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Abstract— It has been widely acknowledged that the aggregate
interference at the receiver for various practical communication
channels can often deviate markedly from the classical additive
white Gaussian noise (AWGN) assumption due to various ambient
phenomena. Moreover, the physical nature of the underlying
interference generating process in such cases can lead to a
bursty behaviour of the interfering signal, implying that i t is
highly likely that consecutive symbols are affected by similar
noise levels. In this paper, we devise and analyze detection
techniques, in conjunction with a convolution code, for such
interference channels that possess non-negligible memoryby
considering optimum and sub-optimum decoding metrics. In
particular the inherent memory in the noise process is modeled
as a first-order Markov chain, whose state selects the variance of
the instantaneous Gaussian noise, leading to a Markov-Gaussian
channel model. Analytical expressions are obtained for thecut-
off rate, which is an ensemble code parameter, and the bit error
rate for a convolutionally coded system, that are subsequently
employed for an extensive evaluation of the various metrics
considered. Furthermore, the interleaving depth is considered
as a design parameter and its effect on performance is analyzed
over a range of noise scenarios.

Index Terms— Impulse noise, Markov channels, Gilbert-Elliot
model, Convolutional codes, Error rate analysis, Cutoff rate.

I. I NTRODUCTION

In various wireless and wireline communication systems
transmission is affected not only by the omni-present thermal
noise, which is faithfully modeled as an additive white Gaus-
sian noise (AWGN) process, but also by impulse noise. For
example, measurements and analysis reported in [1]–[6] have
shown that the overall ambient noise experienced in wireless,
wireline, and power line communication (PLC) systems and
interference from co-channel and ultra-wideband (UWB) inter-
ferers exhibit a decidedly non-Gaussian behaviour. Likewise,
the assumption of a memoryless noise process is not valid for
many transmission scenarios, cf. e.g., [5], [7], [8] (and refer-
ences therein) for PLC, UWB, and wireless transmission under
partial-time jamming, when delay constraints prevent the use
of deep interleaving. While a deviation from Gaussianity and
the presence of memory in the noise process is beneficial
in terms of an increase in channel capacity, systems based
on conventional matched-filter receivers and decoding that
assumes memoryless disturbance experience a considerable
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performance degradation in environments with bursty impulse
noise.

In this paper, we study coded transmission over channels
impaired by bursty impulse noise. In particular, we consider
the use of convolutional coding at the transmitter and Viterbi
decoding at the receiver, which is still the most popular
configuration in wireless communications. As often done
in literature, e.g., [9]–[14], we model the one-dimensional
density of the noise process by a two-term Gaussian mixture
distribution, one term of which corresponds to the presence
and the other to the absence of the impulse noise component.
To account for memory in the noise process, we model the
sequence of mixture terms by a two-state Markov chain. We
thus apply a Markov-Gaussian channel [15] whose underlying
state process is the same as in the Gilbert-Elliot channel model,
which has been widely used to model burst noise channels, e.g.
in [8] for jamming, in [7] for UWB interference, and in [15] for
bursty noise in PLC. We would like to point out that different
from many of the works on Gilbert-Elliot type channels, e.g.,
[16]–[20], we consider non-binary channel outputs.

The related literature studying impulse noise channels often
makes simplifying assumptions, such as (i) independent and
identically distributed (i.i.d.), i.e., perfectly interleaved noise
[10], [12], [21], [22], (ii) perfect knowledge of the noise
statistics at the receiver [15], [21], [22], or (iii) use of a
specific (optimal or suboptimal) decoding metric [15], [20]–
[22], to either simplify the receiver design or to keep the
analysis mathematically tractable. We extend the work in the
aforementioned papers in that we (i) propose and compare
several decoding metrics which are suitable for convolutional
coded transmission over Markov-Gaussian channels and (ii)
analyze the effect of finite interleaving on overall system
performance. The metrics presented include two novel metrics
(originally presented in [23]), which are appealing in thatthey
require minimal knowledge about the noise statistics. While
we do not attempt to modify the sequence-detection Viterbi
decoder to exploit channel memory, our analysis also includes
metrics based on noise-state information, which in practice
would necessitate the use of a state estimator, cf. e.g. [8],
[16], [24]. We derive analytical expressions for cutoff rate
and tight approximations for the bit-error rate (BER) perfor-
mances for the proposed metrics, thus providing a framework
for performance comparisons. The obtained expressions are
substantially useful in that they reveal quite explicitly the
decoding behavior as a function of the decoding metric and
the achievable performance gains compared to the conven-
tional Euclidean distance metric. Likewise, the performance
degradation due to finite interleaving depth is quantified in
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Fig. 1. System model for convolutionally coded transmission over a Markov-
Gaussian channel.

terms of both the BER and cutoff rate. Our results indicate
that an interleaver depth of about twice the average time spent
in the bad noise state is needed to successfully disperse noise
bursts. Furthermore, in conformance with previous work in
the area [22], we show that considerable performance gains
are achievable by considering passband transmission when the
statistical dependencies between the quadrature components is
exploited.

Organization: The remainder of this paper is organized as
follows. Section II introduces the transceiver structure and the
noise model. In Section III, various decoding metrics that
have the capability to combat impulse noise are presented.
Section IV is devoted to the theoretical performance anal-
ysis for transmission over Markov-Gaussian channels when
applying the decoding metrics from Section III. Numerical and
simulations results are presented and discussed in SectionV.
Finally, concluding remarks are offered in Section VI.

The following notation is used.Pr{·} andE{·} denote the
probability of an event and statistical expectation, respectively.
ℜ{·} andℑ{·} are the real and imaginary part of a complex
number. Q(x) , 1/

√
2π

∫ ∞

x
e−t2/2dt is the Gaussian Q-

function.

II. SYSTEM MODEL

Figure 1 shows the structure and components of the overall
coded transmission system. In the following, we provide a
brief description of transmitter and receiver operations and
the noise model.

