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Abstract—In this paper, we introduce a new Differentiated Suc-
cessive Interference Cancellation (DiffSIC) ordering technique
for up-link multiple-user systems. Unlike classical SIC, DiffSIC
is capable of differentiating users according to their priority or
class of service by selecting a detection order that best fits the
users’ service profiles. In addition, DiffSIC is able to achieve
the optimal SIC detection order that results in the best overall
system performance. In order to develop DiffSIC, we introduce
analytical methods towards finding instantaneous symbol error
rates (SER) for the Zero Forcing SIC (ZF-SIC) and Minimum
Mean Square Error SIC (MMSE-SIC) detectors. Furthermore,
we devise two procedures to reduce the computational complexity
associated with the computation of SER and the enumeration of
detection orders. We present a number of numerical results which
clearly demonstrate the ability of DiffSIC to accomplish service
differentiation and overall performance improvement in general.

Index Terms—Successive interference cancellation (SIC), V-
BLAST, zero forcing (ZF) detector, user differentiation, symbol
error rate (SER) analysis.

I. I NTRODUCTION

M ULTIPLE-Input Multiple-Output (MIMO) techniques
have been widely recognized as a means for improved

performance of wireless communications. MIMO techniques
provide additional spatial degrees of freedom that can result
in several orders-of-magnitude increase in data rate and sig-
nificant decrease in interference in point-to-point, point-to-
multipoint and multipoint-to-point wireless transmission. In
the latter case, different users can be viewed as different
transmitting antennas, and Space-Time Multiple-User Detec-
tion (MUD) can be used at the base station to separate the
signals from these users [1, 2]. Since optimal space-time
MUD algorithms are often too complex and time consuming,
linear and non-linear approximations of optimal algorithms
are used. In particular, non-linear detectors using Successive
Interference Cancellation (SIC) are powerful and significantly
outperform linear detectors. In these detectors, the orderof
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detection substantially affects the performance of individual
users. The classical SIC detector is the Vertical Bell Labora-
tory Layered Space Time (V-BLAST) detector [3] that aims
at finding the detection order that carries the least amount of
error propagation.

In the context of a layered transmission approach, the
Medium Access Control (MAC) layer is normally responsible
for providing service differentiation through frame scheduling,
while the Physical (PHY) layer’s responsibility is to deliver
the packets passed by the MAC layer with the least amount
of errors. This concept has changed when researchers started
to think across layers and noticed that getting the PHY layer
involved in the packet scheduling effort could enhance the
performance of the system dramatically [4]. The Channel State
Dependent Packet Scheduling (CSDPS) [5] was one of the
first schedulers to address this problem. But, this involvement
always took place in the scheduling process of the MAC (i.e.
the status from the PHY layer was used in the scheduling
process of the MAC), and had nothing to do with PHY layer
transmission and detection tools and algorithms that were used.

In this paper, we claim that the service differentiation pro-
cess can take advantage of the PHY layer capabilities to gain
more improvement at the user level. To this end, we propose
a new SIC ordering algorithm that works at the base station of
a multiple-user up-link system and can differentiate usersin
service by altering the detection sequence. In particular,this
Differentiated SIC (DiffSIC) works in favor of high priority
customers, while low priority users may experience a (short-
term) performance degradation. DiffSIC considers Symbol
Error Rate (SER) as the relevant performance measure, and
therefore we also derive the necessary SER expressions in this
paper. We note that an enhancement in SER, or interchange-
ably the Packet Error Rate (PER), performance of a user’s
communications link directly affects the performance of data
communications over that link. In error-intolerant applications
(commonly running over TCP/IP), such as file transfers, and
web browsing, a more reliable link translates directly intoless
retransmissions which, in turn, means lower delay and higher
efficiency. On the other hand, in applications such as voice or
video over IP, certain levels of error can be tolerated as long
as they do not extremely deteriorate the content quality to a
point where it becomes noticeable by the end user. We present
a number of simulation results which substantiate that DiffSIC
is capable of changing link reliabilities according to the needs
of such applications. We would like to emphasize that DiffSIC
takes place at the base station and requires no involvement of

0000–0000/00$00.00c© 2007 IEEE



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. ?, NO. ?, MONTH YEAR 2

+

-

a r

n

y z â
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Fig. 1: Block diagram of the equivalent real-valued transmission system using
a SIC detector.

or feedback to the users. If such a feedback is available or used
for user differentiation anyway [6, 7], DiffSIC could stillbe
applied as an additional fine-grain service differentiation tool.
Also, through a feedback channel, high priority users can be
advised to use a higher signal constellation size to take full
advantage of the improved signal quality they enjoy at the
receiver.

Organization: The rest of this paper is organized as follows.
Section II presents the system model under consideration,
along with the SIC detector structure at the receiver. In
Section III we introduce the new detection ordering algorithm,
DiffSIC, and the required analysis of the instantaneous SER
performance of Zero Forcing SIC (ZF-SIC) and Minimum
Mean Square Error SIC (MMSE-SIC) receivers. In Section IV,
we introduce two techniques towards reducing the compu-
tational complexity associated with the algorithm. We then
investigate the effect of channel estimation errors on DiffSIC
performance in Section V. In Section VI we present and
discuss selected performance results obtained through analysis
and Monte Carlo simulations and we conclude the paper in
Section VII.

Notation: In this paper, we use bold upper case and lower
case letters for matrices and vectors, respectively.[·]T , [·]H ,
and [·]−1 denote transposition, Hermitian transposition, and
matrix inversion, respectively. The notation‖ · ‖2 refers to the
ℓ2-norm of a vector whileIn denotes then×n identity matrix.
Finally, ℜ(·) andℑ(·) refer to the real and imaginary parts of
a complex number, respectively.

II. SYSTEM MODEL

We consider the up-link of a multiple-user system, where
each user is equipped with a single transmit antenna, while
the base station hasMr receive antennas. Each user acts as a
single antenna of a MIMO transmitter, and space is utilized
by allowing Mt users to communicate simultaneously to the
base station such thatMt ≤ Mr

1. The up-link transmitters
use squareM -ary Quadrature Amplitude Modulation (QAM)
constellations and SIC is used at the base station to separate
different users. The block diagram of the equivalent discrete-
time transmission system is shown in Figure 1.

