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Notation

Throughout this thesis, bold upper case and lower case letters denote matrices and vectors,

respectively. The remaining notation and operators used in this thesis are listed as follows:

(·)∗ Complex conjugation

[·]T Transposition

[·]H Hermitian transposition

det(·) Matrix determinant

| · | Absolute value of a complex number

‖ · ‖2 L2–norm of a vector

Re{·} Real part of a complex number

Im{·} Imaginary part of a complex number

Ex(·) Statistical expectation with respect to x

Pr{·} Probability of an event

J0(·) Zeroth order modified Bessel function of the first kind

diag(x) A matrix with the elements of vector x on the main diagonal

⊗ Convolution operator

IX X ×X identity matrix

0X All–zero column vector of length X

N (µ, σ2) Gaussian RV with mean µ and variance σ2

j ,
√
−1 Imaginary unit

card{·} Cardinality of a set
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vec{·} Vectorization of a matrix

r(·) Rank of a matrix

⊕ Modulo-2 addition
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Chapter 1

Introduction

Wireless technologies have become a permanent fixture in many aspects of our day-to-day

lives. We use cell phones, personal digital assistants, wireless networks (for example wireless

local area networks (WLANs)), wireless cable replacement (for example wireless personal

area networks (WPANs)), and wireless sensors on a daily basis. This proliferation of

wireless devices, accompanied by a desire to transmit increasing large amounts of data, has

placed an intense pressure on a limited frequency spectrum. Compounding the problem,

the wireless channel itself presents a considerable obstacle to communication. Attenuation

due to the destructive addition of multipaths can cause deep fades, occasionally making

detection of transmitted signals impossible.

One of the techniques with great potential to combat fading and/or to increase the

data rate of the wireless system is space-time (ST) coding, pioneered by Tarokh et al.

[10], Alamouti [11], Foschini and Gans [12], Teletar [13], and Wittneben [14] amongst

others. The ST code delivers duplicate copies of the transmitted signal to the receiver using

multiple antennas at the transmitter and possibly also at the receiver, and transmitting

over multiple time intervals. This diversity in space provides a form of protection for the

signal against a fade occurring on the channel between one transmit/receive antenna pair

in any given time interval. The ST code can be used either to increase the quantity of

information transmitted without increasing system bandwidth, or to improve the reliability

of the transmitted information, or to provide some combination of increased data rate and

increased reliability. If increased data rate is the goal, then it has been shown that when
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the ST code is properly constructed capacity grows linearly with every transmit and receive

antenna pair added to the multiple antenna system. If increased reliability is the goal, then

it has been shown that when the error rate of the multiple antenna system is plotted versus

signal-to-noise ratio (SNR) on a log-log scale the slope of the curve is determined by the

product of the number of transmit and receive antennas. Note that both cases require that

the channel provides spatial selectivity.

Another concern for wireless communication is that as the number of wireless devices

in daily use grows the wireless device itself is shrinking. Reduced device size often comes at

the cost of reduced battery capacity. For a cell phone reduced battery capacity means that

the user must charge his or her phone more often, however for a remote wireless sensor

reduced battery capacity means reduced lifetime. Thus, the ever decreasing size of the

wireless device is imposing an ever increasing need for energy efficiency on the underlying

communication scheme.

In this area, continuous-phase modulation (CPM) has the potential to provide consid-

erable energy savings. CPM is a modulation technique that involves the transmission of

a signal with continuous-phase and a constant envelope. The continuous-phase property

produces a very bandwidth efficient signal, and the constant-envelope property enables

non-linear (and thus energy efficient) signal amplification. In fact, CPM has been adopted

for use with Bluetooth and the Global System for Mobile Communication (GSM) because

of these very properties.

This thesis will focus on the combination of ST coding and CPM with application to all

wireless networks, but with a specific focus on wireless sensor networks. The ST-CPM code

is of special interest in this environment because in this environment energy consumption

is highly constrained. The remainder of this chapter will provide a background for the

introduction of the proposed ST-CPM codes and coding schemes. In Section 1.1, we
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review previously proposed ST-CPM schemes and motivate the need for further study in

this area. Section 1.2, provides a background on CPM and introduces the representation of

CPM used in this thesis. Further, this section overviews the power amplifier, and explains

why CPM is more energy efficient than linear modulations. Finally, Section 1.3 concludes

this chapter with a summary of the contributions made by this thesis.

1.1 History and Motivation

Space-time (ST) coding schemes that employ linear and thus, in general, non-constant

envelope modulation formats have been widely studied. Although these schemes are highly

effective at alleviating the effects of multipath fading over the wireless channel, a ST-CPM

scheme has the potential to offer performance gains in the fading channel and increased

bandwidth and energy efficiency. Increased bandwidth efficiency is due to the continuous-

phase property of CPM, which reduces the spectral side lobes of this scheme with respect to

linear modulation schemes. Increased energy efficiency is result of both the ST component

and the CPM component. Space-time coding improves the system error rate in direct

relation to the number of transmit and receive antennas employed. Thus, increasing the

number of antennas in the system allows the signal to be transmitted with less energy

while still maintaining a target BER. CPM contributes to a reduction in the amount of

energy expended by the hardware of the wireless device. The constant envelope property

of CPM means that lower power, more energy efficient power amplifiers can be used than

are used for linear modulations.

Although the combination of ST coding and CPM has a great deal of promise, the

design of a ST-CPM coding scheme is not straightforward due to the memory inherent

to CPM. Previous efforts to extend the concept of ST coding to CPM have yielded high

decoding complexity [1], or reduced error-rate performance [15]. Both of these schemes
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require modified CPM receivers. Other efforts have produced ST codes that are designed

for specific CPM formats, e.g. [16], [17], [18], [19], and [20]. Non-coherent detection of

ST-CPM codes, which removes the assumption of perfect channel state information at the

receiver, has been the subject of very little investigation. In practical systems, perfect

channel state information as assumed by coherent detection schemes is not available at the

receiver, and estimates of the channel state are obtained using methods that substantially

increase the overhead of the transmission scheme. The previous work on non-coherent

detection of ST-CPM that has been conducted was performed by [2] and [3], and in both

cases it was limited to specific CPM formats. Thus, in Chapter 2 we propose two ST-

CPM coding schemes that can use any CPM format, any number of transmit and receive

antennas, and existing CPM receivers. The second scheme is a general design method

suited for non-coherent detection.

As mentioned earlier, the device with perhaps the most stringent constraints on energy

consumption is the remote wireless sensor. Networks of these wireless sensors have the

potential to take the place of wired sensor networks. In addition, many new applications

are evolving in which only wireless sensors are appropriate, for example object tracking

and battlefield surveillance. One of the technologies that may enable the widespread use of

wireless sensors is distributed ST coding, a scheme in which spatially separated cooperating

devices can produce a diversity gain in a fading channel. Again, distributed ST coding

schemes employing linear modulation have been the subject of much investigation, e.g. [21],

and [22]. The design of the majority of these distributed ST codes calls for the multiplexing

of two or more data streams, which has the potential to greatly increase the peak-to-average

power ratio (PAPR) of the resulting signal and thereby increase the energy consumed in

the device hardware. In general, minimizing the energy consumption of a wireless device is

important, however, minimizing the energy consumption of a device employing distributed
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ST coding will be even more important. Employing relaying implies that several devices

are involved in the transmission of most messages meaning that each wireless device will be

active more often. Also, the performance of distributed ST schemes is often dependent upon

the number of available relays, therefore, minimizing energy consumption will maintain the

connectivity of the network over a longer period of time thereby extending the length of

time that cooperative diversity gains are available. Thus, in Chapter 3, we propose a

distributed ST-CPM code.

Improved error-rates can be obtained by employing a ST-CPM code as the inner code

in a serially concatenated code. The resulting code can have both the capacity approaching

performance and the energy efficiency offered by ST-CPM. CPM is an excellent candidate

for the inner code in the concatenated system as it is recursive in nature. To date, serially

concatenated codes designed for CPM, and ST-CPM have primarily employed convolu-

tional codes [8], [9], and [23]. Recently a class of codes called double parity check (DPC)

codes were introduced for use with differential phase shift keying (DPSK) [24]. These codes

yielded capacity approaching performance with very low complexity. In Chapter 4, we in-

vestigate the performance of a serially concatenated system employing the low complexity

DPC codes as an outer code, and ST-CPM as the inner code.

1.2 CPM Foundation

Before launching into a discussion of CPM in the context of ST coding, we begin with a

brief description of the properties of CPM. The passband CPM signal is given by

xPB(t) =

√
2Es

T
cos(Φ(t, a)) =

√
2Es

T
cos(2πfct+ φ(t, a) + φ0), (1.1)
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where Es is the energy per symbol (transmitted in the interval T ), fc is the carrier fre-

quency, and a is the sequence ofM-ary input data symbols a[i], a[i] ∈ ±1,±3, · · · ,±(M − 1).