A. Transmitter

Information bitsdk ∈{0, 1} (k∈Z is the discrete time index)
are emitted by a source with uniform probability and encoded
by a binary rate-kc/nc convolutional encoder to produce coded
bits ck. The coded bits are interleaved and then mapped to
binary phase-shift keying (BPSK) symbols by the mapper
to generate transmit symbolsxk ∈ {−1, 1}. A regular block
interleaver withI rows andIc columns is assumed, such that
the encoder and the interleaver outputs (see Figure 1) are
related via

cπ
(jI+i) = c(iIc+j) 0 ≤ i < I , 0 ≤ j < Ic . (1)

B. Channel and Receiver

The channel is assumed to be non-frequency selective and
non-fading, i.e., we consider narrowband transmission with
stationary or slowly mobile devices (e.g. [8], [10], [13]).The

equivalent discrete-time representation of the received symbol
after filtering and sampling is given by

rk = xk + nk , (2)

wherenk are samples of the noise process, a detailed descrip-
tion of which is provided in the following section. The received
samplesrk are subsequently used to compute decision metrics
that are de-interleaved and passed to the Viterbi decoder. The
decoding is discussed in detail in Section III.

C. Noise Model

We consider the noise termnk to be the additive super-
position of two terms,wk and bkik, where wk and ik are
zero-mean Gaussian distributed andbk is a {0, 1}-random
variable. The motivation for such a model stems from the
fact that whilewk represents the AWGN,wk + ik describes
the AWGN plus interference either from other users or from
ambient phenomena. The formerstate is referred to as the
good (sk = G ⇔ bk = 0) state, and the latter as the bad
(sk = B⇔ bk = 1) state. Conditioning on the noise state we
can express the noise probability density function (pdf) by

ps(n) = exp
(

−|n|2/(2σ2
s)

)

/
∣

∣

√
2πσs

∣

∣

D
, (3)

whereD = 1 for real-valued (baseband) transmission andD =
2 for complex-valued (passband0 transmission, ands ∈ S ,
{G,B}. The noise variances are given byσ2

G = σ2
w andσ2

B =
σ2

w + σ2
i , andσ2

w andσ2
i are the variances ofwk and ik per

real dimension. For future reference we define the parameter
κ , σ2

B/σ2
G = 1 + σ2

i /σ2
w, which is indicative of the strength

of the interference component compared to the thermal noise.
Denoting the probability of being in the bad and good state
by PB , Pr{sk = B} and PG , Pr{sk = G} = 1 − PB, the
noise pdf is given by

p(n) = PGpG(n) + PBpB(n) . (4)

This two-term noise model has been used in e.g. [9]–[14]
and it is also a good approximation of Middleton’s Class-A
noise model [22], [25], [26]. The parallel treatment of real-
and complex-valued transmission is (i) practically relevant
as BPSK (or BPSK-type) transmission is also often used
for carrier-based systems and (ii) allows us to compare the
differences with the case of AWGN.

In the literature, often ideal (i.e., infinite) interleaving and
thus independent noise samples are assumed, whereby (4) fully
characterizes the noise model. However, the independence
assumption may be invalid for typical finite-size interleavers.
We therefore employ a first-order two-state Markov model to
describe the sequence of noise statessk, which leads to a
Markov-Gaussian channel model [7], [8], [15]. The Markov
chain is assumed to be irreducible, aperiodic, and stationary
with transition matrix

T =

[

Pr{sk =G|sk−1 =G} Pr{sk =B|sk−1 =G}
Pr{sk =G|sk−1 =B} Pr{sk =B|sk−1 =B}

]

,

[

PGG PGB

PBG PBB

]

.

(5)
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SinceT is row-stochastic, two parameters, e.g.,PGG andPBB

fully describe the state process. Furthermore, we have for the
stationary distributionPG =(1 − PBB)/(2 − PGG − PBB).

III. D ECODING METRICS

We consider conventional Viterbi decoding [27] in the
log-likelihood domain performing add-compare-select (ACS)
operations and thus the path metric is the sum of branch (bit)
metrics. Since the Euclidean-distance metric is not optimal
anymore, in the following we present a number of different
bit-metric formulations which are apt for decoding in channels
with impulse noise. As mentioned earlier, we do not attempt to
modify the widely implemented ACS Viterbi decoder architec-
ture, but only the computation of bit metrics. Hence, we do not
pursue the explicit use of the memory of the noise process for
noise state estimation. However, our framework allows us to
include bit metrics assuming knowledge of the instantaneous
noise state, which enables a more comprehensive comparison
and provides performance limits.

1) Euclidean Distance Decoder (EDD):We start with the
classical Euclidean-distance metric for the trial symbolx̃k at
time k given the received samplerk, which reads

λ(x̃k|rk) = −|rk − x̃k|2 (6)

and is employed by a Viterbi decoder designed for AWGN
at the receiver. This metric formulation is oblivious to the
presence of impulse noise and will mainly serve to benchmark
the performance of other decoding metrics that are described
in the following.

2) Known State Maximum-likelihood (ML) Decoder
(KSMLD): At the other end of the performance-complexity
spectrum is the decoder that has perfect knowledge of the
instantaneous noise statesk and the pdf parameters, i.e.,
the pdf given by Eq. (3) is applied. Practical methods to
obtain an estimate forsk include the decision-feedback-aided
state estimator [16] and the expectation-maximization (EM)
algorithm as described in [8]. The KSMLD branch metric is
given by

λ(x̃k|rk, sk, σ2
sk

) = −|rk − x̃k|2/(2σ2
sk

) . (7)

The KSMLD marks the best performance as it operates on a
channel with full side information.

3) Memoryless Maximum-likelihood Decoder (MSMLD):
When the receiver is only aware of an impulsive component in
the noise but is oblivious to any correlations thereof and thus
only considers the one-dimensional noise density, the decoder
uses the log-likelihood function

λ(x̃k|rk, θ) = log(p(rk − x̃k)) (8)

as branch metric, wherep(n) is given by Eq. (4). As can be
seen from (8) and (4), the MSMLD requires knowledge of the
noise parametersθ = [PG, σ2

G , σ2
B ]. Such a decoder has often

been considered for i.i.d. non-Gaussian noise, cf. e.g. [10],
[21], [22]. A useful simplification of this metric is obtained
from the “max-log” approximation

λ(x̃k|rk, θ) = max
s∈S

{log [Ps ps(rk − x̃k)]} , (9)

which will be considered in the following.