The received signal at the base station can be represented
in the complex baseband vector form as

r = Ha + n, (1)

1The ideas presented in this paper are readily extended to multiple-user
MIMO systems where individual users have multiple antennas and different
applications/streams that might have different service requirements.

wherer = [r1 · · · rMr ]
T is the received signal vector,H is the

Mr ×Mt channel matrix,a = [a1 · · · aMt ]
T is the transmitted

QAM signal vector with average element-wise symbol energy
Es, and n = [n1 · · ·nMr ]

T is the i.i.d. circularly symmetric
complex Gaussian noise vector with covariance matrixσ2

nIMr .
The transmission model in (1) can also be written in its
equivalent real-valued format

r̄ = H̄ā + n̄ (2)

where

r̄ =















ℜ(r1)
ℑ(r1)

...
ℜ(rMr)
ℑ(rMr)















, ā =















ℜ(a1)
ℑ(a1)

...
ℜ(aMt)
ℑ(aMt)
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ℜ(n1)
ℑ(n1)
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ℜ(nMr)
ℑ(nMr)
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and
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ℜ(h1,1) −ℑ(h1,1) · · · ℜ(h1,Mt) −ℑ(h1,Mt)
ℑ(h1,1) ℜ(h1,1) · · · ℑ(h1,Mt) ℜ(h1,Mt)

...
...

. ..
...

...
ℜ(hMr,1) −ℑ(hMr,1) · · · ℜ(hMr,Mt) −ℑ(hMr,Mt)
ℑ(hMr,1) ℜ(hMr,1) · · · ℑ(hMr,Mt) ℜ(hMr,Mt)















.

Thus theMt×Mr M -ary QAM system gets transformed into
a 2Mt × 2Mr real valuedL-ary Pulse Amplitude Modulation
(PAM) system whereL =

√
M . The signal-to-noise power

ratio (SNR) of the equivalent system remains intact since both
the noise and symbol energies get divided by 2.

The signal̄r is processed at the receiver by a SIC detector to
separate signals from different users. The detector is illustrated
in Figure 1 and can be expressed as [8, Ch. 10.3.4]

z̄ = F̄ r̄ − B̄ˆ̄a, (3)

whereF̄ , B̄ and ˆ̄a are the2Mt × 2Mr matrix forward filter,
the2Mt × 2Mt strictly lower triangular matrix feedback filter,
and the vector of2Mt detected symbols, respectively.

In SIC detectors, the order of detection greatly affects the
performance of individual users. The user that is detected first
receives no gain from the SIC, while the user detected last
achieves its best performanceif correct decisions were as-
sumed. Given a channel realization, there is always a detection
order that gives the best average performance. In V-BLAST,
instantaneous post-detection SNRs are used to achieve a
detection order in a sequential manner [3]. As we will see
later in this paper, this criterion does not always result inthe
best order, in terms of SER performance, although it gives
a very good approximation considering its low processing
requirements.

It was shown in [9, 10] that when considering the real-
valued model in (2) shaping the equivalent real-valued channel
matrix such that the real and imaginary parts of one transmitter
get detected in sequence renders these two parts of the signal
independent. This in turn reduces the complexity of computing
the matrix filtersF̄ andB̄ and limits the number of possible
orders of detection back toMt!. The equivalent model in (2)
will be used throughout this paper with the assumption that the
real and imaginary parts of one user are detected in sequence.
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III. D IFFSIC ORDERING ALGORITHM

As it was mentioned earlier, in SIC receivers, applying
the detection order that leads to the bestaverage system
performance might not always be desirable. Users with high
priority can be given an advantage by choosing detection or-
ders that work in their favor. The proposed Differentiated Suc-
cessive Interference Cancellation (DiffSIC) algorithm gives the
flexibility of differentiating users according to their class of
service. DiffSIC exploits the predicted SER performance to
determine the order of detection. Therefore, we first derive
SER expressions for SIC taking error propagation into account.
Then, we present the DiffSIC algorithm and its adaptation to
the case when multiple detection chains are employed at the
receiver. As in the related literature, e.g., [11–13], we mainly
focus on ZF-SIC for its better analytical tractability, butthe
extension to MMSE-SIC is also shown.

A. SER Analysis for ZF-SIC Detectors

The following analysis is similar to those in [11, 13], but
adapted to the real-valued transmission model in (2) and
with an efficient extension to non-binary transmission, which
renders the computational complexity of the final expression
independent of the constellation sizeM .

Given a channel realizationH, the error probability forM -
ary QAM transmission at thei-th layer,1 ≤ i ≤ Mt, can be
calculated as

PM−QAM
i|H = 1 −

(

1 − PL−PAM
2i−1|H̄

)(

1 − PL−PAM
2i|H̄

)

, (4)

where PL−PAM
2i−1|H̄

and PL−PAM
2i|H̄

are the error probabilities
of the equivalent real and imaginaryL-ary PAM signals,
respectively. Note that thei-th layer of the complex-valued
system model in (1) corresponds to the(2i − 1)-st and2i-th
layers of the equivalent real-valued system model in (2). The
error probability for the real-valued model can be written as

PL−PAM
i|H̄

=
∑

ei−1∈Ei−1

Pi|ei−1
Pr(ei−1), (5)

whereEi−1 is the set of all possible error sequencesei−1 =
[e1, e2, ..., ei−1] of layers prior to layeri, Pi|ei−1

is the
probability of error at thei-th step given the error sequence
ei−1, and Pr(ei−1) is the probability that such an error
sequence occurs.