φ0 is a constant that denotes the initial phase of the CPM signal, which we set to zero

without loss of generality. The equivalent baseband signal, which we employ in this work,

is given by

x(t) =

√
Es

T
ejφ(t,a). (1.2)

The information carrying phase in (1.1) and (1.2) is given by

φ(t, a) = 2πh
∞
∑

i=0

a[i]

t
∫

−∞

g(τ − iT )dτ = 2πh
∞
∑

i=0

a[i]q(t− iT ), (1.3)

where h denotes the modulation index, and h = k/p is assumed to be rational and irre-

ducible. The frequency pulse g(t) is any function that is positively defined over the interval

0 ≤ t < LT , and that is normalized such that
∫∞
−∞ g(t)dt = 1/2. The corresponding phase

pulse q(t) is given by

q(t) =



























0 t < 0
t
∫

0

g(τ)dτ 0 ≤ t < LT

1/2 t ≥ LT

If L = 1, then the CPM scheme is called full response, and if L > 1 the CPM scheme is

called partial response. In this thesis, we consider both full and partial response CPM.

Also, we consider three popular pulse shapes, i.e. rectangular, (REC), raised cosine (RC),
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and Gaussian minimum shift keying (GMSK) given below

LREC : g(t) =











1
2LT

, 0 < t < LT

0, otherwise,
(1.4)

LRC : g(t) =











(1−cos(2πt)/LT )
2LT

, 0 < t < LT

0, otherwise,
(1.5)

GMSK : g(t) =
{

Q
[

2πB(t−T
2

)

(ln 2)1/2

]

−Q
[

2πB(t+ T
2

)

(ln 2)1/2

]}

, Q(t) =
∞
∫

t

1√
2π

e−x2/2dt. (1.6)

1.2.1 CPM Representations

The phase transitions of CPM can be represented by a trellis structure. However, the

construction of CPM outlined to this point has a time-variant trellis with 2pML−1 states,

of which only half are occupied at any given time. In this thesis, we will adopt the

representation of CPM developed independently by Rimoldi in [25] and Huber and Liu in

[26] that has a time-invariant trellis. To achieve the time invariant trellis a slope function

c(t) is introduced [26]

c(t) ,























0, t < 0

(M−1)
2LT

t, 0 ≤ t < LT

M−1
2
, t ≥ LT

(1.7)

and a zero term is added to the phase term Φ(t, a) given in Eq. (1.1) resulting in the

following expression of the phase function

Φ(t, a) = 2πfct− 2πh

n
∑

i=−∞
c(t− iT ) + φ(t, a) + 2πh

n
∑

i=−∞
c(t− iT ). (1.8)
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The first two terms in Eq. (1.8) can be combined by defining a new reference frequency

fr, given by

fr = fc − h
(M − 1)

2T
, (1.9)

and the third and fourth terms can be re-expressed using a unipolar information symbol

b[i], given by

b[i] =
a[i] +M − 1

2
∈ {0, 1, · · ·M − 1}. (1.10)

Using Eqs. (1.9) and (1.10), the phase term given in Eq. (1.8), within the interval nT ≤

t < (n + 1)T , becomes

Φ(t,b) = 2πfrt+ φr +
2π

p
Ψ[n− L] + 2πh

n
∑

i=n−L+1

p(t− iT, b[i]) (1.11)

where φr is the modified initial phase, Ψ[n − L] is the modified normalized phase state

given by

Ψ[n− L] =

[

k

n−L
∑

i=−∞
b[i]

]

mod (p) ∈ 0, 1, · · · , p− 1 (1.12)

and p(t− iT, b[i]) is the phase state transition function given by

p(t− iT, b[i]) = (2b[i] − (M − 1))q(t) + c(t). (1.13)

The modified information carrying phase, which can be substituted into (1.1) and (1.2) in

place of φ(t, a) is given by

φ(t,b) =
2π

p
Ψ[n− L] + 2πh

n
∑

i=n−L+1

p(t− iT, b[i]). (1.14)

Finally, using this representation the resulting CPM modulator can be split into two com-

ponents: a trellis encoder with pML−1 states, and a signal mapper containing pML possible
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b[n] b[n − 1]

b[n]

b[n − 1]

Ψ[n − L]

b[n − L + 1]

mod(p)

b[n − L + 1]
T

x(t)

Table

with

elements

signal

TT

pML

k

Figure 1.1: Decomposition of CPM into a trellis-encoder and a memoryless modulator
using phase-increment mapping.

signals. These signals can be uniquely referenced by an address vector d[n], given by

d[n] = [Ψ[n− L], b[n− L+ 1], · · · , b[n− 1], b[n]] . (1.15)

The construction of the CPM signal as it is outlined above has been called phase-

increment mapping by [27]. A block diagram of the phase-increment CPM modulator is

shown in Figure 1.1. This name has been applied because input data is mapped to a

phase change, and the resulting signal is rotationally phase invariant. However, due to

the recursive structure of the phase-increment mapper, one error event will affect at least

two symbols. An alternative structure for the CPM modulator was suggested in [27] and

employs phase-state mapping, which alleviates the double error problem, but results in a

rotationally phase variant signal. A block diagram of the phase-state CPM modulator is

shown in Figure 1.2. The symbols b are generated using

(kb[n])mod(p) = (Ψ[n] − Ψ[n− 1])mod(p) (1.16)

The representation of CPM discussed above showed that CPM can be split into a trellis

encoder and a signal mapper that transmits one of pML possible signals. Further, there
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Ψ[n − L]

b[n − L + 1]

Ψ[n − 1] Ψ[n − 2] Ψ[n − L + 1]Ψ[n]

b[n − 1]

b[n]

T

Eq.
(1.16)

T T

Table

with

signal

elements

x(t)
(1.16)
Eq. Eq.

(1.16)
pML

Figure 1.2: Decomposition of CPM using phase-state mapping.

are ML transmitted signals differentiated by only by the initial phase state Ψ[n − L].

Thus, optimally the CPM receiver requires a bank of ML baseband matched filters [26]. In

the wireless sensing applications that we consider device complexity is always a concern.

Therefore, we adopt the reduced matched filter set described in [26]. In [26], it was shown

that the number of filters required to provide a sufficient statistic can be upper bounded

by Dmax, which is given by

Dmax = ⌈1.11h(M − 1) + 2.22⌉. (1.17)

For most practical combinations of modulation index, h, and modulation order, M , D = 2,

or 3 matched filters are sufficient. The corresponding baseband receiver filters proposed

by [26] are given by

hd
D(t) =

1

T
ej2πfdt, 0 ≤ t < T, d ∈ {1, 2, · · · , D}, (1.18)

where

fd =
∆f

2
(2d− 1 −D), d ∈ {1, 2, · · · , D}. (1.19)

In these equations that specify the basis functions for the receiver filters only one pa-
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rameter, the frequency spacing parameter ∆f , needs to be optimized with respect to the

transmitted CPM scheme. The optimal value of ∆f can be found by maximizing the min-

imum Euclidean distance for the CPM scheme. In [26] and [27], it is shown that minimal

losses are incurred for 0.25 < ∆f < 0.75 when D = 2, or 3 received filters are used. There-

fore, rather than optimize ∆f for each CPM scheme that we study, we will set ∆f = 0.5

for all schemes.

The matched filter bank required for demodulation can be denoted by the matrix

hD(t) = [h1
D(t), h2

D(t), · · · , hD
D(t)]. (1.20)

The basis functions of the reduced matched filter bank, hd
D(t), are not orthogonal. There-

fore, a matrix C is introduced to account for the cross-correlations of the basis functions.

This matrix is given by

C =
1

T

∫ T

0

hT
D(t)h∗

D(t)dt, (1.21)

1.2.2 CPM & RF Power Amplifiers

The use or study of CPM is often justified by the energy efficiency of this modulation

technique. The energy savings made possible by CPM are due to its constant envelope

property that enables the use of non-linear power amplifiers. Here, we briefly overview

the properties of the RF power amplifier and explain how CPM and the Class C power

amplifier save energy. In Chapter 3, we will analyze in more detail the energy savings

resulting from the use of CPM in a distributed network. Note that in this section an

uppercase symbol denotes a direct current (dc) value, and a lowercase value denotes an

alternating current (ac) value.

A generalized RF power amplifier is shown in Fig 1.3. The energy consumption and

linearity of the power amplifier are determined by the quantity of time that the transistor
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L1

RL

VDD

vout

vin

Vbias

irf

L2C2

iD

IDC

C1

Figure 1.3: A general circuit digram of a power amplifier.

conducts the current iD, and the magnitude of iD. This in turn is first dependent upon

the bias voltage Vbias, and secondly upon the voltage input to the power amplifier vin. The

value of capacitor C1 is set to be very large to ensure that there is no dc component seen at

the output of the device, and the elements L2 and C2 form a tank circuit that determines

the frequency (irf = Irf sinw0t, w0 = 1/
√
L2C2) of the output signal.

