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Abstract

Bit-interleaved coded modulation (BICM) has become the de facto coding standard for com-

munication systems. Recently, BICM has been cast as a mismatched decoding scheme due to the

assumption of independent bit metrics. In addition to this inherent mismatch, practical demodulators

may produce mismatched decoding metrics because of implementation constraints, such as clipping and

metric approximation to reduce computational complexity.In this paper, we investigate BICM with such

metrics. In line with recent works on this topic, we adopt thegeneralized mutual information (GMI)

as the pertinent performance measure. First, we show that level-dependent scaling of logarithmic bit

metrics can improve the BICM GMI. Second, we propose a uniform metric scaling which can lead to an

improved performance of mismatched sum-product symbol-by-symbol decoding, even if the GMI is not

changed. Third, we investigate general metric-mismatch correction methods and analyze their effects in

terms of the GMI. By means of three application examples, we illustrate that metric-mismatch correction,

including metric scaling, can significantly increase BICM rates.

Index Terms

Bit-interleaved coded modulation (BICM), mismatched decoding, generalized mutual information

(GMI), symbol-by-symbol decoding, metric correction.
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I. INTRODUCTION

Bit-interleaved coded modulation (BICM) is a way of combining binary error-control codes

with multilevel constellations. Invented in 1992 by Zehavi[1], it has become the de facto coding

standard for modern communication systems thanks to its excellent performance and its flexibility

in allowing separate code and modulation design. An up-to-date overview of BICM can be found

in [2].

In a recent work by Martinez et al. [3], the BICM decoder has been cast as a mismatched

decoder [4], [5] and the generalized mutual information (GMI) [4] has been used as a performance

measure. This new perspective readily enables the study of BICM with mismatched demodulators,

that is, when a twofold mismatch occurs. The first mismatch isdue to the assumption of

independent bit metrics and is inherent to BICM. The second mismatch occurs because of some

approximation in the computation of bit metrics, such as quantization or clipping. Following this

direction, Jaldén et al. [6] have recently devised and analyzed a metric correction method for

BICM with mismatched demodulation.

In this paper we extend this new line of work. In particular, we study the manipulation of

mismatched bit metrics to improve the performance of BICM. We start in Section II by first

revisiting the concept of GMI and introducing the “I-curve,” whose maximum is the GMI. We

establish that the BICM I-curve is equal to the sum of the binary I-curves of the levels. This

relation suggests that the GMI of BICM can be increased by aligning the binary I-curves so

that their peaks are added in a totally constructive manner.In Section III-A, we show that

this alignment can be achieved by scaling the log-likelihood ratio (LLR) metrics with suitable

constant factors. In Section III-B, we investigate the effect of metric scaling on sum-product

symbol-by-symbol (SBS) decoding, which is used in a number of state-of-the-art error-control

coding systems, but for which the concept of GMI does not apply. Based on the properties of the

I-curve, we propose a scaling rule which is demonstrated to lead to rate improvements in SBS

decoding. Finally, in Section III-C, we consider the BICM demodulator as part of a cascaded

channel. This point of view naturally leads to metric correction methods that increase the BICM

GMI, including the scalar function used in [6], and new vector functions which provide different

performance-complexity trade-offs. By three specific application examples in Section IV, we

provide extensive numerical evidence that the proposed metric manipulations can improve the
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performance of BICM. Concluding remarks are presented in Section V.

II. M ISMATCHED DECODING: RANDOM CODING EXPONENT, GMI, AND BICM

We first briefly review the concept of the random coding exponent and the GMI, and their

application to BICM from the mismatched decoding perspective. We then introduce the notion of

I-curve and establish the relationship between the BICM I-curve and those of the BICM levels.

A. Random Coding With A Given Decoding Rule

Consider a discrete-time memoryless channel whose random input and output variable are

denotedX and Y , respectively, and whose transition probability functionis pY |X(y|x). Input

symbols are drawn from the discrete alphabetX with the probability mass functionpX(x).

The discrete or continuous output alphabet is denotedY . Given a received symboly ∈ Y , a

symbol metric of the general formqX,Y (x, y) can be calculated for eachx ∈ X . We assume

that qX,Y (x, y) > 0, ∀x ∈ X , y ∈ Y . Consider a code with the codebookC that consists of

K length-N codewordsx = [x0 . . . xN−1]. Each codeword inC is equally likely chosen for

transmission. Given the received sequencey = [y0 . . . yN−1], for eachx ∈ C, the word metric is

calculated as

qX,Y (x, y) =

N−1
∏

k=0

qX,Y (xk, yk) . (1)

The decoder output is determined by

x̂ = argmax
x∈C

qX,Y (x, y) . (2)

The symbol metricqX,Y (x, y) is called a matched metric if it is proportional to the channel

transition probabilitypY |X(y|x). It is called a mismatched metric otherwise [4], [5]. With matched

metrics, (2) coincides with the maximum-likelihood (ML) decoding rule and, since all codewords

are equally likely, it minimizes the word error probability[7, p. 120].

The word error probability, averaged over all codewords andrandom codebook realizations,

can be upper-bounded by [7, Ch. 5], [4, Sec. 2], [2, Sec. 3.1.2]

Pw ≤ 2
−NEr

qX,Y
(R)

, (3)

whereR is any positive number such thatK − 1 < 2NR ≤ K,

Er
qX,Y

(R) , max
0≤ρ≤1

max
s>0

(

E0
qX,Y

(ρ, s) − ρR
)

(4)

September 9, 2010 DRAFT



3

is the random coding exponent, and

E0
qX,Y

(ρ, s) , − log EX,Y

{(

∑

x∈X

pX(x)

[

qX,Y (x, Y )

qX,Y (X, Y )

]s
)ρ}

(5)

is the generalized Gallager function (log(·) denotes logarithm with base 2). IfEr
qX,Y

(R) > 0,

the error probability vanishes with increasingN and the rateR is said to be achievable. The

maximum achievable rate that can be inferred from (4) and theproperties ofE0
qX,Y

(ρ, s), cf. [7,

Theorem 5.6.3], is the GMI, which is defined as [4]

Igmi
qX,Y

, max
s>0

IqX,Y
(s) , (6)

with

IqX,Y
(s) ,

∂E0
qX,Y

(ρ, s)

∂ρ

∣

∣

∣

∣

∣

ρ=0

= lim
ρ→0

E0
qX,Y

(ρ, s)

ρ
= −EX,Y

{

log
∑

x∈X

pX(x)

[

qX,Y (x, Y )

qX,Y (X, Y )

]s
}

.

