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Abstract— We consider the problem of designing multipulse In this letter, we revisit the problem of MPPM constella-
pulse-position modulation (MPPM) constellations whose gés are  tion selection and formulate it as a continuous optimizatio
powers of two. This problem amounts to selecting a subset fro problem. To this end, we again aim to maximize the con-

th llecti " i i i i . . o .
e collection of all () possible signal points of MPPM with strained channel capacity, but relax the condition of umily

w pulses inn time slots. In a previous work, we have tackled =" : - : : )

this selection using combinatorial heuristics. In this leter, we distributed signal points during constellation selectiior
further explore two new continuous optimization approaches. MPPM FSO transmission over discrete channels, we propose
The first one is a modified Blahut-Arimoto algorithm. The secmd  two algorithms to solve this relaxed problem. The first is a
one is inspired from compressed sensing. Using the constibn- Blahut-Arimoto-type algorithm, and the second is based on

constrained channel capacity as the figure of merit, numerial d . Perh isinal icalt
results from a relevant free-space optical communicationxample compressed sensing. Ferhaps surprisingly, numericaftsesu

suggest that simple combinatorial heuristics yield practally the for (16,4)-MPPM transmission over quantum-limited chan-

best designs. nels demonstrate that the constellation designs obtam§s] i
Index Terms— Multipulse pulse-position modulation (MPPM), through enumeration techniques can hardly be improved by

free_space 0ptica| (FSO) Cornrnur‘|i(:ati0r‘|sY discrete optimation‘ relaxa“on and continuous 0pt|m|zat|0n. Th|S Inturn Iead$0

compressed sensing. the nontrivial conclusion that the former is already an adée)

approach for the considered MPPM constellation designnEve

though this result cannot directly be generalized, theeriesl

algorithms are readily applicable for optimization for eth
Multipulse pulse-position modulation (MPPM) is a promiseonstellations and channel models.

ing signaling scheme for free-space optical (FSO) commu-Notation Matrices and vectors are written in bold face,

nications. It is a generalization of pulse-position modiola e.g., X and . The i-th element ofz is z;. X;; is the

(PPM) such that there are > 1 pulses per symbol consistingelement of matrixX in row ¢ and columnj. ||z||; is the/;-

of n > w slots. Compared to PPM (i.e., whan= 1), MPPM norm and|/z|o denotes the number of nonzero components

enables a favorable trade-off between power and bandwidthx, respectively.D(x||y) for ||z|; = ||y|[1 = 1 denotes

efficiencies [1]-[4]. the Kullback-Leibler divergence betweanandy. Ayin(X)
The number of all possiblén,w)-MPPM signal points denotes the minimal eigenvalue &f, 1, is the lengtha/ all-

is M = (), which is not a power of two. Utilizing the one column vector, andiag{x} is the diagonal matrix with

full constellation would require a complicated bit-to-dyoh elements ofe on its main diagonal. Finalypr{-} denotes the

mapping and demapping. A power-of-two constellation sizgobability of the event in brackets.

is therefore often preferred, especially if error-controtling

(ECC) is applied. Thus, an important task in designing all. MPPM TRANSMISSION AND PROBLEM DEFINITION

coded MPPM system is to select a subset I6f < M We consider the transmission of MPPM signal vectersf

symbols for transmission. There are different criteriaglest lengthn with ||z|o = ||z||1 = w “on” slots corresponding to

a subset, e.g., to achieve the smallest symbol error rate= 1 and(n — w) “off” slots corresponding tac; = 0. The