The transistor operates in one of three possible states depending upon the bias voltage,

Vbias, and the power amplifier input signal, vin. When the sum of the bias and input

voltages is less than the threshold voltage of the transistor, no current flows through the

transistor (iD = 0) and the transistor is in its ‘cut-off’ state. When the sum of the bias and

input voltages is greater than the threshold voltage, the transistor is said to become ‘active’

and current flows through the transistor (iD > 0). In the ‘active’ state, the current iD is

linearly dependent upon the voltage vin. Finally, in the ‘saturation’ state, the transistor

conducts current but does not match a linear increase in input voltage, vin, with a linear

increase in current iD. In summary these states are:
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cut-off Vbias + vin < VT iD = 0

active Vbias + vin ≥ VT iD = gm(Vbias + vin − VT)

saturation Vbias + vin ≥ VT iD = VDD/RL

The output of the power amplifier is determined by the magnitude and portion of time

that the transistor conducts the current iD. The tank circuit shown in Figure 1.3 (elements

L2 and C2) filters any harmonics generated when current iD flows and ceases to flow so

that the output power amplifier voltage is given by

vout = IfundRL sin(w0t), (1.22)

where Ifund is given by

Ifund =
2

T

T
∫

0

iD sin(w0t)dt (1.23)

Amplifier Classes

The class to which the power amplifier belongs is dependent upon the value of the voltage

Vbias. A Class A amplifier is characterized by Vbias ≥ VT + |vin|, (i.e. transistor is always

conducting). A Class AB amplifier is produced when Vbias > VT, (i.e. the transistor

conducts more than half of every period). A Class B amplifier is produced when Vbias = VT.

In this case the input signal voltage must be greater than zero (vin > 0) for the transistor

to conduct, (i.e. the transistor conducts current for half of every period). A Class C

amplifier is characterized by Vbias < VT. In this case the transistor conducts current when

vin > VT − Vbias (i.e. the transistor conducts less than half of every period).

Figure 1.4 shows the current through the transistor for Class A, AB, and C power

amplifiers. The portion of the period for which the transistor conducts can also be used to

characterize a power amplifier, and is denoted as the conduction angle, 2φ. The conduction
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0

0

0

π wt3π2π

π wt3π2π

π wt3π2π

Class A

Class AB

Class C

i D
i D

i D

2φ

Figure 1.4: The transistor current of Class A, Class AB, and Class C power amplifiers.

angles for Class A, and B power amplifiers are φ = π, and φ = π/2, respectively. The

conduction angles for Class AB and C power amplifier are dependent upon the input

voltage vin, and iD and vary in the ranges π > φ > π/2, and φ < π/2, respectively.

Amplifier Linearity

The conduction angle can be used to re-express the current at the output of the power

amplifier, Ifund, as

Ifund =
2

T

∫ T

0

iD sin(w0t)dt

=
Irf
2π

[2φ− sin 2φ] (1.24)

Thus, when operating as a Class A (φ = π) or Class B (φ = π/2) amplifier, the output

current is linearly dependent upon Irf in the ‘active’ range of the transistor. However, when

operating as a Class AB (φ > π/2) or C (φ < π/2) amplifier, the output is no longer a

linear function of the input, vin, because the conduction angle changes with the amplitude
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0

0

π wt3π2π

π wt3π2π

Class C

i D
i D

Class B

2φC1

2φB

2φC2

Figure 1.5: The conduction angle of Class B and Class C amplifiers.

of Irf , see Figure 1.5. In fact, a true Class B power amplifier is also not realizable because

the abrupt on/off characteristic is not possible with a practical transistor. Therefore the

conduction angle of a practical Class B power amplifier is not exactly φ = π/2 and a

practical Class B amplifier is not truly linear. Additionally, all classes of power amplifier are

non-linear when the input voltage is large and the transistor operates near or at saturation.

In fact, operation in this region causes significant distortion, and performance degradation

for non-constant envelope modulations. For this reason, non-constant envelope modulation

schemes often employ a ‘back-off’ region, i.e. these schemes never transmit at the maximum

output power of the power amplifier.

Amplifier Efficiency

Often power amplifiers are characterized in the literature by a performance criterion called

drain efficiency. Drain efficiency is the ratio of transmitted power to dc input power,

where transmitted power is given by Pout = I2
fundRL/2, and dc input power is given by
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Pdc = VDDīD. The dc component of iD is

īD =
1

2π

∫ φ

−φ

(IDC + Irf cos θ)dθ

=
Irf
π

(sinφ− φ cosφ). (1.25)

Thus the drain efficiency can be written as [28, Chap 15.]

η =
Pout

Pdc

=
πIrfRL[2φ− sin 2φ]2

8VDD(sinφ− φ cosφ)
. (1.26)

The drain efficiency of an amplifier is a function of Irf , which is dependent upon the

input voltage vin. Therefore, it is common to characterize and compare different classes of

amplifiers by their peak drain efficiency (i.e. when the maximum amount of power is being

transmitted). In this case Ifund = VDD/RL determines that Irf = 2πVDD/(RL[2φ− sin 2φ]),

which yields

ηmax =
[2φ− sin 2φ]

4(sinφ− φ cosφ)
(1.27)

Using the above expression, the values for peak drain efficiency that are usually quoted in

the literature are 1/2, π/4, and a function of φ for Class A, B, and C amplifiers, respec-

tively. Theoretically the maximum drain efficiency of a Class C amplifier can approach

one (ηmax → 1), however for this to happen the peak value of the transistor current must

approach infinity (|iD|max → ∞). Although, these values are often used in the literature

they do not give a full picture of the performance of an amplifier. Average drain efficiency

values are often very different from the maximum efficiency values, which assume opera-

tion in the ‘saturation’ region of the power amplifier. For example [29] finds the average

drain efficiency for multi-carrier signals with a 10 dB peak-to-average power ratio to be
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5 and 28 percent for ideal Class A and Class B power amplifiers. In addition, the drain

efficiency metric does not account for the input signal power (at the vin source). Several

other efficiency measures have been proposed. Here, we will list two of the alternatives to

drain efficiency. The first is power added efficiency, which is given by

PAE =
Pout − Pin

Pdc
, (1.28)

where Pin is the signal power supplied to the power amplifier (i.e at vin). The second

efficiency measure is total efficiency, which is given by

ηT =
Pout

Pdc + Pin

. (1.29)

1.3 Contributions and Organization

The main goal of this thesis is to combine ST coding with CPM to produce a flexible, low

complexity, energy efficient transmission format. This thesis proposes:

• A block–based orthogonal ST code for CPM (Chapter 2).

• A block–based diagonal ST code for CPM with a low-complexity non-coherent re-

ceiver (Chapter 2).

• A distributed ST code for CPM for use in uncoordinated cooperative networks (Chap-

ter 3).

• A serially concatenated ST-CPM code (Chapter 4).

More specifically, in Chapter 2, we present two ST-CPM coding schemes. The first

ST-CPM code employs a simple burst–based approach that allows for the straightforward
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combination of any CPM format with orthogonal designs (ODs) [11],[30]. The resulting

orthogonal ST block code (OSTBC) can use the same detection techniques at the receiver

as are used for single–antenna transmission after an appropriate combining at the receiver.

The proposed OSTBC scheme entails a lower complexity than all previously proposed ST

coding schemes for CPM and yields a better performance for the important case of NT = 2

transmit antennas. The second ST-CPM code is inspired by differential space-time mod-

ulation (DSTM) using diagonal signal matrices, which was devised for linear modulations

by Hughes in [31] and by Hochwald and Sweldens in [32]. The resulting diagonal block

ST-CPM (DBST-CPM) code enables non-coherent detection without channel state infor-

mation (CSI). Further, a low-complexity receiver design is proposed that includes branch

metrics for reduced-state non-coherent sequence detection and for different fading channels.

We derive an upper bound for the frame error rate (FER) of DBST-CPM, and employ the

bound in an efficient algorithm to find optimal DBST-CPM codes.

The proposed DBST-CPM code is employed in both Chapter 3 and Chapter 4. In

Chapter 3 the DBST-CPM forms the basis of a distributed ST-CPM code. The distributed

ST codes are designed to operate in wireless networks containing a large set of nodes, of

which only a small a priori unknown subset will be active at any time. The devised

distributed ST-CPM scheme combines the DBST-CPM code, (commonly assigned to all

relay nodes) with signature vectors (uniquely assigned to nodes). We propose a numerical

method for the optimization of signature vectors sets and show that the performance

of the proposed distributed ST-CPM scheme is close to that achievable with co-located

antennas. The decoding complexity of the proposed scheme is shown to be independent

of the number of active relay nodes, and non-coherent receiver implementations, which

do not require channel estimation, are applicable. In the second portion of this chapter,

the energy consumption of the proposed distributed ST-CPM scheme is compared with

18



Chapter 1. Introduction

that of a distributed ST linear modulation (LM) scheme. The distributed ST schemes

are compared using the total energy (radiated and used in hardware) required to supply

a target bit error rate (BER) at a maximum transmission distance. The distributed ST-

CPM scheme is shown to outperform the distributed ST-LM scheme for all but short-range

transmission and performance gains are shown to increase with the number of active relay

nodes.