(7)

We call the plot ofIqX,Y
(s) vs. s the I-curve of the metricqX,Y (x, y). The peak value of the

I-curve is the GMI.

B. BICM and Mismatched Decoding

We now focus on the BICM scheme [2]. At the transmitter, a binary encoder is connected

to a multilevel modulator, and at the receiver, a demodulator produces decoding metrics for

the binary decoder. We note that, despite the “bit-interleaved” part in the name of BICM, bit

interleaving is immaterial for the random coding argument [3] and also not needed in many

practical situations1. Therefore, we do not include such bit (de)interleavers in our discussion.

Let 2m be the size of the constellationX andB0, . . . , Bm−1 be them binary random variables

for the labeling bits of the transmit symbol. Furthermore, let bi(x) be thei-th bit in the label of

symbolx. The probability mass functionspBi
(b), b ∈ B , {0, 1}, andpX(x), x ∈ X , are related

by

pBi
(b) =

∑

x∈X b
i

pX(x) , (8)

1When using low-density parity check (LDPC) codes, for example, bit-interleaving is equivalent to re-ordering the columns

of the parity-check matrix, which does not affect decoding outcome.
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whereX b
i , {x ∈ X : bi(x) = b}, and

pX(x) =

m−1
∏

i=0

pBi
(bi(x)) . (9)

Instead of directly producing2m symbol-metric values for each possiblex given the received

symboly, the BICM demodulator produces2m bit-metric values corresponding to them levels.

Bit metrics for thei-th level have the general formqBi,Y (b, y). We also assumeqBi,Y (b, y) > 0,

∀b ∈ B, ∀y ∈ Y . The symbol metric is then calculated as

qX,Y (x, y) =

m−1
∏

i=0

qBi,Y (bi(x), y) . (10)

Even if qBi,Y (b, y) matches to the binary-input channel with inputBi and outputY , i.e., it is

proportional to the transition probability

pY |Bi
(y|b) =

∑

x∈X b
i

pY |X(y|x)pX(x) , (11)

the symbol metric (10) still does not match to the channel with inputX and outputY . Therefore,

BICM is inherently a mismatched decoding scheme [2], [3].

1) Log-Likelihood Ratio (LLR):The binary decoder is fed with the2m bit-metric values per

received symbol, or alternatively, withm log-metric ratios

ΛqBi,Y
(y) , ln

qBi,Y (0, y)

qBi,Y (1, y)
, (12)

since they are sufficient statistics forBi given qBi,Y (b, y) (ln(·) denotes the natural logarithm).

Conventionally,ΛqBi,Y
(y) is the LLR only if qBi,Y (b, y) ∝ pY |Bi

(y|b). However, for convenience

and brevity, we will refer toΛqBi,Y
(y) as an LLR even whenqBi,Y (b, y) is not proportional to

pY |Bi
(y|b).

2) Independent Binary Channel Model:The classical approach to analyze BICM is to use

the independent binary channel model [8], in which transmission is performed inm parallel

channels with inputsBi, i = 0, . . . , m− 1, and outputY . This model is equivalent to multilevel

coding (MLC) with parallel decoding of levels [9]. For leveli and its bit metric, the binary

generalized Gallager function is defined as

E0
qBi,Y

(ρ, s) , − log EBi,Y

{(

∑

b∈B

pBi
(b)

[

qBi,Y (b, Y )

qBi,Y (Bi, Y )

]s
)ρ}

(13)

= − log EX,Y

{(

∑

b∈B

pBi
(b)

[

qBi,Y (b, Y )

qBi,Y (bi(X), Y )

]s
)ρ}

, (14)
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where the transition fromEBi,Y {·} to EX,Y {·} is possible because the term inside the expectation

in (14) is the same for all transmit symbolsx that have the samei-th labeling bit, and

∑

x∈X b
i

pX,Y (x, y) = pBi,Y (b, y) . (15)

The function E0
qBi,Y

(ρ, s) gives rise to the random coding exponentEr
qBi,Y

(R), the I-curve

function IqBi,Y
(s), and the GMIIgmi

qBi,Y
for the i-th level, applying (4), (7), and (6), respectively.

In particular,

IqBi,Y
(s) = −EBi,Y

{

log
∑

b∈B

pBi
(b)

[

qBi,Y (b, Y )

qBi,Y (Bi, Y )

]s
}

= −EX,Y

{

log
∑

b∈B

pBi
(b)

[

qBi,Y (b, Y )

qBi,Y (bi(X), Y )

]s
}

, (16)

and

Igmi
qBi,Y

= max
s>0

IqBi,Y
(s) . (17)

For the special case of uniform input, from (12) and (16),IqBi,Y
(s) can be expressed in terms

of the LLR as

IqBi,Y
(s) = 1 − EX,Y

{

log(1 + exp(− sgn(bi(X))ΛqBi,Y
(Y )s)

}

, (18)

where the functionsgn(·) is defined for the labeling bits assgn(0) = 1 and sgn(1) = −1.

