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stract— It has been widely acknowledged that the aggregate performance degradation in environments with bursty ire@u
Ab: It has b idely acknowledged that th f d dat ts with burst I
interference at the receiver for various practical communcation noise.
channels can often deviate markedly from the classical adtive In this paper. we studv coded transmission over channels
white Gaussian noise (AWGN) assymption due to various ambm impaired E pbuist im uﬁ/se noise. In particular. we conside
phenomena. Moreover, the physical nature of the underlying P y y. P . : p “h 5
interference genera’[ing process in such cases can lead to athe use Of COﬂVOlutlonal C0d|ng at the transmitter and V'ter
bursty behaviour of the interfering signal, implying that it is decoding at the receiver, which is still the most popular
highly likely that consecutive symbols are affected by sinér  configuration in wireless communications. As often done
noise levels. In this paper, we devise and analyze detection, |iterature, e.g., [9]-[14], we model the one-dimensiona
techniques, in conjunction with & convolution code, for sub density of the noise process by a two-term Gaussian mixture
interference channels that possess non-negligible memorgy SRy P g y
Considering Optimum and Sub_optimum decoding metrics. |In dlStI’IbutIOl’l, one term Of Wh|Ch Corresponds to the presence
particular the inherent memory in the noise process is modeld and the other to the absence of the impulse noise component.
as a first-order Markov chain, whose state selects the variare of To account for memory in the noise process, we model the
the instantaneous Gaussian noise, leading to a Markov-Gasigin sequence of mixture terms by a two-state Markov chain. We
channel queI: Analytical expressions are obtained for the:ut- thus apply a Markov-Gaussian channel [15] whose underi in
off rate, which is an ensemble code parameter, and the bit ear pply i ’ ) ' ying
rate for a Convoiutiona”y coded System’ that are Subsequely state proceSS IS the same as In the G||bert'E”|0t Channdb'mo
employed for an extensive evaluation of the various metrics which has been widely used to model burst noise channels, e.g
considered. Furthermore, the interleaving depth is considred in [8] for jamming, in [7] for UWB interference, and in [15] fo
as a design paiamc_eter and its effect on performance is analgd 1, sty noise in PLC. We would like to point out that different
OVer a range of noise scenarios. from many of the works on Gilbert-Elliot type channels, g.g.
Index Terms— Impulse noise, Markov channels, Gilbert-Elliot [16]-[20], we consider non-binary channel outputs.
model, Convolutional codes, Error rate analysis, Cutoff rde. The related literature studying impulse noise channetoft
makes simplifying assumptions, such as (i) independent and
|. INTRODUCTION identically distributed (i_._i.d.), i.e., perfectly intexved nois_e
] ) o o [10], [12], [21], [22], (ii) perfect knowledge of the noise
In various wireless and wireline communication systemgatistics at the receiver [15], [21], [22], or (i) use of a
transmission is affected not only by the omni-present thtrmypecific (optimal or suboptimal) decoding metric [15], [20]
noise, WhICh is faithfully modeled as an ad_d|t|ve WhItQ Gau‘f22], to either simplify the receiver design or to keep the
sian noise (AWGN) process, but also by impulse noise. Fgpa|ysis mathematically tractable. We extend the work @ th
example, measurements and analysis reported in [1]-[6 hayorementioned papers in that we (i) propose and compare
shown that the overall ambient noise experienced in wiselegeyeral decoding metrics which are suitable for convohatio
wireline, and power line communication (PLC) systems angged transmission over Markov-Gaussian channels and (ii)
interference from co-channel and ultra-wideband (UWBgNt gnalyze the effect of finite interleaving on overall system
ferers exhibit a decidedly non-Gaussian behaviour. Likewi herformance. The metrics presented include two novel oeetri
the assumption of a memoryless noise process is not valid Fﬁﬁginally presented in [23]), which are appealing in ttagy
many transmission scenarios, cf. e.g., [5], [7], [8] (antre require minimal knowledge about the noise statistics. @hil
ences therein) for PLC, UWB, and wireless transmission tindge do not attempt to modify the sequence-detection Viterbi
partial-time jamming, when delay constraints prevent teeé Ugecoder to exploit channel memory, our analysis also iregud
of deep interleaving. While a deviation from Gaussianityl afhetrics based on noise-state information, which in practic
the presence of memory in the noise process is benefiGigdy|g necessitate the use of a state estimator, cf. e.g. [8],
in terms of an increase in channel capacity, systems bageg] [24]. We derive analytical expressions for cutoffeat
on conventional matched-filter receivers and decoding tha{q tight approximations for the bit-error rate (BER) perfo
assumes memoryless disturbance experience a considergRi@ces for the proposed metrics, thus providing a framework

. . . _ for performance comparisons. The obtained expressions are
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equivalent discrete-time representation of the receiyeths!
after filtering and sampling is given by

T = Tk + Nk, 2

whereny, are samples of the noise process, a detailed descrip-
tion of which is provided in the following section. The regsil
samples;, are subsequently used to compute decision metrics
that are de-interleaved and passed to the Viterbi decotier. T
decoding is discussed in detail in Section IlI.

terms of both the BER and cutoff rate. Our results indicate

that an interleaver depth of about twice the average timetsp% Noise Model

in the bad noise state is needed to successfully disperse noi’

bursts. Furthermore, in conformance with previous work in We consider the noise term;, to be the additive super-

the area [22], we show that considerable performance gaRfsition of two termsuw; and bxi, wherew, and i, are

are achievable by considering passband transmission vaeenero-mean Gaussian distributed abg is a {0, 1}-random

statistical dependencies between the quadrature Commsenvariable. The motivation for such a model stems from the

exploited. fact that whilew;, represents the AWGNyy. + i describes
Organization The remainder of this paper is organized athe AWGN plus interference either from other users or from

follows. Section Il introduces the transceiver structund gne ambient phenomena. The formstateis referred to as the

noise model. In Section I, various decoding metrics th&00d (sx = G < b, = 0) state, and the latter as the bad

have the capability to combat impulse noise are presentéd: =B <« bx =1) state. Conditioning on the noise state we