However, with the increasing popularity of modern capacityollection of all such vector& = {x;, x,,..., 2} has size

approaching codes, maximizing the constellation-comstth M = (Z) but only a subse$ C X of size K = |S| is desired

channel capacity seems to be the most relevant criterids],In for transmission, wher& = 2 and L. € N. Each component

using this criterion, we have formulated the subset s@rctiof x is transmitted over a memoryless channel, producing

as a combinatorial optimization and proposed a number @ifitput vectory from the set Y = {y;,ys,...,yx}. The

enumeration heuristics. Since the solutions of such hiesis channel is fully described by it& x M transition matrix@Q

are deemed suboptimal, we are motivated to explore otheith entries

alternative approaches. Qi; = Pr{y;|x;} . 1)
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respectively. The average mutual information between chame showed that focusing the search to a “good” region of
nel inputxz and outputy, i.e., the constellation-constrainedP can improve the quality of the solution. To this end, the
channel capacity, is given by MPPM signal points can be considered as the codewords of a
MON 0 length« weight<v constant-weight code (CWC). Létdenote
I(p) = p;Q;; log ( ij) : (2) an(n,w) CWC with the largest possible sizé for a given
) ;; TR g minimum Hamming distancémi,. We argue that optimized
. . CWCs, i.e., codes with largénin for given parameterg, w),
\(/jv_he_rg we exp_I|C|tIy expressethhe dependehncy r?n the 'nF}Bbresent good search regions. Since CWCs are only awailabl
d!str!but!onp - 1,p2,...,p%]f."\Ne note that the output ¢, certain sizesA (see tables in [7], [8]), the following
istributiong = [¢1, 42, .., qn]" follows asq = Qp. approach is applied: (i) find a CWC with largk,» and A

The prob!em that we address i.n .this letter is to find th&ose toK. (i) If A > K, we make the constellation always
subsetS of input vectors that maximize&(p) from (2). We a subset oC. Otherwise, we make the constellation always a

assume that thd. bits mapped to thek signal points are superset o€, i.e.,C and additional — A randomly selected
uniformly distributed. As a result, the distribution of saj vectors fromP\C

points is also uniform. Hence, we seek the input distributio
that maximized/(-),

p= arfé?pax{f(p s 3) B. Blahut-Arimoto-type Optimization

where the maximization is performed on the constrained Setrhe main problem when directly tackling problem (3) are
of probability vectors the “discrete” constraint§p|lo = K andp; € {0,1/K} in
P={peR:|plo=K, ||pll =1, p; € {0,1/K}Vj}. (4). We therefore define the new set

(4)

P={peR":H(p) <L, |plh =1, p; >0Vj} (5)
IIl. DISCRETE ANDCONTINUOUS OPTIMIZATION

In this section, we first briefly review the discrete randorwith continuous constraints, where
search from [5], which directly performs the optimizatid).(
To overcome the difficulty of enumeration in discrete opti- M
mization, we then propose two relaxed formulations which H(p) = —ij log, (p;) (6)
lead to continuous optimization problems. The first uses a j=1
Blahut-Arimoto-type algorithm to find solutions in the full
set of probability vectors. Hence, the associated capaciéthe average entropy associated vgtiClearly,? ¢ P, and
performances serve as benchmark. The second approacthis
inspired by recent work on recovering sparse signals using
regularization with penalty functions. In this case, thela- p" = argmax{I(p)} )
bility vector delivered by the optimization is projecteddriP pEP

through quantization.
is a relaxed version of (3). We can look at (7) as a problem

of nonuniform signaling investigated for Gaussian andaapti

_ R ) wireless intensity channels in [9], [10].

: The d|re_ct optimization Of[(p.) 3}’” the setP is a 0-1  gjnce poth mutual information and entropy are convex-
integer optimization problem WMQK) enumerations. While functions of the input probability, problem (7) is a non-zexr

various partial enumeration or heuristic procedures are acpptimization We thus resort to findin :

. 4 . g local maximaldp).
plicable to the problem at hand, we found in [5] that th%imilarly to [11], we consider the Lagrangian
following random search with acceptance and rejectiondase '

on I(p) can hardly be improved upon by more elaborate

A. Discrete Optimization

(meta-)heuristical searches. Ju(p) = 1(p) — pH(p) , (8)
The discrete random search is formalized in the following
pseudo-code. whose (possibly local) maximization for different valueks o
Algorithm 1: Uniformly randomly selecp € P p returns p% with associated mutual information-entropy