3) BICM and Binary I-curves:Substituting (9) and (10) into (7) and considering (16), we

obtain (cf. [3, proof of Theorem 2])

IqX,Y
(s) = −EX,Y

{

log
∑

x∈X

m−1
∏

i=0

pBi
(bi(x))

[

qBi,Y (bi(x), Y )

qBi,Y (bi(X), Y )

]s
}

= −EX,Y

{

log

m−1
∏

i=0

∑

b∈B

pBi
(b)

[

qBi,Y (b, Y )

qBi,Y (bi(X), Y )

]s
}

= −
m−1
∑

i=0

EX,Y

{

log
∑

b∈B

pBi
(b)

[

qBi,Y (b, Y )

qBi,Y (bi(X), Y )

]s
}

=
m−1
∑

i=0

IqBi,Y
(s) . (19)

That is, the BICM I-curve equals to the sum of the binary I-curves IqBi,Y
(s). This relation will

be important for our subsequent discussion.
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III. M ETRIC MANIPULATION

We now present and discuss different metric manipulations that can improve the performance

of BICM with a mismatched demodulator.

A. Achievable Rate with Metric Scaling

For the general mismatched decoding scheme from Section II-A, let sqX,Y
be the critical point

of IqX,Y
(s), i.e. the value ofs at which IqX,Y

(s) attains its maximum. For matched metrics,

sqX,Y
= 1, and Igmi

qX,Y
equals to the ordinary mutual informationI(X; Y ) [7]. Let us consider

a new metricq′X,Y (x, y) = [qX,Y (x, y)]c with some constantc > 0. It follows from (5) that

E0
q′
X,Y

(ρ, s) = E0
qX,Y

(ρ, cs) and henceIq′
X,Y

(s) = IqX,Y
(cs). That is, the I-curve of the metric

q′X,Y (x, y) is simply a compressed (forc > 1) or expanded (forc < 1) version of the I-curve

of the metricqX,Y (x, y) along thes-axis. In particular, the GMI remains unchanged, while the

critical point changes tosq′
X,Y

= sqX,Y
/c. This coordinate shift is illustrated in Figure 1 for an

example withc > 1. Since raisingqX,Y (x, y) to a power corresponds to scaling with the same

factor in the logarithmic domain, in LLR-based decoding we refer to this operation as “metric

scaling.” Metric scaling allows us to control the critical point of the I-curve. The fact that it

does not affect the GMI should not come as a surprise. Usingq′X,Y (x, y), the decoding rule (2)

becomes

x̂ = argmax
x∈C

[qX,Y (x, y)]c ,

which returns exactly the same codeword as usingqX,Y (x, y). We now apply metric scaling to

BICM.

Theorem 1:Let sqBi,Y
be the critical point of the binary I-curve of thei-th level. Furthermore,

let two I-curves be called harmonic if they have the same critical point. Then, the BICM GMI

equals to the sum of the binary GMIs if the binary I-curves areharmonic, and less than that

otherwise. The binary I-curves can be made harmonic ats∗ > 0 by metric scaling with the factor

ci = sqBi,Y
/s∗ at level i, i = 0, . . . , m − 1.

Proof: Let q′Bi,Y
(b, y) = [qBi,Y (b, y)]ci with someci > 0. Then, Iq′

Bi,Y
(s) = IqBi,Y

(cis),

which peaks at(sqBi,Y
/ci, I

gmi
qBi,Y

). According to Section II-B and in particular (10) and (19), BICM

with these bit metrics hasq′X,Y (x, y) =
∏m−1

i=0 q′Bi,Y
(bi(x), y) andIq′

X,Y
(s) =

∑m−1
i=0 Iq′

Bi,Y
(s). The
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BICM GMI is upper-bounded as

Igmi
q′
X,Y

= max
s>0

m−1
∑

i=0

Iq′
Bi,Y

(s) ≤
m−1
∑

i=0

max
s>0

Iq′
Bi,Y

(s) =

m−1
∑

i=0

Igmi
qBi,Y

. (20)

Equality in (20) is achieved if and only if allIq′
Bi,Y

(s), i = 0, . . . , m− 1, attain their maximum

at the same value ofs, i.e. if they are harmonic. By scaling withci = sqBi,Y
/s∗ , all binary

I-curves will be harmonic ats∗ for arbitrarys∗ > 0.

Remark 1:If the original binary I-curves are already harmonic, no alignment is needed and

Igmi
qX,Y

=
∑m−1

i=0 Igmi
qBi,Y

. This is the case if, for example,qBi,Y (b, y) ∝ pY |Bi
(y|b), for which

sqBi,Y
= 1 ∀i [3, Corollary 1]. When the binary I-curves are not harmonic (see Section IV for

practical examples), the above proof provides a constructive procedure for choosing the scaling

factors to increase the BICM GMI. This requires the computation of sqBi,Y
, i = 0, . . . , m − 1,

which can be done offline, either through analysis or throughsimulation when closed-form

expressions cannot be obtained.

Remark 2:According to the independent binary channel model, BICM always achieves a rate

equal to the sum of the achievable rates of the levels. In the context of random coding and the

GMI, Theorem 1 shows that this is only conditionally true. Werecall that the independent binary

channel model requiresm binary encoder-decoder pairs instead of just one as BICM.

B. Symbol-By-Symbol Decoding and Metric Scaling

We again consider the general mismatched decoding scheme inSection II-A. The derivation of

the random coding exponent and the GMI is based on the word decoding rule (2). However, some

important modern error-correction schemes employ SBS decoding. That is, given the received

sequencey, for each positionk = 0, . . . , N − 1, the SBS metric

qXk,Y (x, y) ,
∑

x∈Cx
k

qX,Y (x, y) =
∑

x∈Cx
k

(

N−1
∏

k=0

qX,Y (xk, yk)

)

(21)

is computed, whereCx
k denotes the set of codewords whosek-th symbol equalsx, and the

decoding rule

x̂k = argmax
x∈X

qXk ,Y (x, y) (22)

is applied. For sparse-graph based codes, (22) with metric (21) can be efficiently evaluated (or

approximated) using the sum-product algorithm [10]. With matched metrics and equally likely
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chosen codewords, (22) becomes

x̂k = argmax
x∈X

∑

x∈Cx
k

pY |X(y|x) = argmax
x∈X

∑

x∈Cx
k

pX|Y (x|y) = argmax
x∈X

pXk|Y (x|y)

= argmin
x∈X

(

1 − pXk|Y (x|y)
)

.