To find the conditional error probabilityPi|ei−1
, we need to

consider the detector output̄z given in (3). SinceB̄ is strictly
lower triangular, the decision variablēzi at thei-th layer can
be written as

z̄i = āi+f̄ in̄+

i−1
∑

k=1

b̄ik

(

āk − ˆ̄ak

)

= āi+f̄ in̄+

i−1
∑

k=1

b̄ikek, (6)

wheref̄ i is thei-th row of the matrix forward filterF̄ andb̄ik

is the element at thei-th row andk-th column of the matrix

feedback filterB̄2. Since the rows ofF̄ are orthogonal in
case of ZF-SIC, the decision variablesz̄i at different layers
are independent for a givenei−1.

For non-binary signal constellations, we make the assump-
tion that errors between nearest-neighbor signal points with

minimum Euclidean distancedmin =
√

6
M−1Es dominate

the performance. This limits the set of error symbolsei

to Ei = {−dmin, 0,+dmin} and renders the complexity for
computing the SER, and thus the DiffSIC algorithm introduced
below, independent of the sizeM of the signal constellation
used by the users3. Simulation results in Section VI show
that such an assumption is reasonable for SNR values where
communication systems usually operate. Then, from (6), we
derive in the Appendix thatPi|ei−1

can be written as

Pi|ei−1
= P

(1)
i|ei−1

+ P
(2)
i|ei−1

, (7)

where

P
(1)
i|ei−1

=

(

L − 1

L

)

Q













dmin/2 +
i−1
∑

k=1

b̄ikek

√

Mr
∑

j=1

f̄2
ijσ

2
n/2













, (8)

and

P
(2)
i|ei−1

=

(

L − 1

L

)

Q













dmin/2 −
i−1
∑

k=1

b̄ikek

√

Mr
∑

j=1

f̄2
ijσ

2
n/2













. (9)

In (8) and (9), f̄ij refers to the element at thei-th row
and j-th column of the forward filterF̄ and Q(·) is the
complementary cumulative distribution function of a Gaussian
random variable. Finally, we note thatPr(ei−1) follows from
the recursion

Pr(ei−1) =

i−1
∏

k=1

Pr(ek|ek−1), (10)

where

Pr(ek|ek−1) =











1 − Pk|ek−1
, ek = 0,

P
(1)
k|ek−1

, ek = +dmin,

P
(2)
k|ek−1

, ek = −dmin.

(11)

2The forward filterF̄ can be derived using the Cholesky decomposition of
the Hermitian matrixR̄ = H̄

H
H̄ = Ḡ

H
Ḡ, whereḠ is a lower triangular

matrix with real and positive diagonal elements.Ḡ can be further decomposed
according toḠ = Γ̄M̄, whereΓ̄ is diagonal with real and positive elements,
and M̄ is lower triangular and monic. The forward filter̄F can then be
written asF̄ = Γ̄

−1
Ḡ

−H
H̄

H , and the feedback matrix̄B is the strictly
lower triangular matrix such that̄B = M̄ − I2Mt . See [8, Ch. 10.3.4] for
full details

3Here we assume that all users use that same constellation size.Neverthe-
less, the analysis is still applicable if different constellation sizes were used
by different users as long asdmin is adjusted accordingly
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B. DiffSIC Ordering Algorithm

The DiffSIC algorithm utilizes the SER expression (4) to
determine the order of detection that best fits the service
profile of different users. We first define the set of permutation
matrices{P ℓ|ℓ = 1, . . . ,Mt!} corresponding to all possible
channel detection orders such thatHℓ = HP ℓ is the ordered
channel matrix. Then, for each detection orderℓ we compute
the costXℓ associated with this detection order as

Xℓ =

Mt
∑

i=1

ci PM−QAM
i|Hℓ

. (12)

The contribution from useri to the costXℓ is given by means
of its SERPM−QAM

i|Hℓ
and the priority indicatorci. The optimal

order ℓopt can then be found as

ℓopt = argmin
ℓ

Xℓ. (13)

The choice of the priority indicator vectorc =
[c1, c2, ..., cMt ] is done at higher layers and is based on the
service profiles of users. Without loss of generality we limit
ci such thatci ∈ [0, 1] with 1 being the highest priority. The
different priority classes essentially determine how greedy the
algorithm should be to achieve the performance differentiation.
The larger the difference between high priority and low
priority assignments, the greedier the algorithm, and the better
the performance of high priority users. Clearly, at the same
time, DiffSIC may deteriorate the performance of low priority
and best effort users(ci = 0).

The computational complexity of the DiffSIC algorithm lies
in the repeated evaluation of the SER expression in (4). While
the expression itself can be written in terms of elementary
functions (e.g., using exponential approximations for theerror
function [14]), the number of possible error events (32(Mt−1))
and orderings (Mt!) render the detection complexity larger than
for regular V-BLAST especially for large dimensionsMt. We
argue that this extra complexity may be affordable, especially
in slowly time-varying channels, since DiffSIC is executed
only infrequently compared to the detection process. This is
decidedly different from ordering based on individual received
vectors as advocated in e.g. [15]. Furthermore, the complexity
of DiffSIC can significantly be reduced by approximating the
calculation ofPM−QAM

i|Hℓ
in (4) focusing on dominant error

events or by using a subset of the total number of detection
orders available. Such approximations are discussed in detail
in Section IV.

C. Multiple Detection Chains

In the case where the receiver has the capacity to employ
multiple SIC chains, a different order of detection can be
exploited per chain and DiffSIC can be used to simultaneously
work in favor of multiple users. The parallel use of several
SIC detectors with different orders is known from multiuser
detection for code-division multiple access (CDMA) under the
name of parallel arbitrated search for interference cancellation
(PASIC) [16, 17]. Different from PASIC, here we do not
apply parallel detectors to arbitrate among candidate symbol
estimates obtained with different pre-selected orders. Instead,

DiffSIC chooses different orders of detection to achieve the
best available performance for each user given a channel
matrix H. Results shown in Section VI demonstrate the
performance benefits that are obtained with multiple detection
chains.

D. Extension to MMSE-SIC

The DiffSIC algorithm is also readily extendable to Min-
imum Mean Square Error SIC (MMSE-SIC) receivers. Such
an extension primarily depends on the availability of instanta-
neous SER estimates for MMSE-SIC receivers.