4) Erasure Marking Decoder (EMD):A popular and per-
haps more practical alternative to combat impulse noise is
Viterbi decoding with erasure marking [24], [28]. Erasure
marking could be performed either before decoding (based
on the instantaneous value ofrk) or by the joint erasure
marking and decoding technique developed in [24]. As an
approximation of these types of decoders, we consider an ideal
erasure decoder whose decoding metric is given by

λ(x̃k|rk, sk) =

{

−|rk − x̃k|2 , if sk = G,
0 if sk = B.

(10)

As we see later, such an approach leads to an error floor for
the considered transceiver.

5) Huber Penalty Function Decoder (HPFD):We now
proceed with two novel bit metrics for Viterbi decoding
in impulse noise. The first metric is adopted from robust
multiuser-detector design in [12] and applies Huber’s penalty
function (cf. [12, Eq. (33)]):

λ(x̃k|rk, σ2
n, ξ) =

{

−|rk−x̃k|
2

2σ2
n

, if |rk − x̃k| ≤ ξσ2
n,

ξ2σ2
n

2 − ξ|rk − x̃k|, if |rk − x̃k| > ξσ2
n,

(11)
whereσ2

n , PGσ2
G + PBσ2

B is the average noise variance and
ξ is the metric parameter.

6) α-Penalty Function Decoder (α-PFD): The second new
metric is based on the so-calledα-detector devised in [29],
again for multiuser detection. The corresponding branch metric
reads

λ(x̃k|rk, α) =
1

2α
exp

(

−α|rk − x̃k|2
)

, α > 0 . (12)

We note that theα-PFD metric tends to the Euclidean-distance
metric for α → 0 [29, Eq. (9)].

The bit metrics for theα-PFD are determined by adjusting
a single parameter,α. Similarly, the HPFD does not require
knowledge of the mixture noise parameters, but only of
the average noise varianceσ2

n, and ξ needs to be adjusted.
As we shall see later when considering numerical results
in Section V, α and the normalized parameterξσn can be
optimized offline to provide good performance over a range
of channel noise scenarios. Hence, (11) and (12) are directly
applicable to the standard ACS Viterbi decoder architecture,
which is a distinct implementation advantage over KSMLD- or
EMD-type approaches, which require decoder modifications if
the corresponding performance limits ought to be approached,
cf. [8], [24]. We therefore regard these two metrics as attractive
alternatives to the extreme cases of (i) not exploiting the
impulse noise characteristic at all (EDD) and (ii) relying on
the knowledge of the noise pdf (MSMLD) or the noise state
(KSMLD, EMD).

Finally, we note that while we focus on novel metrics
inspired from multiuser detection literature, there are other
possible choices for single-parameter metrics. For example,
metrics based on heavy-tail distributions such as the general-
ized Gaussian pdf and the Cauchy pdf [30] or the soft-limiting
detector and improved variants of it [31], [32] follow the same
rationale applied for the HPFD andα-PFD metrics.
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IV. T HEORETICAL ANALYSIS

In this section, we derive expressions for the BER and cutoff
rate achievable with the decoding metrics introduced above
in Markov-Gaussian noise. Our analysis draws significant
practical relevance from the fact that we explicitly take the
effect of finite interleaving into account. To this end, we first
specify the effective noise process including interleaving in
Section IV-A. Then, the general approach to the analytical
evaluation is presented in Section IV-B, while the specific
expressions for the different decoding metrics are derivedin
Section IV-C.

A. Analysis for Markov Noise and Finite Interleaving

The sizeI × Ic of the interleaver (see Section II-A) is typi-
cally dependent on the maximal transmission delay acceptable
for the communication system. We make the usual assumption
that Ic is much larger than the decoder constraint length
measured in terms of number of code symbols. Therefore,
it suffices to consider the number of rowsI, also referred to
as the interleaver depth, and we can conveniently incorporate
the interleaver-deinterleaver operation into the noise process
by replacing the state transition matrixT from (5) with theI-
step transition matrixT I . From the eigenvalue decomposition
of T we have that

T I =

[

PG PB

PG PB

]

+ µI

[

PB −PB

−PG PG

]

, (13)

whereµ = (1−PBG −PGB) = (1−PBG/PG) (|µ| < 1) is the
second eigenvalue ofT . Clearly,µ determines the performance
as function ofI, and it has been referred to as channel memory
in [16]. Furthermore,µI can be approximated by

µI ≈ 1 − (PBGI/PG) , 1 − I/(D̄BPG) (14)

if PBG/PG ≪ 1, where D̄B = 1/PBG is the average time
spent in the bad state (average burst length). Hence, for
given stationary probabilities, a first-order approximation is to
choose the interleaver depth proportional toD̄B to sufficiently
disperse error bursts.

B. Performance Measures

As widely accepted performance yardsticks for convolution-
ally coded transmission we consider (i) the BER for given
codes and (ii) the computational cutoff rate for ensembles of
codes [27].

1) Bit-error Rate (BER):Since we have a linear coding
and modulation scheme and an output symmetric channel, it
suffices to consider the all-zero word as the transmitted code
word. As commonly done for convolutional coded systems
[27], we invoke the union bound to approximate the BER.
There are two significant differences here with respect to
the analysis for memoryless noise. First, the pairwise error
probability is a function of not only the Hamming weight
d of the error event, but also of the number of bad,nB,
and good,nG = (d − nB), noise states occurring during
the event. Secondly, the probability of an error evente =
[e1, e2, . . .] with Hamming weightdH(e) depends on the error
positionsp(e) = [p1, . . . , pdH(e)], where epi

= 1, through

the probability of noise-state sequencesPr{s|p(e)} with s =
[sp1 , . . . , spdH(e)

]. This leads us to the union bound on the
BER as

Pb ≤ (1/kc)
∑

d≥dfree

d
∑

nB=0

PEP(d, nB)Υ(d, nB) , (15)

wheredfree denotes the free distance of the code,PEP(d, nB)
is the pairwise error probability (PEP) between the all-zero
word and a code word with Hamming weightd givennB bad
and (d−nB) good noise states, respectively, and