Finally, in Chapter 4, a serially concatenated code for ST-CPM is proposed. The

concatenated code consists of the diagonal signalling matrix from Chapter 2 as the inner

code, and a class of double parity check (DPC) codes as the outer code. We employ

extrinsic information transfer (EXIT) charts to select the best CPM symbol labelings for

the diagonally-structured ST-CPM code. We outline a method for estimating the capacity

of the underlying ST-CPM scheme in additive white Gaussian noise (AWGN) and derive an

expression for the outage probability over a quasi-static fading channel (QSFC) in order

to evaluate the merit of the proposed code. The resulting concatenated codes that are

formed from the ST-CPM code and a DPC code are shown to provide performance close

to capacity, and to provide performance superior to that provided by the more common

combination of CPM, or ST-CPM schemes with convolutional codes.
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Space-Time Coding for CPM

Space-time coding is widely recognized as an effective means to combat the effects of

multipath fading in wireless communications. Numerous space-time codes (STCs), which

can broadly be classified into space-time block codes (STBCs) and space-time trellis codes

(STTCs), have been proposed in the literature, cf. e.g. [33]. Almost all existing STC designs

consider linear and thus, in general, non-constant envelope modulation formats. However,

as previously discussed, constant envelope modulation formats such as continuous-phase

modulation (CPM) are particularly appealing for implementation in wireless devices due

to their high power and bandwidth efficiency. In fact, CPM is used in many wireless com-

munication systems such as Bluetooth and the Global System for Mobile Communication

(GSM) because of these very properties.

In the past few years there has been an effort to extend the concept of space–time

(ST) coding originally developed for linear modulations to CPM. Fairly general ST code

design rules for CPM have been given by Zhang and Fitz [1]. However, the decoding

complexity of the resulting ST–CPM scheme is exponential in the number of transmit

antennas. Orthogonal ST coded CPM schemes with reduced decoding complexity have

been proposed by Wang and Xia [15]. In this case, orthogonality is achieved by requiring

that the CPM waveforms transmitted over different antennas fulfill certain constraints in

neighboring symbol intervals. However, due to the inherent memory of CPM, the design

of the orthogonal schemes in [15] is quite involved and, in general, their error performance

is not as good as that of the schemes in [1].

20



Chapter 2. Space-Time Coding for CPM

The ST coding schemes in [1, 15] have the disadvantage that the phase trellis inherent to

CPM has to be modified. Therefore, existing CPM receivers cannot directly be applied and

new receivers specifically tailored for the adopted ST coding scheme have to be developed.

Both [1] and [15] emphasize that, because of the phase continuity and the associated

inherent memory of CPM signals, a straightforward combination of CPM and orthogonal

designs (ODs) [11, 30] is not possible.

More recently, ST codes for simple CPM schemes have been proposed. Cavers [16] and

Xian et al. [17] have introduced ST codes for minimum–shift keying (MSK). ST codes for

the special cases of binary CPM were proposed by Ahmadi and Rao [18] and Zhao and

Giannakis [19], and for CPFSK by Maw and Taylor [20]. It is worth pointing out that all

previously proposed ST coding schemes for CPM can be classified as ST trellis codes.

The ST-CPM schemes listed above have been designed for quasi-static fading channels

(QSFCs) with coherent detection assuming perfect channel state information (CSI) at

the receiver. More recently, Pande et al. [3] proposed a non-coherent1 receiver for the

orthogonal STTC design with full response CPM in [15, 34], and Pancaldi and Vitetta [2]

considered ST CPFSK and non-coherent detection.

In this chapter, we propose two ST coding schemes for CPM. The first scheme shows

that CPM can be easily combined with ODs by using a burst–based approach. This is

similar in spirit to time–reversal ST block coding [35] proposed for inter-symbol interference

channels. However, in the considered case the time–reversal is not necessary since the

memory is introduced by the modulation itself and not by the channel. The proposed burst–

based orthogonal space–time block coding (OSTBC) scheme has the same advantages as

symbol–by–symbol OSTBC for linear modulations. In particular, the proposed scheme

can be applied to any existing CPM format and, after an appropriate ST combining at

1For the sake of brevity, we will often omit the terms ‘with CSI’ and ‘without CSI’ and refer to respective
receivers as ‘coherent’ and ‘non-coherent’ receivers, respectively.
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the receiver, the same detection techniques as in case of single–antenna transmission can

be used. The second scheme is a general design method suited for non-coherent detection.

The scheme is inspired by differential space-time modulation (DSTM) using diagonal signal

matrices, which was devised for linear modulations by Hughes in [31] and by Hochwald

and Sweldens in [32]. The diagonal structure of the signal matrices (only one antenna

transmits at any given time) results in relatively simple decision rules that provide high

performance at low complexity for non-coherent transmission [31, 32]. In addition, the

diagonal structure of the signal matrices results in a highly versatile ST scheme that can

support any number of transmit and receive antennas, and any data rate. This flexibility

and the efficient receiver implementations possible for DSTM have made this DSTM scheme

successful despite the rate loss implicit in the diagonal structure. ST schemes employing

diagonally structured signalling matrices are especially attractive for transmission of low

data rates in non-coherent environments.

This chapter is organized as follows. In Section 2.1, the transmission model employed

for both of the proposed ST-CPM schemes is introduced. In Section 2.2, the OSTBC

for CPM based upon burst-based transmission is introduced. The section begins with an

overview of ODs and the specifics of CPM for the OSTBC scheme. Then, the burst–

based OSTBC for CPM is introduced. Its performance is analyzed in Section 2.2.5 and

simulation results for the scheme are presented in Section 2.2.6. In Section 2.3 the ST-

CPM scheme employing diagonal signal matrices is introduced. First, the specifics of CPM

for this scheme are overviewed, and then the new DBST-CPM scheme and corresponding

non-coherent receiver designs are presented. The performance bound and an optimization

algorithm are given in Section 2.3.4. Numerical and simulation results are shown and

discussed in Section 2.3.5. Finally, Section 2.4 concludes the chapter.
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Figure 2.1: Transmitter and receiver model for CPM with burst–based OSTBC.

2.1 Transmission Model

The general ST-CPM system considered is assumed to be a multiple–input multiple–output

(MIMO) transmission system with NT transmit and NR receive antennas as shown in

Figure 2.1. All signals are represented by their complex baseband equivalents.

Let snt(t) denote the signal consisting of Nf symbols that is transmitted over antenna

nt, 1 ≤ nt ≤ NT , during the time interval 0 ≤ t < NTNfT (see Section 2.2.3 for further

details on the structure of snt(t) and its relation to xnt(t) for the proposed OSTBC scheme,

and Section and 2.3.2 for the DBST-CPM scheme). The transmitted ST-CPM signal can

be written as

S(t,a) = [s1(t) s2(t) . . . sNT
(t)]T . (2.1)

The received signal, r(t) , [r1(t) r2(t) · · · rNR
(t)]T for NR receive antennas, is given by

r(t) = G(t) · S(t,a) + n(t) , 0 ≤ t < NTNfT , (2.2)

where n(t) , [n1(t)n2(t) · · ·nNR
(t)]T is the noise vector whose elements, nnr(t), 1 ≤ nr ≤

NR, denote independent additive white Gaussian noise (AWGN) processes with power

spectral density N0, and where G(t) is an NR × NT matrix that contains the elements

gnrnt(t), 1 ≤ nt ≤ NT , 1 ≤ nr ≤ NR, which denote the channel gains between transmit

antennas nt and receive antennas nr at time t. We will assume that the channel is constant
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for at least one symbol period T , thus G(t) is equal to G[n] , G(nT ) for nT ≤ t ≤

(n+ 1)T, 0 ≤ n < NTNf .

In this thesis, we will consider three popular and practically relevant channel models:

quasi-static fading, quasi-static fading with phase noise, and continuous fading.

Quasi-Static Fading Channel (QSFC): The QSFC model is often used for the

design and analysis of space-time coded systems, cf. e.g. [36, 37, 38]. The QSFC model

dictates that the channel is constant for one frame and changes independently from frame

to frame. Accordingly, the channel coefficients (elements of G[n]) for the QSFC can be

written as

gntnr [n] = fntnr , 0 ≤ n < Nf . (2.3)

We assume that the fntnr are independently and identically distributed zero-mean complex

Gaussian random variables with unit-variance, i.e., we consider a Rayleigh QSFC, cf. e.g.

[36, 37, 38].

QSFC with Phase Noise: An extension of the above model takes into account phase

noise due to carrier frequency instabilities caused by low-cost local oscillators. A common

model for the phase noise process θntnr [n] is the random-walk (Wiener) model [39]

θntnr [n] = θntnr [n− 1] + ∆ntnr [n] , (2.4)

where ∆ntnr [·] is a white Gaussian process with variance σ2
∆. The resulting channel coeffi-

cients are the product of phase noise and quasi-static fading and are given by

gntnr [n] = ejθntnr [n]fntnr , 0 ≤ n < Nf . (2.5)

We note that, while phase noise is irrelevant or, by definition, not present for (idealized)

coherent detection, the QSFC-with-phase-noise model is practically relevant and an im-

portant benchmark model for non-coherent detection.
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Continuous Fading Channel: Another generalization of the QSFC model is the case

of continuous fading, where the channel coefficients are samples of a discrete-time random

process

gntnr [n] = fntnr [n] , 0 ≤ n < Nf . (2.6)

We assume that the fntnr [n] are spatially uncorrelated zero-mean complex Gaussian (Rayleigh

fading) random processes with autocorrelation function, ϕff [κ], according to Clarke’s

model [40]

ϕff [κ] , E{f ∗
ntnr

[n]fntnr [n+ κ]} = J0 (2πBfTκ) , (2.7)

where J0(·) and Bf are the the zeroth order Bessel function of the first kind and the one-

sided bandwidth of the continuous-time fading process, respectively. As already implicit

in (2.7), all NTNR fading processes are assumed to have identical temporal correlations.

