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Abstract

Bit-interleaved coded modulation (BICM) has become the aetdf coding standard for com-
munication systems. Recently, BICM has been cast as a miketatdecoding scheme due to the
assumption of independent bit metrics. In addition to thiserent mismatch, practical demodulators
may produce mismatched decoding metrics because of implatien constraints, such as clipping and
metric approximation to reduce computational complexitythis paper, we investigate BICM with such
metrics. In line with recent works on this topic, we adopt tfeneralized mutual information (GMI)
as the pertinent performance measure. First, we show thekdependent scaling of logarithmic bit
metrics can improve the BICM GMI. Second, we propose a umiforetric scaling which can lead to an
improved performance of mismatched sum-product symbedybybol decoding, even if the GMI is not
changed. Third, we investigate general metric-mismatechection methods and analyze their effects in
terms of the GMI. By means of three application examples |lstiate that metric-mismatch correction,

including metric scaling, can significantly increase BICMes.

Index Terms

Bit-interleaved coded modulation (BICM), mismatched d#ng, generalized mutual information

(GMI), symbol-by-symbol decoding, metric correction.
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I. INTRODUCTION

Bit-interleaved coded modulation (BICM) is a way of combigibinary error-control codes
with multilevel constellations. Invented in 1992 by Zehf; it has become the de facto coding
standard for modern communication systems thanks to iellext performance and its flexibility
in allowing separate code and modulation design. An upate-dverview of BICM can be found
in [2].

In a recent work by Martinez et al. [3], the BICM decoder hasrbeast as a mismatched
decoder [4], [5] and the generalized mutual information (5] has been used as a performance
measure. This new perspective readily enables the studyGMBvith mismatched demodulators,
that is, when a twofold mismatch occurs. The first mismatchlug to the assumption of
independent bit metrics and is inherent to BICM. The secorsimatch occurs because of some
approximation in the computation of bit metrics, such asngjaation or clipping. Following this
direction, Jaldén et al. [6] have recently devised andyaeal a metric correction method for
BICM with mismatched demodulation.

In this paper we extend this new line of work. In particulag study the manipulation of
mismatched bit metrics to improve the performance of BICMe Btart in Section Il by first
revisiting the concept of GMI and introducing the “I-curvethose maximum is the GMI. We
establish that the BICM I-curve is equal to the sum of the tyirlacurves of the levels. This
relation suggests that the GMI of BICM can be increased bygnalg the binary I-curves so
that their peaks are added in a totally constructive marnineGection IlI-A, we show that
this alignment can be achieved by scaling the log-likelthoatio (LLR) metrics with suitable
constant factors. In Section IlI-B, we investigate the @ffef metric scaling on sum-product
symbol-by-symbol (SBS) decoding, which is used in a numbiestate-of-the-art error-control
coding systems, but for which the concept of GMI does notyafgdsed on the properties of the
I-curve, we propose a scaling rule which is demonstrate@ad ko rate improvements in SBS
decoding. Finally, in Section 11I-C, we consider the BICMnaedulator as part of a cascaded
channel. This point of view naturally leads to metric coti@t methods that increase the BICM
GMI, including the scalar function used in [6], and new vedtmctions which provide different
performance-complexity trade-offs. By three specific agpion examples in Section IV, we

provide extensive numerical evidence that the proposediecn®aganipulations can improve the
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performance of BICM. Concluding remarks are presented uoti@e V.

[1. MISMATCHED DECODING. RANDOM CODING EXPONENT, GMI, AND BICM

We first briefly review the concept of the random coding exporand the GMI, and their
application to BICM from the mismatched decoding perspectiVe then introduce the notion of

I-curve and establish the relationship between the BICMrite and those of the BICM levels.

A. Random Coding With A Given Decoding Rule

Consider a discrete-time memoryless channel whose randpot and output variable are
denotedX andY, respectively, and whose transition probability functisrpy x(y|x). Input
symbols are drawn from the discrete alphaBétwith the probability mass functiopx(x).
The discrete or continuous output alphabet is dengfediven a received symba) € ), a
symbol metric of the general formy y (z,y) can be calculated for each € X'. We assume
that gx y(z,y) > 0, Vo € X,y € Y. Consider a code with the codebog@kthat consists of
K length-N' codewordsx = [z¢...xy_1]. Each codeword irC is equally likely chosen for
transmission. Given the received sequegce [y, . ..yny-1], for eachz € C, the word metric is

calculated as Vot
axy(x,y) = H ax,y (Th, Yk) - 1)
k=0
The decoder output is determined by

T = argnéax CJX,Y(Q% y) . (2)
xe

The symbol metrigsx y (z,y) is called a matched metric if it is proportional to the chdnne
transition probabilitypy| x (y|x). It is called a mismatched metric otherwise [4], [5]. Withteteed
metrics, (2) coincides with the maximume-likelihood (ML)ateling rule and, since all codewords
are equally likely, it minimizes the word error probabilify, p. 120].