Υ(d, nB) =
∑

{e∈V|dH(e)=d}

W (e)
∑

s∈Sd
nB

Pr{s|p(e)} (16)

In (16), V denotes the set of first-event error vectors [27,
Section 4.4],W (e) denotes the input weight for the error
evente, and Sd

nB
is the set of noise-state vectors of length

d with nB bad states. The probability of the state sequences

is given by

Pr{s|p(e)} = Pr{sp1}
dH(e)
∏

i=2

P((pi−pi−1)I)
spi−1

spi
, (17)

in which P
((pi−pi−1)I)
spi−1

spi
are the transition probabilities ac-

cording to the state transition matrixT (pi−pi−1)I . In the
evaluation ofΥ(d, nB) we take advantage of the generating
series approach developed in [19] for finite state channels.
The method of [19] however, requires adaption for our case
as [19] uses a binary-output channel model. More specifically,
we decomposeT I into P (0) + P (1) = T I , where the first
column of P (0) and the second column ofP (1) are zero,
which corresponds to the analogous definitions in [19, Eqs.
(2), (3)]. We then have thatΥ(d, nB) is the coefficient of
ydωnB in the power series∂T (ω,x,y)

∂x

∣

∣

x=1
, whereT (ω, x, y)

is referred to as the generating series for the probability of
error patterns and expressed in [19, Eq. (18)] with explicit
dependence onP (0) andP (1).

A commonly used BER approximation is obtained when
only the dominant error events in the union bound, i.e., the
error events whose Hamming weightd does not exceed an
upper limit dmax, are considered. The computation of the
corresponding truncated seriesT (ω, x, y) can be done as
described in [19, Section III. A]. Furthermore, for the case
of ideal interleaving, since

Υ(d, nB)
I→∞
=

(

d

nB

)

PnB

B P
(d−nB)
G

∑

{e∈V|dH(e)=d}

W (e)

,

(

d

nB

)

PnB

B P
(d−nB)
G W (d) ,

(18)
we only need the distance spectrumW (d) of the code [27,
p. 239].

The PEP in (15) can be written as

PEP(d, nB) = Pr{∆(d, nB) < 0}, (19)

where

∆(d, nB) ,
nB
∑

i=1

δi|B +

d
∑

i=nB+1

δi|G ,

δi|s , [λ(x̃i =+1) − λ(x̃i =−1)|si = s] ,

(20)
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and λ(x̃i) are the bit-metrics presented in Section III. In
case of EDD, KSMLD and EMD metrics, (20) and thus
the PEP can be obtained in closed form, as will be shown
in Section IV-C. For the rest of the decoding metrics, it is
advantageous to proceed in the Laplace domain. Introducing
the Laplace transformΦδ(ζ|s) , E{e−ζδi|s}, and noting
that conditioned on the noise state the metric differences are
statistically independent, the PEP can be evaluated through the
inverse Laplace transform

PEP(d, nB) =
1

2πj

χ+j∞
∫

χ−j∞

[Φδ(ζ|G)](d−nB)[Φδ(ζ|B)]nB
dζ

ζ
,

(21)
whereχ > 0 lies in the region of convergence of the integral.
This integral lends itself to efficient numerical integration us-
ing Gauss-Chebyshev quadratures withN nodes [33, p. 889],
[34, Eq. (10)] as follows

PEP(d, nB) =
1

N

N/2
∑

i=1

(ℜ{Φ(χ+jχτi)}+τiℑ{Φ(χ+jχτi)}) ,

(22)
whereΦ(ζ) , [Φδ(ζ|G)]d−nB [Φδ(ζ|B)]nB andτi , tan((2i−
1)π/(2N)). The expressions for the Laplace transforms
Φδ(ζ|s) of the respective metrics are presented in Section IV-
C. These expressions also play a pivotal role in computation
of the cutoff rate, as explained in the next section.

2) Cutoff Rate:Since except for the KSMLD and MSMLD
metrics that assume, respectively, the instantaneous and statis-
tical knowledge about the noise process, the decision metrics
considered in this work are non-ML, we employ the notion
of generalized cutoff rate as an information-theoretic perfor-
mance measure. The generalized cutoff rate has widely been
used in the context of fading channels, e.g. [35], [36] with
mismatched decoding. To this end, denoting the transmitted
and received signal vectors of lengthL by x = [x1, . . . , xL]
andr = [r1, . . . , rL], and introducing the decoding path metric
for x givenr by Λ(x|r), we upper bound the PEP betweenx

and an alternative vector̃x, for a given noise state sequence
s = [s1, . . . , sL], using the Chernoff bound

PEP(x → x̃|s) ≤ min
ρ≥0

E
r|x,s {exp [−ρ(Λ(x|r) − Λ(x̃|r))]} .

(23)
While the Chernoff factorρ could be optimized for eachs,

the simpler (and looser) upper bound

PEP(x→ x̃)≤ min
ρ≥0

Es

{

E
r|x,s{exp [−ρ(Λ(x|r)−Λ(x̃|r))]}

}

, min
ρ≥0

C(x̃, x, ρ)

(24)
for the average PEP is obtained when choosing an optimized
ρ independent ofs (cf. [37] for a similar approach to obtain
an upper bound for block fading channels based on random
coding arguments). Employing (24) allows us to express the
generalized cutoff rate as

R0 = lim
L→∞

max
ρ≥0

− 1

L
log2 [Ex,x̃ {C(x̃, x, ρ)}] , (25)

whereR0 is in bit/symbol. Exploiting the fact that additive
metrics are used, i.e.,

Λ(x̃|r) =

L
∑

k=1

λ(x̃k|rk) , (26)

and that the transmitted symbols are chosen independently and
uniformly distributed, the expression in (25) can be simplified
to

R0 = lim
L→∞

max
ρ∈R

− 1

L
log2

[

∑

s0∈{G,B}

Pr{s0}

×
∑

s∈SL

L
∏

k=1

1

2
Pr{sk|sk−1} (Φδ(ρ|sk) + 1)

]