Thus, sum-product SBS decoding with matched metrics minimizes the coded symbol error prob-

ability, cf. word decoding as in [7, p. 120]. This holds true regardless of the distributionpX(x).

However, minimizing the coded symbol error probability maynot be the same as minimizing the

message symbol (or bit) or the word error probability. In particular, the collection of decoded

symbols [x̂0 . . . x̂N−1] is not necessarily a codeword inC. Therefore, achievable rates, in the

sense that the word error probability can still be driven to zero with increasing code length,

further depend on the translation of the decoded symbols into a valid codeword.

Another popular SBS decoding metric is

qXk,Y (x, y) =















max
x∈Cx

k

qX,Y (x, y) = max
x∈Cx

k

(

N−1
∏

k=0

qX,Y (xk, yk)

)

, if Cx
k 6= ∅

0 , otherwise.

(23)

This metric can be estimated by the max-product algorithm, which is also known as the min-sum

algorithm from its form in the logarithmic domain [10]. The metric (23) is derived from (21)

by approximating a sum by its largest term.

As in word decoding, metric scaling does not affect the decoding outcome in max-product

SBS decoding. However, if we replaceqX,Y (x, y) by [qX,Y (x, y)]c in sum-product decoding

using (22), the decoding outcome might change. Whenc → 0, the decoding outcome generally

becomes random, with exceptions, e.g., repetition codes where the sum (21) would consist of

only a single term. On the other hand, whenc → ∞, sum-product decoding approaches max-

product decoding. With matched metrics,c = 1 is the optimal scaling factor when the coded

symbol error probability is the performance measure. The I-curve peaks ats = 1 in this case.

For mismatched metrics, we propose that metric scaling withthe factorc = sqX,Y
is applied in

sum-product decoding. This scaling shifts the critical point of the I-curve to1. In the following,

we provide a numerical example which shows that this scalingyields the largest throughput in a

rateless transmission. (Further, practical examples thatdemonstrate performance improvements

due to using this scaling are presented in Section IV.)
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Example 1:Consider the binary asymmetric channel (BAC) with crossover probabilitiesp0

and p1, 0 < p0, p1 < 1, for transmit symbolx = 0 and x = 1, respectively. A matched

demodulator produces the LLR ofln((1− p0)/p1) for received symboly = 0 and of ln(p0/(1−

p1)) for y = 1. Assuming uniform input, the matched I-curve follows from (7) or (18) as

IpY |X
(s) = 1 −

1 − p0

2
log

(

1 +
ps

1

(1 − p0)s

)

−
p0

2
log

(

1 +
(1 − p1)

s

ps
0

)

−
p1

2
log

(

1 +
(1 − p0)

s

ps
1

)

−
1 − p1

2
log

(

1 +
ps

0

(1 − p1)s

)

, (24)

which peaks at(1, I(X; Y )).

Suppose that a mismatched demodulator produces LLR of+1 and−1 for received symbol

y = 0 andy = 1, respectively. The corresponding mismatched I-curve is given by

IqX,Y
(s) = 1 − p log(1 + es) − (1 − p) log(1 + e−s) , (25)

wherep = (p0 +p1)/2. The GMI Igmi
qX,Y

= 1+p log(p)+(1−p) log(1−p) = 1−Hb(p) is attained

at sqX,Y
= ln((1 − p)/p), whereHb is the binary entropy function. We haveIgmi

qX,Y
≤ I(X; Y ),

and equality holds if and only ifp0 = p1, i.e. when the channel is a binary symmetric channel

(BSC). Applying scaling with factorc to this mismatched LLR, we obtainIq′
X,Y

(s) = IqX,Y
(cs).

ConsiderIq′
X,Y

(1) as a function ofc. It attains its maximum withc = sqX,Y
= ln((1− p)/p), for

which Iq′
X,Y

(1) = Igmi
q′
X,Y

= Igmi
qX,Y

. Our proposal states that scaling with this value ofc should be

applied in sum-product decoding.

Let us consider a specific example withp0 = 0.03 and p1 = 0.07. This pair results in

I(X; Y ) = 0.72 bit per channel use (bpcu),p = 0.05, Igmi
qX,Y

= 0.71 bpcu, andsqX,Y
= 2.94.

Figure 2 shows the plot ofIq′
X,Y

(1) vs. c. To demonstrate the effect of scaling, we measure the

average throughput achieved by coded transmission using a Raptor code. The code consists of

an outer LDPC code of length10 000 and code rate 0.95 and an inner Luby transform (LT)

code with degree distribution [11, Table I, second column]

Ω(x) = 0.007969x + 0.493570x2 + 0.166220x3 + 0.072646x4 + 0.082558x5

+0.056058x8 + 0.037229x9 + 0.055590x19 + 0.025023x65 + 0.003135x66 .

The parity-check matrix of the LDPC code is generated by the progressive edge growth (PEG)

algorithm [12] with degree-3 variable nodes and almost regular check nodes. The transmitter

sends coded bits until the receiver successfully determines the correct message, at which point
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the instantaneous throughput is measured. Figure 2 shows the empirical average throughput

achieved with sum-product and max-product decoding as a function of c (consider only lines

labeled “w/o i.i.d. channel adapter” for the moment). Both methods use a maximum of 200

iterations to decode the joint factor graph of LDPC and LT code. We observe that scaling with

the factorc = sqX,Y
indeed yields the best throughput for sum-product decoding. It can also

be seen how the achieved throughput degrades asc → 0. For largec, sum-product decoding

starts to converge towards max-product decoding. However,since we applied LLR bounding

for improved numerical stability in our decoder implementation, this convergence is not fully

achieved in Figure 2.

We can turn the asymmetric channel into a symmetric one by using i.i.d. channel adapters

suggested in [13]. These adapters are synchronized random sign-adjusters applied to the encoded

bits and LLR streams at the transmitter and receiver, respectively, cf. [13, Fig. 8]. With uniform

input, the I-curve is not changed by i.i.d. channel adaptation, cf. (18). Symmetrization is some-

times considered useful when codes are designed under the assumption of a symmetric channel.

