positive regardless of Re {µxyΘ
∗
i } as |µxy|2 ≤ σ2

xσ
2
y. Hence, poles jv2,i and −jv1,i lie on the

positive and negative imaginary axis, respectively, and the residues in (5.330) correspond to

poles jv+
i = jv2,i.

The proof essentially makes use of the following relations:

• First, if ṽ is a pole of multiplicity l of a function f(v), then the residue corresponding to

that pole can be computed via

Res
v=ṽ
{f(v)} = lim

v→ṽ

1

Γ(l)

(
d

dv

)l−1
[
(v − ṽ)lf(v)

]
. (5.332)

• Second, the Leibniz rule also known as generalized product rule states that
(

d

dv

)x

[f(v)g(v)] =

x∑

k=0

(
x

k

)(
d

dv

)x−k

f(v)

(
d

dv

)k

g(v). (5.333)

• Third, the following simple derivative is used repeatedly
(

d

dv

)x

(v − ṽ)−l = (−1)x〈l〉x (v − ṽ)−l−x , (5.334)

where 〈l〉x △
= Γ(l + x)/Γ(l) denotes the so–called Pochhammer symbol.
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Since Φ∆(v) is a rational function in v the proof boils down to computing the residues via

Res
v=jv2,i

{
Φ∆(v)

v

}

= R(jv2,i)

NΘ∏

j=1

(v1,jv2,j)
lj . (5.335)

where

R(v)
△
=

(
d

dv

)li−1(
1

v
P (v)

)

(5.336)

P (v)
△
=




(v + jv1,i)

li

NΘ∏

j=1
j 6=i

(v + jv1,j)
lj(v − jv2,j)

lj






−1

. (5.337)

Using the Leibniz rule (5.333) and (5.334) R(v) can be written as

R(v) =

li−1∑

k1,0=0

(
li − 1

k1,0

)
(−1)li−1−k1,0Γ(li − k1,0)

vli−k1,0

(
d

dv

)k1,0

P (v). (5.338)

Assuming for the moment that 1 < i < NΘ, we successively chop factors off R(v) defining a

sequence of functions

Q(1,1)(v)
△
= P (v)(v + jv1,1)

l1 , (5.339)

Q(1,2)(v)
△
= Q(1,1)(v)(v + jv1,2)

l2 , (5.340)
...

Q(1,NΘ)(v)
△
= Q(1,NΘ−1)(v)(v + jv1,NΘ

)lNΘ , (5.341)

Q(2,1)(v)
△
= Q(1,NΘ)(v)(v − jv2,1)

l1, (5.342)

Q(2,2)(v)
△
= Q(2,1)(v)(v − jv2,2)

l2 , (5.343)
...

Q(2,i−1)(v)
△
= Q(2,i−2)(v)(v − jv2,i−1)

li−1 , (5.344)

Q(2,i+1)(v)
△
= Q(2,i−1)(v)(v − jv2,i+1)

li+1 , (5.345)

Q(2,i+2)(v)
△
= Q(2,i+1)(v)(v − jv2,i+1)

li+1 , (5.346)
...

Q(2,NΘ−1)(v)
△
= Q(2,NΘ−2)(v)(v − jv2,NΘ−1)

lNΘ−1 =
1

(v − jv2,NΘ
)lNΘ

, (5.347)

and repeatedly apply (5.333) and (5.334) to compute e.g.

(
d

dv

)k1,0

P (v) =

(
d

dv

)k1,0
(

1

(v + jv1,1)l1
Q(1,1)(v)

)

(5.348)

=

k1,0∑

k1,1=0

(
k1,0

k1,1

)
(−1)k1,0−k1,1〈l1〉k1,0−k1,1

(v + jv1,1)l1+k1,0−k1,1

(
d

dv

)k1,1

Q(1,1)(v) (5.349)
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as in (5.338). Having done this for Q(1,1)(v) through Q(2,NΘ−1)(v) we eventually obtain

R(v) = (−1)li−1

li−1∑

k1,0=0

k1,0∑

k1,1=0

. . .

k1,NΘ−1
∑

k1,NΘ
=0

k1,NΘ∑

k2,1=0

k2,1∑

k2,2=0

. . .

k2,i−2∑

k2,i−1=0

k2,i−1∑

k2,i+1=0

. . .

k2,NΘ−2
∑

k2,NΘ−1=0

(5.350)

Γ(li−k1,0)

Γ(li)

(
li−1
k1,0

)

vli−k1,0

NΘ∏

j=1

(
k1,j−1

k1,j

)
〈lj〉k1,j−1−k1,j

(v + jv1,j)lj+k1,j−1−k1,j

NΘ−1∏

j=1
j 6=i

(
k2,j−1

k2,j

)
〈lj〉k2,j−1−k2,j

(v − jv2,j)lj+k2,j−1−k2,j
〈lNΘ
〉k2,NΘ−1

where we introduced indeces k2,0 ≡ k1,NΘ
and k2,i ≡ k2,i−1 to simplify the notation. Combining

the various Γ–functions, binomial coefficients and Pochhammer symbols, introducing k2,NΘ
≡ 0

for notational brevity, and plugging the results into (5.335) and (5.330) leads to (5.326).

The proof that (5.326) also holds for i ∈ {1, NΘ} follows in complete analogy to the above

proof for 1 < i < NΘ and is omitted for brevity.

We would like to point out that this general result extends upon related ones that can

be found in the literature, e.g. [SA01, Pro00, SA98], as the coefficients Θi, 1 ≤ i ≤ NΘ, are

distinct and may also have distinct “multiplicities” li. It is therefore possible to use (5.326) to

e.g. analyze the performance of DSTM, whereas the results in [SA01, Pro00, SA98] are only

applicable to DPSK.

5.C Block Differential Space–Time Modulation

In [DB06] Du et al. proposed to permute the individual PSK elements of blocks of cyclic DSTM

transmit symbols S[k] prior to transmission in order to avoid the increase in effective fading

bandwidth incured by regular DSTM.

More specifically, at the transmitter side, DSTM transmit symbols are grouped in blocks of

LBDSTM symbols S[k+κ], 0 ≤ κ ≤ LBDSTM−1. Instead of transmitting S[k] followed by S[k+1]

and so on in a row–by–row fashion, i.e. due to the diagonal structure of S[k] using alternating

transmit antennas, they suggested to first transmit s1,1[k+κ] from antenna 1 during modulation

intervals kNT + κ + 1, 0 ≤ κ ≤ LBDSTM − 1, followed by s2,2[k + κ] from antenna 2 during

modulation intervals kNT +κ+1+LBDSTM, 0 ≤ κ ≤ LBDSTM−1, and so on. After transmission

of sNT,NT
[k+ κ] from antenna NT during modulation intervals kNT + κ+ 1 +LBDSTM(NT− 1),

0 ≤ κ ≤ LBDSTM−1, the next block of LBDSTM DSTM symbols is processed in the same fashion.

This is advantageous in two ways:

• The artificial channel decorrelation incured by regular DSTM is avoided, as symbols si,i[k]

and si,i[k+ 1] that are successive in the direction of differential encoding are transmitted

from the same antenna in two successive modulation intervals.
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• In the case of spatially correlated channels BDSTM leads to a decorrelation of subchan-

nels, over which the different elements of the same S[k] are transmitted, due to the tem-

poral fading. Provided that LBDSTM is chosen sufficiently large, full transmit diversity

order NT can still be achieved even in a spatially fully correlated channel.



Chapter 6

Multiple–Symbol Differential Detection

for Frequency–Selective Channels

Orthogonal frequency division multiplexing (OFDM) is a popular modulation technique for

transmission over frequency–selective channels and has been adopted in several standards such

as, e.g. for digital audio and video broadcasting, wireless local and metropolitan area net-

works, and ultra–wideband radio. OFDM decomposes a both time– and frequency–selective

channel into a number of parallel time–selective but frequency–nonselective channels, which fa-

cilitates low–complexity channel equalization, cf. e.g. [WE71, Bin90, BKS92]. The combination

of OFDM with antenna arrays at both transmitter and receiver, which is usually referred to as

MIMO–OFDM, has recently received considerable attention as a means to improve bandwidth

and/or power efficiency, cf. e.g. [SBM+04] for an overview.

Especially in strongly frequency–selective channels and mobile environments with relatively

fast changes of channel conditions, the problem of acquiring accurate channel state information

is aggravated compared to the frequency–nonselective case considered in Chapter 5. In such

scenarios, differential encoding and detection without the need for CSI becomes an even more

attractive alternative.

In this chapter, we therefore consider the application of the computationally efficient im-

plementations of MSDD and its variants presented in Chapters 2 and 3 to MIMO–OFDM. In

addition, we propose a new signal–allocation scheme for MIMO–OFDM based on cyclic DSTM

constellations, that leads to improved power efficiencies of the noncoherent detectors compared

to existing schemes. A detailed outline of this chapter is given in the next section following the

discussion of related literature.

183
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6.1 Related Literature and Chapter Outline

Differential encoding in frequency direction and CDD, which relies on negligible variations of

the channel frequency response at adjacent subchannels, is considered in e.g. [ER93]. However,

as for the frequency–nonselective channel CDD suffers from a high error floor already in mod-

erately frequency–selective channels. Luise et al. [LRV98] devised an improved detector, which

overcomes the error–floor problem by exploiting the subchannel frequency correlation and using

the Viterbi algorithm with predictor–based branch metrics. Subsequently, we refer to detec-

tion algorithms that exploit correlation only in time or frequency direction as “1–dimensional”

(1D) detection schemes. Since, in general, OFDM subchannels are correlated in both time

and frequency direction, a number of 2–dimensional (2D) detection schemes exploiting time

and frequency correlation have also been proposed in the literature. In [FS99], the authors

present a coherent detection scheme for differential encoding in time using a decision–aided 2D

channel estimation algorithm, i.e. no pilots are needed. Haas et al. [HK03] proposed to take

“detours” in the 2D neighborhood (in time and frequency) of an actual differential encoding

step such that phase errors along individual steps are minimized. This approach was shown

to yield moderate gains over CDD for differential encoding in time direction. Chang and Su

[CS04] proposed a 2D regression model for the channel and applied a branch–and–bound tech-

nique to perform 1D data detection without CSI in time direction for a subset of subchannels

and a subsequent decision–aided channel estimation with 2D interpolation. Cui et al. [CT04b]

investigated both decision–feedback and branch–and–bound data detection methods exploiting

subchannel correlations in frequency direction only.

All the mentioned work considered transmission with only a single transmit antenna. For

MIMO–OFDM, which employs antenna arrays at the transmitter, the concept of space–frequency

or space–time–frequency coding has attracted considerable attention in the literature, cf. e.g.

[LXG02, BBP03, SSL05]. Space–frequency codes for noncoherent detection have been de-

signed and analyzed by Borgmann et al. [BB05]. While utilizing full space and frequency

(multipath) diversity of the frequency–selective MIMO channel, detection complexity is ex-

ponential in the number of OFDM subchannels for fixed rate. Another approach pursued in

e.g. [LS01, DADSC02, WY02, LHC04, SL05, CLL05, HSL05c] is to employ differential mod-

ulation with matrix constellations developed for differential space–time modulation (DSTM)

and single–carrier MIMO transmission (e.g. [TJ00, Hug00a, HS00]). In [LS01, WY02, LHC04,

SL05, HSL05c], diagonal constellations ([Hug00a, HS00]) are considered and, similar to space–

frequency codes for coherent detection with CSI, signal components of the DSTM code matrices

are allocated to different transmit antennas and OFDM subchannels to accomplish diversity

gains. This is referred to as differential modulation diversity (DMD) in [LS01], which also
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introduced DFDD into OFDM to avoid the error floor of CDD.1 Signal allocation can be fur-

ther optimized for the case of known channel power–delay profile (PDP) at the transmitter as

discussed in [LHC04, SL05, HSL05c] (see also [SSL05]). Whereas diversity and optimal coding

advantage are considered in [LHC04, HSL05c], performance improvement of CDD is achieved

in [SL05] by creating a smooth logical channel for differential encoding in frequency direction.

A comparison of optimal and (pseudo–)random signal allocation can be found in [HSL05c].

Extending the work in [DADSC02], Chiang et al. [CLL05] studied orthogonal constellations

([TJ00]) in conjunction with CDD, DFDD, and prediction–based Viterbi decoding for MIMO–

OFDM. New matrix constellations tailored for differential MIMO–OFDM under the assumption

of time–invariant channels were designed by Ma et al. [MTL05] and by Li [Li03].

