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Abstract— We consider the problem of designing multipulse
pulse-position modulation (MPPM) constellations whose sizes are
powers of two. This problem amounts to selecting a subset from
the collection of all

`

n

w

´

possible signal points of MPPM with
w pulses in n time slots. In a previous work, we have tackled
this selection using combinatorial heuristics. In this letter, we
further explore two new continuous optimization approaches.
The first one is a modified Blahut-Arimoto algorithm. The second
one is inspired from compressed sensing. Using the constellation-
constrained channel capacity as the figure of merit, numerical
results from a relevant free-space optical communication example
suggest that simple combinatorial heuristics yield practically the
best designs.

Index Terms— Multipulse pulse-position modulation (MPPM),
free-space optical (FSO) communications, discrete optimization,
compressed sensing.

I. I NTRODUCTION

Multipulse pulse-position modulation (MPPM) is a promis-
ing signaling scheme for free-space optical (FSO) commu-
nications. It is a generalization of pulse-position modulation
(PPM) such that there arew > 1 pulses per symbol consisting
of n > w slots. Compared to PPM (i.e., whenw = 1), MPPM
enables a favorable trade-off between power and bandwidth
efficiencies [1]–[4].

The number of all possible(n, w)-MPPM signal points
is M =

(

n
w

)

, which is not a power of two. Utilizing the
full constellation would require a complicated bit-to-symbol
mapping and demapping. A power-of-two constellation size
is therefore often preferred, especially if error-controlcoding
(ECC) is applied. Thus, an important task in designing a
coded MPPM system is to select a subset ofK < M
symbols for transmission. There are different criteria to select
a subset, e.g., to achieve the smallest symbol error rate.
However, with the increasing popularity of modern capacity-
approaching codes, maximizing the constellation-constrained
channel capacity seems to be the most relevant criterion. In[5],
using this criterion, we have formulated the subset selection
as a combinatorial optimization and proposed a number of
enumeration heuristics. Since the solutions of such heuristics
are deemed suboptimal, we are motivated to explore other
alternative approaches.
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In this letter, we revisit the problem of MPPM constella-
tion selection and formulate it as a continuous optimization
problem. To this end, we again aim to maximize the con-
strained channel capacity, but relax the condition of uniformly
distributed signal points during constellation selection. For
MPPM FSO transmission over discrete channels, we propose
two algorithms to solve this relaxed problem. The first is a
Blahut-Arimoto-type algorithm, and the second is based on
compressed sensing. Perhaps surprisingly, numerical results
for (16, 4)-MPPM transmission over quantum-limited chan-
nels demonstrate that the constellation designs obtained in [5]
through enumeration techniques can hardly be improved by
relaxation and continuous optimization. This in turn leadsus to
the nontrivial conclusion that the former is already an adequate
approach for the considered MPPM constellation design. Even
though this result cannot directly be generalized, the presented
algorithms are readily applicable for optimization for other
constellations and channel models.

Notation: Matrices and vectors are written in bold face,
e.g., X and x. The i-th element ofx is xi. Xij is the
element of matrixX in row i and columnj. ‖x‖1 is theℓ1-
norm and‖x‖0 denotes the number of nonzero components
of x, respectively.D(x‖y) for ‖x‖1 = ‖y‖1 = 1 denotes
the Kullback-Leibler divergence betweenx and y. λmin(X)
denotes the minimal eigenvalue ofX, 1M is the length-M all-
one column vector, anddiag{x} is the diagonal matrix with
elements ofx on its main diagonal. Finally,Pr{·} denotes the
probability of the event in brackets.