The simulation results for the symmetrized channel in Figure 2 (star makers labeled “w/ i.i.d.

channel adapter”) show that the conclusions about scaling are not an artifact of transmission

over asymmetric channels.

Remark: Understanding the impact of metric scaling in fact relates to a familiar research

problem. In systems with additive Gaussian noise, for example, inaccurate estimation of the

signal-to-noise ratio (SNR) results in a mismatched metricthat is a scaled version (in the loga-

rithmic domain) of the matched metric. The scaling factorc is proportional to the estimated SNR.

Thus, impact of SNR mismatch on sum-product decoding is a special case of our discussion. The

results in Figure 2 agree with the known result that for sum-product decoding we would rather

overestimate (have a largec) than underestimate the SNR (have a smallc), cf. e.g. [14] and

references therein. WhensqX,Y
> 1, which is the case of underestimated SNR, the simulation

results in Figure 2 suggests an intriguing upper boundIqX,Y
(1) to the achievable rate with

sum-product decoding.

We would like to contrast our scaling from LLR scaling as investigated in e.g. [15]–[17]. In

these works, scaling is derived from studying the internal operation of the decoder and has the

purpose of offsetting approximations to lower implementation complexity. On the other hand, our

proposed scaling is characterized only by the metric and is aimed to improve the performance
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of exact sum-product decoding.

Application to BICM: In connection with Theorem 1, in BICM with sum-product decoding

we propose aligning all binary I-curves ats∗ = 1. For max-product decoding, only the alignment

matters, but not the value of the critical points∗.

C. Cascaded Channel Perspective and Metric-Mismatch Correction

BICM as defined by (10), (1) and (2) constitutes a mismatched decoding rule, for which an

achievable rate is given by the GMIIgmi
qX,Y

defined in (6). In Section III-A, we have shown that

metric scaling applied to LLRsΛqBi,Y
(y) can increase this GMI. In this section, we consider the

generation ofΛqBi,Y
(y) as part of the transmission channel and determine the rates achievable

by further processing and other ways of decoding.

1) Cascaded Channel Model:Let zi , ΛqBi,Y
(y) be the channel output to be processed.

Accordingly, we have a cascaded channel as shown in Figure 3(a) with input X and output

Z , [Z0, . . . , Zm−1]. The corresponding average mutual informationI(X; Z) is less than or

equal toI(X; Y ) [7, Sec. 2.3]. Let us consider the use of binary codes for the cascaded channel

X → Z. The chain rule of mutual information [7, p. 22] reads as

I(X; Z) =

m−1
∑

i=0

I(Bi; Z|B0, . . . , Bi−1) . (26)

For the terms on the right-hand side, we have the following inequalities

I(Bi; Z|B0, . . . , Bi−1) ≥ I(Bi; Z) (27)

≥ I(Bi; Zi) (28)

≥ Igmi
qBi,Y

. (29)

The mutual informationI(Bi; Z) in (27) represents the constrained channel capacity, i.e. the

maximum achievable rate with a given input distribution, ofthe binary-input channelBi → Z

illustrated in Figure 3(b). For this cascaded channel,I(Bi; Z) ≤ I(Bi; Y ) [7, Sec. 2.3]. We

note, however, that there is no definitive relation betweenI(Bi; Z|B0, . . . , Bi−1) and I(Bi; Y ).

The mutual informationI(Bi; Zi) in (28) is the constrained capacity of the channelBi → Zi

shown in Figure 3(c). Equality in (28) is achieved ifZi is a sufficient statistic forBi given Z.

Inequality (29) holds becauseIgmi
qBi,Y

is just an achievable rate by a mismatched decoding, whereas

I(Bi; Zi) is the maximum achievable rate by matched decoding over the channelBi → Zi.
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Inequality (28) suggests thatZj, j 6= i, can provide further information for the decoding of

Bi. In between the two extremes of using onlyZi and using allm elements ofZ, we might opt

to process a subsetRi = [Zi, {Zj}] of 1 < mi < m elements ofZ to produce decoding metrics

for Bi. PartitioningX → Z into this type of binary-input reduced-dimensional outputchannel

is similar to retaining only selected dependency links in reduced-layer MLC [18]. The resulting

channel is included in Figure 3(d) and the inequalities

I(Bi; Zi) ≤ I(Bi; Ri) ≤ I(Bi; Z) (30)

hold for its associated mutual information. In summary, we obtain the following inequality chain:

Igmi
qX,Y

≤
m−1
∑

i=0

Igmi
qBi,Y

≤
m−1
∑

i=0

I(Bi; Zi) ≤
m−1
∑

i=0

I(Bi; Ri) ≤
m−1
∑

i=0

I(Bi; Z) ≤















m−1
∑

i=0

I(Bi; Y )

I(X; Z)

≤ I(X; Y ) .

(31)

2) Metric-Mismatch Correction:The processing of original LLRs to achieve the above rates

can be considered as metric-mismatch correction. The matched bit-metrics for BICM transmis-

sion over the cascaded channelX → Z corresponds to corrected LLRs

ΛpZ|Bi
(z) = ln

pZ|Bi
(z|0)

pZ|Bi
(z|1)

(32)

for i = 0, . . . , m − 1. This metric correction realizes the rateI(Bi; Z) over the binary-input

channelBi → Z, and, considering (31), it is the optimal correction in terms of achievable rate.

The bit-metric correction corresponding to the channelBi → Ri and achievable rateI(Bi; Ri)

is given by

ΛpRi|Bi
(ri) = ln

pRi|Bi
(ri|0)

pRi|Bi
(ri|1)

. (33)

Finally, the scalar metric correction

ΛpZi|Bi
(zi) = ln

pZi|Bi
(zi|0)

pZi|Bi
(zi|1)

(34)

leads toI(Bi; Zi). Since metrics (32), (33), and (34) match to their corresponding binary-input

channels, their binary I-curves are already aligned ats = 1. As a result, the BICM GMI with these

metrics is equal to
∑m−1

i=0 I(Bi; Z),
∑m−1

i=0 I(Bi; Ri), and
∑m−1

i=0 I(Bi; Zi), respectively. While,

according to (31), the associated BICM GMI degrades from (32) to (34), the computational

complexity for metric correction is also reduced. This trade-off renders (33) and (34) potentially

attractive.
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The scalar LLR correction (34) has been studied in the literature [6], [19]–[22], cf. also [23].