,

(27)

whereρ lies in the intersectionR of the convergence regions of
the Laplace transforms and we use the stationary distribution
for the initial states0. With some thought [38, p. 184] and by
defining

Φ(ρ) ,
1

2

[

Φδ(ρ|G) + 1 0
0 Φδ(ρ|B) + 1

]

,

Π ,

[

PG

PB

]

, 1 ,

[

1
1

]

,

R0 can be written in a matrix form as

R0 = lim
L→∞

max
ρ∈R

− 1

L
log2

[

Π
T (T I

Φ(ρ))L
1

]

. (28)

Since T I
Φ(ρ) is irreducible, we have that[emax(ρ)]L/q ≤

Π
T (T I

Φ(ρ))L
1 ≤ [emax(ρ)]Lq, where q > 1 is the ratio

of the components of the real eigenvector corresponding to
the real, positive, largest eigenvalueemax(ρ) of T I

Φ(ρ) [38,
p. 184]. Therefore, we finally obtain the expression

R0 = − log2

[

min
ρ∈R

emax(ρ)

]

. (29)

From an optimization standpoint, it is convenient to express

R0 in terms of e2
max(ρ), i.e., R0 = −1

2
log2

[

min
ρ∈R

e2
max(ρ)

]

.

We note thate2
max(ρ) being the largest eigenvalue of the

symmetric matrixA , T I
Φ

2(ρ)(T I)T , is a convex function
of the elementsaij , i, j = 1, 2, of A [39, Example 3.10].
Furthermore, since

e2
max(ρ) =

1

2

[

a11 + a22 +
√

4a12a21 + (a11 − a22)2
]

,

(30)
andaij > 0, i, j = 1, 2, it is easy to show thate2

max(ρ) is also
monotonically increasing inaij . Hence, from the convexity
of the Laplace transform and consulting the composition rules
[39, p. 86], we conclude thate2

max(ρ) is a convex function
of ρ, which greatly facilitates the minimization problem (29)
with the assurance of a unique inflexion point. Moreover, note
that in case of ideal interleaving (I → ∞),

emax(ρ) =
1

2
[PG(Φδ(ρ|G) + 1) + PB(Φδ(ρ|B) + 1)]

,
1

2
[Φδ(ρ) + 1] ,

(31)
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and the familiar expression

R0 = 1 − log2

[

1 + min
ρ∈R

Φδ(ρ)

]

(32)

is recovered [34].

C. Expressions for Different Metrics

We now present the expressions required to evaluate the
PEP and cutoff rate for the different metrics introduced in
Section III.

1) EDD: Substitution of (6) into (20) yields that∆(d, nB)
is Gaussian distributed for EDD and the corresponding PEP
can be expressed as

PEP(d, nB) = Q

(

d/
√

nBσ2
B + (d − nB)σ2

G

)

. (33)

Likewise, the Laplace transform can also be expressed in
closed form as

Φδ(ζ|s) = exp

(

2

σ2
G

ζ

[

σ2
s

σ2
G

ζ − 1

])

. (34)

2) KSMLD: Also in the case of the KSMLD,∆(d, nB)
is Gaussian distributed. The PEP and Laplace transform are
obtained as

PEP(d, nB) = Q

(

√

nBσ−2
B + (d − nB)σ−2

G

)

(35)

and
Φδ(ζ|s) = exp

(

2σ−2
s ζ(ζ − 1)

)

, (36)

respectively. Since the Chernoff factorρ = 1/2 uniformly
minimizes the eigenvalueemax(ρ) for this case, the cutoff rate
R0 in (29) is also obtained in closed form.

An interesting observation here is that the ratio of the
arguments of theQ-functions in (35) and (33) is the ratio of
the arithmetic and the harmonic mean of the variancesσ2

G and
σ2
B . Hence KSMLD is strictly superior to the EDD in terms

of BER unlessσ2
G = σ2

B .
3) EMD: The expressions for the EMD immediately follow

from those for the KSMLD by lettingσ2
B → ∞. We note

that for asymptotically large signal-to-noise ratio (SNR)the
average PEP is given by

d
∑

nB=0

PEP(d, nB)Υ(d, nB)
σ2
G→0−→ 1

2
Υ(d, d) (37)

which implies that the BER curve will floor out with increasing
SNR when decoding with this metric. The Laplace transform
for EMD is obtained as

Φδ(ζ|s) =

{

exp
(

2σ−2
s ζ(ζ − 1)

)

, if s = G
1, if s = B (38)

Again, ρ = 1/2 uniformly minimizesemax(ρ) and a closed-
form expression forR0 results from (29). Furthermore, for
asymptotically large SNRs we find thatemax(ρ)

σG→0→ 1+P
(I)
BB ,

whereP
(I)
BB is the transition probability according toT I (13).

Thus,
R0 = 1 − log2(1 + P

(I)
BB ) , (39)

which is strictly smaller than1.

4) MSMLD: For the max-log MSMLD metric we need to
evaluate the PEP based on (21) and thus are interested in the
Laplace transformΦδ(ζ|s) for computation of BER as well.
The transform is given by

Φδ(ζ|s) =

∫

n

(

max
a∈S

[pa(n + 2)] / max
a∈S

[pa(n)]

)ζ

ps(n) dn .

(40)
This integral can be written as the sum of four integrals, where
the integrand is a Gaussian pdf and the domains of integration
are given by{n : |n|2 > t ∧ |n + 2|2 > t}, {n : |n|2 >
t ∧ |n + 2|2 < t}, {n : |n|2 < t ∧ |n + 2|2 > t}, {n : |n|2 <
t ∧ |n + 2|2 < t} and

t =
2σ2

G

1 − σ2
G/σ2

B

log

(

PG/PB

σD
G /σD

B

)

(41)

is the threshold at which the two terms of the Gaussian mixture
pdf attain the same value. A closed-form solution as sum of
GaussianQ-functions results in the real-valued channel case,
while using the alternative representation of theQ-function
[40] simple one-dimensional integrals need to be computed
for complex-valued channels.