The word error probability, averaged over all codewords emmlom codebook realizations,
can be upper-bounded by [7, Ch. 5], [4, Sec. 2], [2, Sec. B.1.2

Py < 27 NPy (), 3)
where R is any positive number such that — 1 < 2V8 < K,

E' _(R) £ max max <E0 (p,s) — pR) 4)

ax,y OSPSI >0 ax,y
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is the random coding exponent, and

ngy< s) = —log&xy { (ZPX [%] > } (5)

zeX
is the generalized Gallager functiotog(-) denotes logarithm with base 2). ;  (R) > 0,
the error probability vanishes with increasidg and the rateR is said to be achievable. The
maximum achievable rate that can be inferred from (4) andtbperties ofEl qu( s), cf. [7,
Theorem 5.6.3], is the GMI, which is defined as [4]
Iin; = maXIqXY( ), (6)
with
OBy, . (p,s) E).,(p.s) (z,Y)]*
Iy, (s) & —2 7 - = lim 2L — ¢ lo x {7@(,1/ ’ ] .
ax, ( ) ap - p0 0 XY gq;pX( ) QX7Y<X7 Y)

(7)
We call the plot of/,, . (s) vs. s the I-curve of the metrigxy(z,y). The peak value of the

I-curve is the GMI.

B. BICM and Mismatched Decoding

We now focus on the BICM scheme [2]. At the transmitter, a bjinencoder is connected
to a multilevel modulator, and at the receiver, a demodulptoduces decoding metrics for
the binary decoder. We note that, despite the “bit-intedda part in the name of BICM, bit
interleaving is immaterial for the random coding argumedjt4nd also not needed in many
practical situation's Therefore, we do not include such bit (de)interleaverstn discussion.

Let 2™ be the size of the constellatioti and B,, . . ., B,,_; be them binary random variables
for the labeling bits of the transmit symbol. Furthermoeg bl (=) be thei-th bit in the label of
symbolz. The probability mass functionss, (b), b € B £ {0,1}, andpx (z), = € X, are related
by

b)= > px(x), (8)
(EGXL-b
When using low-density parity check (LDPC) codes, for eximpit-interleaving is equivalent to re-ordering the aohs

of the parity-check matrix, which does not affect decodimgcome.
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where X £ {z € X : b;(z) = b}, and

px(e) = [] o) ©

Instead of directly producing@™ symbol-metric values for each possihblggiven the received
symboly, the BICM demodulator producé&sn bit-metric values corresponding to the levels.
Bit metrics for thei-th level have the general forgy, y (b, y). We also assumes, y (b, y) > 0,

Vb € B, Yy € ). The symbol metric is then calculated as

axy(z,y) = 1:[ qs,y (bi(2),y) - (10)
=0

Even if g, v (b, y) matches to the binary-input channel with inggt and outputy’, i.e., it is

proportional to the transition probability
pyiWlb) = > pyix(yle)px (@), (11)
zeXb

the symbol metric (10) still does not match to the channehwiput X and output”. Therefore,
BICM is inherently a mismatched decoding scheme [2], [3].

1) Log-Likelihood Ratio (LLR):The binary decoder is fed with th&n bit-metric values per
received symbol, or alternatively, witth log-metric ratios

v (0,9)
A o 1, 40 (0,9) 12
as,x (V) qB,y(1,v) (12)

since they are sufficient statistics f&; given ¢g, y (b, y) (In(-) denotes the natural logarithm).

Conventionally,A,,, , (y) is the LLR only if g5, y (b, y) o< py5,(y|b). However, for convenience

4B;,Y

and brevity, we will refer toA (y) as an LLR even wheng, y (b, y) is not proportional to

qB;,Y
leBi(y‘b)'

2) Independent Binary Channel ModeThe classical approach to analyze BICM is to use
the independent binary channel model [8], in which transmais is performed inn parallel
channels with input®;, i = 0,...,m — 1, and outpuy”. This model is equivalent to multilevel
coding (MLC) with parallel decoding of levels [9]. For leveland its bit metric, the binary

generalized Gallager function is defined as

By v (prs) = —loge&,y{<2p3i<b> [7;%;5;’_?)]) } (13)
beB v
_ C.IBuY(va) 2\’
i} ‘log‘gx’y{@p&(b’ [qBi,y@i(X),Y)]) } W
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where the transition frorfig, y {-} to £xy{-} is possible because the term inside the expectation
in (14) is the same for all transmit symbaisthat have the saméth labeling bit, and

Z pX,Y(:E7 y) = pBi,Y(ba y) . (15)

meXib

The function EgBi’Y(p, s) gives rise to the random coding exponeﬁ}Biyy(R), the I-curve

function IthY(s), and the GMIIgng for the i-th level, applying (4), (7), and (6), respectively.
In particular,
4B, Y<b7 Y) } ’
I s) = —&g, lo (b)) | 22
QBZ-,Y( ) BZ,Y{ gbGZBPBL( ) LIBZ.,Y(B@,Y)
g5,y (0,Y) r
= =& lo (b L 7 16
X’Y{ A2 LBZ-,Y&-(X),Y) (16)
and
Ig, =max Iy, (s). (17)

For the special case of uniform input, from (12) and (1@;%’3,(3) can be expressed in terms
of the LLR as

Iy (8) = 1 = Exy {log(1 + exp(— sgn(b:( X)) Ay, (1V)s) } (18)
where the functiorsgn(-) is defined for the labeling bits agn(0) = 1 andsgn(1) = —1.
3) BICM and Binary I-curves:Substituting (9) and (10) into (7) and considering (16), we
obtain (cf. [3, proof of Theorem 2])

ol e {logZﬂpBi(b"(x” IdesRe }

reX =0

m—1 QBZ-,Y(b> Y) )
= &y {log H ZpBi(b) |:qBi7Y(b’i(X)’Y):| }

i=0 beB

= IQBi,Y(S) . (19)

That is, the BICM I-curve equals to the sum of the binary Ivew/,, , (s). This relation will

be important for our subsequent discussion.
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I1l. M ETRIC MANIPULATION

We now present and discuss different metric manipulatibas ¢an improve the performance

of BICM with a mismatched demodulator.