1:  for number of searches pair (I(p;), H(p},)). If Ju(p}) is the global maximum,
2 Uniformly randomly selecp € P (I(p},), H(p},)) supports the convex-hull of I(H). Clearly,
3 if (I(p) > I1(p)) we have0 < p < 1. The choicepx = 0 corresponds
4: P=p to the unconstrained optimization of mutual information. (3
5 end if Furthermore(I(p}), H(p})) = (0,0) for p > 1.
6: end for X We propose the following variant of the Blahut-Arimoto
7: Retun p algorithm [12], [13] to find maxima of/,(p) (notation is

The above pseudo-code represents uninformed search.,In glopted from [14]).



elementsk = 0 term, sparse solutions are favored, which is desirableHer t
1. do _ selection of subset§. The recovery of sparse solution has
2: Dj(.k) = D(QjIIQp(’“)) received great attention in several application fields,ecd.
3: p§k+1) - (pg,k))l/(l—w [15]. To render optimization problems tractable, it hasenft
exp(D(k)/(l ) been propos_,ed_ to replace thie o pena!ty function by the
X J £1-norm. This is obviously not an option for the problem
Z(Pz(k))l/(l_“) exp(Dl(k)/(l — 1) considered h_ere, doll, = 1. However, ther.e are seve.ra'll other
=1 penalty functions that are suitable for achieving spaiisitihe
4 kek+1 solution, among which thé, pseudo-norm with) < ¢ < 1 is
5. while (D(p®) [p*=1)) > 1) very popular [16].
6: Return p(® Adopting an/, penalty function, we obtain the problem
In Algorithm 2, Q; denotes theth column ofQ andt > 0 formulation
is a small threshold value to terminate the iteration. Weehav M
the following result for Algorithm 2. p* = argmax{I(p) — MZ(pj)q} . (15)
Lemma 1: Ju(p(k)) is monotonically increasing witl. peP j=1

Proof: We can write (cf. [13, Theorem 1]) The cost function in (15) is a difference of convextDC)

max{J,(p)} = max{I(p)— uH(p)} functions and thus its optimization is generally difficilte
peP peP (9) can however make use of an iterative procedure known as DC
programming to find extreme points éfp) — uz;‘il(pj)q.

= maxmax{/(p, P) - uH(p)},
peF Following the presentation in [16, Algorithm 2], we arrive

Pc

where at the following algorithm.
g " . Algorithm 3: Initial probability vectorp(®), k = 0
P = {peR":|plli=1 p; =20Vj} (10) 1: do
M N 2 o — q
I(p,P) = > % p;Qijlogs(Psi/p)) (11) ' ! (p)1-a +
j=1i=1 M
. k+1) _
and7 is the set of allM x N transition probability matrices. 3 pH = arggfx{f(p) —p Z a;p;}
P j=1

Successive optimization with respect®for givenp*) and
with respect tgp for given P® |eads to the update equations
in Algorithm 2. Thus,.J,(p'*)) monotonically increases with
k. [ |

k—k+1
while (D(p®)||p*=1) > t)
i = index_sort(p()

©oN g

We note that forsymmetrictransmission channels the uni- forA] =1:K
form distribution maximizes mutual information. Therefor _ en](gji(l) =1/K
py = -1, is the global optimum forJ,(p) for p = 0. . _
Furthefmore, we observe from Algorithrl;\(z? Lines 2 and 3,  10° forj=K+1:M
that p;; is always a fixed point of the recursion. Since the 11: pig) =0
second derivative off,(p) is given by 12: end
13: Return p

V2Ju(p) = —Q" (diag{q}) ' Q + p(diag{p}) ™", (12) The values in Line 2 is a very small positive constant for
numerical stability. The maximization of the convexebjec-

p; Is an attractive fixed point as long as tive function in Line 3 can be performed running Algorithm 2