Section IV is devoted to the theoretical performance an&@n express the noise probability density function (pdf) by
sis for transmission over Markov-Gaussian channels when D

z\pplying the decoding metrics from Section I1l. Numericadia ps(n) = exp (=[nf*/(207)) /[V2ra, |, ©)

simulations results are presented and discussed in Séétionyherep = 1 for real-valued (baseband) transmission &he-
Finally, concluding remarks are offered in Section VI. 2 for complex-valued (passband0 transmission, a@S 2

The following notation is used>r{-} and£{-} denote the (g g1 The noise variances are given by = 02 ando =
probability of an event and statls_ucal expectation, resipely. 02 4 02, ando? ando? are the variances afy, andij, per
R{-} and3{-} are the real and imaginary part of a compleyea| dimension. For future reference we define the parameter

00 42 . .
number. Q(z) £ 1/v2r [“e~"/?dt is the Gaussian Q- 2 oj/0¢ = 1+ 02 /o2, which is indicative of the strength

Fig. 1. System model for convolutionally coded transmissiger a Markov-
Gaussian channel.

function. of the interference component compared to the thermal noise
Denoting the probability of being in the bad and good state
Il. SYSTEM MODEL by Ps £ Pr{s;, = B} andPg = Pr{s; = G} = 1 — Pg, the
Figure 1 shows the structure and components of the overrz]al?lIse pdf s given by
coded transmission system. In the following, we provide a p(n) = Pgpg(n) + Psps(n) . (4)
brief description of transmitter and receiver operations a
the noise model. This two-term noise model has been used in e.g. [9]-[14]

and it is also a good approximation of Middleton’s Class-A
. noise model [22], [25], [26]. The parallel treatment of real
A. Transmitter and complex-valued transmission is (i) practically retéva
Information bitsdy, € {0, 1} (k €Z is the discrete time index) as BPSK (or BPSK-type) transmission is also often used
are emitted by a source with uniform probability and encodé@r carrier-based systems and (i) allows us to compare the
by a binary ratek. /n. convolutional encoder to produce codedlifferences with the case of AWGN.
bits c. The coded bits are interleaved and then mapped toln the literature, often ideal (i.e., infinite) interleagirand
binary phase-shift keying (BPSK) symbols by the mappéhus independent noise samples are assumed, wherebyly4) ful
to generate transmit symbols, € {—1,1}. A regular block characterizes the noise model. However, the independence
interleaver withI rows andI, columns is assumed, such thagssumption may be invalid for typical finite-size interlees:
the encoder and the interleaver outputs (see Figure 1) dve therefore employ a first-order two-state Markov model to

related via describe the sequence of noise statgs which leads to a
B , , Markov-Gaussian channel model [7], [8], [15]. The Markov
Clil+i) = Cll+j) 0<i<I,0<j <. (1) chain is assumed to be irreducible, aperiodic, and statjona
with transition matrix
B. Channel and Receiver Pr{sy=G|sk-1=G} Pr{sp=Bl|sx—1=G}
- oo T = Prs, = Glsy_y =B} Pr{sy—Blsi_1—B
The channel is assumed to be non-frequency selective and r{sk =G|sx—1 =B} Pr{sy=>Blsy—1=B}

(®)

|I>

non-fading, i.e., we consider narrowband transmissiommwit . | Pgg Pgg
stationary or slowly mobile devices (e.g. [8], [10], [13])he Psg Pgs



SinceT is row-stochastic, two parameters, elggg andPgp 4) Erasure Marking Decoder (EMD)A popular and per-
fully describe the state process. Furthermore, we haventor thaps more practical alternative to combat impulse noise is

stationary distributiorPg = (1 — Pgg)/(2 — Pgg — Psi). Viterbi decoding with erasure marking [24], [28]. Erasure
marking could be performed either before decoding (based
[1l. DECODING METRICS on the instantaneous value of) or by the joint erasure

We consider conventional Viterbi decoding [27] in thenarking and decoding technique developed in [24]. As an
log-likelihood domain performing add-compare-select G)C approximation of these types of decoders, we consider ah ide
operations and thus the path metric is the sum of branch (i#tasure decoder whose decoding metric is given by
metrics. Since the Euclidean-distance metric is not ogtima . ,
anymore, in the following we present a number of different (i, |r,, s;) = { R T !f sk =9, (10)
bit-metric formulations which are apt for decoding in chalsn 0 if s, = B.

with impulse noise. As mentioned earlier, we do not attept i e see later. such an approach leads to an error floor for
modify the widely implemented ACS Viterbi decoder architecthe considered t’ransceiver

ture, but only th_e _computanon of bit metrics. Her?ce, we db no 5) Huber Penalty Function Decoder (HPED)We now
pursue the explicit use of the memory of the noise process for

. L roceed with two novel bit metrics for Viterbi decoding
noise state estimation. However, our framework allows us 0. . : o
: . . . ) IN impulse noise. The first metric is adopted from robust
include bit metrics assuming knowledge of the instantaseou . . D ) ,
! . . ‘multiuser-detector design in [12] and applies Huber’s jtgna
noise state, which enables a more comprehensive comparlisuon

and provides performance limits. nction (cf. [12, Bq. (33))):
1) Euclidean Distance Decoder (EDD)\Ve start with the = |?
classical Euclidean-distance metric for the trial symbplat = \(i|n., 02, &) = { 207