2.2 Burst–Based OSTBC for CPM

In this section, we introduce the proposed burst–based OSTBC scheme for CPM. We begin

with a brief review complex ODs and overview the specifics of the CPM used for this ST

scheme. Next, we present the considered transmission model and discuss the ST formating

at the transmitter. Then, we show that an appropriate ST combining at the receiver

enables single–input single–output (SISO) maximum–likelihood (ML) detection.

2.2.1 Complex Orthogonal Designs (ODs)

The complex ODs O(x) [30], x , [x1, x2, . . . , xNC
]T , NC ≤ NT , for NC data symbols xnc ,

1 ≤ nc ≤ NC , considered in this chapter are NS×NT matrices with entries ±xnc , ±x∗nc
, and

0. ODs with entries that are the sum or difference of different xnc or x∗nc
are not allowed,

because of the constant envelope requirement of the transmit signal. The elements of O(x)

are transmitted over the NT transmit antennas in NS symbol intervals and the code rate is
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RC , NC/NS. All ODs have the property OH(x)O(x) = (
∑NC

nc=1 |xnc|2)INT
[30]. Popular

examples are Alamouti’s code [11] (NT = 2) and the OD in [41, Eq. (22)] (NT = 4), which

are given by

O(x) ,







x1 x2

−x∗2 x∗1






(2.8)

and

O(x) ,



















x1 x2 x3 0

−x∗2 x∗1 0 −x3

−x∗3 0 x∗1 x2

0 x∗3 −x∗2 x1



















, (2.9)

respectively. Alamouti’s code has rate RC = 1, whereas the OD in [41, Eq. (22)] has rate

RC = 3/4. Note that all entries in the same column of O(x) are transmitted over the same

antenna, whereas all entries in the same row are transmitted at the same time.

2.2.2 Continuous–Phase Modulation (CPM) Specifics

For the proposed OSTBC scheme NC CPM waveforms xnc(t), 1 ≤ nc ≤ NC , are required

[42]

xnc(t) =

√

Es

T
exp

(

j2πh

NB+NE−1
∑

i=0

anc [i]q(t− iT )

)

, (2.10)

where Es, T , NB, and NE denote the energy per symbol, the symbol duration, the number

of data symbols, and the number of termination symbols, respectively, and Nf = NB +NE.

The symbols anc [i] ∈ A, 0 ≤ i ≤ NB − 1, are independent, identically distributed (i.i.d.)

M–ary data symbols taken from the alphabet A = {−M+1, −M+3, · · · , M−1}, whereas

the symbols anc [i] ∈ A, NB ≤ i ≤ NB +NE − 1, are known to the receiver and necessary

for termination of the CPM trellis for decoding. Note that we assume in Eq. (2.10) that

the same CPM format is used for all nc, 1 ≤ nc ≤ NC . This restriction is not necessary
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and only made to simplify the exposition.

2.2.3 Proposed OSTBC Scheme

As pointed out in [1, 15], the straightforward application of ODs on a symbol–by–symbol

level is not possible because of the continuous–phase requirement and the associated mem-

ory of CPM. In order to avoid this problem, we propose a simple burst–based OSTBC

scheme, i.e., we replace the symbols xnc in the OD O(x) by the CPM waveforms xnc(t),

1 ≤ nc ≤ NC , of duration TB , (NB + NE)T . The transmitted signals snt(t) are then

simply the concatenation of the (appropriately normalized) entries of the ntth column of

O(x) separated by a small guard interval of duration TG. The guard interval is used to

minimize the impact of the transition from one entry of O(x) to the next on the power

spectrum of the transmit signal. For this purpose the amplitude of snt(t) may be first

slowly decreased to zero, before the amplitude and phase of snt(t) are slowly changed to

the values prescribed by the next entry of O(x). This procedure is similar to what is done

in the GSM system where a guard interval of 8.25 symbols is inserted after every data

burst. In general, TG should be chosen long enough to make the effects of the transition

from one entry of O(x) to the next on the transmit power spectrum negligible. Although

the optimum value for TG will depend on the particular CPM scheme employed, in practice,

NET ≤ TG ≤ 2NET should give satisfactory results.

Taking the guard interval into account, the duration of snt(t) is NSTtot with Ttot ,

TB + TG. The data rate in bits per channel use of the proposed OSTBC scheme is

R =
NCNBT

NSTtot

log2(M). (2.11)

Throughout this section we will assume NE ≪ NB and TG ≪ TB, in which case the data

rate simplifies to R ≈ RC log2(M).
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To further illustrate the proposed OSTBC scheme, we consider the special case of

NT = 2 transmit antennas more in detail. We adopt the OD given by Eq. (2.8) and apply

the technique described above to obtain the transmit signals snt(t), nt = {1, 2}. Thus,

taking into account the normalization of the transmit power, the transmitted signals are

given by

s1(t) =











1√
2
x1(t) 0 ≤ t ≤ TB

− 1√
2
x∗2(t− Ttot) Ttot ≤ t ≤ Ttot + TB

(2.12)

s2(t) =











1√
2
x2(t) 0 ≤ t ≤ TB

1√
2
x∗1(t− Ttot) Ttot ≤ t ≤ Ttot + TB

(2.13)

Obviously, s1(t) and s2(t) have constant envelopes and continuous phases for 0 ≤ t ≤ TB

and Ttot ≤ t ≤ Ttot + TB.

For ODs with zero entries, cf. Eq. (2.9), the transmit signals snt(t) are zero in certain in-

tervals. During these intervals the corresponding transmit antenna can be simply switched

off. For example, for the OD with NT = 4 in Eq. (2.9) antenna nt does not transmit in

the interval (NT − nt)Ttot ≤ t ≤ (NT − nt + 1)Ttot, 1 ≤ nt ≤ NT . Again the guard interval

can be used to achieve a smooth transition of the transmit signal between the zero and

non–zero entries of O(x) making the effect on the transmit power spectrum negligible.

Although necessary in practice, for simplicity of exposition we will neglect the guard

interval in the following and assume TG = 0.
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2.2.4 Maximum Likelihood (ML) Detection

Assuming perfect channel state information at the receiver, for ML detection of the data

sequences anc , [anc [0], anc [1], . . . , anc [NB − 1]]T , 1 ≤ nc ≤ NC , we have to evaluate

{â1, . . . , âNC
} = (2.14)

argmina1, . . . , aNC







NR
∑

nr=1

NSTB
∫

0

∣

∣

∣

∣

∣

rnr(t) −
NT
∑

nt=1

gntnrsnt(t)

∣

∣

∣

∣

∣

2

dt







where ânc denotes the estimate for anc , 1 ≤ nc ≤ NC . The ML decision rule in Eq. (2.14)

can be significantly simplified by exploiting the properties of ODs [30]. To illustrate this,

we consider the NT = 2 case and the OD in Eq. (2.8). Using Eqs. (2.12) and (2.13) the

integral in Eq. (2.14) can be rewritten as

TB
∫

0

∣

∣

∣

∣

rnr(t) −
1√
2
[g1nrx1(t) + g2nrx2(t)]

∣

∣

∣

∣

2

dt+

2TB
∫

TB

∣

∣

∣

∣

rnr(t) −
1√
2
[−g1nrx

∗
2(t− TB) + g2nrx

∗
1(t− TB)]

∣

∣

∣

∣

2

dt

=

TB
∫

0

∣

∣

∣

∣

rnr(t) −
1√
2
[g1nrx1(t) + g2nrx2(t)]

∣

∣

∣

∣

2

+

∣

∣

∣

∣

rnr(t+ TB) − 1√
2
[−g1nrx

∗
2(t) + g2nrx

∗
1(t)]

∣

∣

∣

∣

2

dt. (2.15)

Applying Eq. (2.15) in Eq. (2.14) and omitting all irrelevant terms, the ML decision rule

in Eq. (2.14) for a1 and a2 can be simplified to

ânc = argminanc







TB
∫

0

|dnc(t) − xnc(t)|2dt







, (2.16)
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Figure 2.2: Transmitter and receiver model for CPM with burst–based OSTBC.

where dnc(t) is given by

d1(t) ,
1√
2

NR
∑

nr=1

(

g∗1nr
rnr(t) + g2nrr

∗
nr

(t+ TB)
)

(2.17)

d2(t) ,
1√
2

NR
∑

nr=1

(

g∗2nr
rnr(t) − g1nrr

∗
nr

(t+ TB)
)

. (2.18)

Note that irrelevant terms include terms such as |x1(t)|2|g1nr |2 and |rnr(t)|2|g1nr |2 which

do not affect the decision on anc . Also, note that terms such as g∗1nrrnr(t)g
∗
2nr
rnr(t + TB)

are zero terms. For ODs with NT > 2, the ML decision rule for anc , 1 ≤ nc ≤ NC , can

also be simplified to Eq. (2.16) where dnc(t) has the general form

dnc(t) ,
1√
NC

NT
∑

nt=1

NR
∑

nr=1

wntnr(nc)fncnt{rnr(t+ (nt − 1)TB)}. (2.19)

Here, fncnt{·} is either the identity operator (fncnt{x} = x) or the complex conjugation

operator (fncnt{x} = x∗). The coefficients wntnr(nc) can take on values ±gn′
tnr and ±g∗n′

tnr
,

1 ≤ nt, n
′
t ≤ NT , 1 ≤ nr ≤ NR. Both fncnt{·} and wntnr(nc) depend on the particular OD

used and are identical to the respective operators and coefficients appearing in the decision

variables for detection of phase–shift keying modulation with OSTBC, cf. e.g. [30].