In this chapter, we study MIMO–OFDM transmission with differential encoding and we con-

sider the general case in which differential encoding can be performed in time or in frequency

direction. To exploit frequency diversity while minimizing transmission delay and detrimen-

tal effects of temporal channel variations on performance, all components of a matrix signal

are allocated within one OFDM symbol, which is similar to [LS01, LHC04, SL05, HSL05c] and

unlike the allocation in [WY02, MTL05]. We refer to the resulting scheme as differential space–

frequency modulation (DSFM), a term coined by Su and Liu [SL05] in analogy to DSTM. As

[LS01, WY02, LHC04, SL05, HSL05c], we consider diagonal constellations. Cyclic (diagonal)

constellations are particularly suited for DSFM, since (i) no minimal channel coherence band-

width is required, which would be the case for non–diagonal constellation (cf. e.g. [CLL05]),

and (ii) spatial and spectral channels can be traded freely and thus, different numbers of trans-

mit antennas can be accommodated with the same constellation, without changing bandwidth

efficiency.

In section 6.4, we devise a novel signal–allocation scheme for DSFM, which unifies DMD of

[LS01] and ideas from BDSTM proposed for frequency–flat MIMO fading channels in [LWZD04]

(cf. also Appendix 5.C) and which is applicable for differential encoding in either time or fre-

quency. Under the reasonable assumption that the PDP is not known at the transmitter, it

optimally combines the goals of (i) minimally correlated subchannels used for different compo-

nents of one space–frequency matrix signal, (ii) maximally correlated subchannels experienced

by matrix signals successive in differential encoding, and (iii) maximal correlation between

subchannels comprised by the 2D observation window (see below) for detection without CSI.

Thereby, full space–frequency diversity and optimal coding gain are not our primary concern, as

(i) this usually requires some knowledge of the PDP at the transmitter, (ii) signal constellations

may become extremely large, which increases detection complexity, and (iii) asymptotic perfor-

mance gains through increasing diversity beyond a certain point are not visible for practically

1The assignment of signal components to subcarriers is also often referred to as subcarrier grouping [LXG01].
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relevant error rates.

Different from the aforementioned literature, we consider ML MSDD for DSFM. Inspired by

2D channel estimation schemes in e.g. [HKR97, LCS98, CS02, SBM+04], we propose ML MSDD

with a 2D “observation window”, which, different from previous work for noncoherent MIMO–

OFDM, is capable of exploiting channel correlation in both time and frequency direction. We

develop a representation of the detection problem that is amenable to the tree–search methods

developed in Chapter 3. This is done in Section 6.5.

Performance and complexity of the proposed transmission scheme are analyzed by means

of analytical methods and numerical examples in Sections 6.6 and 6.7, respectively.

6.2 Time– and Frequency–Selective Channel Model

In the case of a time and frequency–selective channel, the continuous–time input delay–spread

function describing the spatial subchannel between transmit antenna i and receive antenna j

is given by

h̃i,j(t, τ) =

Lh∑

l=1

h
(l)
i,j(t)δ(τ − τl) (6.1)

where the Lh propagation paths are assumed to be iid and specified by their complex amplitudes

h
(l)
i,j(t) and delays τl, 1 ≤ l ≤ Lh, cf. Chapter 4. As shown in Chapter 4 the discrete–time received

signal at antenna j and discrete time kT reads

rj[k
′] =

NT∑

i=1

∞∑

k=0

xi[k]

Lh∑

l=1

h
(l)
i,j(kT + τ1)hG((k′ − k)T + τ1 − τl) + nj[k

′], (6.2)

where hG(t) combines the effects of transmit pulse shaping and receiver matched filtering

[cf. (4.15)] and nj[k
′] represents AWGN.

6.3 OFDM Transmission

For a brief recapitulation of MIMO–OFDM we consider Fig. 6.1, which illustrates the MIMO–

OFDM transmission system withNT transmit andNR receive antennas in the ECB domain. In a

way that is to be specified in Section 6.4 information is mapped to symbols xf
i[m, k], 1 ≤ i ≤ NT,

1 ≤ m ≤ D, k ∈ IN. Following an inverse discrete Fourier transform (IDFT) of blocks of D

symbols xf
i[m, k], 1 ≤ m ≤ D, resulting in blocks of D symbols xp

i [m, k], 1 ≤ m ≤ D, the Dg

symbols xp
i [m, k], D−Dg +1 ≤ m ≤ D, are added as so–called “cyclic prefix” prior to parallel–

to–serial (P/S) conversion to symbols xi[k
′]. After pulse shaping with hT(t) these symbols are

transmitted successively at rate 1/T over the frequency–selective subchannel h̃i,j(t, τ) to be re-
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Figure 6.1: MIMO–OFDM transmission system.
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ceived by the jth receive antenna. Following matched filtering with hR(t) [cf. (4.2)] and sampling

at rate 1/T the resulting discrete time signal rj[k
′] is serial–to–parallel (S/P) converted and the

received symbols corresponding to the cyclic prefix are discarded leaving blocks of D received

symbols rp
j [m, k], 1 ≤ m ≤ D. These are fed into a discrete Fourier transform (DFT) yielding

symbols rf
j[m, k], 1 ≤ m ≤ D.

In order to clearly show the inner workings of OFDM, we progress through Fig. 6.1 from

the center to its edges building upon (6.2). Based on the cyclic prefix insertion and the P/S

conversion at the transmitter such that xi[(k− 1)(D+Dg) +m] = xp
i [m, k] the received signal

rj[k
′] reads

rj[k
′] =

NT∑

i=1

∞∑

k̃=0

D∑

m̃=−Dg+1

xp
i [mod(m̃,D) , k̃]

Lh∑

l=1

h
(l)
i,j(k

′T + τ1) (6.3)

hG(k′T + τ1 − τl − ((k̃ − 1)(D +Dg) + m̃+Dg − 1)T ) + nj[k
′].

With the S/P conversion and the cyclic prefix removal at the receiver and Tf = (D +Dg)T we

obtain

rp
j [m, k] = rj[(k − 1)(D +Dg) +m+Dg − 1] (6.4)

=

NT∑

i=1

∞∑

k̃=0

D∑

m̃=−Dg+1

xp
i [mod(m̃,D) , k̃]

Lh∑

l=1

h
(l)
i,j((k − 1)Tf + (m+Dg − 1)T + τ1)

hG((k − k̃)Tf + (m− m̃)T + τ1 − τl) + nj[m, k], (6.5)

where nj[m, k]
△
= nj[(k − 1)(D + Dg) + m + Dg − 1]. If the cyclic prefix is chosen properly

such that thG
+ τLh

− τ1 < DgT , where thG
denotes the period of time, where hG(t) deviates

noticeably form zero, blocks [xp
i [1, k], . . . , x

p
i [D, k]] and [xp

i [1, k + 1], . . . , xp
i [D, k + 1]] can be

avoided effectively. Consequently, we can discard the sum over k̃ from (6.5) fixing k̃ = k which

yields

rp
j [m, k] =

NT∑

i=1

D∑

m̃=−Dg+1

xp
i [mod(m̃,D) , k] (6.6)

Lh∑

l=1

h
(l)
i,j((k − 1)Tf + (m+Dg − 1)T + τ1)hG((m− m̃)T + τ1 − τl) + nj[m, k],

i.e. blocks of D received symbols rp
j [m, k], 1 ≤ m ≤ D, can be processed independently at the

receiver.

For OFDM to function optimally it is required that the channel does not change significantly

during the transmission of an OFDM frame, i.e. h̃i,j(t, τ) ≈ h̃i,j(t + ∆t, τ), 0 ≤ ∆t ≤ Tf ,

Tf
△
= (D +Dg)T . In this case we can apply the simplification

h
(l)
i,j((k − 1)Tf + (m+Dg − 1)T + τ1) = h

(l)
i,j(kTf + τ1) (6.7)
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in (6.6) and see that the influence of the dispersive channel on the transmit signal becomes

that of a cyclic convolution, i.e. we can write2







rp
j [1, k]

...

rp
j [D, k]







=

NT∑

i=1

Hcirc
i,j







xp
i [1, k]

...

xp
i [D, k]







+







nj[1, k]
...

nj[D, k]






, (6.8)

with the circulant matrices

Hcirc
i,j

△
=

[
Lh∑

l=1

h
(l)
i,j(kTf + τ1)hG(mod(m− m̃,D)T + τ1 − τl)

]

m=1,... ,D
m̃=1,... ,D

. (6.9)

As the DFT matrix D
△
= D−1/2

[
exp
(
j2π

D
mn
)]

m=1,... ,D
n=1,... ,D

is the modal matrix of any circulant

matrix, cf. e.g. [Gra71], we obtain







rf
j[1, k]

...

rf
j[D, k]







=

NT∑

i=1

DHcirc
i,j DH







xf
i[1, k]

...

xf
i[D, k]







+ D







nj[1, k]
...

nj[D, k]







(6.10)

=

NT∑

i=1







λHcirc
i,j ,1 0

. . .

0 λHcirc
i,j ,D













xf
i[1, k]

...

xf
i[D, k]







+







n′
j[1, k]

...

n′
j[D, k]






, (6.11)

where the n′
j[m, k] have the same distribution as the nj[m, k] as D is unitary, and the eigenvalues

λHcirc
i,j ,m, 1 ≤ m ≤ D, are equal to the DFT of the sequence

Lh∑

l=1

h
(l)
i,j(kTf + τ1)hG(mT + τ1 − τl) = h̃i,j(kTf + τ1, t+ τ1) ∗ hG(t)

∣
∣
∣
t=mT

, 0 ≤ m ≤ D − 1.

(6.12)

Since the frequency response
∣
∣F
{
hG(t)

}
(f)
∣
∣ of hG(t) is practically flat in the frequency range

of interest, we can neglect it and obtain the eigenvalues λHcirc
i,j ,m, 1 ≤ m ≤ D, as spectrum of

the input delay–spread function h̃i,j(t, τ) [cf. (4.7)] and write

rf
j[m, k] =

NT∑

i=1

gi,j [m, k]x
f
i[m, k] + n′

j[m, k], (6.13)

2If the coefficients h
(l)
i,j(t) change too rapidly, the modeling as cyclic convolution incurs a mismatch, which can

be included in the equivalent channel model as an additional AWGN term, cf. [RS95]. However, for BhTf ≤ 0.01

the variance of this additional noise term is sufficiently low to be negligible in transmission scenarios of interest

and we shall restrict our attention to this case.
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where

gi,j [m, k]
△
= cn F

{

h̃i,j(kTf + τ1, t+ τ1)
}

(f)
∣
∣
∣
f=m∆f

=

Lh∑

l=1

cnh
(l)
i,j(kTf + τ1)e

−j2πm∆f(τl−τ1), 3

(6.14)

∆f
△
= 1/(DT ) and the constant cn contains all influence of hG(t) compensating for channel

attenuation such that E
{
|gi,j[m, k]|2

}
= 1 . In consequence, the overall discrete–time channel

model is again non–amplifying and the average power of the lth normalized channel coefficient

cnh
(l)
i,j(t) is given by

σ2
l

△
=

Et
{∣
∣
∣h

(l)
i,j(t)

∣
∣
∣

2
}

Lh∑

µ=1

Et
{∣
∣
∣h

(µ)
i,j (t)

∣
∣
∣

2
} . (6.15)

Apparently, the symbols xf
i[m, k], 1 ≤ m ≤ D, are transmitted over D parallel discrete–

time frequency–nonselective NT×NR MIMO channels as illustrated in Fig. 6.2. As the channel

coefficient of the mth effective (narrowband) frequency–nonselective channel is given by the

spectrum of the (wideband) frequency–selective channel at frequency f = m∆f , OFDM is

often referred to as “discrete multitone” (DMT) or “multicarrier system” and the D parallel

subchannels as “subcarriers” spaced at frequency increments —or “intercarrier spacing”— ∆f .

For our considerations in this chapter, (6.13) shall serve as channel model. Again, the

correlation of the channels is of interest for what follows. It is shown in Appendix 6.A.1

that the autocorrelation of gi,j[m, k] is separable into a spectral, a temporal, and two spatial

correlation functions

ψgg[µ, κ, i1, j1, i2, j2]
△
= E

{
gi1,j1 [m+ µ, k + κ]g∗i2,j2

[m, k]
}

(6.16)

= ψf [µ]ψ̃t[κ]ψTx[i1, i2]ψ
Rx[j1, j2], (6.17)

where the spectral correlation is determined by the PDP of the frequency–selective channel as

ψf [µ]
△
=

Lh∑

l=1

σ2
l e

−j2πµ∆f(τl−τ1) , (6.18)

and the temporal correlation is given by

ψ̃t[κ]
△
= ψt(κTf). (6.19)

with ψt(t) as defined in (4.14). The spatial correlation coefficients ψTx[i, j] and ψRx[i, j] are the

elements in the ith row and jth column of ΨTx and ΨRx [cf. (4.9) and (4.10)], respectively.