The decision variable for MMSE-SIC detection at layeri
can be written as

z̄i =

2Mt
∑

k=i

m̄ikāk +

i−1
∑

k=1

b̄ikek + ˜̄ni, (14)

wherem̄ik is the element in thei-th row andk-th column of
M̄ and ˜̄ni = f̄ in̄

4. Different from ZF-SIC (cf. Eq. (6)), the
MMSE forward filter F (i) does not transform the channel
H into a monic and causal transfer function and (ii) the
elements of the noise vector̄̃n = [˜̄n1, . . . , ˜̄n2Mt ] = F̄ n̄ are
correlated. Hence, the instantaneous SER analysis for MMSE-
SIC detectors is different from that for ZF-SIC detectors intwo
aspects. First, the noise correlation increases the dependency
between layers beyond the error propagation problem. Second,
the imperfect interference suppression renders the error rate at
a layer dependent on higher, yet to be detected, layers.

Taking the two mentioned effects into account, the error
probability for MMSE-SIC at thei-th layer in (5) is given by

PL−PAM
i|H̄

=
∑

ai+1∈Ai+1

∑

ei−1∈Ei−1

Pi|ei−1,ai+1
Pr(ei−1) Pr(ai+1),

(15)
where Ai+1 is the set of all possibleL-PAM symbol se-
quencesai+1 = [ai+1, ..., a2Mt ] of layers to be detected and
Pi|ei−1,ai+1

is the probability of error at layeri given the error
and symbol sequencesei−1 andai+1. PL−PAM

i|H̄
in (15) can

be rewritten as

PL−PAM
i|H̄

=
1

L2Mt−i

∑

ai+1∈Ai+1

∑

ei−1∈Ei−1

Pi,ei−1|ai+1
, (16)

where Pi,ei−1|ai+1
is the joint error probability given the

symbol sequenceai+1. Pi,ei−1|ai+1
can be calculated as

Pi,ei−1|ai+1
=

(

1

2

i−1
∏

k=1

(αk)

)















∫

D
(1)
ei−1,ai+1

p(˜̄ni) d˜̄ni +

∫

D
(2)
ei−1,ai+1

p(˜̄ni) d˜̄ni















, (17)

where ˜̄ni = [˜̄n1, . . . , ˜̄ni], αk is equal to 1 whenek = 0 and
(L−1)/L otherwise,p(˜̄ni) is the probability density function

4For MMSE-SIC, the matrices̄F , B̄ andM̄ can be derived using a similar
technique to the one described in III-A. The only differenceis thatR̄ has to
be replaced by the matrix̄R = H̄

H
H̄ + σ2

nIMt
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(pdf) of ˜̄ni, andD
(1,2)
ei−1,ai+1

are the noise regions that lead to
an error at layeri given ei−1 andai+1 in both directions of
the constellation point. Thei-variate noise pdf is given by

p(˜̄ni) =
1

(2π)i/2
√

|M i|
exp

(

−1

2
˜̄n

T
i M−1

i
˜̄ni

)

, (18)

whereM i = σ2
n̄F̄ iF̄

T
i is the i × i noise covariance matrix

and F̄ i contains the firsti rows of F̄ . Evaluation of (17)
in closed form is not possible. However, using again the
nearest-neighbor-error approximation, the regionsD

(1,2)
ei−1,ai+1

are composed of a positive and negative orthant, and for
this case several approximations for (17) have been proposed
in literature, e.g. [18–20]. Here we adopt the method by
Joe [20] that utilizes conditional expectations and regression
with binary variables to approximate multivariate normal
probabilities for rectangular regions. This approximation is
sufficiently accurate and fast to compute (please refer to [20]
for details). Thus, by substituting (15) into (4) we obtain a
semi-analytical expression to quickly evaluate the SER for
MMSE-SIC systems with a moderate number of users.

Further simplifications tackling complexity due to the av-
eraging overai+1 in (15) are possible but not pursued here.
Instead, in the following section we introduce some approx-
imations to lower the complexity of DiffSIC with respect to
the number of error vectors and detection orders that need to
be considered.

IV. REDUCED COMPLEXITY APPROXIMATIONS FOR

DIFFSIC

The computational complexity of the optimal DiffSIC al-
gorithm introduced in Section III has two main contributors,
namely the cost of calculating the SER in (4) and the number
of detection orders explored by the algorithm. Therefore, in
this section, we present two simplifications that will help
to reduce the cost of SER computation and the number of
enumerated detection orders. These can be applied separately
or in combination to lower the computational complexity.
Furthermore, while the simplifications are applicable to both
ZF- and MMSE-SIC, for clarity of exposition we restrict our
attention to ZF-SIC receivers.

A. Low-Complexity SER Approximation

The complexity of calculating the SER in (5) grows expo-
nentially with the number of layers, since the number of error
sequences in the setEi−1 = {−dmin, 0,+dmin}i−1 is equal
to 3i−1. In this section we introduce a reduced complexity
approximation of this calculation by employing an effective
subsetΨi−1 ⊂ Ei−1. In [13, 21] it was suggested that, on
average, errors at the first layer have a dominant effect on the
performance of subsequent layers. Thus, the dominant contri-
butions to the error probability at layeri are coming from error
sequences inei−1 ∈ Ψi−1 = {−dmin, 0,+dmin}×{0}i−2 that
have errors only at the first step.