In [6], (34) has been shown to be the optimum scalar metric correction in terms of GMI, a fact

that is also clear from the above derivation. It has further been pointed out in [6] that non-scalar

metric correction functions could further increase the GMI. We have provided such corrections

in (32) and (33).

In practice, the correction functions are prepared offline and stored as look-up tables. Online

evaluation is then done by table look-up and possibly with additional interpolation [22], [23].

For clarity, we summarize all bit-metric manipulations andtheir effects in the table below.

TABLE

BICM METRIC MANIPULATIONS AND THEIR EFFECTS.

Metric Manipulation Effect

Original mismatched bit metricsΛqBi,Y
(y) Igmi

qX,Y
≤
∑m−1

i=0 Igmi
qBi,Y

is achievable.

Scale all LLRs by the same factorc = sqX,Y
:

Λq′
Bi,Y

(y) = sqX,Y
ΛqBi,Y

(y)

Shift the critical point of the BICM I-curve

to 1, aim to improve the performance of sum-

product SBS decoding.

Scale LLRs differently byci = sqBi,Y
/s∗ for

somes∗ > 0:

Λq′
Bi,Y

(y) = (sqBi,Y
/s∗)ΛqBi,Y

(y)

Binary I-curves are aligned ats∗. Igmi
q′
X,Y

=
∑m−1

i=0 Igmi
qBi,Y

is achievable. Chooses∗ = 1 in

sum-product decoding.

Apply scalar metric-mismatch correction:

ΛpZi|Bi
(zi) = ln

pZi|Bi
(zi|0)

pZi|Bi
(zi|1)

Bit metrics are matched to the cascaded chan-

nelsBi → Zi. BICM GMI is
∑m−1

i=0 I(Bi; Zi).

Apply reduced-dimensional vector metric-

mismatch correction:

ΛpRi|Bi
(ri) = ln

pRi|Bi
(ri|0)

pRi|Bi
(ri|1)

Bit metrics are matched to the cascaded chan-

nelsBi → Ri, BICM GMI is
∑m−1

i=0 I(Bi; Ri).

Apply optimal vector metric-mismatch cor-

rection:

ΛpZ|Bi
(z) = ln

pZ|Bi
(z|0)

pZ|Bi
(z|1)

Bit metrics are matched to the cascaded chan-

nelsBi → Z, BICM GMI is
∑m−1

i=0 I(Bi; Z).

3) Remark: Inequality (31) also shows that no metric manipulation allows BICM to attain

a GMI better than
∑m−1

i=0 I(Bi; Y ), i.e., the GMI of matched BICM over the original channel

X → Y . To achieveI(X; Z) or I(X; Y ) with binary codes, we need to use MLC with multistage

decoding [9] applied to the channelsX → Z andX → Y , respectively.
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IV. A PPLICATIONS

In this section, we present and discuss a number of illustrative and relevant examples for

BICM transmission applying the metric manipulations described in the previous sections. We

assume uniform input in all cases. The binary I-curves are obtained from (18) via Monte-Carlo

integration.

A. Discrete Metrics and Metric Correction

1) Setup: Metric corrections are relatively easy to implement by means of look-up tables

if the mismatched metrics are drawn from a small set of discrete values. Such cases arise if

quantization and in particular hard detection is applied atthe receiver. In the following, we

consider the example of 8-ary amplitude-shift keying (8-ASK) transmission over the additive

white Gaussian noise (AWGN) channel with hard detection. Weapply binary reflected Gray

labeling with [b0b1b2] = [000], [100], [110], [010], [011], [111], [101], [001] for the eight signal

points from left to right. This is the best labeling in the moderate SNR range [24]. Let the SNR

be equal to 6.43 dB, at which matched BICM attains a GMI ofIgmi
qX,Y

=
2
∑

i=0

I(Bi; Y ) = 1.50 bpcu,

and I(X; Y ) = 1.56 bpcu. Hard detection that produces LLRs+1 and−1 leads to the GMI

Igmi
qX,Y

= 1.07 bpcu, which is the maximum of the BICM I-curveIqX,Y
(s) =

2
∑

i=0

IqBi,Y
(s), attained

at sqX,Y
= 1.65. The I-curves for matched and hard-decision decoding are plotted in Figure 4(d).

2) Metric-Mismatch Correction:We now examine the effect of metric manipulation. Consider

level 2, whose I-curves are shown in Figure 4(c). With matched detection, the binary GMI

is I(B2; Y ) = 0.77 bpcu. With hard detection,B2 → Z2 is a BSC with the GMI equal to

I(B2; Z2) = 0.63 bpcu, cf. Example 1. For a BSC, scalar correction (34) is identical to the

scaling that shifts the critical point to 1 and leaves the GMIunchanged (lineZ2 in Figure 4(c)).

On the other hand, the optimum vector correction (32) yieldsI(B2; Z) = 0.75 bpcu (lineZ2Z0Z1

in Figure 4(c)), which is significantly higher thanI(B2; Z2) and rather close toI(B2; Y ). The

price for this is a more complex mapping. In scalar correction, we mapz2 from two input

values{1,−1} to two output values{2.56,−2.56}, i.e., ΛpZ2|B2

(1) = 2.56 andΛpZ2|B2

(−1) =

−2.56. In optimum vector correction, we need a larger look-up table to map[z2, z0, z1] from

{[1, 1, 1], [1,−1, 1], [1,−1,−1], [1, 1,−1], [−1, 1,−1], [−1,−1,−1], [−1,−1, 1], [−1, 1, 1]} to the

corrected LLRs{12.5, 7.40, 3.63, 1.05,−1.05,−3.63,−7.40,−12.5}. Between these two correc-

tion methods, we have two choices for reduced-dimensional vector correction (33), namely
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R2 = {Z2, Z0} or R2 = {Z2, Z1}, each of which maps four input values to four output values.