3The Fourier transform is formed with respect to the second argument of h̃i,j(t, τ).
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Figure 6.2: Discrete–time model of MIMO–OFDM transmission system.

6.4 Differential Space–Frequency Modulation (DSFM)

In this section, we describe DSFM to achieve spatial and spectral diversity and facilitate non-

coherent detection (discussed in Section 6.5) based on cyclic DSTM constellations (cf. Sec-

tion 2.1.1.1). To this end, we briefly present the two fundamental options for differential

encoding in time and frequency direction in Section 6.4.1. The proposed signal–allocation (SA)

scheme, i.e. the allocation of elements of the diagonal signal matrix to OFDM subchannels and

transmit antennas, is developed in Section 6.4.2.

Here, we consider the general case, where cyclic DSTM codes of (NS × NS)–dimensional

matrices with

NS = NTNB, NB ∈ IN (6.20)

are used for transmission from theNT transmit antennas and allocate the individual components

of each matrix symbol to different antennas and subcarriers such that we do not only exploit

spatial diversity but also spectral diversity.
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6.4.1 Differential Encoding

We denote diagonal data matrices chosen from V [cf. (2.2)] by V [m, k], where m and k are

discrete–frequency and –time indices as described in detail in Section 6.4.2. In DSFM, diagonal

transmit matrices S[m, k] can be obtained either by differential encoding in time direction, i.e.

time–differential SFM (T–DSFM), via

S[m, k + 1] = V [m, k]S[m, k], S[m, 1] = INS
. (6.21)

or by differential encoding in frequency direction, i.e. frequency–differential SFM (F–DSFM),

via

S[m+ 1, k] = V [m, k]S[m, k], S[1, k] = INS
. (6.22)

F–DSFM is preferable for burst transmission or if detection delay is to be minimized. T–

DSFM is advantageous for continuous transmission since (i) the share of reference symbols

S[m, 1] tends to zero with increasing transmission time and (ii) OFDM is usually employed for

channels that exhibit significant frequency but moderate time selectivity.

6.4.2 Signal Allocation (SA) Scheme

There are several possibilities to use the three dimensions space, frequency, and time to trans-

mit the two–dimensional matrices S[m, k]. In general, frequency and time are interchangeable,

but to minimize the transmission delay, space–frequency modulation, i.e. DSFM, is consid-

ered in this paper, and all elements of S[m, k] are allocated to subcarriers of the kth OFDM

frame. Hence, assuming D active subcarriers and D/NS being integer, the D/NS symbols

[S[1, k],S[2, k], . . . ,S[D/NS, k]] are transmitted during the kth OFDM frame using NT trans-

mit antennas. In order to exploit full spatial diversity, the elements of each S[m, k] are trans-

mitted from all NT antennas over NB = NS/NT subcarriers per antenna. To maximize spectral

diversity under the constraint that the PDP is not known at the transmitter, these NB subcar-

riers should be spread uniformly over the used frequency band, i.e. spaced by D/NB subcarri-

ers. This is similar to the subchannel grouping proposed for space–time–frequency coding in

[LXG02] also adopted in [LS01, LHC04, MTL05, Li03].

Finally, differential encoding needs to be taken into account. In the case of T–DSFM (see

(6.21)), the proposed scheme ensures that the time between receiving two consecutive transmit

symbols S[m, k] and S[m, k + 1] is the minimum of one OFDM frame. As long as si,i[m, k]

is assigned to the same OFDM subcarrier and antenna as si,i[m, k + 1], the “effective” fading

bandwidth attains its minimum of BhTf . In the case of F–DSFM [cf. (6.22)], the spectral

correlation between the subcarriers allocated to si,i[m, k] and si,i[m+1, k] should be maximized
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Figure 6.3: Illustration of transmission of one OFDM frame for example of NT = 2, NB = 2 and NR = 1.
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for all 1 ≤ i ≤ NS. As, different from [SL05], the channel PDP is assumed to be unknown at

the transmitter, the most reasonable choice is to transmit [si,i[1, k], . . . , si,i[D/NS, k]] over a set

of D/NS contiguous subcarriers. This can be regarded as an application of the idea underlying

BDSTM (cf. Appendix 5.C) to DSFM.

In summary, according to the proposed SA scheme the diagonal elements si,i[m, k], 1 ≤ i ≤
NS, of S[m, k], 1 ≤ m ≤ D/NS, k ∈ IN, are transmitted from antenna [mod(i− 1, NT)+1] over

subcarrier [(i−1)D/NS +m] of the kth OFDM frame, while all other antennas do not transmit

over this subcarrier. In the notation of Section 6.3 we consequently have

xf
mod(i−1,NT)+1[(i− 1)D/NS +m, k] = si,i[m, k]. (6.23)

Fig. 6.3 illustrates the SA scheme for the example of NT = 2 and NB = 2, NS = NTNB = 4,

and NR = 1.

Compared to related SA schemes based on diagonal–matrix signals this scheme is advanta-

geous in that neither the effective fading bandwidth (DMD of [LS01]) nor the spectral spacing

between subcarriers allocated to si,i[m, k] and si,i[m + 1, k] ([WY02, HSL05b, MTL05]) are

increased beyond their respective minima BhTf and 1.

We note that this SA scheme is used both for T– and F–DSFM and that DR and (D− 1)R

bits per OFDM frame can be transmitted regardless of the parameter NB with T–DSFM and

F–DSFM, respectively.

6.5 MSDD with 2–Dimensional Observation Window

In MSDD, N received symbols are jointly processed. Usually, the observation window extends

in the direction of differential encoding, i.e. time for single–carrier transmission as considered

in Chapter 5. A straightforward adaption of MSDD to OFDM–based transmission is to apply

a 1D observation window which extends either in time or in frequency direction depending on

the direction of differential encoding. Such an approach has been chosen for DFDD and Viterbi

detection in [LS01, CLL05].

Inspired by 2D channel estimation schemes for OFDM and MIMO–OFDM, cf. e.g. [HKR97,

LCS98, CS02, SBM+04], in this section we present MSDD with a 2D observation window. We

first derive the ML metric for 2D MSDD in Section 6.5.1 and then transform it into a form

amenable to the tree–search decoding methods of Chapter 3 in Section 6.5.2. Implementation

details and variants of 2D MSDD are then discussed in Section 6.5.3.
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6.5.1 Maximum–Likelihood Metric for 2D MSDD

From the channel model (6.14) and according to the SA scheme devised in Section 6.4.2, we

define the (NS ×NR)–dimensional MIMO–OFDM channel matrix

G[m, k]
△
=

[

gmod(i−1,NT)+1,j [(i− 1)D/NS +m, k]

]

i=1,... ,NS
j=1,... ,NR

, 1 ≤ m ≤ D/NS, k ∈ IN. (6.24)

The (NS ×NR)–dimensional receive matrix R[m, k] corresponding to transmission of a space–

frequency symbol S[m, k] is given by

R[m, k] = S[m, k]G[m, k] + N [m, k], (6.25)

where N [m, k] is an NS×NR AWGN matrix. For illustration see Fig. 6.3. We note that (6.25)

applies to both F–DSFM and T–DSFM.

The 2D MSDD observation window extends over

N = Nf ·Nt (6.26)

received matrices R[mi, kj ], 1 ≤ i ≤ Nf , 1 ≤ j ≤ Nt, i.e. Nf and Nt are the dimensions

of the window in frequency and time, respectively. For T–DSFM we need kj+1 = kj + 1,

1 ≤ j ≤ Nt − 1, and for F–DSFM we have mi+1 = mi + 1, 1 ≤ i ≤ Nf − 1, to allow for

detection of the data symbols V [m, k] according to (6.21) and (6.22), respectively. There are

no restrictions on the indices mi for T–DSFM and kj for F–DSFM and appropriate choices

will be discussed in Section 6.5.3.2. The corresponding received symbols can be collected in an

(NfNS ×NtNR)–dimensional matrix4

R
△
=
[

R[mi, kj ]
]

i=1,... ,Nf
j=1,... ,Nt

, (6.27)

where “ ” emphasizes the rectangular extension of the 2D observation window in time and

frequency. In order to formulate the ML–MSDD decision rule it is convenient to block–vectorize

the received matrix R and therewith the transmission model. To this end, we define the

(NfNtNS ×NR)–dimensional matrices

X‖ △
=
[
XH[m1, k1] , XH[m2, k1] , . . . , XH[mNf

, kNt ]
]H

, X ∈ {R,G,N} , (6.28)

the (NfNtNS ×NS)–dimensional matrix

S‖ △
=
[
SH[m1, k1] , SH[m2, k1] , . . . , SH[mNf

, kNt ]
]H

, (6.29)

4For the sake of readability, we omit the dependence of 2D MSDD block matrices of index sets {m1, . . . ,mNf
}

and {k1, . . . , kNt
}.
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and its (NfNtNS ×NfNtNS)–dimensional block–diagonal version

S
‖
D

△
= diag{S[m1, k1],S[m2, k1], . . . ,S[mNf

, kNt ]} , (6.30)

where “‖” indicates that matrices X[mi, kj ] are stacked first according to the frequency index

mi and then according to the time index kj (another possibility is discussed below). We can

then rewrite (6.25) to match the 2D–MSDD observation window as

R‖ = S
‖
DG‖ + N ‖ . (6.31)

Since given S‖, R‖ is zero–mean complex Gaussian distributed with autocorrelation matrix

Ψ
‖
RR|S

△
= E

{

R‖
(

R‖
)H
∣
∣
∣
∣
S‖
}

= S
‖
DE
{

G‖
(

G‖
)

H
}(

S
‖
D

)H

+ E
{

N ‖
(

N ‖
)

H
}

, (6.32)

the 2D ML–MSDD decision rule reads

Ŝ
‖ = argmin

S‖

{

tr

{(

R‖
)H (

Ψ
‖
RR|S

)−1

R‖
}}

. (6.33)

It should be clear from the above that this decision rule applies to both T–DSFM and F–

DSFM. From Ŝ
‖ the Nf(Nt− 1) and (Nf − 1)Nt data–matrix estimates V̂ [m, k] are determined

using (6.21) and (6.22), respectively.

6.5.2 Tree–Search Algorithms for 2D MSDD

For a representation of (6.33) amenable to the application of tree–search algorithms as devel-

oped in Section 3.1, we make the assumption that the channel coefficients collected in G[m, k]

defined in (6.24) are mutually uncorrelated. We note that this is a fairly mild assumption,

since it only requires that (i) NB subchannels spaced by (D/NB)∆f are uncorrelated, i.e. the

channel coherence bandwidth is significantly less than (D/NB)∆f , and (ii) the minimal dis-

tance between different elements of the transmit or receive antenna array is greater than half

of the wavelength [SFGK00]. The effect of subcarrier and spatial correlation on performance

and detection complexity will be discussed in Section 6.7. Applying these assumptions, it is

shown in Appendix 6.A.2 that the autocorrelation matrix of G‖ can be written as

E
{

G‖
(

G‖
)

H
}

= NRΨ̃
t ⊗Ψf ⊗ INS

△
= NRΨ

‖
GG⊗ INS

, (6.34)

with time and frequency correlation matrices Ψ̃
t

and Ψf as defined in (6.73) and (6.74), re-

spectively. Taking further into account that the noise autocorrelation matrix is given by

E
{

N ‖
(

N ‖
)

H
}

= σ2
nNRINNS

, (6.35)
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one can see that the detection problem is of the same form as the one considered in Section 3,

and we can solve it by means of tree–search decoding based on

Ŝ
‖ = argmin

S‖







N∑

i=1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

N∑

j=i

R̆
H

i,jSj

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2





, (6.36)

where in analogy to the generic model used in Chapter 3 R̆i,j = c
‖
i,jRj and Rj and Sj denote the

jth (NS×NR)–dimensional and (NS×NS)–dimensional submatrices of R‖ and S‖, respectively.

The coefficients c
‖
i,j are the elements of the upper triangular matrix C‖ defined as Cholesky

factor of
(
Ψ

‖
GG + σ2

nIN

)−1
.

6.5.3 Implementation Aspects

Based on (6.36) all tree–search methods devised in Section 3.1 including Fano–type metric can

be readily applied here. Apart from this, some further “fine–tuning” due to the 2D structure of

the observation window of MSDD for MIMO–OFDM is possible and discussed in the following.