5) HPFD: The HPFD also requires evaluation of (21) with
the corresponding metric difference expression to obtain the
PEP. As in the case of MSMLD, we can express the Laplace
transformsΦδ(ζ|s) in closed form as sums ofQ-functions
for real-valued transmission. In the complex-valued case we
need to resort to numerical integration. Denoting the unit-step
function asu(x) and, for convenience, defining the variables
τk,ℓ , tan((2k−1)π/(2N))+j tan((2ℓ−1)π/(2N)), ωk,ℓ ,
cos((2k−1)π/(2N)) cos((2ℓ−1)π/(2N)), ak,ℓ , ξσ2

n−|τk,ℓ|,
bk,ℓ , ξ2σ2

n/2 − ξ|τk,ℓ|, ck,ℓ , ξσ2
n − |τk,ℓ + 2|, anddk,ℓ ,

ξ2σ2
n/2− ξ|τk,ℓ + 2|, we can well approximateΦδ(ζ|s) using

Gauss-Chebyshev quadratures [33, p. 889]

Φδ(ζ|s)≈
π2

N2

N
∑

k=1

N
∑

ℓ=1

exp
(

−ζ
[

− |τk,ℓ|2
2σ2

n

u(ak,ℓ)+bk,ℓu(−ak,ℓ)

+
|τk,ℓ + 2|2

2σ2
n

u(ck,ℓ) − dk,ℓu(−ck,ℓ)
])ps(τk,ℓ)

ω2
k,ℓ

,

(42)
which we found to converge well forN = 100 nodes.

6) α-PFD: Due to the form of the metric for theα-
PFD (12) there is no closed-form expression for the PEP or
the Laplace transformΦδ(ζ|s). The latter can however, be
numerically computed with sufficient accuracy using Gauss-
Chebyshev quadratures as above by expressingΦδ(ζ|s) as

Φδ(ζ|s) ≈
π2

N2

N
∑

k=1

N
∑

ℓ=1

exp

(

− ζ

2α

[

e−α|τk,ℓ|
2−e−α|τk,ℓ+2|2

]

)

ps(τk,ℓ)

ω2
k,ℓ

(43)
in the complex-valued channel case, while a single summation
is sufficient for real-valued channels. The PEP then follows
from (21).

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we put the analytical and semi-analytical
expressions obtained in the previous section to use to (i)
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gauge the different metrics for their effectiveness in Markov-
Gaussian channels when used with Viterbi decoding, (ii) obtain
suitable values for the single parameters of the HPFD-metric
and theα-PFD metric, (iii) study the interplay of channel
memory and interleaving and their effect on performance,
and (iv) substantiate the benefit of using both quadrature
components in complex-valued channels.

A. Cutoff Rate

In order to clearly separate the effects of decoding metrics
and interleaving, we first present cutoff rate results assuming
infinite interleaving and thereafter proceed to discuss the
performance degradation incurred due to finiteI, using a rate
loss criterion defined later.

1) Infinite Interleaving (I→∞): Figure 2 presents theR0

results, as a function of SNR(1/(2σ2
w)), for decoding with

the different metrics for both real- and complex-valued trans-
mission. The exemplarily considered channel noise parameters
are κ = 100 and PB = 0.1, which represents a channel
with a strong and frequent impulse noise component. The
parameters for the HPFD andα-PFD metrics areξ = 0.1/σn

andα = 0.5, respectively (see below for the optimization of
these parameters).

We note that for the cases where the noise state is assumed
known, i.e., KSMLD and EMD, no additional information
can be drawn from the quadrature component of the received
signal, and thus theR0 curves for real and complex trans-
mission are identical. Furthermore, since the EDD treats in-
phase and quadrature components independently, it is not able
to exploit the statistical dependencies between the two signal
components (see noise pdf (3)), and hence only oneR0 curve
is observed for the EDD in Figure 2. In contrast to this, the
MSMLD, HPFD, andα-PFD utilize these dependencies and
achieve notably higher rates in the complex-valued channel
scenario.

The cutoff-rate curve for the EMD saturates atR0 =
1 − log2(1 + PB) = 0.86 bit/(channel use) [cf. (13) with
I → ∞ and (39)]. The cutoff rate for the KSMLD steadily
approaches 1 with increasing SNR, by extracting information
from noisy (bad state) received samples as well. In fact, the
R0 curve consists of two parts, which, as can be inferred
from the representation foremax(ρ) in (31), correspond to the
good and bad noise states. This two-part characteristic of the
R0 curves also manifests for the other decoding metrics with
the exception of the conventional Euclidean-distance metric,
which is evidently ill-suited for the two-term mixture noise.

In terms of absolute performance the KSMLD can be
considered as an idealized benchmark. Clearly, the acqui-
sition of instantaneous state information requires additional
bandwidth and computational resources. For example, the EM
algorithm proposed in [8] consists of two forward-backward
algorithms and pilot symbols are needed for its initialization.
It is interesting to observe that, until its saturation point,
the EMD performs almost as good as the KSMLD, which
suggests that decoding of bad-state received signals can be
omitted with negligible performance loss. We note that the
EMD considered here also relies on instantaneous noise-
state information. Barring KSMLD and EMD, all the other
decoders thus have a significant computational advantage as
no state estimation is done, whereby MSMLD is the clearly
the optimal choice. However, theα-PFD, which has the
distinct advantage of requiring the selection of only a single
parameter, approaches the MSMLD performance closely. This
is particularly remarkable consideringα-PFD works without
any statistical knowledge of the noise process while MSMLD
perfectly knowsθ. Furthermore, while the HPFD seems to
suffer more when compared to the ideal cases, the gains
exhibited by bothα-PFD and HPFD over the conventional
Euclidean-distance based decoder are significant for all but
almost uncoded transmission for the noise scenario considered
in Figure 2.