Interestingly, the ML decision rule in Eq. (2.16) is identical to that for SISO CPM
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transmission over an AWGN channel with equivalent received signal dnc(t), cf. Figure 2.2.

Therefore, Eq. (2.16) can be implemented using any known optimum or sub-optimum

method based on e.g. Laurent’s representation [43] or Rimoldi’s decomposition approach

[25, 26] (see also Section 1.2). In contrast to the schemes in [1, 15, 16], there is no need to

tailor new detectors for the proposed OSTBC method.

Eq. (2.14) shows that the fading channel has to be approximately constant for NS(NB +

NE) symbol intervals. In contrast, for symbol–based OSTBC [11, 30] and the orthogonal

ST coded CPM scheme in [15] the fading channel has to be approximately constant only

for NS symbol intervals. Since NB ≫ 1 is recommended to make the overhead due to

the termination symbols and the guard interval negligible, the admissible fading variations

for the proposed burst–based OSTBC scheme are considerably smaller than those for the

non–CPM and the CPM schemes in [11, 30] and [1, 15, 16], respectively.

2.2.5 Performance Analysis

Bit Error Rate (BER)

Assuming SISO transmission over an AWGN channel, for high signal–to–noise ratios (SNRs)

the BER of CPM can be approximated by [42]

BER(γb) ≈ KQ(dmin

√

γb), (2.20)

where dmin denotes the normalized minimum Euclidean distance between two possible

bit sequences and K is a positive constant that accounts for the number of bit errors

per error event and the dependence of the error event on the transmitted data. Q(x) ,

1√
2π

∫∞
x
e−t2/2dt is the Gaussian Q–function and γb , Eb/N0, where Eb denotes the received

energy per bit.
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On the other hand, for CPM with OSTBC with NT = 2 transmit antennas, Eqs. (2.17)

and (2.18) show that the equivalent received signal can be rewritten as

dnc(t) =
1

2

NR
∑

nr=1

(|g1nr |2 + |g2nr |2) xnc(t) + z(t), (2.21)

where z(t) is an AWGN process with power spectral density
∑NR

nr=1(|g1nr |2 + |g2nr |2)N0/2.

Therefore, the instantaneous SNR per bit is γb =
∑NR

nr=1(|g1nr |2 + |g2nr |2)Eb/(2N0).

For the general case of NT transmit antennas and ODs with rate RC , the instantaneous

SNR per bit is

γb =

NT
∑

nt=1

NR
∑

nr=1

|gntnr |2
RCEb

NTN0
. (2.22)

Therefore, using Eq. (2.20) and the alternative representation of the Q–function Q(x) =

1
π

∫ π/2

0
exp[−x2/(2 sin2 θ)]dθ, x ≥ 0 [44], the approximate BER of the proposed OSTBC

scheme can be calculated to

BER ≈
∫

g

BER

(

NT
∑

nt=1

NR
∑

nr=1

|gntnr |2
RCEb

NTN0

)

pg(g) dg

=
K

π

π/2
∫

0

(

1 +
d2

minRCEb

2NTN0 sin2 θ

)−NT NR

dθ (2.23)

where g , [g11 g12 . . . gNT NR
]T and pg(g) is the joint probability density function of the el-

ements of g. Eq. (2.23) is easy to evaluate as only a one–dimensional numerical integration

over a finite interval has to be performed.

Using the bound Q(x) ≤ 0.5 exp(−x2/2), x ≥ 0, in Eq. (2.23), it is easy to show that

the Chernoff bound on the approximate BER is given by

BER
<∼ K

2

(

1 +
d2

minRCEb

2NTN0

)−NT NR

. (2.24)
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Eq. (2.24) shows that the proposed burst–based OSTBC scheme for CPM achieves the

maximum diversity order NTNR.

Frame Error Rate (FER)

To arrive at a meaningful expression for the FER, we have to assume that the bit errors are

approximately statistically independent. However, whether the bit errors are independent

or not depends on the particular CPM format used. For example, CPM with conventional

phase–increment mapping [26] results in double errors due to the resulting differential

encoding of the absolute phase. Fortunately, these double errors can be avoided if phase–

state mapping is employed, (see Section 1.2 for details), which we adopt for the simulations

in Section 2.2.6.

Assuming M–ary CPM transmission over an AWGN channel and approximately inde-

pendent bit errors, the corresponding FER is given by

FER(γb) ≈ 1 − (1 − BER(γb))
log2(M)NB , (2.25)

where BER(γb) is defined in Eq. (2.20). Combining Eqs. (2.22) and (2.25), the FER of

CPM with OSTBC can be obtained from

FER ≈
∫

g

FER

(

NT
∑

nt=1

NR
∑

nr=1

|gntnr |2
RCEb

NTN0

)

pg(g) dg. (2.26)

In the integrand in Eq. (2.26), the fading gains gntnr only appear in the form |gntnr |2.

Therefore, the evaluation of Eq. (2.26) involves an NTNR–dimensional numerical integra-

tion.

33



Chapter 2. Space-Time Coding for CPM

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

Numerical Results
 Simulation Results
Zhang & Fitz

BER�!
NT = 2

10 log10(Eb=N0) [dB℄ �!

NT = 1
NT = 4FER�!NT = 4NT = 2

NT = 1

Figure 2.3: BER and FER vs. 10 log10(Eb/N0) of GMSK with phase–state mapping.
Single–antenna transmission (NT = 1), OSTBC (NT = 2, NT = 4), and the ST cod-
ing scheme of [1] (NT = 2) are compared.

2.2.6 Performance Results

In this section, performance results are presented forNT = 2 andNT = 4 transmit antennas

employing the ODs in Eq. (2.8). One receive antenna and a frame length of NB = 130 is

assumed in all cases. For comparison we also consider single–antenna transmission and the

delay diversity (DD) scheme proposed in [1] forNT = 2 transmit antennas. To facilitate the

comparison, we adopt the same CPM schemes as [1]: GMSK with time–bandwidth product

BT = 0.3, binary 2REC with h = 1/2, and 4–ary 1RC with h = 1/4. The derivative of

q(t) is a rectangular pulse of duration 2T and a raised–cosine pulse of duration T for 2REC

and 1RC, respectively. Phase–state mapping [26] (see Section 1.2) is applied for all CPM
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Figure 2.4: BER and FER vs. 10 log10(Eb/N0) of binary 2REC with phase–state mapping.
Single–antenna transmission (NT = 1), OSTBC (NT = 2, NT = 4), and the ST coding
scheme of [1] (NT = 2) are compared.

schemes, and as a result K = 1 was valid in all cases. Note that [1] employed CPM with

phase–increment mapping. The resulting double errors affect the BER but not the FER.

Therefore, the FER comparison between the scheme in [1] and the proposed approach in

Figs. 2.3–2.5 is fair. The normalized squared minimum Euclidean distances of GMSK,

binary 2REC, and 4–ary 1RC are d2
min = 1.77, d2

min = 1.73, and d2
min = 1.64, respectively.

For GMSK and binary 2REC the data rate is R = 1 bit/(channel use) for NT = 1 and

NT = 2, and R = 3/4 bit/(channel use) for NT = 4. For 4–ary 1RC R = 2 bit/(channel

use) results for NT = 1 and NT = 2, and R = 3/2 bit/(channel use) for NT = 4.

Figs. 2.3, 2.4, and 2.5 depict the BERs and FERs for GMSK, binary 2REC, and 4–ary
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1RC, respectively. Simulation results (circles) and numerical results (solid lines) obtained

by evaluating Eqs. (2.23) and (2.26) are in excellent agreement for both single–antenna

CPM and CPM with OSTBC. Obviously, the proposed OSTBC scheme achieves a signif-

icant performance improvement compared to single–antenna transmission. For all consid-

ered CPM schemes with NT = 2 the FERs of the DD scheme of [1] are slightly higher than

the FERs of CPM with OSTBC.
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Figure 2.5: BER and FER vs. 10 log10(Eb/N0) of 4–ary 1RC with phase–state mapping.
Single–antenna transmission (NT = 1), OSTBC (NT = 2, NT = 4), and the ST coding
scheme of [1] (NT = 2) are compared.