A. Achievable Rate with Metric Scaling

For the general mismatched decoding scheme from Sectianlét s, . be the critical point
of I,

ax,y

=1, and Ig;fi{ equals to the ordinary mutual informatidii.X;Y") [7]. Let us consider

(s), i.e. the value ofs at which I,

9x,Y

(s) attains its maximum. For matched metrics,
Sqx,y
a new metricgy y(z,y) = [gx,v(x,y)]° with some constant > 0. It follows from (5) that

0
Eq

-
X,Y

p,s) = B, (p,cs) and hencely  (s) = I, ,(cs). That is, the I-curve of the metric
¢xy(r,y) is simply a compressed (far > 1) or expanded (for: < 1) version of the I-curve

of the metricqx y(x,y) along thes-axis. In particular, the GMI remains unchanged, while the
critical point changes ta,, = = s, /c. This coordinate shift is illustrated in Figure 1 for an
example withc > 1. Since raisingyx y(x,y) to a power corresponds to scaling with the same
factor in the logarithmic domain, in LLR-based decoding wéer to this operation as “metric
scaling.” Metric scaling allows us to control the criticabipt of the I-curve. The fact that it
does not affect the GMI should not come as a surprise. Uging(z, y), the decoding rule (2)

becomes

T = argn}ax [qx,Y(ma y)]c )
xTe

which returns exactly the same codeword as usging (z,y). We now apply metric scaling to
BICM.

Theorem 1:Lets,, , be the critical point of the binary I-curve of theh level. Furthermore,
let two I-curves be called harmonic if they have the samecatipoint. Then, the BICM GMI
equals to the sum of the binary GMIs if the binary I-curves aemonic, and less than that
otherwise. The binary I-curves can be made harmonic¢ at 0 by metric scaling with the factor
Ci = 845, /5" At leveli, i =0,...,m— 1.

Proof: Let ¢, y(b,y) = [gB,v(D,y)]” with somec; > 0. Then,Iq%iyy(s) = Iyp v (Ci8),
which peaks ats,, . /ci, I9™ ). According to Section II-B and in particular (10) and (19)CB®/

4B;,Y

with these bit metrics hag, , (z,y) = [T/ @5, v (bi(2),y) andI, (s) = S7 ' I, (s). The

Ixy 4B,y
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BICM GMI is upper-bounded as

m—1 m—1
gmi _
Ty =max 2 Loy (9) < 2 el Z I (20)
=0 =0
Equality in (20) is achieved if and only if all, (s), i =0,...,m — 1, attain their maximum

at the same value of, i.e. if they are harmonic. By scaling with = qui’Y/s* , all binary

I-curves will be harmonic at* for arbitrary s* > 0. [ |
Remark 1:If the original binary I-curves are already harmonic, ngainent is needed and

i = Iz . This is the case if, for exampley, y(b,y) o< pys,(ylb), for which

Sqp,y = 1 Vi [3, Corollary 1]. When the binary I-curves are not harmorseg Section IV for
practical examples), the above proof provides a consteigiocedure for choosing the scaling
factors to increase the BICM GMI. This requires the compataof s, .., i =0,...,m — 1,
which can be done offline, either through analysis or throsghulation when closed-form
expressions cannot be obtained.

Remark 2:According to the independent binary channel model, BICMaglsvachieves a rate
equal to the sum of the achievable rates of the levels. In timéegt of random coding and the
GMI, Theorem 1 shows that this is only conditionally true. ¥&eall that the independent binary

channel model requires. binary encoder-decoder pairs instead of just one as BICM.

B. Symbol-By-Symbol Decoding and Metric Scaling

We again consider the general mismatched decoding scheSextion II-A. The derivation of
the random coding exponent and the GMI is based on the wobdegrule (2). However, some
important modern error-correction schemes employ SBSdiego That is, given the received

sequencey, for each positiork =0,..., N — 1, the SBS metric

0y (T Y) 2D axy(@y) = Z(Hq.xy xkyk> (21)

zeCy; xeCy =
is computed, wher€? denotes the set of codewords whads¢h symbol equalse, and the
decoding rule

Ty = argmax Ix,y(T,y) (22)
xe

is applied. For sparse-graph based codes, (22) with me&ticdqan be efficiently evaluated (or

approximated) using the sum-product algorithm [10]. Withtomed metrics and equally likely
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chosen codewords, (22) becomes

T = argmax Z py|x(y|@) = argmax Z pxyy(x|y) = argmaprk|y(x|y)
TEX xECE zeX xECE

= argmin (1 —pxk\Y($|y)) .

reX

Thus, sum-product SBS decoding with matched metrics mg@mthe coded symbol error prob-
ability, cf. word decoding as in [7, p. 120]. This holds tregardless of the distributiopy ().
However, minimizing the coded symbol error probability gyt be the same as minimizing the
message symbol (or bit) or the word error probability. Intjsafar, the collection of decoded
symbols|[z, ... Zx_1] iS not necessarily a codeword & Therefore, achievable rates, in the
sense that the word error probability can still be driven éoozwith increasing code length,
further depend on the translation of the decoded symbadsantalid codeword.