The two corresponding I-curves in Figure 4(c) are labeledZ2Z0 andZ2Z1, respectively. Since

I(B2; Z2Z0) < I(B2; Z2Z1), the latter is preferred.

We have a BAC at both level 0 and 1. For level 1, we can see from Figure 4(b) that scalar

correction hardly increases the GMI. It is interesting to observe that correction withR1 =

{Z1, Z2} yields the same I-curve as scalar correction, whereas correction with R1 = {Z1, Z0}

yields the same I-curve as the optimum correction. For level0, different correction functions

result in identical binary I-curves, as shown in Figure 4(a). These phenomena can be explained

from examining the labeling of signal points. Due to space limitation, we only explain why

knowing z0 helps to increase the GMI at level 1, whereas knowingz2 does not. Consider the

labeling bits at level 1. They are{0, 0, 1, 1, 1, 1, 0, 0} for the eight symbols from left to right.

We can divide the four labeling bits 1 into two groups: the outer two bits that are adjacent

to a bit 0, and the other two inner bits which are not. To betterapproach the performance of

the matched decoding, we should distinguish if a received bit 1 is an outer bit or an inner bit.

Indeed, additional knowledge aboutz0 tell us if the received bit 1 at level 1 is an outer bit (when

z0 = −1) or not (whenz0 = 1). On the other hand, knowingz2 would not help. Similarly, the

four labeling bits 0 can be divided into two groups, and knowledge ofz0, but notz2, helps to

distinguish if the received bit 0 is an inner or an outer bit.

The BICM I-curve for scalar and the best of all metric-mismatch corrections are included

in Figure 4(d). For the latter, full vector correction is only required for level 2, while scalar

correction and reduced-dimensional correction are sufficient at level 0 and level 1, respectively.

The increase in the GMI by scalar correction comes mostly from the effect of having all the binary

curves aligned ats = 1. Optimum correction results in a much improved GMI of 1.40 bpcu,

which is 93% of the GMI for matched BICM.

3) Throughput:Using the Raptor code from Example 1, the simulated average throughput is

shown in Figure 4(d) (markers without lines). We observe that the throughput closely follows the

associated GMIs if metric-mismatch correction is applied.In these cases, the GMI is achieved

at s = 1. In the case of hard detection metrics, the gap between GMI and simulated rate is

significantly larger. This phenomenon has also been observed in Figure 2. It corroborates our

discussion in Section III-B that, whensqX,Y
> 1, the achieved throughput by sum-product SBS

decoding seems to be determined byIqX,Y
(1) rather than the GMI.
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B. Pulse-Position Modulation with Max-log Metric

Our next practical example considersM-ary pulse-position modulation (PPM) transmission

for free-space optical communication, cf. e.g. [25]. EachM-ary PPM symbol is a vectorx =

[x0 . . . xM−1] with exactly one element equal to 1 (on slot) and the others equal to 0 (off slots).

Let y = [y0 . . . yM−1] denote the corresponding received vector, and let us apply the popular

photon-counting channel model [25]

yi = xisi + ni , (35)

where si and ni are i.i.d. Poisson random variables with meanλs and λn, respectively. The

channel transition probabilities are given by

p(yi|xi) =
(λsxi + λn)yi

yi!
exp (−[λsxi + λn]) , (36)

and p(y|x) =
∏M−1

i=0 p(yi|xi). Since all PPM symbols have exactly one element1 and M − 1

elements0, it follows that

p(y|x) ∝

(

1 +
λs

λn

)yo(x)

, (37)

whereyo(x) is the magnitude of the slot ofy which corresponds to theon slot of x. The matched

LLR for PPM is

ΛpY |Bi
(y) = ln

∑

x∈X 0

i

(

1 +
λs

λn

)yo(x)

− ln
∑

x∈X 1

i

(

1 +
λs

λn

)yo(x)

. (38)

The simplified max-log metric is

ΛqBi,Y
(y) =

(

max
x∈X 0

i

yo(x) − max
x∈X 1

i

yo(x)

)

ln

(

1 +
λs

λb

)

, (39)

which has considerably lower computational complexity than (38).

A special property of PPM is that (i) all symbol labelings areequivalent and (ii) all binary

levels have identical I-curves if the same binary metrics are used. This results from the orthogo-

nality of PPM constellations, which means that labelings can be transformed from one to another

by a permutation of time slots. Therefore, regardless of thelabeling, the BICM GMI is given

by Igmi
qX,Y

=
m−1
∑

i=0

Igmi
qBi,Y

= mIgmi
qBj,Y

for any metricqBi,Y (b, y) (e.g., matched and max-log metric

given above) and levelj ∈ {0, . . . , m − 1}, m = log(M).

Figure 5 shows the GMI of matched metric (38) and max-log metric (39) as function of the

SNR defined asλs/(Mλn) for the example of 64-PPM andλn = 0.2 [26]. We observe only a
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relatively small gap between the two GMIs. This suggests that the simpler mismatched metric (39)

could be applied with little loss in achievable rate. Also included in Figure 5 isIqX,Y
(1) for the

max-log metric, for which a notable gap to the correspondingmismatched GMI can be seen,

especially for low SNR. Following the discussion in SectionIII-B, we expect that scaling of

the max-log LLR such that the critical point is shifted to1 should be applied to improve the

performance of sum-product decoding. This prediction is confirmed by the results presented in

Figure 6 for an example SNR of−8 dB. It shows the I-curves for matched, max-log, and scaled

max-log metric with the scaling factorc = sqX,Y
= 0.56, together with simulated throughputs for

sum-product and max-product decoding. The throughput figures are obtained from simulation

using the same Raptor code as in Example 1. We observe that thesimulated throughput using

sum-product decoding well approaches the associated GMI for matched metric. For the max-

log metric, however, the gap between throughput and GMI is significantly larger. With scaling,

the throughput accomplished with sum-product decoding is significantly improved to 1.96 bpcu

compared to 1.74 bpcu without scaling. More specifically, the gap between throughput and

GMI is closed by 60%. Finally, the performance of max-product decoding is notably inferior to

sum-product decoding and, as expected, is not changed by scaling.