While the conclusions in [13, 21] are intuitively valid, they
are not necessarily true for every channel realization nor will
they lead to the best approach towards reduction in SER
computational complexity as will exemplarily be shown in

TABLE I: Approximate SER calculation

Input: i, Hℓ, Ni−1

Output: P L−PAM

i|H̄

1: // Initialize set of error sequences

2: Ψi−1 =
{

e1
i−1

}

= {0i−1}

3: // Initialize error sequence count

4: J = 1

5: CalculatePk|e1
k−1

for eachk ∈ {1, 2, · · · , i}

6: // Initialize SER estimate and decision matrixE

7: P L−PAM

i|H̄
= Pi|e1

i−1
Pr(e1

i−1
),

8: E(k, 1) = Pk|e1
k−1

Pr(e1
k−1

) for eachk ∈ {1, 2, · · · , i − 1}

9: while (J < Ni−1) do

10: // Find dominant error event, i.e., the error event that ismost likely to

happen

11: [k̂, ĵ] = argmax
k∈{1,...,i−1},j∈{1,...,J}

{E(k, j)}

12: E(k̂, ĵ) = −1

13: // Branch error sequence at layerk̂, which gives two new sequences

14: eJ+1 = [eĵ

k−1
,−dmin,0i−k], eJ+2 = [eĵ

k−1
, +dmin,0i−k],

Ψi−1 :=
{

Ψi−1, eJ+1, eJ+2
}

15: CalculateP
k|e

j

k−1

for eachk ∈ {k̂+1, · · · , i} andj ∈ {J+1, J+2}

16: E(k, j) = −1 for eachk ∈ {1, · · · , k̂} andj ∈ {J + 1, J + 2}

17: E(k, j) = P
k|e

j

k−1

Pr(ej

k−1
) for eachk ∈ {k̂ + 1, · · · , i− 1} and

j ∈ {J + 1, J + 2}

18: // Update the SER estimate and error sequence count

19: P L−PAM

i|H̄
:= P L−PAM

i|H̄
+ P

i|eJ+1
i−1

Pr(eJ+1

i−1
)+

P
i|eJ+2

i−1

Pr(eJ+2

i−1
)

20: // Update error sequence count

21: J := J + 2

22: end while

Section VI. We generalize the suggestion in [13, 21] in that we
select the subsetΨi−1 of error sequences that dominate the
sum in (5). We limit the size|Ψi−1| to a predefined threshold
Ni−1 and thus control and reduce the algorithm’s complexity
by limiting the number of evaluations of (7). This approximate
SER calculation is formalized in Table I.

In this approximation we use the fact that the higher the
probability of error at one layer, the larger its influence in
determining the dominant terms in the error calculation of
subsequent layers. Thus, after scanning the initial calculation
of errors at every layer assuming no previous errors (Table I,
line 8), the algorithm branches the error sequence that is
most likely to occur. That is, the most likely error event with
sequence[ek−1,0i−k+1] is followed-up by also considering
the sequences[ek−1,−dmin,0i−k] and [ek−1,+dmin,0i−k]
for error rate calculation (Table I, lines 14-17). This is ex-
tremely helpful, especially when the exact probabilities of
error are not needed. We use this algorithm to approximate the
cost function in (12). Results in Section VI confirm that the
approximation in Table I can significantly reduce the amount
of calculations needed and preserve the gains of DiffSIC
at the same time. The amount of savings in computational
complexity depends mainly on the numberNi−1 and can be
quantified asNi−1

3i−1 × 100%.
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B. Approximation for Selecting Order of Detection

The number of available detection orders grows factorially
with the number of layers. Thus, at a certain level, it becomes
impractical for DiffSIC to consider all possible detection
orders when looking for the optimal order that best serves
the differentiated needs of users. In this section we describe a
reduced complexity search algorithm that can be adjusted to
the computational capabilities of the receiver’s processor. The
algorithm narrows the set of detection orders to be considered
down to a predetermined maximum number of ordersNmax,
where DiffSIC can kick back in and choose the best order
among the shortened list.

The proposed heuristic solution to reduce the number of or-
ders to be considered by the DiffSIC algorithm is to fix the first
F users in the detection chain such that(Mt − F )! ≤ Nmax.
This is accomplished by choosing these first users of the detec-
tion sequence similar to the way V-BLAST orders users with
the exception that a scaled version of the instantaneous post-
detection SNRs is applied, where the scaling factor decreases
with user priority. Thus, high priority users are pushed towards
the end of the detection chain. The rationale for this is that
even though error propagation in SIC eliminates any diversity
gains for higher layers, SNR gains when moving from lower
to higher layers often outweigh the effect of error propagation
on SER. This is consistent with our observation that also the
full-fledged ordering algorithm in DiffSIC often places high
priority users at higher layers.

The pseudo-code for our heuristic solution is shown in
Table II. The scaling of SNRs is done by multiplying the
noise enhancement factorΓii for user i with the relative
priority (ci − min

u∈U
{cu}) (Table II, lines 7,14), whereU is the

set of users still to be ordered, and a sensitivity parameter
S ∈ [0, 1]. The sensitivity parameter balances the influence of
SNR (1/Γii) and user priorityci on the detection order. More
specifically, the scaling is designed such that whenS = 0, no
differentiation is attained, and the algorithm behaves exactly
as V-BLAST in determining the order of detection for the
first F users, whereas whenS → 1, the resulting order of
detection is mostly determined by the users’ priorities with
V-BLAST being utilized only if equal priorities are present.
If S = 1, sorting is done purely according to priorities. As
an example, consider a4 × 4 system where users’ priorities
are c = [0, 0.25, 0.50, 1.0] and S = 0.5. The total scaling
vector at the first level (Table II, Line 8, forF = 0) will
be (1 − S) + S(c − min{c}) = [0.50, 0.63, 0.75, 1.0]. Thus,
the noise enhancement term is amplified for users with higher
priorities, which discourages the early detection of theseusers.

Since Nmax is not necessarily a factorial number, the
pseudo-code in Table II contains two stages, whereF users
are ordered first and thenD selections for the(F + 1)st
user are allowed such that(Mt − (F + 1))!D ≤ Nmax

(Table II, lines 12-15). Numerical results in Section VI will
illustrate the complexity-performance tradeoff achievable with
this approximation for DiffSIC.