II. MPPM TRANSMISSION AND PROBLEM DEFINITION

We consider the transmission of MPPM signal vectorsx of
lengthn with ‖x‖0 = ‖x‖1 = w “on” slots corresponding to
xi = 1 and(n−w) “off” slots corresponding toxi = 0. The
collection of all such vectorsX = {x1, x2, . . . , xM} has size
M =

(

n
w

)

, but only a subsetS ⊂ X of sizeK = |S| is desired
for transmission, whereK = 2L andL ∈ N. Each component
of x is transmitted over a memoryless channel, producing
output vectory from the set1 Y = {y1, y2, . . . , yN}. The
channel is fully described by itsN ×M transition matrixQ
with entries

Qij = Pr{yi|xj} . (1)

Let us denote the probability of selecting the inputxj by pj

and the probability of observing the channel outputyi by qi,

1Throughout this letter, we consider discrete channels withdiscrete outputs
y as a result of quantization at the receiver, which in FSO transmission is often
explicitly included in the channel model. However, the algorithms proposed
in this letter can also be applied to continuous-output channels using Monte
Carlo techniques to perform integration, cf. e.g. [6].



respectively. The average mutual information between chan-
nel input x and outputy, i.e., the constellation-constrained
channel capacity, is given by

I(p) =

M
∑

j=1

N
∑

i=1

pjQij log2

(

Qij

qi

)

, (2)

where we explicitly expressed the dependency on the input
distribution p = [p1, p2, . . . , pM ]T . We note that the output
distributionq = [q1, q2, . . . , qN ]T follows asq = Qp.

The problem that we address in this letter is to find the
subsetS of input vectors that maximizesI(p) from (2). We
assume that theL bits mapped to theK signal points are
uniformly distributed. As a result, the distribution of signal
points is also uniform. Hence, we seek the input distribution
that maximizesI(·),

p∗ = argmax
p∈P

{I(p)} , (3)

where the maximization is performed on the constrained set
of probability vectors

P = {p ∈ R
M : ‖p‖0 = K, ‖p‖1 = 1, pj ∈ {0, 1/K} ∀j} .

(4)

III. D ISCRETE ANDCONTINUOUS OPTIMIZATION

In this section, we first briefly review the discrete random
search from [5], which directly performs the optimization (3).
To overcome the difficulty of enumeration in discrete opti-
mization, we then propose two relaxed formulations which
lead to continuous optimization problems. The first uses a
Blahut-Arimoto-type algorithm to find solutions in the full
set of probability vectors. Hence, the associated capacity
performances serve as benchmark. The second approach is
inspired by recent work on recovering sparse signals using
regularization with penalty functions. In this case, the proba-
bility vector delivered by the optimization is projected into P

through quantization.

A. Discrete Optimization

The direct optimization ofI(p) over the setP is a 0-1
integer optimization problem with

(

M
K

)

enumerations. While
various partial enumeration or heuristic procedures are ap-
plicable to the problem at hand, we found in [5] that the
following random search with acceptance and rejection based
on I(p) can hardly be improved upon by more elaborate
(meta-)heuristical searches.

The discrete random search is formalized in the following
pseudo-code.

Algorithm 1: Uniformly randomly select̂p ∈ P

1: for number of searches
2: Uniformly randomly selectp ∈ P

3: if (I(p) > I(p̂))
4: p̂ = p

5: end if
6: end for
7: Return p̂

The above pseudo-code represents uninformed search. In [5],

we showed that focusing the search to a “good” region of
P can improve the quality of the solution. To this end, the
MPPM signal points can be considered as the codewords of a
length-n weight-w constant-weight code (CWC). LetC denote
an (n, w) CWC with the largest possible sizeA for a given
minimum Hamming distancedmin. We argue that optimized
CWCs, i.e., codes with largedmin for given parameters(n, w),
represent good search regions. Since CWCs are only available
for certain sizesA (see tables in [7], [8]), the following
approach is applied: (i) find a CWC with largedmin and A
close toK. (ii) If A ≥ K, we make the constellation always
a subset ofC. Otherwise, we make the constellation always a
superset ofC, i.e.,C and additionalK−A randomly selected
vectors fromP\C.

B. Blahut-Arimoto-type Optimization

The main problem when directly tackling problem (3) are
the “discrete” constraints‖p‖0 = K and pj ∈ {0, 1/K} in
(4). We therefore define the new set

P̃ = {p ∈ R
M : H(p) ≤ L, ‖p‖1 = 1, pj ≥ 0 ∀j} (5)

with continuous constraints, where

H(p) = −
M
∑

j=1

pj log2(pj) (6)

is the average entropy associated withp. Clearly,P ⊂ P̃, and
thus

p∗ = argmax
p∈P̃

{I(p)} (7)

is a relaxed version of (3). We can look at (7) as a problem
of nonuniform signaling investigated for Gaussian and optical
wireless intensity channels in [9], [10].