1< e = Amin(QF (diag{q})~1Q)/M . (13) Wwith the modified update
Hence,p; is a (local) maximum of/, (p) for 0 < p < . p(vm+1) _ p(m exp(D§m) — p;) (16)
Considering that/,(p) is continuous inu andp, one way J M (m)
to initialize Algorithm 2 is to use a slightly innovated stin l; b exp(Dp — pa)

from the previous optimization as the start vecté?) when
incrementingu > p;. The innovation is needed to move awa
from pg.

he valuet > 0 in Line 5 is a threshold for terminating
he iteration, as in Algorithm 2. The functiandex_sort(x)
in Line 6 sorts the elements af in descending order and
returns the corresponding indexes. The final two for-loops
C. Recovering Sparsity in Algorithm 3 assign uniform probabilities to the selected

Our second continuous optimization approach is inspirdPPM signal elements. _
from compressed sensing. A problem related to (3) is givenBY changinga; in Algorithm 3 other penalty functions
by considering maximization of the cost function can be applied. This includes entropy(p) (which does
not enforce sparsity) and Algorithm 3 can be applied to

I(p) — pllpllo (14) maximize the Lagrangian (8). Numerical experiments showed



that Algorithm 2 gives slightly better results than Algarit 3 ° T T
when applied to maximize (8).

Algorithm 2

O Algorithm 1

P> Algorithm 1 with cCWC
x

*

IV. RESULTS AND DISCUSSION

Constellation S,

4PPM

As an interesting example of FSO transmission, we consider, |
the quantum-limited channel and MPPM with parameiets
16 andw = 4, for which the constellation size &/ = 1820.
These parameters were also considered, for example, in [17]s
Similar trends to those shown in the following have also been
observed with the case:, w, M) = (12, 3, 220). .

In the quantum-limited channel an “on"-pulse is erased with
probability

€= o a7) 4r ' : x o
and \,, is the mean number of photons counted at the X
detector during an “on”-pulse. The channel output vecigrs 3 e 5 o5 7 e s e 5 o5 10
correspond to all binary words of length with at mostw H(p) —

ones, and thus
Yo/ Fig. 1. I(p) vs. H(p) for probability vectorgp optimized with Algorithms 1
N = Z ( > . (18) and 2.(16,4)-MPPM transmission over a quantum-limited channel with
o k erasure probabilitye. For comparison: capacity for 4PPM transmission in
bits/(n = 16 time slots).

The elements of the channel transition matrix are given by

[ o, if min{x; —y;} <0 85 ‘ ‘

Qij = { (1-— e)“’_d”ﬁ(i“ , otherwise (19) oL g i:gz::::iwhhcwc f:{ Q |
whered;; = [l; — ;. e

We run Algorithm 1 with the number of searches equal to ™| ‘ [ ]
103, and Algorithms 2 and 3 with the iteration terminating | [P Dl B SN
thresholdt = 1075. These values result in comparable run BB\
times for all of our algorithm implementations. However, we st h =02 2l
note that constellation selection is performed only oncthé [P st
design stage, and therefore run time is not a concern, as logi i P |
as it is practicable. Figure 1 shows the results obtainel wit 4| B : v i
Algorithms 1 and 2 for different values of. For the dis- ' BB
crete optimization Algorithm 1, we consider both uninfodne  sf B\ l
random search and random search making use oflifigt) B €=04
CWC with 140 codewords [7], folk = [64,128,256,512]. | ]
For the continuous optimization with Algorithm 2, successi 4 ‘ ‘ ‘

L
55 6 6.5 7 75
logy(K)  —

©
©
5
©

initialization as described in Section IlI-B was used, and °

the obtained pairg/(p,), H(p,)) are connected to a line

(each point on this line is achievable by timesharing of twig. 2. 1(p) vs. log,(K) for optimized (16, 4)-MPPM constellations and

solutions). Also included in Figure 1 are thé(p), H(p)) transmission over a quantum-limited channel with erasuobability e.