C. MIMO-QAM with Max-Log Metric and LLR Clipping

The third and final illustration of BICM with mismatched decoding and metric-mismatch

correction uses the example considered in [6, Sec. IV]. The transmission system is a2 × 2

multiple-input multiple-output (MIMO) system with 16-aryquadrature amplitude modulation

(16-QAM) and Rayleigh fading channels, and the average SNR is fixed to 9.13 dB. Furthermore,

the BICM demodulator uses the max-log metric and the max-logLLR is clipped to the range

[−2, +2]. LLR clipping is helpful to reduce complexity in list-baseddetection [22]. It has been

shown in [6, Sec. IV] that the optimum scalar correction (34)improves the GMI and the bit-error

rate (BER) performance of the coded scheme. In this section,we also consider LLR scaling and

a hybrid scalar correction as explained below.

We assume a binary reflected Gray labeling for the 16-QAM symbols. The2 × 2 MIMO

system with 16-QAM has in totalm = 8 binary levels, of which four are equivalent to level 0

and four to level 1. Hence, we only need to consider those two levels when showing results.

Figure 7(a) presents the I-curves of the levels with matchedand clipped max-log metrics. The

September 9, 2010 DRAFT



18

curves for the matched metrics serve as an upper bound and will be used to gauge the success

of mismatched-metric manipulation. It can be seen that the two binary I-curves for the clipped

max-log metric are misaligned. We expect that scaling to align them ats∗ = 1 will increase

the BICM GMI and improve sum-product decoding performance.The BICM GMI curves for

matched, clipped max-log, and scaled clipped max-log metric are shown in Figure 7(b). Also

included are simulated throughputs, again using the Raptorcode from Example 1 with sum-

product decoding. We observe that, for clipped max-log withsqX,Y
= 1.50 > 1, the achievable

throughput seems to be upper bounded byIqX,Y
(1). This might explain the large gap between

the BER curve and the GMI limit of the uncorrected LLR in [6, Fig. 2(b)]. Metric scaling aligns

the binary I-curves ats∗ = 1 and leads to an improved GMI. While the GMI increase is only

slightly, the throughput improvement is much more significant.

Applying the optimum scalar metric-mismatch correction (34), also considered in [6, Sec. IV],

[22, Sec. V], further improves both GMI and the performance with sum-product decoding. At

the same time, it is more complex than scaling as the correction requires table look-up and

interpolation (see also the plot of the scalar correction function in Figure 8 and the discussion

below). Noting that metric scaling treats all valuesΛqBi,Y
(y) the same, even though the two

extreme values−2 and +2 would warrant a special consideration, we propose the following

hybrid metric manipulation for this particular case:

Λq′
Bi,Y

(y) =











ln
pZi|Bi

(zi|0)

pZi|Bi
(zi|1)

, if zi = ±2

cizi , otherwise.
(40)

That is, the two extreme values are mapped as in the optimum scalar correction, and the

immediate values are scaled with a factor such that the resulting I-curve peaks ats = 1. This

correction function is indeed a good approximation of the optimum scalar correction for the

symmetric channel at level 1. However, this is not the case for the asymmetric channel at level 0.

Hence, we apply channel symmetrization according to [13] asdiscussed in Example 1 before

using the hybrid rule (40). The different metric manipulations are plotted in Figure 8. From

Figure 7, we observe that hybrid manipulation results in I-curves and throughput performances

that are practically identical to those achieved with optimum scalar correction. Considering its

simpler implementation, this hybrid metric manipulation would be the method of choice for this

application example.
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V. CONCLUSION

In this paper, we studied BICM with mismatched decoding metrics. Following recent works,

we adopted the GMI as a pertinent performance measure. We showed that scaling of logarithmic

bit-metrics can improve the BICM GMI. We also suggested and provided numerical evidence that

metric scaling also improves throughput in practical coding schemes using SBS decoding, even

if the GMI remains unchanged. Furthermore, we studied general mismatched metric correction

methods, including a previously proposed scalar correction. We presented a number of practically

relevant applications in which mismatched demodulation occurs, and our numerical results

highlighted the benefits and performance-complexity trade-offs for the different mismatch-metric

correction approaches.
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scaling parameterc (see Example 1 for details).
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Fig. 3. BICM demodulator as part of a cascaded channel. Also indicated above each block diagram is the associated average

mutual information. (a) symbol-input cascaded channel; (b), (c) and (d) different binary-input cascaded channels.
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Fig. 4. I-curves for 8-ASK transmission over the AWGN channel with matched detection (‘matched’), hard detection (‘hard’),

and different metric-mismatch corrections (identified by the used LLRszi in the subfigures). Subfigures (a)-(c) show I-curves

for binary levels. Subfigure (d) shows BICM I-curves. The bullet markers show simulated throughput using a Raptor code and

sum-product decoding, and the double-arrowed arcs link thesimulated points to the peak of the corresponding I-curves.
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Fig. 7. I-curves for2× 2 MIMO transmission with 16-QAM over Rayleigh fading at an SNRof 9.13 dB (as in [6, Sec. IV]).

Matched, clipped max-log, scaled clipped max-log metric which shifts the critical point of the I-curve to1, scalar metric-mismatch

correction, and a hybrid correction. (a) I-curves for binary levels. (b) BICM I-curves. The bullet markers show simulated rates

using a Raptor code and sum-product decoding, and the double-arrowed arcs link the simulated points to the peak of the

corresponding I-curves. Note that the curves for ‘scalar correction’ and ‘hybrid’ are numerically on top of each other.
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Fig. 8. Different metric manipulations for binary level 0 of2×2 MIMO transmission with 16-QAM Rayleigh fading and SNR

of 9.13 dB. Hybrid metric manipulation requires channel symmetrization before applying (40).
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