2 2 . B
time k given the received sampig, which reads SZu —gln — @], 0 |me— 3x| > 5(017211

; if |, — x| < &0,

Mg |ne) = —In. — @i/ (6) whereg? £ PgO'é + Pgoj is the average noise variance and
and is employed by a Viterbi decoder designed for AWGHK is the metric parameter.
at the receiver. This metric formulation is oblivious to the 6) a-Penalty Function DecodentPFD): The second new
presence of impulse noise and will mainly serve to benchmarietric is based on the so-calleddetector devised in [29],
the performance of other decoding metrics that are destribgain for multiuser detection. The corresponding branchime
in the following. reads
2) Known State Maximum-likelihood (ML) Decoder 1
(KSMLD): At the other end of the performance-complexity —A(Zx|m, @) = 3 OXP (—alm —ax?) , a>0. (12)
spectrum is the decoder that has perfect knowledge of the
instantaneous noise statg, and the pdf parameters, i.e.We note that the:-PFD metric tends to the Euclidean-distance
the pdf given by Eq. (3) is applied. Practical methods taetric fora — 0 [29, Eq. (9)].
obtain an estimate fos, include the decision-feedback-aided The bit metrics for thex-PFD are determined by adjusting
state estimator [16] and the expectation-maximization YEM single parametery. Similarly, the HPFD does not require
algorithm as described in [8]. The KSMLD branch metric iknowledge of the mixture noise parameters, but only of
given by the average noise variane€, and ¢ needs to be adjusted.
- 9 - 9 9 As we shall see later when considering numerical results
A, s, 05,) = = = B[/ (205,) (") "in section V,a and the normalized parametés,, can be
The KSMLD marks the best performance as it operates oroptimized offline to provide good performance over a range
channel with full side information. of channel noise scenarios. Hence, (11) and (12) are directl
3) Memoryless Maximum-likelihood Decoder (MSMLD): applicable to the standard ACS Viterbi decoder architegtur
When the receiver is only aware of an impulsive componentithich is a distinct implementation advantage over KSMLD- or
the noise but is oblivious to any correlations thereof angsthEMD-type approaches, which require decoder modificatibns i
only considers the one-dimensional noise density, thedicothe corresponding performance limits ought to be appradche
uses the log-likelihood function cf. [8], [24]. We therefore regard these two metrics as etiva
- _ - alternatives to the extreme cases of (i) not exploiting the
Ak, 6) = log(p(n: — 1)) ® impulse noise characteristic at all (EDD) and (ii) relying o
as branch metric, wherg(n) is given by Eq. (4). As can be the knowledge of the noise pdf (MSMLD) or the noise state
seen from (8) and (4), the MSMLD requires knowledge of th&SMLD, EMD).
noise parameter8 = [Pg, o5, o3]. Such a decoder has often Finally, we note that while we focus on novel metrics
been considered for i.i.d. non-Gaussian noise, cf. e.dl, [1fhspired from multiuser detection literature, there arbeot
[21], [22]. A useful simplification of this metric is obtaide possible choices for single-parameter metrics. For exampl

from the “max-log” approximation metrics based on heavy-tail distributions such as the géner
A(Ex| e, @) = max {log [P, ps (1, — & 7 g) ized Gaussian pdf and the Cauchy pdf [30] or the soft-lingitin
(4 ) s€S {log [ pi( 2 ®) detector and improved variants of it [31], [32] follow thesa

which will be considered in the following. rationale applied for the HPFD andPFD metrics.



IV. THEORETICAL ANALYSIS the probability of noise-state sequendaqs|p(e)} with s =

In this section, we derive expressions for the BER and cutoffe: - - - » Spay o))+ ThiS leads us to the union bound on the
rate achievable with the decoding metrics introduced aboBER as
in Markov-Gaussian noise. Our analysis draws significant d
practical relevance from the fact that we explicitly take th By < (1/ke) Z Z PEP(d,n5)Y(d, n5) , (15)
effect of finite interleaving into account. To this end, westfir d2dtree n5=0
specify the effective noise process including interlegvin  wheredy... denotes the free distance of the coB&P (d, ng)
Section IV-A. Then, the general approach to the analytici® the pairwise error probability (PEP) between the albzer
evaluation is presented in Section IV-B, while the specifiyord and a code word with Hamming weighigivenn; bad
expressions for the different decoding metrics are derimed and (d—n;) good noise states, respectively, and

Section IV-C. YT(dns)= >,  W(e) > Pr{s|p(e)} (16)
{eeV|du(e)=d} SESZB

A. Analysis for Markov Noi d Finite Interleavi )
nalysis for Markov Toise anc Hinite fnterieaving In (16), V denotes the set of first-event error vectors [27,

The sizel x I. of the inter!eaver (see .Se_ction [I-A) is typi-seaction 4.4],W (e) denotes the input weight for the error
cally dependent on the maximal transmission delay accEptaente, and S¢_ is the set of noise-state vectors of length

for the communication system. We make the usual assumptipiyit, ,,; bad states. The probability of the state sequence
that 1. is much larger than the decoder constraint lengih given by

measured in terms of number of code symbols. Therefore,

. . . du(e)
it suffices to consider the number of rowsalso referred to - ((pi—pi_1)I)
as the interleaver depth, and we can conveniently incotpora Pr{s|p(e)} = Pr{sp, } 11 Pspi,flspi ' (17)
the interleaver-deinterleaver operation into the noisecess _ (piepi_1)]) ’ -
by replacing the state transition matfixfrom (5) with theZ- in which Py 5 °*"" are the transition probabilities ac-
step transition matrid’. From the eigenvalue decompositiorcording to the state transition matri®® ~?-1). In the
of T' we have that evaluation ofY'(d,np) we take advantage of the generating
. P; Ps [ Ps —Pg series approach developed in [19] for finite state channels.
T = ; (13) i i
P; Ps -Pg Pg The method of [19] however, requires adaption for our case