For the simulation of single–antenna CPM and CPM with OSTBC we adopted the

reduced complexity detection technique proposed in [26]. For all considered examples, two

receive filters and two (GMSK, binary 2REC) and four (4–ary 1RC) states for decoding
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were sufficient to achieve close–to–optimum performance. Assuming optimum implemen-

tation, the complexity of the DD scheme of [1] is exponential in the number of transmit

antennas and much higher than that of the proposed burst–based OSTBC approach. Un-

fortunately, it is not straightforward to design low–complexity receivers that preserve the

diversity gain of optimum detection for DD and this problem was not discussed in [1].

ForNT = 4, a fair comparison with [1] is difficult because of the rate loss of complex ODs

for NT > 2 and the large differences in the required detection complexity. Furthermore, we

note that the performance of the scheme proposed in [15] is not shown, since it is slightly

worse than that of the scheme in [1], cf. [15, Figure 3].

2.3 Diagonal Block Space-Time (DBST) Coding for

CPM

In this section, we introduce the second ST-CPM scheme that we proposed in this thesis.

In order to preserve the constant envelope, continuous-phase properties of CPM for our

ST-CPM scheme we once again elect to transmit blocks or frames of data rather than data

symbols (each element in the signal matrix is now a CPM frame rather than a symbol

as is used in DSTM for linear modulation formats). Careful design of the data mappings

for each transmit frame produces a coding gain in addition to the expected diversity gain.

The resulting diagonal block-based ST-CPM (DBST-CPM) scheme can (a) be used with

any CPM format, (b) enable non-coherent detection, and (c) accommodate any number

of transmit and receive antennas. (The flexibility of the proposed scheme is in notable

contrast to other non-coherent ST-CPM schemes presented in the literature). In addition,

this section presents receiver designs for non-coherent detection of DBST-CPM in three

different fading environments, employing elements from per-survivor processing [45], linear
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prediction-based decision-feedback differential detection (DFDD) for DSTM [46], and state

reduction for CPM [26] to minimize detection complexity. Also in this section an efficient

search algorithm is designed to find the optimal data mappings for our ST-CPM scheme.

The applied data mappings are referred to as the ST code. (Optimization of the ST code

is similar to optimization of the DSTM diagonal constellation parameters [31, 32], however

due to the memory inherent to CPM ST code optimization requires a sequence-based

approach.) Finally, a tight bound for the frame-error rate (FER) of DBST-CPM under

is derived (under the assumption of coherent detection and a quasi-static fading channel

(QSFC)) that is used as the basis for the optimization of DBST-CPM.

We begin with an introduction to the ST-code structure of our proposed DBST-CPM

scheme, and then develop the receiver structure including decision rules for coherent and

non-coherent detection for the fading channels considered before.

2.3.1 Continuous-Phase Modulation (CPM) Specifics

The proposed ST-CPM scheme employs NT CPM waveforms [42]

xnt(t) =

√

Es

T
exp



j2πh

Nf−1
∑

i=0

ant [i]q(t− iT )



 , 0 ≤ t < NfT, 1 ≤ nt ≤ NT , (2.27)

where Es, T , and Nf denote the energy per symbol, the symbol duration, and the frame

length, which is the number of data-carrying symbols ant [i], respectively. The symbols

ant [i] are taken from the alphabet A , {−M + 1, −M + 3, · · · , M − 1} of size M . For
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later reference, we also introduce the vectors

ant , [ant [0] ant[1] . . . ant [Nf − 1]] ,

a[i] , [a1[i] a2[i] . . . aNT
[i]] ,

a , [a[0] a[1] . . . a[Nf − 1]] , (2.28)

of, respectively, data symbols transmitted over antenna nt, data symbols assigned to the

NT antennas during modulation interval i, and all data symbols in one frame.

Note that we assume in Eq. (2.27) that the same CPM format is used for all antennas

nt, 1 ≤ nt ≤ NT . This restriction is not necessary, but it is made for the purpose of

simplicity in this paper.

2.3.2 Modulation

Only one antenna transmits at any time when diagonal matrices are employed. If each

antenna is used for transmission in Nf consecutive modulation intervals, phase continuity

can be preserved for CPM without any additional signal processing or complicated design

restrictions. Hence, the proposed ST-CPM scheme employs transmit signals [see Eq. (2.27)

for xnt(t)]

snt(t) =











xnt(t−(nt−1)NfT ), (nt−1)NfT ≤ t < ntNfT ,

0 , otherwise,
(2.29)
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i.e., the NT antennas nt = 1, . . . , NT are used sequentially. Thus, we can write the ST-CPM

signal matrix as

S(t,a) =















x1(t) 0 · · · 0

0 x2(t−NfT ) · · · 0
...

...

0 0 · · · xNT
(t− (NT − 1)NfT )















. (2.30)

It is interesting to note that the proposed ST-CPM scheme is similar in structure to

“block DSTM” for linear modulation considered in [47, 48]. Therefore, we refer to the

proposed scheme as DBST-CPM. Also similar to linear DSTM with diagonal matrices,

the data vectors a[i] are chosen from an M-ary constellation and thus the data rate of

DBST-CPM is log2(M)/NT bits per symbol duration T . The actual design of the M-ary

set of data vectors a[i], i.e., the optimization of DBST-CPM, will be discussed in detail in

Section 2.3.4.

As previously mentioned we have opted to transmit blocks of data to preserve the

continuous-phase property of CPM, however, we would like to point out that, as for the

OSTBC code proposed in the previous section, the transitions between blocks of data need

not be considered a violation of the continuous-phase property, but rather they are similar

to the transitions observed in any packet based transmission scheme, as for example the

Global System for Mobile Communication (GSM), wireless local area network (WLAN)

systems, Bluetooth, etc.

2.3.3 Detection

The receiver for DBST-CPM, similar to a single-antenna CPM receiver, is comprised of a

bank of matched filters and a sequence detector [42], [25], [26].
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Filtering and Sampling

If the reduced matched filter bank proposed in Section is 1.2.1 is employed, the samples of

the filtered received signal are D-dimensional vectors rnr [n] = [r
(1)
nr [n], . . . , r

(D)
nr [n]]T with

r(d)
nr

[n] = rnr(t) ⊗ h∗d(−t)
∣

∣

∣

∣

t=nT

, 0 ≤ n < NTNf , (2.31)

where ⊗ denotes convolution.

Sequence Detection

Let us introduce the ‘address’ vector for ST-CPM as

d[i] , [Υ1[i− L], . . . ,ΥNT
[i− L],a[i− L+ 1], . . . ,a[i]] (2.32)

of L M-ary data symbols a[i] and NT p-ary phase states Υnt [i − L], which account for

the accumulated phase due to past data symbols of the CPM signal transmitted over

antenna nt. Corresponding to the vector d[i] there are NT signal elements ρnt(t,d[i]),

each of which is transmitted over one antenna nt in the interval iT + (nt − 1)NfT ≤ t <

(i+ 1)T + (nt − 1)NfT , 1 ≤ nt ≤ NT , 0 ≤ i < Nf . Then, corresponding to the D receiver

input filters, the sequence detector stores D-dimensional vectors ρnt
(d[i]), which represent

the decorrelated coordinates of ρnt(t,d[i]) with respect to the ‘basis’ functions given in

Eq. 1.20). More specifically, we have

ρnt
(d[i]) = C−1

∫ T

0

h∗(t)ρnt(t,d[i])dt , (2.33)

where C was given in Eq. (1.21).

Depending on the ST code of DBST-CPM (see Section 2.3.4 for the details about the ST
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Figure 2.6: Trellis of DBST-CPM for NT = 2 and CPM with 1REC pulse, M = 4, and
h = 1/2. Left: Repetition ST code. Right: Optimal ST code (see Section 2.3.4 for details
about ST code optimization).

code) the number of possible CPM phase state vectors [Υ1[i], . . . ,ΥNT
[i]] varies between p

and pNT , and hence the number of states of the trellis representing the DBST-CPM signal

varies between pML−1 and pNTML−1. An illustration of this effect is given in Figure 2.6,

which shows two trellises for DBST-CPM with NT = 2, 1REC pulse, i.e., a rectangular

frequency pulse g(t) with L = 1, M = 4, h = 1/2, and two different ST codes. As can be

seen, the number of states is pML−1 = 2 for one ST code and pNTML−1 = 4 for the other.

For sequence detection we adopt the classical Viterbi algorithm [49] operating on the

DBST-CPM trellis with path metrics Ψµ[i] for each state µ at data-symbol interval i, and

the path-metric update

Ψν [i+ 1] = Ψµ[i] + ψµν [i] , (2.34)

where ψµν [i] denotes the metric for the branch leaving from state µ and ending in state ν

during the ith data-symbol interval. Next, we will discuss the design of ψµν [i] for coherent

and non-coherent sequence detection.