6.5.3.1 Sorting

In Section 6.5.1 we transformed the 2D into an equivalent 1D MSDD problem by stacking

the block–columns of R , i.e. sorting received matrices R[mi, kj ] first according to frequency

index mi and then according to time index kj. We could have also sorted the other way, i.e.

concatenating the block–rows of R , yielding

R= △
=
[
RH[m1, k1],R

H[m1, k2], . . . ,R
H[mNf

, kNt ]
]H
. (6.37)

With the corresponding definitions of S=, G=, and N=, this again leads to (6.36), but with

Rj and Sj denoting the jth (NS × NR)–dimensional and (NS × NS)–dimensional submatrices

of R= and S=, respectively, and correlation matrix

Ψ=
GG

△
= Ψf ⊗ Ψ̃

t
(6.38)

instead of Ψ
‖
GG. More generally, any block–vectorization of the matrices in R is possible, and

the respective 2D ML–MSDD minimization problems will yield the same solution.

Computational complexity of the tree–search algorithms applied to perform 2D MSDD,

on the other hand, may well depend on the sorting order. A tree–search algorithm is most

conveniently imagined as climbing up branches of the code tree as long as they appear promising,

thereby searching for the best branch of full length. Assume that at some point the decoder

makes a false tentative decision and from there on travels along an erroneous branch. It

will likely realize this mistake when it reaches a symbol that was transmitted over a channel
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strongly correlated with that where the error took place. Hence, in order to minimize the time

spent traversing erroneous paths and therewith complexity, sorting should be done such that

symbols transmitted over strongly correlated channels are arranged close to each other. We

note that this guideline for sorting is similar to the “sparsity index” criterion introduced in

[MGDC06, Section III-B]. It also suggests that detection based on R‖ or R= is preferable over

arbitrarily stacked matrices, since spectral (R‖) and temporal (R=) channel correlations are

best exploited (see also discussion below regarding observation window construction). We found

that for relevant channel and detection parameters (see Section 6.7), differences in complexity

when using R‖ and R= are negligible, and we therefore solely consider 2D MSDD based on R‖

in the following.

6.5.3.2 Observation Window Construction (OWC)

Let us introduce the variables p, 1 ≤ p ≤ D/(NSNf), and q ∈ IN to identify the position of the

Nf×Nt rectangular observation window in the frequency–time plane. The corresponding sets of

frequency and time indices are denoted as M(p) △
=
{
m

(p)
1 ,m

(p)
2 , . . . ,m

(p)
Nf

}
⊂ {1, 2, . . . , D/NS}

and K(q) △
=
{
k

(q)
1 , k

(q)
2 , . . . , k

(q)
Nt

}
⊂ IN. As stated in Section 6.5.1, the index sets in the direction

of differential encoding, i.e.M(p) for F–DSFM andK(q) for T–DSFM, must be sets of consecutive

integers. Furthermore, adjacent observation windows need to overlap by one index, i.e.m
(p+1)
1 =

m
(p)
Nf

for F–DSFM and k
(q+1)
1 = k

(q)
Nt

for T–DSFM.

What is not immediately clear is how the index sets perpendicular to the direction of

differential encoding, i.e.M(p) for T–DSFM and K(q) for F–DSFM, should be chosen. We note

that for T–DSFM the sets M(p) are disjoint and that the union ∪D/(NSNf)
p=1 M(p) is the set of

integers from 1 to D/NS. Similarly, K(q) are disjoint and ∪q∈INK(q) = IN in case of F–DSFM.

While an optimization with respect to error rate appears to be intractable, it is clear due to the

relation between MSDD and linear MMSE interpolation (cf. Section 2.4.2.1) that the channel

matrices G
[
m

(p)
i , k

(q)
j

]
captured in the observation window should be correlated to the largest

possible degree.

In the case of F–DSFM, minimizing detection delay would suggest to chose K(q) as sets

of consecutive integers as well. In practically relevant scenarios, this also coincides with the

choice for maximal correlation. Fig. 6.4 shows the temporal correlation ψ̃t[κ] (see Eq. (6.19))

for Clarke’s fading model with normalized fading bandwidths up to BhTf = 0.01. It can be

seen that for reasonable values of Nt, contiguous sequences of indices k
(q)
j , i.e. k

(q)
j+1 = k

(q)
j + 1,

1 ≤ j ≤ Nt − 1, maximize correlation and are thus optimal.

The same is true consideringM(p) for T–DSFM and certain commonly used channel models

such as the typical urban (TU) model [Eur01] and the model with exponential PDP with decay

parameter d = 1 (τl = lT , σ2
l ∝ e−l/d, l ∈ IN). This can be seen from Fig. 6.5, where the spectral
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Figure 6.4: Magnitude of temporal correlation function for Clarke’s fading model with various

values of BhTf .
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Figure 6.5: Magnitude of spectral correlation function for various PDPs, D = 192, and ∆f =

8 kHz.
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correlation ψf [µ] [cf. (6.18)] is plotted assuming D = 192 subcarriers and a subcarrier frequency

spacing of ∆f = 8 kHz as used for digital audio broadcasting (DAB) systems [Eur95]. Fig. 6.5

also shows ψf [µ] for the hilly terrain (HT) channel model [Eur01] and the two–ray (2–Ray)

channel with τ2− τ1 = 20µs. For these channels we observe a “strongly non–concave” behavior

of the spectral correlation function, which suggests that partitioning theD/NS frequency indices

into disjoint sets M(p) of non–consecutive integers is likely to improve the performance of T–

DSFM with 2D MSDD. A meaningful figure of merit for a set M(p) is the sum of spectral

correlations within the observation window,

µ
(
M(p)

) △
=

Nf∑

i=2

i−1∑

l=1

∣
∣
∣ψf
[

m
(p)
i −m(p)

l

]∣
∣
∣ , (6.39)

which should be maximized for each p. We therefore propose the following greedy–type algo-

rithm to construct the setsM(p).

Initialize I(0) = {1, . . . , D/NS}

for p = 1, . . . , D/(NSNf)

Pick m
(p)
1 ∈ I(p−1)

{

m
(p)
2 , . . . ,m

(p)
Nf

}

= argmax
{

m
(p)
2 ,... ,m

(p)
Nf

}

⊆I(p−1)\
{

m
(p)
1

}

{

µ
(

m
(p)
1 , . . . ,m

(p)
Nf

)}

M(p) =
{

m
(p)
1 , . . . ,m

(p)
Nf

}

I(p) = I(p−1)\M(p)

end

Remark: While the problem at hand is a kind of “traveling–salesman problem” [LLKS85]

whose criterion of optimality over all sets M(p) is difficult to grasp, this greedy algorithm

succeeds nicely in achieving near optimal average SER performance. The reason is that due

to the strong temporal correlation in the channel only very high spectral correlation helps to

improve the reliability of the decisions in the observation window. Hence, the greedy approach

of finding as many setsM(p) as possible with maximum µ and more or less “patching together

the leftovers” in a small number of sets is a very good solution with respect to average SER.

6.6 Performance Analysis

In this section, we derive expressions to analyze the SER performance of DSFM with 2D

ML–MSDD as presented above, and we illustrate their usefulness to guide the design of the

appropriate transmission parameters.
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The course of action in deriving the SER approximations is the same as the one used for

the analysis in the case of DSTM transmission over the frequency–nonselective channel, cf.

Section 5.4. I.e. first the pairwise error probability PEP
(
S‖ → Ŝ

‖) that Ŝ
‖ is detected while

S‖ was transmitted is considered. In the second step, we identify the dominant error events

and sum the corresponding PEPs to tightly approximate the average SER.

6.6.1 Pairwise Error Probabilities for Spatially Correlated Channel

6.6.1.1 (DF–)MSDD

Let us write the matrix channel model (6.31) in a vector format as

r̄′ △
= vec

{

R‖
}

=
(

INR
⊗ S

‖
D

)

vec
{

G‖
}

+ vec
{

N ‖
}

. (6.40)

With the help of Appendix 6.A.2 it is easy to see that the (NRNfNtNS×NRNfNtNS)–dimensional

autocorrelation matrix Ψr̄′r̄′|S‖ of r̄′ conditioned on S‖ is given by

Ψr̄′r̄′|S‖
△
= E

{

r̄′(r̄′)H

∣
∣
∣S

‖
}

(6.41)

=
(

INR
⊗ S

‖
D

)

·
(

Ψ̃
‖
GG + σ2

nINRNNS

)

·
(

INR
⊗ S

‖
D

)
H

, (6.42)

with Ψ̃
‖
GG from (6.77).

Introducing further the (N × N)–dimensional inverse correlation matrix of the channel–

plus–noise process as assumed by the receiver

M ′ △
=
(

Ψ
‖
GG + σ2

nIN

)−1

, (6.43)

with Ψ
‖
GG according to (6.34) and the (NfNtNS ×NfNtNS)–dimensional difference matrix

F ′ △
= Ŝ

‖
D (M ′ ⊗ INS

)
(

Ŝ
‖
D

)
H

− S
‖
D (M ′ ⊗ INS

)
(

S
‖
D

)
H

, (6.44)

we can express the difference ∆′ between the 2D ML–MSDD metrics [see (6.33)] for Ŝ
‖ and S‖

as

∆′ = (r̄′)H (INR
⊗ F ′) r̄′ . (6.45)

Apparently, the metric difference ∆′ is —as in Section 5.4.1— a Hermitian quadratic form in

zero–mean complex Gaussian random variables. Hence its characteristic function Φ∆′(v) reads

Φ∆′(v) =

NNSNR∏

i=1

(

1− jvλ
Ψ

r̄′r̄′|S‖(INR
⊗F ′),i

)−1

, (6.46)

and the PEP can be computed using the methods discussed in Section 5.4.1.

It is important to note that while the correlation matrix Ψ
‖
GG assuming uncorrelated ele-

ments in G[m, k] is used in the decision rule (6.33), the true channel correlation matrix Ψ̃
‖
GG

is applied in (6.46). Thus, the effect of metric mismatch due to the decoder’s assumption of no

correlation is captured by the PEP analysis.
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6.6.1.2 CDD and DFDD

Due to the close relation between CDD, DFDD and MSDD, the expressions derived above for

the PEPs of MSDD extend to CDD (N = 2) and DFDD as well.

6.6.1.3 (Differentially) Coherent Detection

In analogy to our considerations on the PEPs of coherent detection for the flat–fading channel

in Section 5.4.1.3 we can compute the PEPs of coherent detection based on the evaluation of

the characteristic function

Φ∆′
coh

(v) = det
{
INSNR

− jvΨz̄′z̄′|SF ′
coh

}−1
(6.47)

=

NSNR∏

j=1

(

1− jvλΨz̄′z̄′|SF ′
coh,j

)−1

, (6.48)

of the Hermitian quadratic form

∆′
coh = (z̄′)H (INR

⊗ F ′
coh) z̄′, (6.49)

with

z̄′ △
=

[

vec {G[m, k]}
vec {R[m, k]}

]

(6.50)

F ′
coh

△
=




0NS,NS

(

S[m, k]− Ŝ[m, k]
)H

S[m, k]− Ŝ[m, k] 0NS,NS



 (6.51)

and

Ψz̄′z̄′|S
△
= E

{
z̄′(z̄′)H | S[m, k]

}
(6.52)

=

[

ΨGG ΨGG

(
INR
⊗ SH[m, k]

)

(INR
⊗ S[m, k])ΨGG (INR

⊗ S[m, k])ΨGG

(
INR
⊗ SH[m, k]

)
+ σ2

nINSNR

]

.

Using the results of Appendix 6.A.2.1 it is straightforward to show that

ΨGG

△
= E

{

vec {G[m, k]} vec {G[m, k]}H
}

(6.53)

= ΨRx ⊗
(

Ψ̃
f
[0] ◦

(
1NB,NB

⊗ΨTx
))

(6.54)

(A ◦B: Hadamard (elementwise) product of matrices A and B) with ΨTx, ΨRx and Ψ̃
f
[m] as

defined in (4.9), (4.10) and (6.71), respectively
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6.6.2 Pairwise Error Probabilities for Spatially Uncorrelated Chan-

nel

From Eq. (6.25) one can see that the NS × NR equivalent MIMO channel over which matrix

symbols S[m, k] are transmitted is accurately described by a QSFC–type channel model, which

is due to the fact that the S[m, k] are diagonal matrices.

Absence of “spatial correlation” in the NS ×NR equivalent MIMO channel is obtained, if

ΨRx = INR
(6.55)

and either

• NS = NT and ΨTx = INT
or

• subcarriers allocated to the different elements si,i[m, k], 1 ≤ i ≤ NS, of an S[m, k] are

sufficiently decorrelated [cf. (6.77)].

In this scenario, we have

Ψ̃
‖
GG = INR

⊗Ψ
‖
GG⊗ INS

(6.56)

and we can make immediate use of the results obtained in Section 5.4.2 for the spatially uncor-

related quasi–static flat–fading channel by replacing H̄ as used in Section 5.4.2 with G‖. More

specifically, all results for the PEPs of the various detection schemes found there in dependence

of the fading correlation matrix including the effective SNR are directly applicable.