, as [19] uses a binary-output channel model. More specificall
wherep = (1 —Ppg —Pgs) = (1 ~Psg/Pg) (Iul < 1) isthe o qecomposa’ into P(0) + P(1) = T, where the first
second eigenvalue @F. Clearly,.. determines the performance. | ;mn of P(0) and the second column aP(1) are zero
as function of/, and it has been referred to as channel memopyi-h corresponds to the analogous definitions in [19, Egs.

) i X
in [16]. Furthermorey” can be approximated by (2), (3)]. We then have thall(d,nz) is the coefficient of
p! ~1— (Psgl/Pg) £ 1—1/(DpPg) (14) y?w"s in the power seriewu:l, where T (w, z,y)

, _ ) . is referred to as the generating series for the probability o
if Psg/Pg < 1, whereDp = 1/Pgg is the average time gor patterns and expressed in [19, Eq. (18)] with explicit
spent in the bad state (average burst length). Hence, E?irpendence o (0) and P(1).

given stationary probabilities, a first-order approxiratis to A commonly used BER approximation is obtained when
choose the interleaver depth proportionalg to sufficiently on|y the dominant error events in the union bound, i.e., the

disperse error bursts. error events whose Hamming weiglitdoes not exceed an
upper limit d,,.x, are considered. The computation of the
B. Performance Measures corresponding truncated seriésS(w,z,y) can be done as

As widely accepted performance yardsticks for convolutio§lescribed in [19, Section Ill. A]. Furthermore, for the case
ally coded transmission we consider (i) the BER for giveff ideal interleaving, since

codes and (i) the computational cutoff rate for ensembfes o —oo d\ . —n
codes [27].( : P Y(d,np) = (RB) pgs pyime) > Wle)
1) Bit-error Rate (BER):Since we have a linear coding J {e€Vidn(e)=d}
and modulation scheme and an output symmetric channel, it = ( )PgBPg(d”B)W(d) ;
suffices to consider the all-zero word as the transmittec cod "B (18)

word. As commonly done for convolutional coded systems
[27], we invoke the union bound to approximate the BE
There are two significant differences here with respect dThe I5EP in (15) can be written as
the analysis for memoryless noise. First, the pairwisererro

e only need the distance spectrdim(d) of the code [27,

probability is a function of not only the Hamming weight PEP(d,ng) = Pr{A(d,ng) < 0}, (19)
d of the error event, but also of the number of bag, \where

and good,ng = (d —ngp), noise states occurring during ngs d

the event. Secondly, the probability of an error event= A(d,ng) = Z‘si\B 4 Z Sig »

[e1, €2, .. .] with Hamming weightiy (e) depends on the error im1 P—— (20)

positionsp(e) = [pi1,...,Pay(e)], Wheree,, = 1, through Sis & [M@i=+41) = A@i=-1)|s; = 5],



and \(z;) are the bit-metrics presented in Section Ill. Irwhere Ry is in bit/symbol. Exploiting the fact that additive
case of EDD, KSMLD and EMD metrics, (20) and thusnetrics are used, i.e.,

the PEP can be obtained in closed form, as will be shown

in Section IV-C. For the rest of the decoding metrics, it i_s A(&|r) = Z/\(fkm) ’ (26)
advantageous to proceed in the Laplace domain. Introducing
the Laplace transformbs;(¢|s) £ &{e %}, and noting _ _
that conditioned on the noise state the metric differences &nd that the transmitted symbols are chosen independertly a
statistically independent, the PEP can be evaluated thrtngg Uniformly distributed, the expression in (25) can be sifigdi

k=1

inverse Laplace transform to
. 1
. x+joo - & Ry = LILH;O %165%_310& [ ;{g . Pr{so}
PEP(Lns) = 5 [ [@s(CI0) " @s(clB)™ T L, 27)
x=iec e x> TT 5Prlselsn-1} (@s(olsi)+1)].

. . . . SL k=1
wherey > 0 lies in the region of convergence of the integral. o€

This integral lends itself to efficient numerical integeatius- Wherep lies in the intersectio® of the convergence regions of
ing Gauss-Chebyshev quadratures winodes [33, p. 889], the Laplace transforms and we use the stationary distobuti

[34, Eq. (10)] as follows for the initial states,. With some thought [38, p. 184] and by
defining
1 L 1[ ®5(p|G) + 1 0
PEP(d,np) = = )  (R{@(x+jx7) } +7S{ 2 (x +ix7:)}) , -
(dng) = + ;:1:( {@(x+ixm)}+7:S{@(x+ixm)}) B(p) L g ¢ Baol) 41 |
(22)
h N d—ng ns dr 2 . om 2 Pg 124 1
where®(¢) = [®5(¢|G)] [@5(¢|B)])"5 andT; = tan((2i — = Ps | S ERE

1)r/(2N)). The expressions for the Laplace transforms

®;5(¢|s) of the respective metrics are presented in Section I8 can be written in a matrix form as

C. These expressions also play a pivotal role in computation 1

of the cutoff rate, as explained in the next section. Ry = lim max ——log, {HT(TI‘I’(P))Ll} : (28)