2) Effect of Finite Interleaving:We now turn to the case
of finite interleaving depthI. We choose the exemplary state
transition parametersPGB = 0.003 and PBG = 0.025, such
that the average burst length is̄DB = 40 symbols and the
stationary probabilities arePG = 0.9 and PB = 0.1 as in the
previous section. Again,κ = 100 is chosen. As an indicator
of the effect of finite interleaving we define the relative rate
loss

∆R0 ,
R0(∞) − R0(I)

R0(∞)
, (44)

whereR0(I) denotes the cutoff rate for given interleaver depth
I. The rate loss∆R0 is plotted in Figure 3 as a function
of the SNR for the decoding metrics which do not rely on
knowledge of the instantaneous channel state. As discussedin
Section IV-A (cf. Eq. (14)), we consider different interleaver
depths parameterized bȳDB, namelyI =[0, D̄B/2, 2D̄B].

From Figure 3 we observe significant losses in the absence
of interleaving (I = 0), which are mitigated with increasingI
and virtually disappear forI =2D̄B. Since0.9 . PG < 1 for
typical mixture noise scenarios, we conclude that configuring
the interleaver depth according to double the average burst
length is sufficient for most practical purposes. Note that our
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results are not a contradiction to the paradigm that memory
increases capacity [16], since (i) the considered decodersdo
not attempt to make use of the channel memory and (ii) it
is known that cutoff rate deteriorates with increasing channel
memory even if the channel state is known [41].

3) Parameter Optimization based on Cutoff Rate:While the
uni-parameter definition of the proposedα-PFD metric makes
it particularly attractive, a better understanding of the metric is
obtained by obtaining the optimal values for the parameterα
for the various noise scenarios. In particular, we considerthe
SNR required to achieve a cutoff rateR0 = 0.5 bit/symbol,
i.e., transmission with code rate 1/2, as function ofα as the op-
timization criterion. To this end, Figure 4 depicts the variation
with increasing values ofα for baseband transmission with
multiple interleaver depths. As reference, curves for MSMLD
and EDD are also plotted. We observe thatα ∈ [0.5, 2]
provides close-to-optimal performance for different interleaver
depths. Furthermore, atI = 2D̄B the performance for the
memoryless channel is well approached, which corroborates
our previous conclusions from Fig. 3. We note that theα-
PFD converges to the EDD forα→ 0, cf. [29, Eq. (9)]. This
also indicates that for decreasingPB the optimum value of
α will decrease. Nonetheless, the results forPB = 0.01 (not
shown here) reveal thatα ∈ [0.5, 2] is a good choice for this
case also.

HPFD being the other detector in the league ofα-PFD in
terms of minimality of information required, we optimize its
operating parameterξ on the same criterion as above. The
optimal value(s) forξ can be inferred from Figure 5, which
shows the required SNR (as in Figure 4) as function ofξσn.
This time we assumeI → ∞ and plot results forPB =
[0.1, 0.01, 0] to analyze the range from frequent impulses to
AWGN channels. Evidently, relatively small values ofξσn are
advantageous in impulse noise channels, whereas larger values
achieve a slightly better performance in the Gaussian noise
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case. We note that the HPFD approaches the EDD for large
values ofξ (see (11)). Similarly flat optima (as in Figure 5)
were found for finite interleaver depth (not shown here). Using,
e.g., ξ = 0.1/σn appears to be a good compromise for all
scenarios.

B. Bit-error Rate

We now present BER results obtained from the analytic
expressions derived in Section IV and simulations. As a rel-
evant example, we consider the maximum free-distance, rate-
1/2, memory-4 convolutional code with generator polynomials
(23)8 and (35)8, for which dfree = 7. We apply a truncated
union bound withdmax = 21 for the infinite interleaving case
and dmax = dfree for the case of finite interleaving, which
requiresΥ(d, nB) to be generated according to (16). Hence
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the presented analytical BER curves are approximations, rather
than a bound. The noise parameters arePB = 0.1 andκ = 100.

1) Infinite Interleaving (I → ∞): Figure 6 shows the
BER versus SNR from the union bound (15) (lines) and
from simulations (markers) for the convolutional coded system
and memoryless noise process (i.e.,I → ∞). For the sake
of clarity, complex channel results are only included for
MSMLD. As in Figure 2, the parameters for the HPFD and
α-PFD metrics areξ = 0.1/σn andα = 0.5, respectively.

We observe that the union bound approximation matches
the simulated BER curves very well and is fairly tight in the
region of interest, which emphasizes the relevance of the PEP
expressions derived in Section IV. With regards to error-rate
performance, we see that, using a constant value ofα, the
α-PFD closely follows the MSMLD performance which is
optimal in the absence of state information. Both the uni-
parametric detectors,α-PFD and HPFD, clearly outperform
the conventional EDD over a wide range of BERs. Further-
more, exploiting the information in the quadrature component
of the received signal, if available, provides an order of
magnitude improvement in BER. This is decidedly different
from the case of AWGN. Finally, the significant performance
gains achievable by noise-state estimation are evident from
the BER curves for KSMLD and EMD. These detectors
exhibit the best achievable performance for the communication
framework considered with the EMD suffering from an error
floor at about12W (dfree)P

dfree

B = 2 · 10−7 (see Eq. (37)) due
to its inherent limitations.

We note that the BER curves for the improved detectors
in Figure 6 consist of two segments, most discernible for the
KSMLD, which is reminiscent of error-rate curves for Turbo
codes. This behaviour is made more explicit in Figure 7, where
we plot the analytical BER approximation ford = dfree (solid
lines) together withPEP(dfree, nB)Υ(dfree, nB) with nB = 1
andnB = dfree (dashed lines) for the EDD, KSMLD, andα-
PFD. Clearly, for sufficiently high SNR the BER is eventually
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andnB = [0 . . . d]. Dashed lines show (15) ford = dfree andnB = 1 and
nB = d, respectively.

determined by the maximal PEPs for whichnB = dfree.
However, the EDD suffers from contribution of impulsive
noise sequences withnB < dfree at relatively low SNR,
e.g., withnB = 1 as shown in Figure 7. The ideal KSMLD
successfully suppresses those error events and thus BER drops
quickly with increasing SNR to the level of the minimum
distance event (nB = dfree), i.e., a waterfall region occurs.
The proposedα-PFD approximates this behaviour, as can be
seen for the case ofnB = 1, which results in the significant
gains over the EDD for a certain SNR range.