Another popular SBS decoding metric is

qu,Y<xuy> = zeCy zeCy

0, otherwise.

max ¢x,y (%, y) = max (H ax.y (T, Yk ) , fFCE#0 23)

This metric can be estimated by the max-product algorithim¢kvis also known as the min-sum
algorithm from its form in the logarithmic domain [10]. Theetric (23) is derived from (21)
by approximating a sum by its largest term.

As in word decoding, metric scaling does not affect the degpdutcome in max-product
SBS decoding. However, if we replaeg y(x,y) by [¢xy(z,y)]° in sum-product decoding
using (22), the decoding outcome might change. When 0, the decoding outcome generally
becomes random, with exceptions, e.g., repetition codeavthe sum (21) would consist of
only a single term. On the other hand, wher- oo, sum-product decoding approaches max-
product decoding. With matched metries= 1 is the optimal scaling factor when the coded
symbol error probability is the performance measure. Tharle peaks at = 1 in this case.
For mismatched metrics, we propose that metric scaling thighfactorc = s, .. is applied in
sum-product decoding. This scaling shifts the criticalnpaif the I-curve tol. In the following,
we provide a numerical example which shows that this scalielgls the largest throughput in a
rateless transmission. (Further, practical examplesdbatonstrate performance improvements

due to using this scaling are presented in Section 1V.)
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Example 1:Consider the binary asymmetric channel (BAC) with crossquebabilitiesp,
and p;, 0 < po,p1 < 1, for transmit symbolz = 0 and x = 1, respectively. A matched
demodulator produces the LLR bf((1 — py)/p1) for received symbol = 0 and ofln(py/(1 —
p1)) for y = 1. Assuming uniform input, the matched I-curve follows froif) or (18) as

1 —po D1 Po (1—p1)°
I 11— log (14 —21 ) 2oy (14 L 7PV
x() 2 Og( Tampr) 20T T
D1 (1 —po)s) 1—pm ( 25 )
Pl (14 _ log (1+—20 ) 24
2 % ( i 2 & (1—p1)® (24)

which peaks at1l, I(X;Y)).
Suppose that a mismatched demodulator produces LLRI1oand —1 for received symbol

y =0 andy = 1, respectively. The corresponding mismatched I-curvevsrgby
IQX,Y(S) =1- plog(l + es> - (1 - p) log(l + e_s) ) (25)

wherep = (po+p1)/2. The GMIIEY, = 1+plog(p) + (1 —p)log(1 —p) = 1 — Hy(p) is attained
at s,., = In((1 —p)/p), where H, is the binary entropy function. We ha\IgjjfiY < I(X;Y),

and equality holds if and only b, = p;, i.e. when the channel is a binary symmetric channel
(BSC). Applying scaling with factor to this mismatched LLR, we obtaify, _ (s) = I, (cs).
Consider/,, (1) as a function of. It attains its maximum with: = s, , = 1n((1 —p)/p), for
which qu,y(l) = Ii‘:l; = ]qg;fiy. Our proposal states that scaling with this value-ahould be
applied in sum-product decoding.

Let us consider a specific example with = 0.03 and p; = 0.07. This pair results in
I(X;Y) = 0.72 bit per channel use (bpcup, = 0.05, ]g;fiy = 0.71 bpcu, ands,,, = 2.94.
Figure 2 shows the plot of, (1) vs. c. To demonstrate the effect of scaling, we measure the
average throughput achieved by coded transmission usingptoRcode. The code consists of
an outer LDPC code of length0 000 and code rate 0.95 and an inner Luby transform (LT)

code with degree distribution [11, Table I, second column]
Q(z) = 0.007969x + 0.4935702% + 0.16622023 + 0.0726462* + 0.0825582°
+0.0560582% + 0.0372292° + 0.055590x'% + 0.0250232%° + 0.00313525C .
The parity-check matrix of the LDPC code is generated by tlognessive edge growth (PEG)
algorithm [12] with degree-3 variable nodes and almost leegcheck nodes. The transmitter

sends coded bits until the receiver successfully detesriine correct message, at which point
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the instantaneous throughput is measured. Figure 2 shosvertipirical average throughput
achieved with sum-product and max-product decoding as etitmof ¢ (consider only lines

labeled “w/o i.i.d. channel adapter” for the moment). Botlethods use a maximum of 200
iterations to decode the joint factor graph of LDPC and LTecdd/e observe that scaling with

the factorc = indeed yields the best throughput for sum-product decodingan also

Sqx.y
be seen how the achieved throughput degrades -as0. For largec, sum-product decoding
starts to converge towards max-product decoding. Howesece we applied LLR bounding
for improved numerical stability in our decoder implemeiata, this convergence is not fully
achieved in Figure 2.

We can turn the asymmetric channel into a symmetric one hbygusi.d. channel adapters
suggested in [13]. These adapters are synchronized randoradjusters applied to the encoded
bits and LLR streams at the transmitter and receiver, réispég cf. [13, Fig. 8]. With uniform
input, the I-curve is not changed by i.i.d. channel adaptatcf. (18). Symmetrization is some-
times considered useful when codes are designed understmpson of a symmetric channel.
The simulation results for the symmetrized channel in Fagair(star makers labeled “w/ i.i.d.
channel adapter”) show that the conclusions about scaliaghat an artifact of transmission
over asymmetric channels.