2) Cutoff Rate:Since except for the KSMLD and MSMLD !

metrics that assume, respectively, the instantaneoustatists Since T/ ®(p) is irreducible, we have thade.x(p)]*/q <

tical knowledge about the noise process, the decision esetI” (T'®(p))“1 < [emax(p)]“q, whereq > 1 is the ratio

considered in this work are non-ML, we employ the notionf the components of the real eigenvector corresponding to

of generalized cutoff rate as an information-theoretidfquer the real, positive, largest eigenvalug...(p) of T ®(p) [38,

mance measure. The generalized cutoff rate has widely bgeril84]. Therefore, we finally obtain the expression

used in the context of fading channels, e.g. [35], [36] with

mismatched decoding. To this end, denoting the transmitted Ry = —log, [minemax(p):| ) (29)

and received signal vectors of lengthby @ = [z1,..., 2] PER

?ndT = [r1,. -b-,rL], |ar;d introducing thec?er?Oding pbath metri¢-rom an optimization standpoint, it is convenient to expres

or x givenr by A(x|r), we upper bound the PEP between . . . 9

and an alternativé vectaE, for a given noise state sequencé%0 in terms of ey, (p). i.e.. Ro = P log, f)rél% Cmax(P) |-

s = [s1,..., 5], using the Chernoff bound We note thate? . (p) being the largest eigenvalue of the
symmetric matrixA £ T ®2(p)(T')”, is a convex function

PEP(z — Z|s) < 1r1t1>11r15T|m7s {exp [-p(A(z|r) — A(Z|r))]}. of the elementsy;;, i,7 = 1,2, of A [39, Example 3.10].

p=0 (23) Furthermore, since

While the Chernoff factop could be optimized for each,

the simpler (and looser) upper bound €

max(p) = % {all + age + \/4arzas1 + (a11 — a)?| |
(30)
PEP(z— &) < min Es{Epje s {exp [~ p(A(z|r)—A(Z|r))]}} anday > 0,14,j = 1,2, itis easy to show that;,,. (p) is also
A P20 monotonically increasing im;;. Hence, from the convexity
- of the Laplace transform and consulting the compositioasul
(24) [39, p. 86], we conclude that?,, (p) is a convex function
for the average PEP is obtained when choosing an optimizsfd,, which greatly facilitates the minimization problem (29)

p independent ok (cf. [37] for a similar approach to obtainwith the assurance of a unique inflexion point. Moreoverenot
an upper bound for block fading channels based on randefat in case of ideal interleaving (~ o),

coding arguments). Employing (24) allows us to express the

Oz
min (&, z,p)

generalized cutoff rate as emax(p) = % [Pg(®5(p|G) + 1) + Pg(®s(p|B) + 1)]
(31)
. 1 - 1
Ro = lim max—-log; [£a5 {C(&x,0)}] ,  (25) £ (@50 +1]



and the familiar expression 4) MSMLD: For the max-log MSMLD metric we need to
evaluate the PEP based on (21) and thus are interested in the

Ry =1 —log, {1 + Hé17121 <I>5(p)} (32) Laplace transformbs(¢|s) for computation of BER as well.

P

The transform is given by
is recovered [34].

59 = [ (maglpn(n+ 20 /maglpn() petr)an.

n

C. Expressions for Different Metrics

We now present the expressions required to evaluate the | ) . (40)
PEP and cutoff rate for the different metrics introduced ihNiS integral can be written as the sum of four integrals, rehe

Section 1II. the integrand is a Gaussian pdf and the domains of integratio
1) EDD: Substitution of (6) into (20) yields thak(d,ns) '€ given by{n : In|? > tA o+ 2[? >t} {n |n|22 >

is Gaussian distributed for EDD and the corresponding PEP [ + 2|2 <th Anc |l <tAn 427 >t} {n s n® <

can be expressed as tAln+2[* <t} and

202 Pg/P,
_ g G/ s
PEP(d,n5) = Q (d/\/n,gag +(d— nB)ag) . (33 t=1— Poyp: log (05/05) (41)
Likewise, the Laplace transform can also be expressed isthe threshold at which the two terms of the Gaussian mextur
closed form as pdf attain the same value. A closed-form solution as sum of

2 [o2 Gaussian)-functions results in the real-valued channel case,
D5(Cls) = exp (—2§ [—SQC - 1D . (34) while using the alternative representation of #efunction
%G L% [40] simple one-dimensional integrals need to be computed
2) KSMLD: Also in the case of the KSMLDA(d,ng) for complex-valued channels.
is Gaussian distributed. The PEP and Laplace transform ar&) HPFD: The HPFD also requires evaluation of (21) with
obtained as the corresponding metric difference expression to obtaé t
- - PEP. As in the case of MSMLD, we can express the Laplace
PEP(d,np) = Q (\/”BUB + (d—np)og ) (35)  transforms®s(¢|s) in closed form as sums af-functions
for real-valued transmission. In the complex-valued case w
_ need to resort to numerical integration. Denoting the at@p
s(Cls) = exp (20,%C(C = 1)) (36)  function asu(x) and, for convenience, defining the variables
respectively. Since the Chernoff factpr = 1/2 uniformly 7k, = tan((2k—1)7/(2N)) +j tan((20— 1)7/(2N)), wi ¢ =
minimizes the eigenvalug,..(p) for this case, the cutoff rate cos((2k—1)7/(2N)) cos((20—1)7/(2N)), are £ o —|7h 0,
Ry in (29) is also obtained in closed form. b = €202 /2 — E|Trls che = €02 — |The + 2], anddy £
An interesting observation here is that the ratio of th&oa/2—&|me + 2|, we can well approximaté;(¢|s) using
arguments of th&)-functions in (35) and (33) is the ratio of Gauss-Chebyshev quadratures [33, p. 889]
the arithmetic and the harmonic mean of the variargeand 2 N N 9
o3. Hence KSMLD is strictly superior to the EDD in termsd((|s) ~ W_szexp (_<[_Mu(akﬁz)%“u(_au)
of BER unlesssg = oj. N oo 20,
3) EMD: The expressions for the EMD immediately follow |Th,e + 22 p Ps(Tr,0)
from those for the KSMLD by lettingr — oo. We note + 202 ulene) = k’w(_ck’é)D w?, ’
that for asymptotically large signal-to-noise ratio (SNiRg " (42)
average PEP is given by which we found to converge well fav = 100 nodes.
d , 6) o-PFD: Due to the form of the metric for the-
Z PEP(d, ng)Y(d, ns) 760 lT(d, d) (37) PFD (12) there is no closed-form expression for the PEP or
2 the Laplace transforn®;s((|s). The latter can however, be
numerically computed with sufficient accuracy using Gauss-
%hebyshev quadratures as above by expresBjig|s) as