TABLE II: Determine a reduced set of detection orders for DiffSIC

Input: Sensitivity parameterS, users’ prioritiesc = [c1, . . . , cMt ]

Output: [k1, . . . , kF , kl
F+1

], l ∈ [1, 2, . . . , D]

1: // H
+ denotes the pseudo inverse ofH,

2: // Hk̄i
is the “deflated” version ofH, in which columnsk1, k2 · · · ki

have been zeroed

3: Initialize k0 = 0, U = {1, . . . , Mt}, F = 0

4: // First stage

5: while ((Mt − (F + 1))! > Nmax) do

6: Γ = H
+

k̄F
(H+

k̄F
)H

7: kF+1 = argmin
i∈U

{

Γii

[

(1 − S) + S

(

ci − min
u∈U

{cu}

)]}

8: U := U \ kF+1

9: F := F + 1

10: end while

11: // second stage

12: D = ⌊Nmax/(MT − (F + 1))!⌋

13: for l = 1 to D do

14: kl
F+1

= argmin
i∈U\{k1

F+1
,...,k

l−1
F+1

}

{

Γii

[

(1−S)+S

(

ci−min
u∈U

{cu}

)]}

15: end for

16: // The detection orders considered by DiffSIC start with

[k1, . . . , kF , kl
F+1

], l ∈ [1, 2, . . . , D]

V. PERFORMANCEUNDER CHANNEL ESTIMATION

ERRORS

In the formulation of DiffSIC we have assumed perfect
up-link channel estimation at the receiver. However, channel
estimation errors can lead to serious performance degradation
as they not only affect data estimation but also the decision
on the order of detection to be used. While this is true for
general SIC receivers, such as V-BLAST, one could expect
stronger degradations for DiffSIC, which relies on accurate
SER estimation taking error propagation into account. It is
therefore relevant to consider the effect of channel estimation
errors on the performance of DiffSIC.

Towards this end, we assume that the users transmit pilot
sequences of lengthP , which we organize as the rows of the
Mt × P matrix Sp, and the corresponding received signal is

Rp = HSp + n . (19)

Based onRp the receiver performs channel estimation, and the
estimated channel matrix is used for subsequent data detection.
Making the often used assumption that the elements ofH are
circularly symmetric complex Gaussian random variables, then
it has been shown in [22] that maximum-likelihood (ML) and
MMSE channel estimation with subsequent ML detection and
joint ML processing of pilot and data signal can be cast into
the same framework considering the equivalent channel model

r = H̃a + ∆Ha + n = H̃a + v , (20)

where H̃ is the MMSE channel estimate,∆H = H − H̃

is the estimation error, which is independent of̃H, and
v = ∆Ha + n. Furthermore, if the elements ofH are
i.i.d. with varianceσ2

H , the pilot sequences are orthogonal, and
constant modulus data signaling, i.e., 4QAM, is used, then the
elements of the effective noise vectorv are also i.i.d. circu-
larly symmetric complex Gaussian distributed with variance
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σ2
v = MtEsσ

2
∆H + σ2

n, whereσ2
∆H = 1/(EsPσ−2

n + σ−2
H )

is the variance of the elements of∆H. Hence, in this case,
any SIC detector, including DiffSIC, can use the equivalent
system model in (20) with the MMSE channel estimateH̃,
and the effect of pilot-symbol based channel estimation is fully
accounted for by assuming the equivalent received SNR

E{‖H̃a‖2
2}

E{‖v‖2
2}

= γ · P/Mt

1 + P/Mt + 1/γ
, (21)

whereγ =
MtEsσ2

H

σ2
n

is the received SNR with perfect channel

knowledge and the factor P/Mt

1+P/Mt+1/γ is the penalty due to
the estimation error. Since this factor approaches a constant for
increasing SNRγ, we conclude that performancedifferences
between DiffSIC and V-BLAST are essentially maintained
regardless of the quality of channel estimation.

In the case of non-constant modulus transmission the
variance of the effective noise becomes data dependent. A
pragmatic approach is to still apply (20) with the assumption of
i.i.d. elements ofv with varianceσ2

v given above. Simulation
results presented in the next section indicate that also in
this case the performance difference between DiffSIC and V-
BLAST is maintained.

VI. PERFORMANCERESULTS

In this section, we present a number of numerical results
to demonstrate the benefits of DiffSIC. Unless otherwise
specified, we assume a4 × 4 multiple-user system, where
Mt = 4 different users share the up-link to a base station that
is equipped withMr = 4 receive antennas and employs ZF-
SIC. The channel coefficients are modeled as i.i.d. circularly
symmetric complex Gaussian random variables. The SNR-axis
in the following figures refers to the SNR per antenna, i.e.,
γ/Mt = Esσ

2
H/σ2

n.
For the first set of results, we consider a single channel

realization to illustrate the accuracy of the error-rate analysis
and the potential of the DiffSIC algorithm. In particular, we
apply the randomly generated channel realization (j =

√
−1)

H =







0.32−0.17j −0.31+0.05j 1.52−0.19j −0.77+1.42j

0.78+0.19j 0.89+0.13j 0.14−0.67j −0.11+1.09j

0.94+0.42j 0.76+0.26j 0.23+0.68j 0.27−0.22j

−0.63−0.80j −0.49−0.41j 0.10−0.88j −0.72−0.04j






.

Figures 2 and 3 compare the individual SER results for the
four users obtained with the analysis from Section III-A to
those obtained through Monte Carlo simulation assuming a
fixed sequential order of detection. In Figure 2, we observe
that the simulation results perfectly match the calculated
SER values for all users when transmission with 4-QAM is
assumed. In the case of the 16-QAM constellation in Figure 3,
we note some discrepancies between analytical and simulation
results, which are due to only considering errors between
nearest-neighbor signal points in the error propagation model
as devised in (6). However, it can be seen that this only affects
the SER analysis at high SER values and the discrepancies
quickly diminish for low SERs usually of interest. For the
sake of clarity, we show results for 4-QAM transmission in
the following, but we note that the conclusions made are valid
for general QAM constellations.
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Fig. 2: Comparison of analytical and simulated SER performanceresults for
one fixed channel realization. 4-QAM signal constellation and ZF-SIC detector
using fixed order of detection.
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Fig. 3: Comparison of analytical and simulated SER performanceresults
for one fixed channel realization. 16-QAM signal constellation and ZF-SIC
detector using fixed order of detection.