Since both mutual information and entropy are convex-∩
functions of the input probability, problem (7) is a non-convex
optimization. We thus resort to finding local maxima ofI(p).
Similarly to [11], we consider the Lagrangian

Jµ(p) = I(p)− µH(p) , (8)

whose (possibly local) maximization for different values of
µ returns p∗

µ with associated mutual information-entropy
pair (I(p∗

µ), H(p∗

µ)). If Jµ(p∗
µ) is the global maximum,

(I(p∗

µ), H(p∗

µ)) supports the convex-∩ hull of I(H). Clearly,
we have 0 < µ < 1. The choiceµ = 0 corresponds
to the unconstrained optimization of mutual information (3).
Furthermore,(I(p∗

1), H(p∗

1)) = (0, 0) for µ ≥ 1.

We propose the following variant of the Blahut-Arimoto
algorithm [12], [13] to find maxima ofJµ(p) (notation is
adopted from [14]).



Algorithm 2: Initial probability vectorp(0) with positive
elements,k = 0

1: do
2: D

(k)
j = D(Qj‖Qp(k))

3: p
(k+1)
j = (p

(k)
j )1/(1−µ)

×
exp(D

(k)
j /(1− µ))

M
∑

l=1

(p
(k)
l )1/(1−µ) exp(D

(k)
l /(1− µ))

4: k ← k + 1

5: while (D(p(k)‖p(k−1)) > t)
6: Return p(k)

In Algorithm 2, Qj denotes thejth column ofQ and t > 0
is a small threshold value to terminate the iteration. We have
the following result for Algorithm 2.

Lemma 1: Jµ(p(k)) is monotonically increasing withk.
Proof: We can write (cf. [13, Theorem 1])

max
p∈P̆

{Jµ(p)} = max
p∈P̆

{I(p)− µH(p)}

= max
p∈P̆

max
P∈T
{I(p, P )− µH(p)} ,

(9)

where

P̆ = {p ∈ R
M : ‖p‖1 = 1, pj ≥ 0 ∀j} (10)

I(p, P ) =

M
∑

j=1

N
∑

i=1

pjQij log2(Pji/pj) (11)

andT is the set of allM ×N transition probability matrices.
Successive optimization with respect toP for givenp(k) and
with respect top for givenP (k) leads to the update equations
in Algorithm 2. Thus,Jµ(p(k)) monotonically increases with
k.

We note that forsymmetrictransmission channels the uni-
form distribution maximizes mutual information. Therefore,
p∗

0 = 1
M 1M is the global optimum forJµ(p) for µ = 0.

Furthermore, we observe from Algorithm 2, Lines 2 and 3,
that p∗

0 is always a fixed point of the recursion. Since the
second derivative ofJµ(p) is given by

∇2Jµ(p) = −QT (diag{q})−1Q + µ(diag{p})−1 , (12)

p∗

0 is an attractive fixed point as long as

µ < µt = λmin(QT (diag{q})−1Q)/M . (13)

Hence,p∗

0 is a (local) maximum ofJµ(p) for 0 ≤ µ < µt.
Considering thatJµ(p) is continuous inµ andp, one way

to initialize Algorithm 2 is to use a slightly innovated solution
from the previous optimization as the start vectorp(0) when
incrementingµ > µt. The innovation is needed to move away
from p∗

0.

C. Recovering Sparsity

Our second continuous optimization approach is inspired
from compressed sensing. A problem related to (3) is given
by considering maximization of the cost function

I(p)− µ‖p‖0 (14)

over probability vectorsp and µ > 0. Due to the second
term, sparse solutions are favored, which is desirable for the
selection of subsetsS. The recovery of sparse solution has
received great attention in several application fields, cf.e.g.
[15]. To render optimization problems tractable, it has often
been proposed to replace the‖ · ‖0 penalty function by the
ℓ1-norm. This is obviously not an option for the problem
considered here, as‖p‖1 = 1. However, there are several other
penalty functions that are suitable for achieving sparsityin the
solution, among which theℓq pseudo-norm with0 < q < 1 is
very popular [16].