6.6.2.1 MSDD, DFDD, CDD

In the case of noncoherent detection the results of Section 5.4.2 can be transfered to this

transmission scenario by replacing Ψt as used in Section 5.4.2 with Ψ
‖
GG.

One interesting result that is inherent to OFDM–based transmission is the following. Recall

that we showed in Section 5.4.2.2 that for transmission over flat–fading channels the noncoherent

detectors all encounter an error floor at high SNR, whose level is directly proportional to

(Bh,effT )2NTNR(N−1), cf. (5.92) with (5.93). This clearly carries over to noncoherent detection

with 1D observation window for T–DSFM. For the interesting special case of an 1D observation

window for F–DSFM, i.e. in frequency direction, a similar and intuitively reasonable result can

be obtained in dependence of the normalized delay spread of the channel, i.e. the quantity

(τLh
− τ1)/(DT ). As shown in Appendix 6.A.3, the PEP error floor in position n of the

observation window of the noncoherent detectors is in this case given by

lim
σ2

n→0
PEPn ≈

([(

Ψ
‖
GG

)−1
]

n,n

− 1

)−NTNR
(
2NTNR−1

NTNR

)

∏NT

i=1 |θi

(
l, l̂
)
|2NR

, (6.57)
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where the diagonal elements
[
(Ψ

‖
GG)−1

]

n,n
of the Lh inverse of the fading correlation matrix

Ψ
‖
GG are asymptotically given by

[(

Ψ
‖
GG

)−1
]

n,n

≍ c′ ·
(
τLh
− τ1

DT

)−2(N−1)

,
τLh
− τ1

DT
→ 0, (6.58)

with some constant c′ that depends on the shape of the power delay profile, i.e. the relative

position (τl − τ1)/(τLh
− τ1) and average power σ2

l of the individual channel tabs.

Recall (cf. Appendix 5.A.4) that the accuracy of the PEP approximation (6.57) improves

rapidly as the diagonal elements of
(
Ψ

‖
GG

)−1
grow beyond one, i.e. if the delay spread (τLh

−τ1)
becomes small compared to DT .

6.6.2.2 (Differentially) Coherent Detection

Obtaining expressions for the exact PEPs of coherent detection for DSFM from those for the

flat–fading channel is equally simple. All that needs to be done is to replace H in (5.78) and

(5.79) with G[m, k] [cf. (6.24)].

6.6.3 Approximation of Symbol–Error Rate

Having determined an expression for the PEP between any pair of transmit sequences we use

a truncated union bound over the dominant error events to approximate the average SER.

As argued in Section 5.4 for the frequency–nonselective channel, the dominant error events of

MSDD are single transmit–symbol error events
(
S[mi, kj ]→ Ŝ[mi, kj ]

)
for which

NS∏

ν=1

∣
∣
∣λ

ŜH[mi,kj ]S[mi,kj ],ν

∣
∣
∣ (6.59)

is minimized. Accordingly, we define sets Ŝ
‖
i,j of all matrices Ŝ

‖ =
[
ST[m1, k1], . . . , Ŝ

T
[mi, kj ],

. . . ,ST[mNf
, kNt ]

]T
that differ from S‖ only in Ŝ[mi, kj ] 6= S[mi, kj ] and that minimize (6.59).

Taking into account that a data–symbol error occurs whenever the preceding or succeeding

transmit symbol is erroneously detected, the SER for the data–symbol V [mi, kj ] in the ith row

and jth column of the observation window can be approximated by

SERTD
i,j =

∑

Ŝ‖∈Ŝ
‖
i,j

PEP
(

S‖ → Ŝ
‖
)

+
∑

Ŝ‖∈Ŝ
‖
i,j+1

PEP
(

S‖ → Ŝ
‖
)

, 1 ≤ i ≤ Nf ,

1 ≤ j ≤ Nt−1,

(6.60)

for T–DSFM and by

SERFD
i,j =

∑

Ŝ‖∈Ŝ
‖
i,j

PEP
(

S‖ → Ŝ
‖
)

+
∑

Ŝ‖∈Ŝ
‖
i+1,j

PEP
(

S‖ → Ŝ
‖
)

, 1 ≤ i ≤ Nf−1,

1 ≤ j ≤ Nt.

(6.61)
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for F–DSFM. Finally, the average SER over all symbols comprised in the 2D observation window

is obtained from

T–DSFM: SERTD =
1

Nf(Nt − 1)

Nf∑

i=1

Nt−1∑

j=1

SERTD
i,j , (6.62)

F–DSFM: SERFD =
1

(Nf − 1)Nt

Nf−1∑

i=1

Nt∑

j=1

SERFD
i,j . (6.63)

Note that averaging with respect to S‖ is not required as the matrix signal constellation un-

derlying our DSFM scheme are cyclic DSTM codes, cf. Section 5.4.4.1.1.

The SERs for DFDD, CDD and (differentially) coherent detection follow in complete analogy

to Sections 5.4.4.2, 5.4.4.3 and 5.4.4.4, respectively.

6.7 Results and Discussion

In this section, we present results obtained from our analysis and simulation results to illus-

trate the performance of MIMO–OFDM with the proposed DSFM SA scheme and fast 2D

MSDD. We exemplarily consider the digital–audio–broadcasting (DAB) system OFDM param-

eters D = 192 and ∆f = 8 kHz [Eur95]. As test channels, we consider channels with HT and

TU PDPs taken from [Eur01] and the exponential PDP with decay parameter d = 1 (τl = lT ,

σ2
l ∝ e−l/d, l ∈ IN). The coefficients [c1, . . . , cNS

] for the diagonal constellations [cf. (2.2)] are

again taken from [HS00, Table I]. To limit the number of parameters, we fix the data rate

to R = 1 bit per OFDM subchannel use and assume a single receive antenna, i.e. NR = 1.

For implementation of fast 2D MSDD we consider MSDSD–FS, which achieves ML–MSDD

performance, and DF–MSDSD–LD–FM, which typically achieves comparable performance at a

significantly lower complexity especially in low–SNR regimes. As benchmark detectors we again

consider conventional differential detection (CDD) (N = 2) and decision–feedback differential

detection (DFDD) with 1D observation window of length N , their respective lattice–decoder

(LD) based counterparts CDD–LD and DFDD–LD, and coherent detection with perfect CSI

at the receiver. In the case of F–DSFM, DFDD was implemented making use of N − 1 pilot

symbols S[m, k], 1 ≤ m ≤ N − 1, k ∈ IN, at the beginning of each OFDM frame in order to

avoid a high error floor due to (i) a growing observation window at the start of DFDD and

(ii) subsequent excessive error propagation. The corresponding rate–loss is accounted for in

Eb/N0. Unless specified otherwise, we assume a spatially uncorrelated channel, i.e. ΨTx = INT
.
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Figure 6.6: Required 10 log10(Eb/N0) to achieve SER = 10−5 for individual positions of 2D

observation window of MSDD. Parameters: F–DSFM, NT = 3, NB = 1, HT PDP, BhTf =

0.01, Nf = 10 and Nt = [1, 2, 4].

6.7.1 SER Performance

Required SNR for SER = 10−5 vs. Position [i, j]: For illustration purposes, we evalu-

ate SERFD
i,j from (6.61) for F–DSFM with the following system parameters: DSFM with NT = 3,

NB = 1, NR = 1 and R = 1, and a time– and frequency–selective channel with HT PDP [Eur01]

and BhTf = 0.01. The 2D–MSDD observation window extends over Nf = 10 subcarriers and

different numbers Nt of OFDM frames. Fig. 6.6 shows the SNR in terms of 10 log10(Eb/N0)

required to achieve individual error rates of SERFD
i,j = 10−5 as function of the position [i, j],

1 ≤ i ≤ Nf − 1, 1 ≤ j ≤ Nt, for Nt = [1, 2, 4]. Simulation results for Nt = 1 and Nt = 2 are

included, as well. MSDD is implemented using MSDSD with FS inner decoding (MSDSD–FS).

First, we note that simulation results closely match the results obtained from (6.61), which

nicely confirms the accuracy of the proposed SER approximation. We further observe a kind

of “hammock behavior” with larger values for the required SNR towards the edges of the 2D

observation window. This was to be expected given the relation between MSDD and linear
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SA [Nf , Nt] NT = 2 NT = 3 NT = 4 NT = 6

[L
S
01]

[10, 1] 30.7 26.0 23.4 20.7

[5, 2] ∗35.0 ∗29.2 — —

[20, 1] 29.3 24.0 20.8 18.1

[10, 2] 28.8 23.3 20.1 17.2

[W
Y

02]

[10, 1] 29.8 24.0 20.4 17.4

[5, 2] 29.2 23.4 19.9 17.1

[20, 1] 28.7 23.1 19.7 16.8

[10, 2] 28.6 22.9 19.5 16.7

S
ection

6.4.2

[10, 1] 29.8 24.0 20.4 17.4

[5, 2] 28.9 23.1 19.7 16.8

[20, 1] 28.7 23.1 19.7 16.8

[10, 2] 28.4 22.8 19.4 16.5

coherent: 27.4 21.9 18.5 15.8

Table 6.1: Required 10 log10(Eb/N0) to achieve SER = 10−5 using MSDD and various SA

schemes. Parameters: F–DSFM, NS = NT, NB = 1, HT PDP, BhTf = 0.003. For compari-

son: coherent detection with perfect CSI. Numerical results from (6.63), figures with “∗” are

simulation results and “—” indicates an error floor above SER = 10−5.

MMSE interpolation (cf. Section 2.4.2.1). However, as Nt increases this effect diminishes,

which means that the application of the 2D window is highly beneficial for achieving uniform

individual error rates. It can also be seen that increasing Nt leads to significant improvements

in power efficiency, i.e. lowers the required SNR, of the detector even in this relatively fast

fading scenario. Quite remarkably, for Nt = 4 the gap to coherent detection with perfect CSI

(not shown in the figure) is only approximately 0.6 dB on average and 0.4 dB in the center

positions of the observation window.

F–DSFM and ML MSDD: To illustrate the benefits of the SA scheme presented in

Section 6.4.2 and the application of a 2D observation window we consider the example of F–

DSFM with different values ofNS = NT, i.e.NB = 1, a channel with HT PDP and BhTf = 0.003,

and MSDD with different observation window parameters [Nf , Nt]. MSDD is implemented using

MSDSD–FS. Table 6.1 compares the SNR required to achieve SER = 10−5 for (i) the proposed

SA scheme, (ii) a scheme, where si,i[m, k] and si,i[m + 1, k] are separated by NT subcarriers

while the effective fading bandwidth is not increased, e.g. [LS01], and (iii) a scheme, where

si,i[m, k] and si,i[m + 1, k] are allocated to neighboring subcarriers but the effective fading
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bandwidth is increased by a factor NT, e.g. [WY02, MTL05]. SA schemes such as [HSL05b]–

[SL05] that exploit knowledge of the PDP at the transmitter are not included in the comparison.

The SA variant proposed in [HSL05c, Section V] is not considered either, as the pseudo–

random subcarrier assignment seriously complicates MSDD (and DFDD) due to the fact that

Ψf changes as the observation window slides across the received data. The respective SNR

values for coherent detection with perfect CSI are also included for comparison. The results are

obtained from the SER approximation (6.63), except for the values for SA according to [LS01]

and [Nf , Nt] = [5, 2], which are simulation results (“—” indicates the occurrence of an error

floor above SER = 10−5). Here, Nf = 5 is not sufficient for tracking the channel variations in

frequency direction and performance is significantly degraded by multiple–symbol errors due

to fading. These are not accounted for in (6.63), which therefore is too optimistic in this case.

The new SA method consistently achieves the best power efficiency. The gains over the

scheme of [LS01] are more pronounced than those when comparing with [WY02, MTL05], since

the correlations of the channel gains captured within the observation window are lowest for the

scheme of [LS01] (see also Figs. 6.4 and 6.5). In particular, in the case of 1D MSDD the SA

schemes of [WY02, MTL05] achieve the same power efficiency as our SA scheme, as the increase

of the effective fading bandwidth has no effect here. With larger total window size N = NfNt

the gains are smaller as the performance approaches that of coherent detection. Similarly,

comparing 2D MSDD and 1D MSDD, the largest gains are achieved for relatively small N .