The SER calculation can be made much faster by adopt-
ing the low-complexity SER approximation introduced in
Section IV-A. Figure 4 compares the performance of our
SER approximation method from Table I (Method 1) to a
reduced complexity SER calculation technique following the
suggestions in [13] (Method 2) in which error sequences with
early errors are considered first. The figure shows the relative
deviation of the approximated SER from the actual SER for
user 4 (detected last in the detection chain) for different SNR
values. It can be observed that our algorithm achieves a tight
SER approximation much faster than Method 2 while, at the
same time, the number of error sequences that are explored
is significantly reduced. For example, only 10% of the total
number of error sequences is sufficient to bring down the
deviation from the actual SER to about 5% at an SNR of
10 dB.

Having confirmed the accuracy of the semi-analytical SER
expressions and the efficiency of the proposed approximation,
we now shift our attention to the potential of the DiffSIC
algorithm. To this end, Figure 5 shows the SER-curves for
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SNR = 0 dB (Method 1)
SNR = 0 dB (Method 2)
SNR = 10 dB (Method 1)
SNR = 10 dB (Method 2)

Fig. 4: Comparison of the efficacy of reduced complexity SER approxi-
mations. SER approximation method from Table I (Method 1) and SER
approximation by considering error sequences with errors atlower layers first
(Method 2). SER for user 4 is shown. The total number of error sequences is
36 = 729. 4-QAM signal constellation and ZF-SIC detector.
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VBLAST : high priority (user 4)
VBLAST : low priority (users 1−3)
DiffSIC : high priority (user 4)
DiffSIC : low priority (users 1−3)

Fig. 5: SER performance comparison between DiffSIC and V-BLAST for one
fixed channel realization. User priorities arec = [0, 0, 0, 1]. 4-QAM signal
constellation and ZF-SIC detector.

the same scenario as in Figure 2, but with ordering of users
according to the channel realization (V-BLAST) and with
DiffSIC taking user priorities into account. In this example,
user 4 is the only high priority user with a priority indicator of
c4 = 1. The other three users are best effort with priority levels
set to ci = 0, i = 1, 2, 3. We observe that the high-priority
user enjoys a significant SER advantage of several orders of
magnitude under DiffSIC compared to V-BLAST. This advan-
tage will reflect substantially on the user’s service experience.
Certainly, these gains come at the expense of low priority,
best effort users, whose performance degradation depends on
the particular channel realization. For the example shown in
Figure 5 we observe that low priority users suffer a substantial
degradation compared to V-BLAST as a result of their low
class of service level. But the very purpose of DiffSIC is to
enable thereceiverto prefer some users over others, according
to priority assignments, and the accomplishment of this task
is evidenced in Figure 5.
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VBLAST (all users)
DiffSIC: equal priority (all users)
DiffSIC: low priority (users 1−3)
DiffSIC: high priority (user 4)
DiffSIC: 4 detection branches (all users)

Fig. 6: Average SER performance comparison between DiffSIC and V-
BLAST. User priorities arec = [0, 0, 0, 1]. 4-QAM signal constellation and
ZF-SIC detector.

In the second set of results, we consider the average SER
performance for fading channels. In Figure 6 we compare
the average SER for DiffSIC and V-BLAST. A number of
interesting conclusions can be drawn from this figure. First,
for the case of equal priority users, it can be seen that DiffSIC
slightly outperforms the V-BLAST algorithm. This confirms
that the V-BLAST ordering is sub-optimal yet surprisingly
powerful given the low computational complexity it enjoys.
Second, for the case of users with unequal priorities, the
preferable treatment of the high priority user under DiffSIC
provides it with a clear advantage compared to V-BLAST, e.g.,
an SNR advantage of 4 dB at SER of10−3. Third, if four
parallel detection branches are used, each of which appliesthe
DiffSIC optimal order for one of the users, then this 4 dB gain
over V-BLAST is achieved forall users. The corresponding
SER curve in Figure 6 exactly coincides with the SER curve
for the high priority user in a single-branch DiffSIC detector.

The SNR gains of DiffSIC over V-BLAST are also present
when MMSE-SIC detectors are used at the receiver. In Fig-
ure 7 we consider a4 × 4 system, where user 4 is the only
high priority user and MMSE-SIC is used at the receiver. In
this example, the high priority user enjoys an about 4 dB SNR
gain at SER= 10−4 when DiffSIC is employed instead of V-
BLAST. As shown before, the full SNR gains accomplished
for the high-priority user could be extended to all users if
multiple detection chains were available at the receiver.

We now consider the incorporation of the algorithms in
Tables I and II from Section IV to reduce the computational
complexity of DiffSIC. As before, the priority profilec =
[0, 0, 0, 1] is chosen. Figure 8 shows the effect of using the
SER approximation from Table I in determining the order
of detection on the SER performance of the high priority
user compared to V-BLAST. It is clear that the more error
sequences are explored by the algorithm the wider the differ-
entiation gap gets. However, we observe from Figure 8 that the
major part of the gains is realized with only a small fraction
of the total number of error sequences being considered. More
specifically, we are able to attain almost the full advantageof
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Fig. 7: Average SER performance comparison between DiffSIC and V-
BLAST. Mt = Mr = 4. User priorities arec = [0, 0, 0, 1]. 4-QAM signal
constellation and MMSE-SIC detector.

DiffSIC at only 10% of the computational complexity, which
is consistent with the SER results shown in Figure 4. Next,
Figure 9 shows the SNR gains of the high-priority user for a
target SER of10−3 as a function of sensitivity parameterS
and the maximal number of detection ordersNmax. Note that
the total number of orders is(Mt = 4)! = 24. We observe that
already a good fraction of the maximal gain of about 3.9 dB
(see Figure 8) is achieved with relatively few orders. Even a
single order allows for notable gains of up to almost 2 dB. For
the considered priority profilec = [0, 0, 0, 1], the sensitivity
parameterS → 1 yields the best performance on average. This
corresponds to pushing the high priority user to the end of the
detection chain and V-BLAST ordering for lower layers whose
order is then fixed in DiffSIC.