Adopting an ℓq penalty function, we obtain the problem
formulation

p∗ = argmax
p∈P̆

{I(p)− µ

M
∑

j=1

(pj)
q} . (15)

The cost function in (15) is a difference of convex-∩ (DC)
functions and thus its optimization is generally difficult.We
can however make use of an iterative procedure known as DC
programming to find extreme points ofI(p)− µ

∑M
j=1(pj)

q.
Following the presentation in [16, Algorithm 2], we arrive

at the following algorithm.
Algorithm 3: Initial probability vectorp(0), k = 0

1: do

2: αj =
q

(p
(k)
j )1−q + δ

3: p(k+1) = argmax
p∈P̆

{I(p)− µ
M
∑

j=1

αjpj}

4: k← k + 1
5: while (D(p(k)‖p(k−1)) > t)
6: i = index sort(p(k))
7: for j = 1 : K
8: p̂i(l) = 1/K
9: end
10: for j = K + 1 : M
11: p̂i(l) = 0
12: end
13: Return p̂

The valueδ in Line 2 is a very small positive constant for
numerical stability. The maximization of the convex-∩ objec-
tive function in Line 3 can be performed running Algorithm 2
with the modified update

p
(m+1)
j = p

(m)
j

exp(D
(m)
j − µαi)

M
∑

l=1

p
(m)
l exp(D

(m)
l − µαi)

. (16)

The valuet > 0 in Line 5 is a threshold for terminating
the iteration, as in Algorithm 2. The functionindex sort(x)
in Line 6 sorts the elements ofx in descending order and
returns the corresponding indexes. The final two for-loops
in Algorithm 3 assign uniform probabilities to the selected
MPPM signal elements.

By changingαj in Algorithm 3 other penalty functions
can be applied. This includes entropyH(p) (which does
not enforce sparsity) and Algorithm 3 can be applied to
maximize the Lagrangian (8). Numerical experiments showed



that Algorithm 2 gives slightly better results than Algorithm 3
when applied to maximize (8).

IV. RESULTS AND DISCUSSION

As an interesting example of FSO transmission, we consider
the quantum-limited channel and MPPM with parametersn =
16 andw = 4, for which the constellation size isM = 1820.
These parameters were also considered, for example, in [17].
Similar trends to those shown in the following have also been
observed with the case(n, w, M) = (12, 3, 220).

In the quantum-limited channel an “on”-pulse is erased with
probability

ǫ = e−λon (17)

and λon is the mean number of photons counted at the
detector during an “on”-pulse. The channel output vectorsyi

correspond to all binary words of lengthn with at mostw
ones, and thus

N =

w
∑

k=0

(

n

k

)

. (18)

The elements of the channel transition matrix are given by

Qij =

{

0 , if min{xj − yi} < 0
(1− ǫ)w−dij ǫdij , otherwise

(19)

wheredij = ‖xj − yi‖1.
We run Algorithm 1 with the number of searches equal to

103, and Algorithms 2 and 3 with the iteration terminating
thresholdt = 10−6. These values result in comparable run
times for all of our algorithm implementations. However, we
note that constellation selection is performed only once inthe
design stage, and therefore run time is not a concern, as long
as it is practicable. Figure 1 shows the results obtained with
Algorithms 1 and 2 for different values ofǫ. For the dis-
crete optimization Algorithm 1, we consider both uninformed
random search and random search making use of the(16, 4)
CWC with 140 codewords [7], forK = [64, 128, 256, 512].
For the continuous optimization with Algorithm 2, successive
initialization as described in Section III-B was used, and
the obtained pairs(I(pµ), H(pµ)) are connected to a line
(each point on this line is achievable by timesharing of two
solutions). Also included in Figure 1 are the(I(p), H(p))
points for a particular constellationS1, which was obtained
as the firstK elements ofX , whereX with parameters(n, w)
was constructed from two MPPM subsets with parameters
(n− 1, w − 1) and (n− 1, w) and so forth. Furthermore, the
capacity for 4PPM (in bits per four 4PPM symbols, which
occupyn = 16 time slots), which has the samen/w ratio as
the considered MPPM transmission, is shown as a reference
at H(p) = 4× 2 = 8 bits.