For example, for the new SA scheme 2D MSDD with [Nf , Nt] = [5, 2] improves performance by

0.6− 0.9 dB over 1D MSDD with Nf = N = 10. 2D MSDD with [Nf , Nt] = [5, 2] even achieves

practically the same power efficiency as 1D MSDD with Nf = N = 20, i.e. double the window

size, which corresponds to significant savings in decoder complexity especially in low SNR (see

Section 6.7.2). We finally observe that the new SA scheme combined with 2D MSDD with

[Nf , Nt] = [10, 2] reduces the performance gap to coherent detection to no more than 1 dB.

T–DSFM and ML MSDD: Next, we consider T–DSFM and (i) compare 1D and 2D

ML–MSDD, (ii) illustrate the performance improvements due to the observation window con-

struction (OWC) proposed in Section 6.5.3.2, and (iii) further demonstrate the benefits of the

new SA scheme. Fig. 6.7 shows the SNR required to achieve SER = 10−5 as a function of the

normalized fading bandwidth BhTf for various channel PDPs. NT = 3 transmit antennas and

NB = 1 are assumed. 1D MSDD with Nt = N = 5 and Nt = N = 10 and 2D MSDD with

[Nf , Nt] = [2, 5] are compared. Note that for the considered case of NB = 1 the results for

Nt = N are independent of the PDP. The curves for the SA schemes of [WY02, MTL05] and

Nf = 1 are also included, as well as the curve for coherent detection with perfect CSI. Again,

the results are obtained from (6.62).

From the results for the 2–Ray channel we observe that extending the observation win-
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Figure 6.7: Required 10 log10(Eb/N0) to achieve SER = 10−5 vs. BhTf for various PDPs and

observation windows of MSDD. Parameters: T–DSFM, NT = 3, NB = 1. For comparison:

results for SA scheme of [WY02, MTL05] and coherent detection with perfect CSI.

dow over Nf = 2 neighboring subcarriers is only beneficial for relatively fast fading with

BhTf ≥ 0.002. In contrast to this, application of the proposed OWC scheme leads to con-

sistent improvements when applying [Nf , Nt] = [2, 5] compared to [Nf , Nt] = [1, 5] for all fading

bandwidths. Extension of the observation window in frequency direction is also beneficial for

the TU and exponential PDP. For the case of the HT PDP, where the maximal channel fre-

quency correlation is smaller than for 2–Ray, TU, and exponential PDP (see Fig. 6.5), 2D

MSDD with [Nf , Nt] = [2, 5] noticeably outperforms 1D MSDD with [Nf , Nt] = [1, 5] only for

BhTf ≥ 0.002.

Comparing the respective curves for 2D MSDD and [Nf , Nt] = [2, 5] with that for 1D MSDD

and N = Nt = 10, we conclude that it is not per se clear that 2D MSDD is advantageous over

1D MSDD for identical total window size N = NfNt (see also Table 6.1 for DMD [LS01]). In

particular, Nf and Nt are not simply interchangeable for fixed N and the same channel corre-

lation, but the direction of differential encoding needs to be taken into account too. Whereas

increasing the observation window in direction of differential encoding lowers the error of pre-
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Figure 6.8: SER at 10 log10(Eb/N0) = 15 dB vs. antenna spacing for a linear equispaced

transmit–antenna array. SA scheme acc. to Section 6.4.2 for [NT, NB] = [1, 3] and [NT, NB] =

[3, 1] and 2D MSDD with [Nf , Nt] = [5, 2]. Also shown: SA acc. to [LS01] for [NT, NB] = [3, 1]

and 1D MSDD with [Nf , Nt] = [10, 1]. Parameters: F–DSFM, 2–Ray (τ2 − τ1 = 20µs) and HT

PDP, BhTf = 0.001.

dicting the channel variation, increasing the other window dimension improves the suppression

of estimation noise prior to prediction. This also emphasizes the usefulness of the SER approx-

imations developed in Section 6.6 to guide the choice of the parameters [Nf , Nt] for different

channel scenarios and DSFM parameters.

A comparison of the respective results for the different SA schemes demonstrates the superior

performance of the propose SA method. Finally, we note that both 1D and 2D MSDD with

N = 10 achieve a performance within 0.4− 1.0 dB of that for detection with perfect CSI even

for relatively fast fading channels.

Spatial vs. Spectral Diversity: Fig. 6.8 presents analytical (lines) and simulation (mark-

ers) results for the SER of F–DSFM with ML–MSDD at 10 log10(Eb/N0) = 15 dB as a function

of the normalized inter–transmit–antenna spacing
∣
∣
∣
∣xTx

i − xTx
i+1

∣
∣
∣
∣, 1 ≤ i ≤ NT − 1, when as-
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suming a linear equispaced transmit antenna array. 2–Ray (τ2− τ1 = 20µs) and HT PDPs are

considered. We compare SA according to Section 6.4.2 with NB = NS = 3 (dashed lines) and

NT = NS = 3 (solid lines) (ignore the dash–dotted line for the moment), employing 2D MSDD

with [Nf , Nt] = [5, 2] in both cases.

As can be seen, the performance for NT = NS converges to that for NT = 1 as the antenna

spacing tends to zero. This is because for the new SA scheme the assignment of elements

si,i[m, k] to subcarriers does not depend onNB. Hence, increasingNT while keepingNS fixed can

only improve performance by reducing subchannel correlation, i.e. correlation among elements

within G[m, k] (see Fig. 6.3). Since for the 2–Ray channel NS = 3 > Lh = 2, diversity order,

which is min{NSNR, NTNRLh} (cf. e.g. [HSL05c]), can be increased from two for NB = NS = 3

to three for NT = NS = 3, and relatively large performance gains are observed with increasing

antenna spacing. For the HT PDP, on the other hand, the same diversity order of three

is accomplished in both cases and thus, performance is largely independent of the antenna

spacing.

To further illustrate the advantage of the proposed SA scheme, Fig. 6.8 also includes the

SER curve for DMD [LS01] with NT = NS = 3 and the HT channel (dash–dotted line). We

note that for NB = NS DMD and the new SA scheme are identical. Here it is advantageous to

set [Nf , Nt] = [10, 1] due to the increased spectral spacing of symbols si,i[m, k] and si,i[m+1, k].

Different from the proposed SA scheme, the performance with DMD significantly deteriorates

for larger spatial correlation, as si,i[m, k], 1 ≤ i ≤ NT, are transmitted over neighboring

subcarriers. Due to the increased spectral spacing of symbols captured in the observation

window, the SER for NT > 1 is higher than that for NT = 1 even if there is no spatial

correlation.

F–DSFM and Different Detection Algorithms: We now compare MSDSD–FS, which

accomplishes ML–MSDD, and DF–MSDSD–LD–FM for 2D MSDD with observation window

[Nf , Nt] = [5, 2]. For DF–MSDSD–LD–FM we insert previous decisions on the symbols V [mi, k1],

1 ≤ i ≤ Nf , in the first column of the observation window and optimize the metric only over

the symbols V [mi, k2], 1 ≤ i ≤ Nf , in the second column of the observation window. This

way, the depth of the search tree is cut in half, which leads to significant savings in compu-

tational complexity in low–SNR regimes (see below). CDD, DFDD(–LD) with 1D windows of

size Nf = N = 2 and Nf = N = 10, respectively, and coherent detection with perfect CSI are

considered as benchmark detectors. The SER is shown as function of the SNR for F–DSFM

with NT = 3 and NB = 1 and TU, exponential (d = 1), and HT PDP in Figs. 6.9 a)–c),

respectively. Lines and markers represent analytical and simulation results, respectively.

We observe that MSDSD–FS outperforms DFDD by about 1 − 4 dB and approaches the

performance of coherent detection with perfect CSI within about 1 dB for all channel scenar-
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Figure 6.9: SER vs. 10 log10(Eb/N0) for TU, exponential (d = 1), and HT PDPs. F–DSFM and

MSDSD and DF–MSDSD–LD–FM with [Nf , Nt] = [5, 2], CDD and DLD, DFDD and DFDD–

LD with N = 10 and coherent detection with perfect CSI. Parameters: NT = 3, NB = 1, and

BhTf = 0.001.

ios and in the SER–range of interest. One can also see that DF–MSDSD–LD–FM achieves

practically the samer performance as the far more complex MSDSD–FS and provides consis-

tent improvements over DFDD and CDD. This is especially true in highly dispersive channels,

cf. Fig. 6.9 c), where CDD and computationally efficient DFDD–LD even encounter relatively

high error floors. It should be noted that these gains are due to both the application of MSDD

instead of DFDD and the use of a 2D as opposed to an 1D observation window.

6.7.2 Complexity

The computational complexity of MSDD, i.e. the number of candidates that need to be exam-

ined by MSDSD or its variants essentially hinges on the SNR and on the depth of the search

tree. This means, that the gains of 2D MSDD over 1D MSDD with equal window size N as

observed especially for F–DSFM come at practically no computational cost. It also means,
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Figure 6.10: Average computational complexity vs. 10 log10(Eb/N0) for various detection algo-

rithms and PDPs. Parameters: F–DSFM, NT = 3, NB = 1, BhTf = 0.001. MSDSD–FS and

DF–MSDSD–LD–FM with [Nf , Nt] = [5, 2], DFDD and DFDD–LD with Nf = N = 10, CDD

and DLD with Nf = N = 2.

that we can desist from presenting numerous numerical examples illustrating the complexity

of tree–search–based MSDD algorithms when applied to MIMO–OFDM. We therefore restrict

ourselves to exemplarily presenting complexity results corresponding to the performance com-

parison shown in Fig. 6.9.

F–DSFM and Different Detection Algorithms: In Fig. 6.10 computational complex-

ities of MSDSD–FS, DF–MSDSD–LD–FM, DFDD, DFDD–LD, CDD, and CDD–LD in terms

of average number Csym of examined candidates per decoded symbol are compared for the same

system and channel parameters as in Fig. 6.9. While the computational complexity of MSDSD–

FS is quite high at low SNR, DF–MSDSD–LD–FM, which achieves practically the same power

efficiency as MSDSD–FS, succeeds in keeping average complexity practically constant over the

entire range of relevant SNR. In particular, the complexity of DF–MSDSD–LD–FM is very

well comparable to that of DFDD–LD and CDD–LD, which is quite remarkable considering
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the performance advantages of DF–MSDSD–LD–FM over DFDD–LD and the small gap in

performance compared to coherent detection with perfect CSI (see Fig. 6.9). Furthermore, it

can be seen from a comparison of subplots a)–c) that the PDP hardly influences the decoder

complexity.

6.A Derivations and Proofs

6.A.1 Derivation of Eq. (6.16)

Starting from (6.14) and introducing for notational simplicity A
△
=
√

ΨTx and B
△
=
√

ΨRx
∗

we

arrive at the product form for ψgg[µ, κ, i1, j1, i2, j2] in (6.19) as follows.

ψgg[µ, κ, i1, j1, i2, j2] = E
{
gi1,j1 [m+ µ, k + κ]g∗i2,j2

[m, k]
}

=

= E
{

Lh∑

l1=1

Lh∑

l2=1

cnh
(l1)
i1,j1

((k+κ)Tf +τ1)
(

cnh
(l2)
i2,j2

(kTf +τ1)
)∗

e−j2π∆f((m+µ)(τl1
−τ1)−m(τl2

−τ1))

}

(6.64)

=

Lh∑

l=1

E
{

c2nh
(l)
i1,j1

((k+κ)Tf +τ1)
(

h
(l)
i2,j2

(kTf +τ1)
)∗}

e−j2π∆fµ(τl−τ1) (6.65)

=

Lh∑

l=1

E
{

c2nAi1,:W
(l)((k+κ)Tf +τ1)(Bj1,:)

HBj2,:

(

W (l)(kTf +τ1)
)H

(Ai2,:)
H

}

e−j2π∆fµ(τl−τ1)

(6.66)

=

Lh∑

l=1

Ai1,:

NR∑

x=1

NR∑

y=1

b∗j1,xbj2,yE
{

c2nW
(l)
:,x((k+κ)Tf +τ1)

(

W (l)
:,y(kTf +τ1)

)H
}

(Ai2,:)
He−j2π∆fµ(τl−τ1)

(6.67)

= Ai1,:(Ai2,:)
H

NR∑

x=1

b∗j1,xbj2,xψ
t(Tfκ)

Lh∑

l=1

σ2
l e

−j2π∆fµ(τl−τ1) (6.68)

= Ai1,:(Ai2,:)
HB∗

j1,:(Bj2,:)
Tψt(Tfκ)

Lh∑

l=1

σ2
l e

−j2π∆fµ(τl−τ1) (6.69)

△
= ψTx[i1, i2]ψ

Rx[j1, j2]ψ̃
t[κ]ψf [µ] (6.70)

where we used the absence of correlation between channel tabs h
(l1)
i,j (t) and h

(l2)
i,j (t), l1 6= l2,

in (6.65), the spatial correlation model (4.8) in (6.66), the fact that the elements of W (l)(t)

are iid, the temporal correlation model (4.14) and the definition of σ2
l (6.15) in (6.68), and

ΨTx = AAH and ΨRx = (BBH)T and the definitions (4.9) and (4.10) in (6.70).
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6.A.2 Derivation of Eq. (6.34) and Eq. (6.41)

6.A.2.1 Expression for Ψ̃
‖
GG

It is useful to introduce the following definitions.