Remark: Understanding the impact of metric scaling in fact relaesatfamiliar research
problem. In systems with additive Gaussian noise, for exampaccurate estimation of the
signal-to-noise ratio (SNR) results in a mismatched mehat is a scaled version (in the loga-
rithmic domain) of the matched metric. The scaling facta proportional to the estimated SNR.
Thus, impact of SNR mismatch on sum-product decoding is ei@pease of our discussion. The
results in Figure 2 agree with the known result that for suodpct decoding we would rather
overestimate (have a large than underestimate the SNR (have a smagllcf. e.g. [14] and
references therein. Wheqy, , > 1, which is the case of underestimated SNR, the simulation
results in Figure 2 suggests an intriguing upper boupnd, (1) to the achievable rate with
sum-product decoding.

We would like to contrast our scaling from LLR scaling as shgated in e.g. [15]-[17]. In
these works, scaling is derived from studying the intern@ration of the decoder and has the
purpose of offsetting approximations to lower implementatomplexity. On the other hand, our

proposed scaling is characterized only by the metric andm&d to improve the performance
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of exact sum-product decoding.
Application to BICM: In connection with Theorem 1, in BICM with sum-product deicad
we propose aligning all binary I-curves @&t= 1. For max-product decoding, only the alignment

matters, but not the value of the critical poiit

C. Cascaded Channel Perspective and Metric-Mismatch Ctae

BICM as defined by (10), (1) and (2) constitutes a mismatctembding rule, for which an
achievable rate is given by the GMg;f; defined in (6). In Section IlI-A, we have shown that

metric scaling applied to LLR4 (y) can increase this GMI. In this section, we consider the

B,y
generation ofA,, . (y) as part of the transmission channel and determine the ratesvable
by further processing and other ways of decoding.

1) Cascaded Channel ModeLet z; £ AqBi?y(y) be the channel output to be processed.
Accordingly, we have a cascaded channel as shown in Figaevd(h input X and output
7Z & [Zy,..., Zm-1]. The corresponding average mutual informati’; Z) is less than or
equal to/(X;Y) [7, Sec. 2.3]. Let us consider the use of binary codes for #iseaded channel

X — Z. The chain rule of mutual information [7, p. 22] reads as
m—1
I(X;Z)=> I(Bi;Z|B,,...,Bi). (26)
=0
For the terms on the right-hand side, we have the followireguralities

> I(By; Zs) (28)
> Igziy . (29)

The mutual information/(B;; Z) in (27) represents the constrained channel capacity,hee. t
maximum achievable rate with a given input distributiontleé binary-input channeB; — Z
illustrated in Figure 3(b). For this cascaded chandéB3;; Z7) < I(B;;Y) [7, Sec. 2.3]. We
note, however, that there is no definitive relation betwéeB;; 7| By, ..., B;_1) and I (B;;Y).

The mutual information/(B;; Z;) in (28) is the constrained capacity of the chankel— Z;
shown in Figure 3(c). Equality in (28) is achieved4f is a sufficient statistic fo3; given Z.
Inequality (29) holds becaud ;“Y is just an achievable rate by a mismatched decoding, whereas

I(B;; Z;) is the maximum achievable rate by matched decoding overttharelB; — Z,.
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12

Inequality (28) suggests tha&f;, j # ¢, can provide further information for the decoding of
B;. In between the two extremes of using oilyand using allm elements ofZ, we might opt
to process a subsét, = [Z,,{Z,}]| of 1 < m; < m elements ofZ to produce decoding metrics
for B;. PartitioningX — Z into this type of binary-input reduced-dimensional outpb&nnel
is similar to retaining only selected dependency links iuaed-layer MLC [18]. The resulting

channel is included in Figure 3(d) and the inequalities

hold for its associated mutual information. In summary, Wwtam the following inequality chain:

m—1
- m—1 . m—1 m—1 m—1 ZI(BZ’Y)
<Y I <N I(BiZ) <) I(BiR) < Y (B Z) <4 i <I(X;Y).
1=0 1=0 =0 1= I(X, Z)

(31)
2) Metric-Mismatch CorrectionThe processing of original LLRs to achieve the above rates
can be considered as metric-mismatch correction. The matbh-metrics for BICM transmis-

sion over the cascaded chandél— Z corresponds to corrected LLRs

pz15,(2/0)
A zZ) = ln —_—
pZ\BZ-( ) pZ|Bi(Z|1)

for i = 0,...,m — 1. This metric correction realizes the raféB;; Z) over the binary-input

(32)

channelB; — Z, and, considering (31), it is the optimal correction in terof achievable rate.

The bit-metric correction corresponding to the chanBel~ R; and achievable raté(B;; R;)

is given by
PR;|B; (Ti|0)
A r;) =In——=. 33
pRi\Bi< ) pRi\Bi<Tz"1> ( )
Finally, the scalar metric correction
pZi|Bi(zi|O)
A z) =In—/—= 34
Pzi\Bi< ) pZZ|BL(ZZ|1) ( )

leads tol(B;; Z;). Since metrics (32), (33), and (34) match to their corredpanbinary-input
channels, their binary I-curves are already aligned-atl. As a result, the BICM GMI with these
metrics is equal t&_7",' I(B;; Z), S0,  1(B;; R;), and > "." I(B;; Z:), respectively. While,
according to (31), the associated BICM GMI degrades from) {82(34), the computational
complexity for metric correction is also reduced. This &auff renders (33) and (34) potentially

attractive.
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The scalar LLR correction (34) has been studied in the liteea[6], [19]-[22], cf. also [23].
In [6], (34) has been shown to be the optimum scalar metricection in terms of GMI, a fact
that is also clear from the above derivation. It has furthregrbpointed out in [6] that non-scalar
metric correction functions could further increase the GME have provided such corrections
in (32) and (33).