and

nr=0
which implies that the BER curve will floor out with increagin
SNR when decoding with this metric. The Laplace transfor

for EMD is obtained as P5(Cls) =~
N N
[ exp(20,%¢(¢-1)), ifs=G 7T_2 "G —almel? —alreet2l?] | Ps(Th,e)
s(Cls) = { ; t g (39 NQ;;GXP e e ] "
o (43)

Again, p = 1/2 uniformly minimizesen.x(p) and a closed- . ) _
form expression forR, results from (29). Furthermore, for!" the complex-valued channel case, while a single summatio

asymptotically large SNRs we find thag,.. (o) 7g—0 1+Pz(s2’ ;?ozjf(f;ci?nt for real-valued channels. The PEP then follows
wherePéQ is the transition probability according B’ (13). '

Thus, V. NUMERICAL RESULTS AND DISCUSSION

_1_ (N
Ro =1 logy(1+ Pyg) , (39) In this section, we put the analytical and semi-analytical

which is strictly smaller than. expressions obtained in the previous section to use to (i)



The cutoff-rate curve for the EMD saturates By =
1 —logy(1 + Pg) = 0.86 bit/(channel use) [cf. (13) with
I — oo and (39)]. The cutoff rate for the KSMLD steadily
il approaches 1 with increasing SNR, by extracting infornmatio
, from noisy (bad state) received samples as well. In fact, the
Ry curve consists of two parts, which, as can be inferred

0.9+ Complex
channel
0.8f

Real
channel

—
o
~

T

= 06 i from the representation fef,..(p) in (31), correspond to the
§ 05 1 good and bad noise states. This two-part characteristibeof t
é . | Ry curves also manifests for the other decoding metrics with
g o > KSMLD the exception of the conventional Euclidean-distance imetr
0.3 + EMD 1 which is evidently ill-suited for the two-term mixture neis
02 g MSMLD | | In terms of absolute performance the KSMLD can be
' ¢ €pp considered as an idealized benchmark. Clearly, the acqui-
% a-PFD . . . . . .
0.1 o HPED ] sition of instantaneous state information requires aoloti

X o4 ‘ : ‘ ‘ bandwidth and computational resources. For example, the EM
-0 -5 0 1?)1 (1}?2 ) [fé] 20 25 30 algorithm proposed in [8] consists of two forward-backward

0g T e . . . e .

B0 v algorithms and pilot symbols are needed for its initiali@at
Fig. 2. Cutoff rate for decoding with different metrics (posed in It is interesting to observe that, until its saturation pp!n
Section I1I) for infinite interleaving. Noise parameters:= 100, Ps = 0.1. the EMD performs almost as good as the KSMLD, which
HPFD metric with{o,, = 0.1, a-PFD metric witha = 0.5. Solid lines:  syggests that decoding of bad-state received signals can be
baseband transmission. Dashed lines: passband trarmmissi . . .

omitted with negligible performance loss. We note that the

EMD considered here also relies on instantaneous noise-

gauge the different metrics for their effectiveness in Meark state information. Barrin_g K_SMLD and EM_D' all the other
Gaussian channels when used with Viterbi decoding, (bt decoders th_us h_ave_a significant computatlona_l advantage as
suitable values for the single parameters of the HPFD-met 0 statg es|t|mr?t|_on is done, Wher:eby MSMLhI_D ;]S :]he clﬁarly
and thea-PFD metric, (i) study the interplay of channeltN€® Optimal choice. However, the-PFD, which has the
memory and interleaving and their effect on performancgiStinct advantage of requiring the selection of only a fing

and (iv) substantiate the benefit of using both quadratd?@ram_eter’ approaches the MSMLD performance clqsely. This
components in complex-valued channels Is particularly remarkable consideringPFD works without

any statistical knowledge of the noise process while MSMLD
perfectly knows@. Furthermore, while the HPFD seems to
A. Cutoff Rate suffer more when compared to the ideal cases, the gains

In order to clearly separate the effects of decoding metrieghibited by botha-PFD and HPFD over the conventional
and interleaving, we first present cutoff rate results agsgm Euclidean-distance based decoder are significant for all bu
infinite interleaving and thereafter proceed to discuss tladmost uncoded transmission for the noise scenario carslde
performance degradation incurred due to firitaising a rate in Figure 2.
loss criterion defined later. 2) Effect of Finite Interleaving:We now turn to the case