Ψ̃
f
[m]

△
=

[
ψf [m+ (i− j)D/NS]

]

i=1,... ,NS
j=1,... ,NS

(6.71)

Ψ̃
f △

=
[

Ψ̃
f
[mi −mj]

]

i=1,... ,Nf
j=1,... ,Nf

(6.72)

Ψ̃
t △

=
[

ψ̃t[ki − kj]
]

i=1,... ,Nt
j=1,... ,Nt

(6.73)

Ψf △
=

[
ψf [mi −mj]

]

i=1,... ,Nf
j=1,... ,Nf

(6.74)

Recall from Section 6.5.1 that the channel matrix G[m, k] introduced in (6.24) contains

gmod(i−1,NT)+1,j

[
(i − 1) D

NS
+ m, k

]
, 1 ≤ m ≤ D/NS, k ∈ IN, in row i, 1 ≤ i ≤ NS, and col-

umn j, 1 ≤ j ≤ NR. With (6.70) it is then straightforward to verify that the cross correlation

between any pair of vectors G:,i[mx, kx] and G:,j [my, ky] reads

E
{

G:,i[mx, kx] (G:,j [my, ky])
H

}

= ψRx[i, j]ψ̃t[kx − ky]Ψ̃
f
[mx −my] ◦

(
1NB,NB

⊗ΨTx
)

(6.75)

(A ◦ B: Hadamard (elementwise) product of matrices A and B). Extending dimensions we

can further write for the correlation between a pair of columns of G‖

E
{

G
‖
:,i

(

G
‖
:,j

)H
}

= ψRx[i, j]Ψ̃
t ⊗
(

Ψ̃
f ◦
(
1NBNf

⊗ΨTx
))

. (6.76)

Finally, for the vectorized channel model as used in (6.40) we obtain

Ψ̃
‖
GG

△
= E

{

vec
{

G‖
}

vec
{

G‖
}H
}

= ΨRx ⊗ Ψ̃
t ⊗
(

Ψ̃
f ◦
(
1NBNf

⊗ΨTx
))

. (6.77)

6.A.2.2 Expression for Ψ
‖
GG

If there is no “transmit correlation”, i.e. if there is no correlation between the elements of

G[m, k], as it was assumed in the derivation of tree–search algorithms for 2D MSDD in Sec-

tion 6.5.2, (6.76) reduces to

E
{

G
‖
:,i

(

G
‖
:,j

)H
}

= ψRx[i, j]Ψ̃
t ⊗Ψf ⊗ INS

. (6.78)

With this one immediately finds that

E
{

G‖
(

G‖
)

H
}

=

NR∑

i=1

E
{

G
‖
:,i

(

G
‖
:,i

)H
}

= NRΨ̃
t ⊗Ψf ⊗ INS

△
= NRΨ

‖
GG⊗ INS

, (6.79)

which is the expression for the correlation matrix Ψ
‖
GG used in Section 6.5.2.
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6.A.3 Derivation of Eq. (6.58)

In order to prove (6.58) we first note that in the case of an 1D observation window in frequency

direction

Ψ
‖
GG = Ψf (6.80)

holds. Second, we once more make use of the relationship between MSDD and linear MMSE

interpolation (cf. Section 2.4.2.1) and compute the nth diagonal element of (N×N)–dimensional
(
Ψ

‖
GG

)−1
using

[(

Ψ
‖
GG

)−1
]

n,n

=
1

σ2
i,n

, (6.81)

where σ2
i,n denotes the error variance of a linear filter interpolating the nth out of N samples

of a random process, whose correlation function based on (6.80) is given by ψf [k] [cf. (6.18)],

from the remaining N − 1 samples.

We proceed as in the flat–fading case (cf. Appendix 5.A.4), i.e. we consider a suboptimal

interpolation filter with coefficients pn = [p1, . . . , pn−1, pn+1, . . . , pN ]T and prove that it satisfies

(6.58). As in Appendix 5.A.4, we can then argue that an optimal filter can not lead to a better

result than (6.58).

As pointed out in Appendix 5.A.4 σ2
i,n can be computed through integration of the PSD of

the interpolation error, i.e.

σ2
i,n = T

∫ 1/(2T )

−1/(2T )

Ψf(f)P (f) df, (6.82)

where

P (f)
△
=

∣
∣
∣
∣
∣
1−

N∑

ν=1,ν 6=n

pνe
j2πfT (n−ν)

∣
∣
∣
∣
∣

2

(6.83)

denotes the power transfer function of the interpolation filter with coefficients p and the PSD

Ψf(f) of the fading process to be interpolated is given by

Ψf(f)
△
= F∗

{
ψf [k]

}
(f) (6.84)

=

Lh∑

l=1

σ2
l F∗

{
e−j2πk(τl−τ1)/(DT )

}
(f) (6.85)

=

Lh∑

l=1

σ2
l

∞∑

k=−∞

1

T
δ

(

f − 1

T

(

k − τl − τ1
DT

))

(6.86)
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(F∗ {x[k]} (f)
△
=
∑∞

k=−∞ x[k]exp(−j2πfTk): discrete–time Fourier transform). Plugging (6.86)

into (6.82) we obtain for the interpolation error variance

σ2
i,n =

∫ 1/(2T )

−1/(2T )

Lh∑

l=1

σ2
l

∞∑

k=−∞
δ

(

f − 1

T

(

k − τl − τ1
DT

))

P (f) df (6.87)

=

∫ 1/(2T )

−1/(2T )

Lh∑

l=1

σ2
l δ

(

f −− 1

T
mod∗

(
τl − τ1
DT

, 1

))

P (f) df (6.88)

=

Lh∑

l=1

σ2
l P

(

−mod∗
(
τl − τ1
DT

, 1

))

. (6.89)

If the filter coefficients are chosen according to (5.253) P (f) satisfies (cf. Appendix 5.A.4)

P (f) ≍ c0 · (fT )2(N−1), fT → 0, (6.90)

with some constant c0. In consequence, we obtain for the asymptotic behavior of σ2
i,n

σ2
i,n ≍ c0

Lh∑

l=1

σ2
l

(

mod∗
(
τl − τ1
DT

, 1

))2(N−1)

,
τLh
− τ1

DT
→ 0, (6.91)

and since (τLh
− τ1)/(DT )→ 0 implies τLh

− τ1 ≤ TD/2

σ2
i,n ≍ c0

Lh∑

l=1

σ2
l

(
τl − τ1
DT

)2(N−1)

,
τLh
− τ1

DT
→ 0 (6.92)

= c0

Lh∑

l=1

σ2
l

(
τl − τ1
τLh
− τ1

)2(N−1)

·
(
τLh
− τ1

DT

)2(N−1)

. (6.93)

Note that

c0

Lh∑

l=1

σ2
l

(
τl − τ1
τLh
− τ1

)2(N−1)

(6.94)

is invariant to scaling of the delay spread if the shape of the PDP, i.e. the relative position

(τl − τ1)/(τLh
− τ1) and average power σ2

l of the individual channel tabs, remains unaltered.

As these results apply to a suboptimal filter, whose coefficients pn are chosen according to

(5.253), it is clear —by definition— that linear MMSE interpolation can not lead to higher

interpolation–error variances. At the same time, as the number of degrees of freedom in the

design of the filter is limited by the number N − 1 of coefficients pν , there can not be a filter

that achieves σ2
i,n ≍ c′ · ((τLh

− τ1)/(DT ))x, (τLh
− τ1)/(DT )→ 0 with x > 2(N − 1).

Due to the relationship between MSDD and linear MMSE interpolation (cf. Section 2.4.2.1)

we therefore obtain in the limit of (τLh
− τ1)/(DT )→ 0

[(

Ψ
‖
GG

)−1
]

n,n

≍ c′ ·
(
τLh
− τ1

DT

)−2(N−1)

,
τLh
− τ1

DT
→ 0, (6.95)

with some constant c′, which concludes our proof of (6.58).



Chapter 7

Conclusions

In this thesis, noncoherent receivers for transmission over multiple–input multiple–output

(MIMO) fading channels have been studied. In particular, we considered transmission over

highly time– and / or frequency–selective channels, where coherent schemes become bandwidth

inefficient due to an increasing overhead in pilot symbols.

In principle multiple–symbol differential detection (MSDD), where N received symbols are

processed simultaneously to estimate (at most) N−1 differentially encoded data symbols, is the

method of choice to achieve high power efficiency in adverse fading scenarios without the need

for transmission of pilot symbols. While the performance of MSDD improves with increasing

block length N , it very quickly becomes computationally intractable, as it involves finding the

best out of LN−1, where L is the size of the signal constellation.

Because existing practicable noncoherent detection schemes such as conventional differential

detection (CDD, N = 2) or decision–feedback differential detection (DFDD) fail to accomplish

satisfactory performance in challenging fading scenarios, the objective of this work has been to

devise new noncoherent detection schemes, that provide highly reliable output at manageable

receiver complexity.

To this end, we have considered two different approaches to efficiently solve the multi–

dimensional search problem involved in MSDD, namely

• tree–search (TS) decoding, whose roots lie in lattice theory and sequential decoding of

convolutional codes, and

• methods from combinatorial geometry, that have been deployed previously in convex

quadratic maximization.

An in–depth analysis of the new schemes with respect to complexity and achievable power

efficiency has been carried out.

The main results of our investigations can be summarized as follows:

218
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• The first part of this work was concerned with the development of practicable noncoherent

detection schemes that achieve high power efficiencies even in adverse fading channel

environments.

At this, our primary focus was on methods from TS decoding. Generalizing upon our

earlier work on single–input single–output (SISO) systems a representation of the MSDD

metric for a generic differential space–time modulation (DSTM) based MIMO trans-

mission system has been developed, that is amenable to TS decoding in an (N − 1)–

dimensional tree. In TS decoding, the (N − 1)–dimensional optimization problem is

solved by means of a search in a tree of depth N − 1, whose LN−1 leaves correspond

to the possible solutions. Here, nodes in the tree are associated with metrics and the

efficiency of these algorithms originates from the fact, that —given these metrics— the

algorithm can discard entire subtrees, i.e. large numbers of candidates, simultaneously

based on the examination of metrics of intermediate nodes.

Based on a detailed comparison and classification of the numerous algorithms, that

have been presented both in the lattice–decoding and the sequential–decoding literature,

two promising algorithms —one from the lattice–decoding and one from the sequential–

decoding literature— have been selected and applied to MSDD. The resulting implemen-

tations were referred to as multiple–symbol differential sphere detection (MSDSD) and

Fano–MSDD. While this direct application has led to tremendous savings in terms of

computational complexity compared to brute–force MSDD, which examines all LN−1 rel-

evant candidate sequences, in high signal–to–noise ratio (SNR) regimes, the complexity

still grew rapidly towards lower SNR. The reason for this effect lies in the fact, that the

metric of nodes is a monotonously increasing function of the search depth, which forces

the decoder to examine a great number of branches near the root of the tree. In order to

overcome this, we have introduced a Fano–type path–length bias into the MSDD metric,

which allows for fair comparisons between paths of different lengths in the tree and has

lead to further substantial complexity savings especially in low–SNR regimes.

An issue of great importance in TS decoding is the candidate enumeration, i.e. the order

in which branches emanating from a particular node are examined. Exploiting a con-

nection between candidate enumeration in TS–based MSDD and conventional differential

detection (CDD, N = 2), we have devised particularly efficient nested decoder structures

for MSDD consisting of one outer TS decoder and (N−1) inner TS decoders for candidate

enumeration.

Such receivers allowed for noncoherent detection with power efficiencies close to that of

idealized coherent detection with perfect channel state information (CSI) at an average

complexity very well comparable to that of existing, far less power–efficient noncoherent
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detectors such as CDD and decision–feedback differential detection (DFDD).

A drawback of these decoders is that their instantaneous complexity is a random variable.

Therefore, despite their low average complexity, a much larger maximal complexity must

be allowed to achieve the desired high reliability also in adverse fading scenarios. Inspired

by DFDD and a newly found connection between MSDD and linear minimum–mean

squared error (MMSE) interpolation a new hybrid noncoherent detection scheme has

been devised. While using a large observation window the dimension of the search space

is reduced significantly based on the introduction of a number of feedback symbols into

the MSDD metric. This scheme, which we refer to as decision–feedback MSDD (DF–

MSDD), achieves at times even better performance than conventional MSDD, but at a

complexity that is (i) practically independent of channel conditions, (ii) comparable to

that of regular TS–based MSDD in high SNR, and most importantly from a practical

point of view (iii) where the maximal required complexity and average complexity are

practically identical.