In practice, the correction functions are prepared offling stored as look-up tables. Online
evaluation is then done by table look-up and possibly wittiteghal interpolation [22], [23].

For clarity, we summarize all bit-metric manipulations ahdir effects in the table below.

TABLE

BICM METRIC MANIPULATIONS AND THEIR EFFECTS

Metric Manipulation Effect

Original mismatched bit metrics,,, , (y) | I&7, < >0 ! Iggj is achievable.

Scale all LLRs by the same facter= s, ,.: | Shift the critical point of the BICM I-curve
A, W) = Sqx v Ngp, v (9) to 1, aim to improve the performance of sum-

product SBS decoding.
Scale LLRs differently by; = s,,, ,./s* for | Binary I-curves are aligned at*. Igm1 =

XY

somes* > 0: St Ig;“y is achievable. Choosg" = 1 in

Ngyy () = (45 /5" Ay (1) sum-product decoding.

Apply scalar metric-mismatch correction:| Bit metrics are matched to the cascaded chan-
pz,15,(2i0) m—1

Ap, s, (1) = ln% nels B; — Z;. BICM GMl is > " " I(B;; Z;).

Apply reduced-dimensional vector metricBit metrics are matched to the cascaded chan-

mismatch correction: nelsB; — R;, BICM GMI is Zﬁ‘ol I(B;; R;).

Appy (i) = In 2R 0)

PRy|B; \' PR;|B;(Till)

Apply optimal vector metric-mismatch cor-Bit metrics are matched to the cascaded chan-

rection: nelsB; — Z, BICM GMl is > "1(B;; 2).
pz|B,(2]0)

APZ\Bi <Z) =In pz|B; (1)

3) Remark: Inequality (31) also shows that no metric manipulation\@iaBICM to attain
a GMI better thanzz’igl I(B;;Y), i.e., the GMI of matched BICM over the original channel
X — Y. To achievel (X; Z) or I(X;Y) with binary codes, we need to use MLC with multistage
decoding [9] applied to the channels — Z and X — Y, respectively.

September 9, 2010 DRAFT



14

IV. APPLICATIONS

In this section, we present and discuss a number of illugtratnd relevant examples for
BICM transmission applying the metric manipulations déxsat in the previous sections. We
assume uniform input in all cases. The binary I-curves ataineéd from (18) via Monte-Carlo

integration.

A. Discrete Metrics and Metric Correction

1) Setup: Metric corrections are relatively easy to implement by nseah look-up tables
if the mismatched metrics are drawn from a small set of discvalues. Such cases arise if
guantization and in particular hard detection is appliedhat receiver. In the following, we
consider the example of 8-ary amplitude-shift keying (8kA3ransmission over the additive
white Gaussian noise (AWGN) channel with hard detection. pply binary reflected Gray
labeling with [bob1b5] = [000], [100], [110], [010], [011], [111], [101], [001] for the eight signal
points from left to right. This is the best labeling in the necate SNR range [24]. Let the SNR
be equal to 6.43 dB, at which matched BICM attains a GMI@q E I(B;;Y) = 1.50 bpcu,
and I(X;Y) = 1.56 bpcu. Hard detection that produces LLR4 and —1 leads to the GMI
Igff; = 1.07 bpcu, which is the maximum of the BICM I-curvg, , (s) = Z 45, v (8), attained
ats,,, = 1.65. The I-curves for matched and hard-decision decoding amaqnl in Figure 4(d).

2) Metric-Mismatch CorrectionWe now examine the effect of metric manipulation. Consider
level 2, whose I-curves are shown in Figure 4(c). With matcletection, the binary GMI
is I(B2;Y) = 0.77 bpcu. With hard detectionB, — Z, is a BSC with the GMI equal to
I(Bs; Z5) = 0.63 bpcu, cf. Example 1. For a BSC, scalar correction (34) is tidahto the
scaling that shifts the critical point to 1 and leaves the GiMthanged (lin€Z; in Figure 4(c)).
On the other hand, the optimum vector correction (32) yiélds,; Z) = 0.75 bpcu (lineZ, 7,7,
in Figure 4(c)), which is significantly higher thaii{B,; Z,) and rather close té(B,;Y). The
price for this is a more complex mapping. In scalar correctime mapz, from two input
values{1, —1} to two output valueg2.56, —2.56}, i.e., A,, . (1) = 2.56 andA,, . (1) =
—2.56. In optimum vector correction, we need a larger look-up datol map|zs, 2o, z1] from
{[1,1,1],[1,-1,1},[1,-1,-1],[1, 1, -1], [-1, 1, -1}, [-1, -1, —1],[-1,—1,1],[-1, 1, 1]} to the
corrected LLRs{12.5,7.40, 3.63,1.05, —1.05, —3.63, —7.40, —12.5}. Between these two correc-

tion methods, we have two choices for reduced-dimensioeatov correction (33), namely
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Ry = {7y, 7y} or Ry = {Z5, Z,}, each of which maps four input values to four output values.
The two corresponding I-curves in Figure 4(c) are labeled, and 7,7, respectively. Since
I(By; ZsZy) < 1(Bs; Z5Z4), the latter is preferred.