1) Infinite Interleaving { — oo): Figure 2 presents th&, of finite interleaving depth. We choose the exemplary state
results, as a function of SNRL/(252)), for decoding with transition parameterBgs = 0.003 and Psg = 0.025, such
the different metrics for both real- and complex-valuedsra that the average burst length 8z = 40 symbols and the
mission. The exemplarily considered channel noise paesetstationary probabilities ar€; = 0.9 and Pz = 0.1 as in the
are k = 100 and Ps = 0.1, which represents a channelprevious section. Agairy = 100 is chosen. As an indicator
with a strong and frequent impulse noise component. Tloé the effect of finite interleaving we define the relativeerat
parameters for the HPFD andPFD metrics ar€ = 0.1/0,, loss
anda = 0.5, respectively (see below for the optimization of ARy 2 M , (44)
these parameters). Ro(o0)

We note that for the cases where the noise state is assumb@reR,(7) denotes the cutoff rate for given interleaver depth
known, i.e., KSMLD and EMD, no additional informationI. The rate lossAR, is plotted in Figure 3 as a function
can be drawn from the quadrature component of the receivefdthe SNR for the decoding metrics which do not rely on
signal, and thus the&?, curves for real and complex transknowledge of the instantaneous channel state. As discurssed
mission are identical. Furthermore, since the EDD treats iSection IV-A (cf. Eq. (14)), we consider different intenea
phase and quadrature components independently, it is tet atepths parameterized 6z, namelyl =0, Dg/2, 2D5].
to exploit the statistical dependencies between the twmoasig From Figure 3 we observe significant losses in the absence
components (see noise pdf (3)), and hence only Bpeurve of interleaving { = 0), which are mitigated with increasing
is observed for the EDD in Figure 2. In contrast to this, thand virtually disappear fof =2Dg. Since0.9 < Pg < 1 for
MSMLD, HPFD, anda-PFD utilize these dependencies antlypical mixture noise scenarios, we conclude that configuri
achieve notably higher rates in the complex-valued chanrké interleaver depth according to double the average burst
scenario. length is sufficient for most practical purposes. Note that o




[y

O MSMLD

0.9+ $ EDD 7
o x a-PFD
| 0.8 1
<3 O HPFD
BE0.7F 1
&

0.6 1
i
=
& 04r 1
S
=
= 0.3r :
~

0.2 ]

0.1 ]

0

-15 -10 -5 0 5 10 15 20 25

10logy(1/(2073,)) [dB] —

Fig. 3. Loss in cutoff rate o) in the case of finite interleaving with

Markov-Gaussian noise compared to memoryless noise threaigous levels
of interleaving. Noise parameters= 100, Ps = 0.1, mean occupation time
of bad stateDp = 40 symbols.

results are not a contradiction to the paradigm that memofﬁylz
increases capacity [16], since (i) the considered decodiers =

not attempt to make use of the channel memory and (ii)
is known that cutoff rate deteriorates with increasing ctedn
memory even if the channel state is known [41].

3) Parameter Optimization based on Cutoff Raféhile the

uni-parameter definition of the proposedPFD metric makes
it particularly attractive, a better understanding of thetmc is

obtained by obtaining the optimal values for the parameter

for the various noise scenarios. In particular, we consider
SNR required to achieve a cutoff raf&, = 0.5 bit/symbol,
i.e., transmission with code rate 1/2, as functiomaafs the op-
timization criterion. To this end, Figure 4 depicts the a#idn

with increasing values ofv for baseband transmission with

multiple interleaver depths. As reference, curves for MEML
and EDD are also plotted. We observe thate [0.5,2]
provides close-to-optimal performance for different itgaver
depths. Furthermore, at = 2Dj the performance for the
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Fig. 4. Optimization ofx for the «-PFD based on required SNR for a desired
cutoff rate of Ry = 0.5 bit/symbol. The corresponding values for MSMLD
and EDD are also shown for comparison. Noise parameiers:100, D =

40, Pg = 0.1.
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Fig. 5. Optimization of for the HPFD based on required SNR for a desired
cutoff rate of Rp = 0.5 bit/symbol. The corresponding values for MSMLD
and EDD are also shown for comparison. Infinite interleavamgl = = 100.

memoryless channel is well approached, which corroborates

our previous conclusions from Fig. 3. We note that the
PFD converges to the EDD far— 0, cf. [29, Eq. (9)]. This
also indicates that for decreasii the optimum value of
« will decrease. Nonetheless, the results Rgr = 0.01 (not
shown here) reveal that € [0.5,2] is a good choice for this
case also.

HPFD being the other detector in the leaguenePFD in

terms of minimality of information required, we optimizes it

case. We note that the HPFD approaches the EDD for large
values of¢ (see (11)). Similarly flat optima (as in Figure 5)
were found for finite interleaver depth (not shown here)ngsi
e.g.,£ = 0.1/0, appears to be a good compromise for all
scenarios.

B. Bit-error Rate

operating parametef on the same criterion as above. The We now present BER results obtained from the analytic

optimal value(s) for¢ can be inferred from Figure 5, which
shows the required SNR (as in Figure 4) as functiog@f.
This time we assumd — oo and plot results forPs =

expressions derived in Section IV and simulations. As a rel-
evant example, we consider the maximum free-distance, rate
1/2, memory-4 convolutional code with generator polyndsmia

[0.1,0.01,0] to analyze the range from frequent impulses t®3)s and (35)s, for which dpe. = 7. We apply a truncated

AWGN channels. Evidently, relatively small values&f, are

union bound withd,,,., = 21 for the infinite interleaving case

advantageous in impulse noise channels, whereas largersvabnd d .. = de. fOr the case of finite interleaving, which
achieve a slightly better performance in the Gaussian noigzjuiresY (d, nz) to be generated according to (16). Hence
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Fig. 6. BER performance of the various metrics proposed aii&e Il with

infinite interleaving and for noise parameters= 100 andPg = 0.1. Lines:  Fig. 7. Analytical BER results for different metrics progdsin Section Il

Analytical results. Markers: Simulation. using infinite interleaving with noise parameters= 100 andPg = 0.1. Only
events withd = dg... are considered. Solid lines show (15) fér= dyce
andnp = [0...d]. Dashed lines show (15) fat = df.cc andng = 1 and
np = d, respectively.

the presented analytical BER curves are approximatiotigra

than a bound. The noise parametersie= 0.1 andx = 100.