As an alternative to the above TS–based approaches, we considered MSDD based on com-

binatorial geometry (CG), socalled CG–MSDD, where the detection problem is cast into

a parameter space whose dimension is usually much smaller than the observation window

length N . While algorithms exist, that solve the detection problem in time polynomial

in N if the dimension of the parameter space is fixed, we were able to show that the

dimension of the parameter space is proportional to the bandwidth of the fading process

and must asymptotically grow linearly in N to guarantee close–to–optimal performance.

Thus, the complexity of CG–MSDD is effectively exponential in N . Still, this detector is

an interesting alternative to the above TS–based algorithms, as its complexity is (i) quite

low in slow fading scenarios compared to MSDSD and (ii) practically independent of both

the SNR and the instantaneous channel state.

• Furthermore, analytical investigations regarding both the complexity of the novel detec-

tion schemes and the achievable performance, have been in the focus of our work.

First, we have derived closed–form expressions for the exact computational complexity of

MSDD when implemented using either (i) the Fincke–Pohst refinement of MSDSD (FP–

MSDSD) or (ii) CG–MSDD. Evaluation of these expressions facilitates the comparison

of the different approaches and reasonable choices for the observation window length N

without resorting to simulations. In addition, expressions for the respective asymptotic

complexities have revealed that the complexities of both approaches are in principle ex-

ponential in N . Interestingly, a comparison of the respective expressions has shown

that CG–MSDD is computationally highly efficient in slow–fading scenarios, whereas

(FP–)MSDSD is to be preferred in rapid–fading scenarios.
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Second, we have developed a detailed analytical performance study for both correlated and

uncorrelated flat–fading MIMO channels. While we have resorted to standard methods

from the analysis of Hermitian quadratic forms in the case of spatially correlated MIMO

channels, we devised an entirely new performance analysis for the interesting special case

of uncorrelated MIMO channels, that —contrary to existing literature— requires neither

numerical integration nor eigenvalue decomposition of channel dependent matrices. It

furthermore, allows for a number of interesting new insights into the interconnections

between the performance of the different coherent and noncoherent detection schemes.

These include (i) the definition of an effective SNR, which allows a unified and elegant

treatment of coherent detection, CDD, DFDD, and MSDD, and (ii) insightful closed–form

expression for the asymptotic performance in the limits of infinite observation window

lengths and / or infinite SNR.

• Finally, we considered transmission based on orthogonal frequency division multiplex

(OFDM) over frequency–selective MIMO channels. Inspired by previous work presented

in the literature, we have devised a novel differential space–frequency modulation (DSFM)

scheme, which makes use of spatial and / or spectral (multipath) diversity and is partic-

ularly suited for MIMO–OFDM and power–efficient, low–delay MSDD.

We have further proposed the application of MSDD with a two–dimensional observation

window, which exploits channel correlations in both time and frequency direction for

detection. Based on a transformation of the 2D–MSDD problem into the form of 1D

MSDD, the same efficient TS algorithms as considered for single–carrier MIMO systems

were directly applicable. We have presented an analytical approximation of the SER that

allows us to quickly and accurately assess the performance of DSFM with 2D MSDD.

Numerical and simulation results confirmed considerable performance improvements due

to (i) the new SA scheme, (ii) the use of MSDD as compared to DFDD or CDD and

(iii) the application of 2D MSDD as compared to 1D MSDD. Employing TS algorithms

such as MSDSD, Fano–MSDD or DF–MSDSD to implement 2D MSDD, these gains entail

only moderate increases in computational complexity.

In our opinion there are a number of further interesting research topics for continuing work

on low–complexity power–efficient noncoherent detection for rapid fading MIMO channels. Es-

pecially, detection in the presence of non–Gaussian interference and iterative receiver structures

for coded transmission should be promising research topics.



Appendix A

List of Important Symbols and

Mnemonics

In this appendix, we list important functions and symbols and frequently used mnemonics along

with the page where they are introduced.

Functions and Operators

Symbol: Meaning: Page:

f(x) ≍ g(x), x→ x̂ asymptotic equality 94

xT, XT transpose of vector x, matrix X 13

xH, XH Hermitian transpose of vector x, matrix X 11

x∗, X∗ Elementwise complex conjugate of vector x, matrix X 9

angle(x) argument of a complex number x 53

argmaxx∈X{f(x)} returns x ∈ X that maximizes f(x) 12

argminx∈X{f(x)} returns x ∈ X that minimizes f(x) 14

det{X} determinant of a matrix X 13

diag{X1, . . . ,XN} (NK ×NL) block–diagonal matrix with (K × L) Xn 7

on main block–diagonal

δ(x− y) Dirac–δ function 74

ex, exp(x) exponential function 7

Ex{f(x)} expectation of f(x) with respect to random variable x 10

Γ(x) complete Gamma function 88

γ(A, x) (lower) incomplete Gamma function 136

◦ Hadamard product 202

⊗ Kronecker product 11

222
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mod(x, L) modulo function 55

mod∗(x, L) modified modulo function 55

p(x) probability density function 11

p(x | y) conditional probability density function 11

Pr(x) probability 43

Pr(x | y) conditional probability 43

Φx(v) characteristic function of x 87

Re {X}, Im {X} real and imaginary part 12

Resx=x̂{f(x)} residue of f(x) corresponding to pole at x = x̂ 87

sgn(x) sign function 65

toeplitz{x1, . . . , xN} (N ×N) Hermitian symmetric Toeplitz matrix with 13

[x1, . . . , xN ]T in the first column

tr{X} trace of a matrix 11

vec {X} vector operator 75

||X|| Frobenius norm of a matrix (or vector) 20

⌈x⌉ smallest integer larger than x ∈ IR 31

⌊x⌉ round function (integer closest to x ∈ IR) 54

:= assignment 14
△
= definition 7

Auxiliary Signs

Symbol: Meaning: Page:

·̂ decoder output symbol / sequence 14

·̃ candidate symbol / sequence 14

Constants

Symbol: Meaning: Page:

j imaginary unit: j
△
=
√
−1

π the number pi: π = 3.14159265358979 . . .

e Euler number: e = 2.71828182845905 . . .

en nth unit vector 167

IM M ×M identity matrix 8

1M,N M ×N all–ones matrix 12
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0M,N M ×N all–zeros matrix 8

Symbols

Scalars

Symbol: Meaning: Page:

BhT single–sided normalized fading bandwidth 74

Bh,effT single–sided effective normalized fading bandwidth 84

Cas asymptotic complexity of FP–MSDSD 141

Cblo measure of decoder complexity per decoder run 128

Cblo
n measure of decoder complexity per decoder run 129

Csym measure of decoder complexity per decoded symbol 128

ci coefficients of (di–)cyclic DSTM constellations 7

∆F Stepsize of the Fano algorithm 31

Eb average received energy per bit 80

Es average received energy per symbol 80

κDF
L parameter of DF–MSDD 20

κDF
U parameter of DF–MSDD 19

L Cardinality of signal constellation 7

db Metric of parent of current path 31

dc Metric of current path 31

df Metric of child of the current path 31

δn
( ˜̄Sn

)
ML MSDD branch metric 41

dn

( ˜̄Sn

)
ML MSDD path metric 41

δF,n

( ˜̄Sn

)
Fano–type MSDD branch metric 44

dF,n

( ˜̄Sn

)
Fano–type MSDD path metric 44

λX,i ith eigenvalue of X 87

N length of observation window 12

N ′ number of decision per block returned by S–MSDD 17

N0 double–sided PSD of ECB noise process 73

NB parameter in DSFM 191

Nλ number of non–zero eigenvalues of fading correlation matrix 22

Ñλ number of dominant eigenvalues of fading correlation matrix 99

NR number of receive antennas 10

NS dimension of unitary data and transmit symbols 7
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NT number of transmit antennas 11

ñ number of DSTM symbols in S̄n 39

pdes desired probability of d1

(
S̄
)
≤ ρ of FP–MSDSD 136

Ψt
c(f) PSD of effective continuous–time fading process 84

Ψt(f) PSD of effective discrete–time fading process 84

R rate in bit per channel use 80

ρ threshold of (outer MSDD) tree–search decoder 25

ρinit initial threshold 37

ρeff effective SNR 93

σ2
n variance of AWGN 11

ζX,i ith singular value of X 138

T modulation interval (1/sampling rate) 72

Matrices

Symbol: Meaning: Page:

C Cholesky factor of M 40

Hn = H [k −N + n] (NS ×NR) channel matrix 82

H̄ [k] (NNT ×NR) channel matrix 82

Gn = G[k −N + n] (NS ×NR) generic channel matrix 10

Ḡ[k] (NNS ×NR) generic channel matrix 13

ΛX contains eigenvalues of X on main diagonal 68

M (N ×N) inverse fading–plus–noise acm 14

Nn = N [k −N + n] (NS ×NR) AWGN matrix 10

N̄ [k] (NNS ×NR) AWGN matrix 13

ΨXX autocorrelation matrix of a matrix X 13

ΨXX|Y autocorrelation matrix of a matrix X conditioned on Y 13

Ψt (N ×N)–dimensional temporal ACM of fading process 84

Rn = R[k −N + n] (NS ×NR) received matrix 10

R̄[k] (NNS ×NR) received matrix 13

R̆i,j 40

Sn = S[k −N + n] (NS ×NS) transmit matrix 10

S̄[k] (NNS ×NS) transmit matrix 12

S̄n =
[
SH

n , . . . ,S
H

N

]
H ((N − n+ 1)NS ×NR) transmit matrix 39

S̄D[k] (NNS ×NNS) block–diagonal transmit matrix 13

UX (N × rank{X})–dimensional unitary matrix whose columns 68
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are given by the eigenvectors of (N ×N)–dimensional X

V n = V [k −N + 1 + n] (NS ×NS) data matrix 10

V̄ [k] ((N − 1)NS ×NS) data matrix 12

V̄ n =
[
V H

n , . . . ,V
H

N−1

]
H ((N − n)NS ×NR) data matrix 39

V (l) lth element of the signal constellation 7

Xn reference symbol in MSDSD 40

Sets

Symbol: Meaning: Page:

V (DSTM) signal constellation 7

C complex numbers 53

IR real numbers 25

ZZ integer numbers 25

Distributions

Symbol: Meaning: Page:

Nc(m,σ
2) circ. symm. complex Gaussian with mean m and variance σ2 10

χ2(σ2,K) central χ2 distribution with variance σ2 and K degrees of 42

freedom
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Abbreviations

Mnemonic: Meaning: Page:

AWGN additive white Gaussian noise 11

A–SpD Agrell sphere decoder 33

BDSTM block–DSTM 84

BID bound intersect detect 58

BFS best first search 26

CDD conventional differential detection 7

CFC continuous fading channel 81

CG–MSDD combinatorial–geometry MSDD 63

CSI (instantaneous) channel state information 9

DFDD decision–feedback differential detection 12

DFE decision–feedback equalization 26

DF–MSDD decision–feedback MSDD 19

DFS depth first search 26

DMD differential modulation diversity 184

DPSK differential phase–shift keying 8

DSFM differential space–frequency modulation 185

DSTM differential space–time modulation 6

ECB equivalent complex baseband 6

F–DSFM frequency–DSFM 192

Fano–MSDD MSDD based on Fano algorithm with Fano–type metric 47

FP–SpD Fincke–Pohst sphere decoder 26

FS full search 51

HT hilly terrain (PDP) 200

iid independent identically distributed 10

LD lattice decoder 55

MFS metric first search 27

MIMO multiple–input multiple–output 6

ML maximum likelihood 11

MMSE minimum mean–squared error 15

MSDD multiple–symbol differential detection 12

S–MSDD subset multiple–symbol differential detection 17

MSDSD MSDD based on A–SpD with ML metric 46

MSDSD–FM MSDD based on A–SpD with Fano–type metric 46

OFDM orthogonal frequency division multiplexing 6
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OWC observation window construction 198

PDF probability density function 11

PDP power–delay profile 185

PEP pairwise error probability 85

PSD power spectral density 73

QSFC quasi–static fading channel 82

SA signal allocation 191

SpD sphere decoder 22

SISO single–input single–output 18

SE Schnorr–Euchner (candidate enumeration strategy) 46

SER symbol–error rate 21

SNR signal–to–noise–power ratio 7

T–DSFM time–DSFM 192

TU typical urban (PDP) 198
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