We have a BAC at both level 0 and 1. For level 1, we can see fraqar€i4(b) that scalar
correction hardly increases the GMI. It is interesting tcs@le that correction withR; =
{Z1, Z,} yields the same I-curve as scalar correction, whereasatmmewith R, = {Z;, Zy}
yields the same I-curve as the optimum correction. For I€velifferent correction functions
result in identical binary I-curves, as shown in Figure 4{d&ese phenomena can be explained
from examining the labeling of signal points. Due to spaceitition, we only explain why
knowing z, helps to increase the GMI at level 1, whereas knowingloes not. Consider the
labeling bits at level 1. They ar€0,0,1,1,1,1,0,0} for the eight symbols from left to right.
We can divide the four labeling bits 1 into two groups: theeouiwo bits that are adjacent
to a bit 0, and the other two inner bits which are not. To bedigproach the performance of
the matched decoding, we should distinguish if a receivéd. lis an outer bit or an inner bit.
Indeed, additional knowledge abotttell us if the received bit 1 at level 1 is an outer bit (when
zo = —1) or not (whenz, = 1). On the other hand, knowing, would not help. Similarly, the
four labeling bits O can be divided into two groups, and kremgle ofz,, but notz;, helps to
distinguish if the received bit 0 is an inner or an outer bit.

The BICM I-curve for scalar and the best of all metric-misamatorrections are included
in Figure 4(d). For the latter, full vector correction is pmequired for level 2, while scalar
correction and reduced-dimensional correction are sefficat level 0 and level 1, respectively.
The increase in the GMI by scalar correction comes mostiyfiize effect of having all the binary
curves aligned at = 1. Optimum correction results in a much improved GMI of 1.4@p
which is 93% of the GMI for matched BICM.

3) Throughput:Using the Raptor code from Example 1, the simulated avefageighput is
shown in Figure 4(d) (markers without lines). We observe tha throughput closely follows the
associated GMIs if metric-mismatch correction is appliedthese cases, the GMI is achieved
at s = 1. In the case of hard detection metrics, the gap between GMIsamulated rate is
significantly larger. This phenomenon has also been obden/&igure 2. It corroborates our
discussion in Section IlI-B that, whes, ., > 1, the achieved throughput by sum-product SBS
decoding seems to be determined Ry, (1) rather than the GMI.
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B. Pulse-Position Modulation with Max-log Metric

Our next practical example considek$-ary pulse-position modulation (PPM) transmission
for free-space optical communication, cf. e.g. [25]. Eddkary PPM symbol is a vectar =
[zo ... xp—1] With exactly one element equal to @r(slot) and the others equal to 6ff slots).
Let y = [yo...yn—1] denote the corresponding received vector, and let us apgelypopular

photon-counting channel model [25]
Yi = T;8; +n, y (35)

where s; and n; are i.i.d. Poisson random variables with meanand )\,, respectively. The
channel transition probabilities are given by
)\SJIZ’ + )\n Yi
plules) = DL A (36)

and p(y|lz) = [[X5" p(yilz;). Since all PPM symbols have exactly one elemerind M — 1

elementq), it follows that

)\S Yo(w)
sy (143) 37)

wherey, () is the magnitude of the slot g@f which corresponds to then slot of z. The matched
LLR for PPM is

)\ Yo(T) )\ Yo ()
Apyo () =1n Y (1 + A—) ~In ) (1 + A—) . (38)

xEXZ-O :L‘EX,L-l
The simplified max-log metric is
As
Agy v (y) = (gggg Yo() — max yo(x)) In (1 + A_b> : (39)

which has considerably lower computational complexityntiia3).

A special property of PPM is that (i) all symbol labelings a&guivalent and (ii) all binary
levels have identical I-curves if the same binary metrieswsed. This results from the orthogo-
nality of PPM constellations, which means that labelings loa transformed from one to another
by a permutation of time slots. Therefore, regardless ofldbeling, the BICM GMI is given
by qu;:iy = El Iggiy = m]qgjgffy for any metricgg, v (b,y) (e.g., matched and max-log metric
given abové?oand level € {0,]. c,m—1}, m =log(M).

Figure 5 shows the GMI of matched metric (38) and max-log im€89) as function of the
SNR defined as\;/(M,,) for the example of 64-PPM and, = 0.2 [26]. We observe only a
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relatively small gap between the two GMIs. This suggeststtigasimpler mismatched metric (39)
could be applied with little loss in achievable rate. Alsoluded in Figure 5 id,, . (1) for the
max-log metric, for which a notable gap to the correspondmgmatched GMI can be seen,
especially for low SNR. Following the discussion in SectiblinB, we expect that scaling of
the max-log LLR such that the critical point is shifted toshould be applied to improve the
performance of sum-product decoding. This prediction sfiomed by the results presented in
Figure 6 for an example SNR 68 dB. It shows the I-curves for matched, max-log, and scaled
max-log metric with the scaling facter= s, ,, = 0.56, together with simulated throughputs for
sum-product and max-product decoding. The throughputdigyare obtained from simulation
using the same Raptor code as in Example 1. We observe thatrthiated throughput using
sum-product decoding well approaches the associated Givinediched metric. For the max-
log metric, however, the gap between throughput and GMIgsificantly larger. With scaling,
the throughput accomplished with sum-product decodinggisifscantly improved to 1.96 bpcu
compared to 1.74 bpcu without scaling. More specificallg tlap between throughput and
GMl is closed by 60%. Finally, the performance of max-prddigcoding is notably inferior to