We make the following observations. Firstly, a “poorly” cho-
sen MPPM constellation, such asS1, can result in significant
losses in achievable data rate. Secondly, discrete optimization
benefits noticeably from the availability of a “good” set of
MPPM signal vectors, such as the codewords of an CWC, to
drive the search towards favorable solutions. Furthermore, the
restriction to0-(1/K) solutionsp does only entail negligible
losses. Or in other words, there is hardly any benefit in
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Fig. 1. I(p) vs.H(p) for probability vectorsp optimized with Algorithms 1
and 2. (16, 4)-MPPM transmission over a quantum-limited channel with
erasure probabilityǫ. For comparison: capacity for 4PPM transmission in
bits/(n = 16 time slots).
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Fig. 2. I(p) vs. log2(K) for optimized (16, 4)-MPPM constellations and
transmission over a quantum-limited channel with erasure probability ǫ.

allowing p being chosen from a continuous set and using
a nonuniform MPPM signal set. Finally, we note that the
properly designed(16, 4) MPPM signal subset outperforms
4PPM in terms of achievable data rate. The comparison
with 4PPM is appropriate and fair, as(16, 4) MPPM and
4PPM have the same same peak power, average power, and
bandwidth requirements.

Next, Figure 2 provides a comparison for the MPPM
constellations obtained with Algorithms 1 (using CWC ini-
tialization) and 3. For Algorithm 3, a grid search for the regu-
larization parameter was performed. We observe a close match
between the mutual information attained for the constellations
optimized by discrete search and DC programming. Together
with the results from Figure 1, this suggest that the proposed
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Fig. 3. I(p) vs. H(p) obtained with Algorithm 2.(16, 4)-MPPM transmis-
sion over a quantum-limited channel with erasure probability ǫ = 0.2. Line:
successive initialization starting fromµ = 0, 0 ≤ µ < 0.82. Markers:p(0)

is chosen randomly, forµ = [0.41, 0.57, 0.61, 0.73, 0.81].

DC programming is a workable approach for MPPM signal
design and that the subsets found with informed random search
are close to optimum.

Finally, Figure 3 compares the solutions found with Al-
gorithm 2 using different initial vectorsp(0) for the case of
ǫ = 0.2. More specifically, the results obtained with successive
initialization are shown as a continuous line, and the results
obtained with different randomly chosen initial vectors are
shown as markers forµ = [0.41, 0.57, 0.61, 0.73, 0.81]. Firstly,
it can be seen that different initializations result in different
solutions of the cost functionJµ(p), i.e., different local
maxima are obtained for different starting solutions. Secondly,
we observe that the solutions for random initialization are
fairly similar to those obtained with successive initialization
(in fact, a closer look at the results reveals a small advantage
for successive initialization especially aroundH(p) = 7 bits).
This provides some indication that the results obtained with
successive initialization are close to the global maximum of
Jµ(p), which in turn emphasizes the conclusion that restriction
to 0-(1/K) vectors p does hardly entail any performance
losses.

V. CONCLUSIONS

The selection of good(n, w)-MPPM constellations of size
K <

(

n
w

)

is a non-trivial problem encountered in FSO commu-
nications. In this letter, we have addressed this problems from
different angles. In addition to revisiting the discrete random
search from [5], we have developed two alternative approaches
based on continuous optimization. We have presented nu-
merical results for MPPM transmission over quantum-limited
channels which demonstrate that the solutions from appro-
priately initialized discrete and from continuous optimization
lead to constellations with very similar performances in terms
of constrained capacity. We thus conjecture that conceptually
relatively simple combinatorial optimization is an effective

tool for the considered selection problem. The proposed con-
tinuous optimization algorithms can readily be applied for
optimization for other constellations and channel transition
matrices.
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