2) Finite Interleaving:We consider Markov-Gaussian noise
with the same parameters as in Section V-A and interleaving
with a short block interleaver ofI = D̄B/2 = 20 andIc = 50
(cf. Section IV-A). Figure 8 shows the analytical (lines) and
simulated BER (markers) results for the different detectors.
For the sake of readability of the figure, only results for real-
valued transmission are shown. It can be seen that the BER
expressions well approximate the simulation results for all the
receivers. Furthermore, we observe that, different from infinite
interleaving, the BER curves in Figure 8 tend to bunch up in
the low BER region. This is a consequence of the larger multi-
plicative factorsΥ(d, nB) for nB > 0 compared to the ideally
interleaved case. This also results in a rapid convergence of the
BER curves for all detectors with increasing SNR. This fact
is further highlighted in Figure 9, which shows the asymptotic
BER approximationPEP(dfree, dfree)Υ(dfree, dfree) (lines) for
the EDD, MSMLD, and KSMLD, together with the corre-
sponding simulation results (markers). Since this error event is
seen to dominate performance for even moderately high SNRs,
we conclude that insufficient interleaving limits the benefits of
modified decoding metrics over EDD to relatively high BERs.

The necessary interleaver depth can quickly be determined
by means of the analytical BER expressions derived in Sec-
tion IV. To this end, Figure 10 presents the BER approxi-
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mations for different effective interleaver depths, specified by
the ratioI/D̄B. We consider the conventional EDD and ideal
KSMLD as benchmarks and recommend theα-PFD as an
improved practical solution. We observe thatI/D̄B = 2 leads
to a BER performance close to that for ideal interleaving,
which is consistent with the cutoff-rate results in Figure 3.
We also note that the absolute value ofD̄B has negligible
influence on performance, as can be seen from the curves for
I/D̄B = 1 with D̄B = 40 (solid lines) andD̄B = 20 (dashed
lines). This can be expected from the approximation in (14).
Finally, we remark that the results in Figure 10 emphasize
the importance of interleaving in order to realize performance
gains with improved decoding metrics over the conventional
EDD.
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VI. CONCLUSION

In this paper, we have studied convolutionally coded trans-
mission over Markov-Gaussian channels. We have considered
and proposed several decoding metrics that are shown to be
better suited to this impulse noise environment than the con-
ventional Euclidean distance metric and whose applicability is
governed by the amount of information about the noise process
available at the receiver. We have derived analytical and semi-
analytical expressions for the cutoff rates and BERs associated
with the decoding metrics. These expressions are shown to be
fairly tight in evaluating the decoding performance with finite-
depth interleaving such that the effect of residual memory is
well incorporated, which as a special case includes the memo-
ryless impulse noise channel as well. Numerical evidence has
been presented that confirms the usefulness of the analytical
results, shows the efficacy of improved decoding metrics, and
also highlights the differences to the case of transmissionover
AWGN channels.
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[22] J. Häring and A. Vinck, “Performance Bounds for Optimum and
Suboptimum Reception under Class-A Impulsive Noise,”IEEE Trans.
Commun., vol. 50, no. 7, pp. 1130–1136, July 2002.

[23] J. Mitra and L. Lampe, “Robust Decoding for Impulsive Noise Chan-
nels,” in Proc. IEEE Global Telecom. Conf., San Francisco, CA, USA,
Nov.-Dec. 2006.

[24] T. Li, W. Mow, and M. Siu, “Joint Erasure Marking and Viterbi
decoding Algorithm for Unknown Impulsive Noise Channels,”IEEE
Trans. Wireless Commun., vol. 7, no. 9, pp. 3407–3416, September 2008.

[25] D. Middleton, “Canonical and Quasicanocial Probability Models of
Class-A Interference,”IEEE Trans. Electromagn. Compat., vol. 25, pp.
76–106, May 1983.

[26] P. Delaney, “Signal Detection in Multivariate Class-Ainterference,”
IEEE Trans. Commun., vol. 43, no. 2/3/4, pp. 365–373, Feb./Mar./Apr.
1995.

[27] A. Viterbi and J. Omura,Principles of Digital Communication and
Coding. New York: McGraw–Hill, 1979.

[28] D. Sargrad and J. Modestino, “Errors-and-erasures Coding to Combat
Impulse Noise on Digital Subscriber Loops,”IEEE Trans. Commun.,
vol. 38, no. 8, pp. 1145–1155, Aug. 1990.

[29] B. Seyfe and S. Valaee, “A New Choice of Penalty Functionfor Robust
Multiuser detection based onM -estimation,” IEEE Trans. Commun.,
vol. 53, no. 2, pp. 224–227, Feb. 2005.

[30] S. Kassam,Signal Detection in Non-Gaussian Noise. Berlin: Springer
Verlag, 1988.

[31] N. Beaulieu and B. Hu, “An Adaptive Threshold Soft-Limiting UWB
Receiver with Improved Performance in Multiuser Interference,” in IEEE
Intl. Conf. on Ultra-Wideband, Waltham, MA, USA, Sept. 2006, pp.
405–410.

[32] D. Fertonani and G. Colavolpe, “A Robust Metric for Soft-Output
Detetction in the Presence of Class-A Noise,”IEEE Trans. Commun.,
vol. 57, no. 1, pp. 36–40, Jan. 2009.

[33] M. Abramowitz and I. Stegun,Handbook of Mathematical Functions.
New York: Dover Publications, 1972.

[34] E. Biglieri, G. Caire, G. Taricco, and J. Ventura-Traveset, “Computing
Error Probabilities over Fading Channels: A Unified Approach,” Europ.
Trans. Telecom. (ETT), vol. 9, pp. 15–25, Jan./Feb. 1998.

[35] D. Rainish and J. M. Perl, “Generalized Cutoff Rate of Time and
Frequency-Selective Fading Channels,”IEEE Trans. Commun., vol. 37,
no. 5, pp. 449 – 467, May 1989.

[36] C. Schlegel and D. Costello, Jr., “Bandwidth Efficient Coding for
Fading Channels: Code Construction and Performance Analysis,” IEEE
J. Select. Areas Commun., vol. 7, no. 9, pp. 1356–1368, Dec. 1989.
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