The effect of the sensitivity parameter is more apparent
when multiple priority levels are present. We therefore present
in Figure 10 the same plot as in Figure 9 but with users having
four different priority levels, namelyc = [0, 0.25, 0.5, 1]. It
can be seen that a sensitivity parameter0 < S < 1 which
balances the effects of the channel quality and user priority is
preferable. While the optimal value ofS changes with system
configuration, i.e., user prioritiesc and maximal number of
ordersNmax, these values can be pre-calculated off-line and
assigned accordingly.

The two approximation techniques proposed in this paper
can also be used in combination to further reduce the com-
putational complexity of DiffSIC. The 3-dimensional plot in
Figure 11 shows the average SNR gains the high priority user
achieves under DiffSIC over V-BLAST when both reduced
complexity approximations are utilized. The figure clearly
shows that by adopting both algorithms simultaneously we
can reduce the computational complexity substantially without
loosing much on the SNR gains. We thus conclude the
complexity-reduced DiffSIC is an attractive tool to accomplish
user differentiation at the receiver in an up-link multiple-user
system.

Finally, we provide simulation results that support the use
of the equivalent system model in (20) with appropriate
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Fig. 8: Average SNR gain for high priority user with DiffSIC over V-BLAST
when SER approximation according to Table I is used. User priorities are
c = [0, 0, 0, 1]. 4-QAM signal constellation and ZF-SIC detector.
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Fig. 9: Average SNR gain for high priority user with DiffSIC over V-BLAST
when a reduced number of ordersNmax is used according to Table II vs
sensitivity parameterS. User priorities arec = [0, 0, 0, 1]. 4-QAM signal
constellation and ZF-SIC detector.

SNR shifts even for non-constant modulus transmission. In
Figure 12 we consider the single channel realizationH

from the beginning of this section, and we show the SER
performance curves for V-BLAST and DiffSIC for a 16-QAM
transmission under the assumption of perfect and imperfect
channel estimation. For the case in which channel estimation
errors occur, we assume a transmit pilot sequence length of
P = 5, and the channel̃H is a damped version of the channel

H such thatH̃ =

√

σ2
H
−σ2

∆H

σ2
H

H to maintain a variance of

σ2
H for the sumH̃ + ∆H. The figure clearly shows how the

shifted version of the SER curves (according to (21)) under
channel estimation errors coincide with the corresponding
SER curves under the perfect channel estimation assumption.
Thus, the performance gap between V-BLAST and DiffSIC is
maintained regardless of the channel estimation quality.
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Fig. 10: Average SNR gain for high priority user with DiffSICover V-BLAST
when a reduced number of ordersNmax is used according to Table II vs
sensitivity parameterS. User priorities arec = [0, 0.25, 0.5, 1]. 4-QAM
signal constellation and ZF-SIC detector.
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Fig. 11: Average SNR gain for high priority user with DiffSICover V-BLAST
when SER approximation according to Table I and a reduced number of orders
Nmax is used according to Table II (S = 0.999). 4-QAM signal constellation
and ZF-SIC detector.

VII. C ONCLUSION

In this paper, we have introduced the new Differentiated
Successive Interference Cancellation (DiffSIC) orderingtech-
nique for up-link multiple-user systems. DiffSIC relies onthe
SER evaluation for ZF-SIC and MMSE-SIC, for which we
have presented semi-analytical expressions, to find the order of
detection that best fits the users’ needs. We have also presented
an SER approximation method, which is interesting in its own
right and helps to achieve the differentiation gains with re-
duced computational complexity. In addition, we have devised
a heuristic ordering algorithm to be used with DiffSIC, which
takes channel quality and user priorities into account. We have
shown numerical and simulation results which demonstrate
that DiffSIC is capable of differentiating users accordingto
their class of service. In particular, DiffSIC improves theSER
performance of high-priority users significantly comparedto
those achieved with V-BLAST receivers. Furthermore, if Diff-
SIC is applied in combination with multiple detectors, these
SER performance enhancements can be realized for multiple
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Fig. 12: SER performance of DiffSIC and V-BLAST for perfect (P = ∞)
and imperfect (P = 5) channel estimation (SNR for imperfect channel
estimation is shifted for proper comparison). One fixed channel realization
with user priorities ofc = [0, 0, 0, 1], 16-QAM signal constellation and ZF-
SIC detector.
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Fig. 13: Effect of signal bias on error probability of PAM signals.

users. We thus believe that DiffSIC is a powerful detection
tool to accomplish service differentiation and performance
improvement in general.

APPENDIX

DERIVATION OF ERRORPROBABILITY EXPRESSIONS FOR

ZF-SIC PAM SIGNALS

The effect of error propagation (see (6)) in ZF-SIC can
be viewed as a signal bias that can affect the way error
probabilities are calculated for PAM signals in Additive White
Gaussian Noise (AWGN) channels. Because of this signal bias,
the error probability to the left side of the signal constellation
point is different from the error probability to the right side of
it. These probabilities become identical if no error propagation
was present. See Figure 13 for an illustration of these two
different probabilities.

For each one of theL − 2 inner signal points, the error
probability to the left and to the right of the signal point are

P (1) = Q

(

dmin/2 + Bias
√

σ2/2

)

(22)

and

P (2) = Q

(

dmin/2 − Bias
√

σ2/2

)

, (23)

respectively. For the right most signal point, onlyP (1) is
relevant, while for the left most signal point, onlyP (2) is
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relevant. Thus the average SER can be written as

P =
1

L

{

(L − 1)P (1) + (L − 1)P (2)
}

=
L − 1

L

(

P (1) + P (2)
)

(24)

Substituting Bias=
i−1
∑

k=1

b̄ikek andσ2 =
Mr
∑

j=1

f̄2
ijσ

2
n for ZF-SIC,

we get the equations in (8) and (9).
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