1) Infinite Interleaving { — oo0): Figure 6 shows the determined by the maximal PEPs for whietk = dgee.
BER versus SNR from the union bound (15) (lines) andowever, the EDD suffers from contribution of impulsive
from simulations (markers) for the convolutional codedeys noise sequences withs < die. at relatively low SNR,
and memoryless noise process (i..—~ oc). For the sake e.g., withng = 1 as shown in Figure 7. The ideal KSMLD
of clarity, complex channel results are only included fosuccessfully suppresses those error events and thus BEpR dro
MSMLD. As in Figure 2, the parameters for the HPFD anduickly with increasing SNR to the level of the minimum
a-PFD metrics ar¢€ = 0.1/0,, anda = 0.5, respectively. distance eventrz = d..), i.€., @ waterfall region occurs.

We observe that the union bound approximation match&be proposedv-PFD approximates this behaviour, as can be
the simulated BER curves very well and is fairly tight in th&een for the case ofsz = 1, which results in the significant
region of interest, which emphasizes the relevance of the pgains over the EDD for a certain SNR range.
expressions derived in Section IV. With regards to errée-ra 2) Finite Interleaving:We consider Markov-Gaussian noise
performance, we see that, using a constant valuer,othe with the same parameters as in Section V-A and interleaving
a-PFD closely follows the MSMLD performance which iswith a short block interleaver of = D /2 = 20 and I, = 50
optimal in the absence of state information. Both the unfef. Section IV-A). Figure 8 shows the analytical (lines)dan
parametric detectorsy-PFD and HPFD, clearly outperformsimulated BER (markers) results for the different detector
the conventional EDD over a wide range of BERs. FurtheFor the sake of readability of the figure, only results for+ea
more, exploiting the information in the quadrature compunevalued transmission are shown. It can be seen that the BER
of the received signal, if available, provides an order axpressions well approximate the simulation results fothal
magnitude improvement in BER. This is decidedly differentceivers. Furthermore, we observe that, different frofimite
from the case of AWGN. Finally, the significant performancmterleaving, the BER curves in Figure 8 tend to bunch up in
gains achievable by noise-state estimation are evidemh fréhe low BER region. This is a consequence of the larger multi-
the BER curves for KSMLD and EMD. These detectorplicative factorsY(d, ng) for nz > 0 compared to the ideally
exhibit the best achievable performance for the commuinicat interleaved case. This also results in a rapid convergeitbe o
framework considered with the EMD suffering from an erroBER curves for all detectors with increasing SNR. This fact
floor at about%W(dfm)ngm =2-10"7 (see Eq. (37)) due is further highlighted in Figure 9, which shows the asymiptot
to its inherent limitations. BER approximatioPEP (dfyee, dfree) T (dfree, diree) (lin€s) for

We note that the BER curves for the improved detectol@e EDD, MSMLD, and KSMLD, together with the corre-
in Figure 6 consist of two segments, most discernible for tiggonding simulation results (markers). Since this erreneis
KSMLD, which is reminiscent of error-rate curves for Turbgeen to dominate performance for even moderately high SNRs,
codes. This behaviour is made more explicit in Figure 7, whewe conclude that insufficient interleaving limits the betsedif
we plot the analytical BER approximation fdr= dy... (solid modified decoding metrics over EDD to relatively high BERs.
lines) together WitlPEP (dfvee, n8) Y (dfree, n) With ng =1 The necessary interleaver depth can quickly be determined
andnpg = dse. (dashed lines) for the EDD, KSMLD, angt by means of the analytical BER expressions derived in Sec-
PFD. Clearly, for sufficiently high SNR the BER is eventuallyion IV. To this end, Figure 10 presents the BER approxi-
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Fig. 9. Asymptotic BER results for different metrics propdsn Section Il
in the presence of Markov-Gaussian noise and a finite blotéri@aver
of depth I = 20. Lines showBER ~ PEP(dfrce, dfrec) Y (diree s diree )-

Markers: Simulation results.

the presence of Markov-Gaussian noise and a finite blockleateer with
depthsI = Dy x [0.5,1,2,00]. Solid lines: Dy = 40. Dashed lines (only
for I = Dg): D = 20.

VI. CONCLUSION

In this paper, we have studied convolutionally coded trans-
mission over Markov-Gaussian channels. We have considered
and proposed several decoding metrics that are shown to be
better suited to this impulse noise environment than the con
ventional Euclidean distance metric and whose applidgbdi
governed by the amount of information about the noise psces
available at the receiver. We have derived analytical and-se
analytical expressions for the cutoff rates and BERs aaserti
with the decoding metrics. These expressions are shown to be
fairly tight in evaluating the decoding performance withtéa
depth interleaving such that the effect of residual memery i
well incorporated, which as a special case includes the memo
ryless impulse noise channel as well. Numerical evidense ha
been presented that confirms the usefulness of the analytica
results, shows the efficacy of improved decoding metricd, an
also highlights the differences to the case of transmissian
AWGN channels.
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