points for a particular constellatio§,, which was obtained

as the firstk elements of¥’, whereX’ with parameters$n, w)

was constructed from two MPPM subsets with paramete?8owing p being chosen from a continuous set and using

(n—1,w—1) and(n — 1,w) and so forth. Furthermore, thea nonuniform MPPM signal set. Finally, we note that the

capacity for 4PPM (in bits per four 4PPM symbols, whictproperly designed16,4) MPPM signal subset outperforms

occupyn = 16 time slots), which has the samg'w ratio as 4PPM in terms of achievable data rate. The comparison

the considered MPPM transmission, is shown as a referengégh 4PPM is appropriate and fair, 846,4) MPPM and

at H(p) = 4 x 2 = 8 bits. 4PPM have the same same peak power, average power, and
We make the following observations. Firstly, a “poorly” chobandwidth requirements.

sen MPPM constellation, such &, can result in significant  Next, Figure 2 provides a comparison for the MPPM

losses in achievable data rate. Secondly, discrete ogtiiniz constellations obtained with Algorithms 1 (using CWC ini-

benefits noticeably from the availability of a “good” set ofialization) and 3. For Algorithm 3, a grid search for theueg

MPPM signal vectors, such as the codewords of an CWC, larization parameter was performed. We observe a closehmatc

drive the search towards favorable solutions. Furtherpitbee  between the mutual information attained for the consietet

restriction to0-(1/K’) solutionsp does only entail negligible optimized by discrete search and DC programming. Together

losses. Or in other words, there is hardly any benefit imith the results from Figure 1, this suggest that the progose
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Fig. 3. I(p) vs. H(p) obtained with Algorithm 2(16, 4)-MPPM transmis-
sion over a quantum-limited channel with erasure proltgbili= 0.2. Line:

successive initialization starting from = 0, 0 < p < 0.82. Markers: p(®)

is chosen randomly, fop = [0.41,0.57,0.61, 0.73,0.81].

(el

(7]

DC programming is a workable approach for MPPM signa[s]
design and that the subsets found with informed randomIsearc
are close to optimum.

Finally, Figure 3 compares the solutions found with AI—[9]
gorithm 2 using different initial vectorp(®) for the case of
e = 0.2. More specifically, the results obtained with successivé!
initialization are shown as a continuous line, and the tssul
obtained with different randomly chosen initial vectore ar
shown as markers for = [0.41,0.57,0.61,0.73,0.81]. Firstly,
it can be seen that different initializations result in drént
solutions of the cost function/,(p), i.e., different local [12]
maxima are obtained for different starting solutions. Seity
we observe that the solutions for random initialization angs)
fairly similar to those obtained with successive initialion
(in fact, a closer look at the results reveals a small adggnta

T . : [14]

for successive initialization especially aroufldp) = 7 bits).
This provides some indication that the results obtainedh wit
successive initialization are close to the global maximum &9
J,.(p), which in turn emphasizes the conclusion that restrictiq,
to 0-(1/K) vectorsp does hardly entail any performance
losses.

[11]

[17]
V. CONCLUSIONS

The selection of goodn, w)-MPPM constellations of size
K < (7) is a non-trivial problem encountered in FSO commu-
nications. In this letter, we have addressed this probleors f
different angles. In addition to revisiting the discretedam
search from [5], we have developed two alternative appresch
based on continuous optimization. We have presented nu-
merical results for MPPM transmission over quantum-lichite
channels which demonstrate that the solutions from appro-
priately initialized discrete and from continuous optiatinn
lead to constellations with very similar performances im
of constrained capacity. We thus conjecture that concéptua
relatively simple combinatorial optimization is an effieet

tool for the considered selection problem. The proposed con
tinuous optimization algorithms can readily be applied for
optimization for other constellations and channel traosit
matrices.
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