sum-product decoding and, as expected, is not changed bggsca

C. MIMO-QAM with Max-Log Metric and LLR Clipping

The third and final illustration of BICM with mismatched deloag and metric-mismatch
correction uses the example considered in [6, Sec. IV]. TAasmission system is & x 2
multiple-input multiple-output (MIMO) system with 16-arguadrature amplitude modulation
(16-QAM) and Rayleigh fading channels, and the average SNRed to 9.13 dB. Furthermore,
the BICM demodulator uses the max-log metric and the maxtlog is clipped to the range
[—2,42]. LLR clipping is helpful to reduce complexity in list-basedétection [22]. It has been
shown in [6, Sec. IV] that the optimum scalar correction (Bdproves the GMI and the bit-error
rate (BER) performance of the coded scheme. In this seatieralso consider LLR scaling and
a hybrid scalar correction as explained below.

We assume a binary reflected Gray labeling for the 16-QAM symbrhe2 x 2 MIMO
system with 16-QAM has in totah = 8 binary levels, of which four are equivalent to level 0
and four to level 1. Hence, we only need to consider those avel$ when showing results.

Figure 7(a) presents the I-curves of the levels with matcedi clipped max-log metrics. The
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curves for the matched metrics serve as an upper bound ahemised to gauge the success
of mismatched-metric manipulation. It can be seen thatwwehinary I-curves for the clipped
max-log metric are misaligned. We expect that scaling tgnathem ats* = 1 will increase
the BICM GMI and improve sum-product decoding performaridee BICM GMI curves for
matched, clipped max-log, and scaled clipped max-log metre shown in Figure 7(b). Also
included are simulated throughputs, again using the Ragide from Example 1 with sum-
product decoding. We observe that, for clipped max-log with, = 1.50 > 1, the achievable
throughput seems to be upper bounded/hy, (1). This might explain the large gap between
the BER curve and the GMI limit of the uncorrected LLR in [6gFR(b)]. Metric scaling aligns
the binary I-curves at* = 1 and leads to an improved GMI. While the GMI increase is only
slightly, the throughput improvement is much more significa

Applying the optimum scalar metric-mismatch correctiod)(&lso considered in [6, Sec. 1V],
[22, Sec. V], further improves both GMI and the performandgghvgum-product decoding. At
the same time, it is more complex than scaling as the coorectquires table look-up and
interpolation (see also the plot of the scalar correctiamcfion in Figure 8 and the discussion
below). Noting that metric scaling treats all vaIuA§Bi’Y (y) the same, even though the two
extreme values-2 and +2 would warrant a special consideration, we propose the Viatig
hybrid metric manipulation for this particular case:

In Pz, (%il0) if 2, =42
Mg, (y) =4 P (40)

ey cizi otherwise.

That is, the two extreme values are mapped as in the optimwaarscorrection, and the
immediate values are scaled with a factor such that thetmegulcurve peaks at = 1. This
correction function is indeed a good approximation of théimopm scalar correction for the
symmetric channel at level 1. However, this is not the cas¢hi® asymmetric channel at level 0.
Hence, we apply channel symmetrization according to [13{liasussed in Example 1 before
using the hybrid rule (40). The different metric manipwas are plotted in Figure 8. From
Figure 7, we observe that hybrid manipulation results imrves and throughput performances
that are practically identical to those achieved with optimscalar correction. Considering its
simpler implementation, this hybrid metric manipulationd be the method of choice for this

application example.
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V. CONCLUSION

In this paper, we studied BICM with mismatched decoding rogtiFollowing recent works,
we adopted the GMI as a pertinent performance measure. Weeghibat scaling of logarithmic
bit-metrics can improve the BICM GMI. We also suggested anaipded numerical evidence that
metric scaling also improves throughput in practical cgdschemes using SBS decoding, even
if the GMI remains unchanged. Furthermore, we studied geémeismatched metric correction
methods, including a previously proposed scalar corraciide presented a number of practically
relevant applications in which mismatched demodulationucs; and our numerical results
highlighted the benefits and performance-complexity traifie for the different mismatch-metric

correction approaches.
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Fig. 1. lllustration of the horizontal shift of the peak okth-curve when using metrigk y (z,y) = [gx,v (z,y)]".
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Fig. 2. Throughput achieved with a Raptor code over a BAC aB8 Secoding with mismatched metrics versus the metric-

scaling parameter (see Example 1 for details).
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using a Raptor code and sum-product decoding, and the daufueed arcs link the simulated points to the peak of the

corresponding I-curves. Note that the curves for ‘scalaremtion’ and ‘hybrid’ are numerically on top of each other.
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Fig. 8. Different metric manipulations for binary level 0 2k 2 MIMO transmission with 16-QAM Rayleigh fading and SNR
of 9.13 dB. Hybrid metric manipulation requires channel pyairization before applying (40).
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