A) Coherent Detection: Although our ultimate goal is the application of detection

without CSI, it is useful for later optimization of DBST-CPM and performance comparison
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to first consider the coherent detector. The maximum likelihood sequence detector (MLSD)

for coherent detection of DBST-CPM cross-correlates the filtered received samples with the

vectors ρnt
(d[i]) multiplied by the respective channel gains, and sums over all NR receive

antennas and all NT transmit antennas. The branch metric reads

ψµν [i] =

NT
∑

nt=1

NR
∑

nr=1

Re
{

rH
nr

[i+ (nt − 1)Nf ]ρnt
(dµν [i])gntnr [i+ (nt − 1)Nf ]

}

, 0 ≤ i < Nf ,

(2.35)

where dµν [i] is the address vector corresponding to the transition from state µ to ν and

Re{·} denotes the real part of a complex number.

B) Non-coherent Detection: Because the DBST-CPM data symbols ant [i] are in-

herently differentially encoded (see Eq. (2.27) and note that q(t) = 1/2 for t ≥ LT ),

the ST-CPM signal is invariant to phase rotations and non-coherent sequence detection is

directly applicable, cf. e.g. [50, 51]. In order to avoid an increase in the number of trellis

states compared to coherent detection, we make use of ideas from per-survivor processing

(PSP) [45] and decision-feedback differential detection (DFDD) for DSTM [46]. In par-

ticular, we propose to implicitly estimate the channel using per-state reference symbols

ηµ,nr ,nt[i] constructed as

ηµ,nr ,nt [i] =

Nd−1
∑

k=1

lkr
T
nr

[i− k + (nt − 1)Nf ]ρ
∗
nt

(d̃µ[i− k]) , (2.36)

where [d̃[i−Nd +1], . . . , d̃[i−1]] are the Nd−1 tentative (PSP) decisions corresponding to

the path ending in state µ (cf. [45]) and l = [l1 l2 · · · lNd−1] are the coefficients of a linear

minimum mean-square error (MMSE) predictor for the fading-plus-noise process, cf. e.g.

[46, 52] for linear modulation. Note that only Nd − 1 previous symbols d̃[i − k] are used

to form the reference in order to limit the complexity of the receiver. The branch metric
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for non-coherent detection of DBST-CPM reads

ψµν [i] ,

NT
∑

nt=1

NR
∑

nr=1

Re
{

rH
nr

[i+ (nt − 1)Nf ]ρnt
(d[i])ηµ,nr ,nt [i]

}

. (2.37)

If the statistics of the fading process gntnr [n] are known a priori, the predictor coefficients

lk can be calculated from the Yule-Walker equation [53]

l = R−1p , (2.38)

where R is a Toeplitz matrix, whose first row is given by [ϕgg[0] + σ2
n, ϕgg[1], · · ·ϕgg[Nd − 2]],

p = [ϕgg[1]ϕgg[2] · · ·ϕgg[Nd − 1]]T , and σ2
n , N0/T , φgg[κ] , E{g∗nrnr

[n]gnrnr [n + κ]}. For

the three channel models introduced in Section 2.1 we have (a) QSFC: ϕgg[κ] = 1, (b) QSFC

with phase noise: ϕgg[κ] = e−σ2
∆|κ|/2, and (c) continuous fading channel: ϕgg[κ] = ϕff [κ],

as it was given in Eq. (2.7). Alternatively, l can be obtained using adaptive algorithms, cf.

e.g. [54].

C) Reduced State Sequence Detection (RSSD): As mentioned before, the number

of phase state vectors of DBST-CPM is variable depending on the applied ST code (see

Section 2.3.4). In particular, we found that for most of the power-efficient ST codes this

number attains its maximal value of pNT . In these cases, the DBST-CPM trellis and thus

the sequence detector, whether coherent or non-coherent, will require pNTML−1 states

(using the modified CPM phase trellis given in [25, 26]). Hence, complexity of the receiver

increases considerably with the number of transmit antennas NT and the application of

RSSD [26, 55] becomes desirable. In particular, we concentrate on reducing the phase

states from pm, 1 ≤ m ≤ NT , where the value of m depends on the ST code, to p, which is

the same as for the single-antenna case. Accordingly, at each stage of the sequence detector

only the largest out of pm path metrics corresponding to the set of trellis states which differ

44



Chapter 2. Space-Time Coding for CPM

in the phase state only is selected, and thus, the number of possible branch metrics that

need to be calculated in any given interval is reduced from pmML to pML.

2.3.4 Optimization of DBST-CPM

The diagonal structure of the DBST-CPM signalling matrix given in Eq. (2.30) guarantees

full diversity. In addition, a significant coding gain can be realized if the the data mappings

of successive frames are correctly chosen. Thus, the proper design of DBST-CPM requires

an optimization of the structure of the vectors a[i]. Let

C , {c[1], c[2], . . . , c[M ]} ⊂ ANT , (2.39)

be the set of M vectors c[i] , [c1[i] c2[i] . . . cNT
[i]] from which the a[i] are selected through

the mapping of log2(M) data bits. We refer to C as the ST code of DBST-CPM. For

example, one possibility is to choose cnt[i] = c1[i], 2 ≤ nt ≤ NT , i.e., C is a repetition

code. The optimization of C is similar to the optimization of the constellation parameters

[u1 . . . uNT
] in [32, Section VII]. However, due to the inherent memory of CPM, the opti-

mization cannot be performed for individual modulation intervals as in [32], instead the

entire ST signal S(t,a) has to be considered.

We consider the frame-error rate (FER) of DBST-CPM as the optimization criterion.

For this purpose, in Section 2.3.4 we derive a tight upper bound for the FER, and an

algorithm for its numerical evaluation is presented in Section 2.3.4.

Derivation of Frame Error Rate (FER) Bound

In this section, we will first derive the Chernoff bound on the pair-wise error probability

(PEP) of our DBST-CPM scheme to demonstrate that it achieves full diversity. Then, we

will derive a tighter bound on the FER, and finally truncate the bound to arrive at a useful
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approximation of the upper bound that can be efficiently evaluated. For mathematical

tractability we assume coherent MLSD and the QSFC in the derivation of the upper FER

bound. As justification for these assumptions we note that the diagonal structure of the ST-

CPM signal matrix was chosen for express purpose of facilitating non-coherent detection.

Thus DBST-CPM yields non-coherent performance that approaches that of MLSD with

CSI. In fact, simulation results in Section 2.3.5 will show that the non-coherent and reduced

state performance of the ST-codes approaches coherent performance. Furthermore, the

assumption of a QSFC is, in terms of code optimization, also a good approximation for

the continuous fading channel since the memory of DBST-CPM is limited.

Pair-Wise Error Probability (PEP) The PEP P (aα → aβ) is the probability that

the receiver erroneously decides in favour of the sequence aβ when the transmitted sequence

is aα. Under the assumption that the data sequence aα was transmitted the corresponding

received signal and the QSFC coefficients are r(t,aα) and gntnr , respectively. The MLSD

metric, m(r(t,aα),aβ), for a trial sequence aβ is then given by

m(r(t,aα),aβ) =

NT
∑

nt=1

NR
∑

nr=1

Nf T
∫

0

|rnr(t+ (nt − 1)T,aα) − gntnrxnt(t,a
β)|2dt . (2.40)

The PEP P (aα → aβ), conditioned on the channel G follows as (Pr{·} denotes probability)

P (aα → aβ|G) = Pr{m(r(t,aα),aβ) < m(r(t,aα),aα)} = Q





√

d2(aα,aβ,G)

2N0



 ,

(2.41)

where Q(x) , 1/
√

2π
∫∞

x
e−t2/2dt, and

d2(aα,aβ,G) ,

NT
∑

nt=1

NR
∑

nr=1

|gntnr |2∆nt (2.42)
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is the sum of the scaled squared Euclidean distances

∆nt ,

Nf T
∫

0

|xnt(t,a
α
nt

) − xnt(t,a
β
nt

)|2dt , (2.43)

between the transmitted and the erroneous CPM signal for antenna nt. Considering the

CPM signal description in Eq. (2.27), the squared Euclidean distances can be written as

∆nt = 2NEs −
2Es

T

Nf T
∫

0

cos



2πh

Nf−1
∑

i=0

(aα
nt

[i] − aβ
nt

[i])q(t− iT )



 dt , (2.44)

which only depends on the difference sequence γnt[i] , aα
nt

[i]− aβ
nt

[i]. The Chernoff bound

for the average PEP has the familiar form

P (aα → aβ) ≤
(

NT
∏

nt=1

1

1 + ∆nt/(4N0)

)NR

. (2.45)

If the code words in C are different in each position, then ∆nt > 0 for 1 ≤ nt ≤ NT and

DBST-CPM achieves full diversity.

Bound on FER In principle, we could directly use the Chernoff bound on the PEP

as a design criterion and only consider the dominant error event maximizing Eq. (2.45).

However, when the fading channel is static, there are no dominant error events, since for

any given frame the received signal-to-noise ratio (SNR) may be low, which results in a

high probability for all error events. Alternatively, we could combine the PEP bound Eq.

(2.45) with the union bound, which sums over all possible error events. But, again when

the channel is static or only slowly varying, the union bound is typically not tight and may

diverge even at high SNR [36].

Hence, in order to produce a useful design criterion we adopt another approach that
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was applied in [36] to estimate the performance of space-time trellis codes for the QSFC.

In order to prevent the union bound from diverging at low SNR, we define a region R

that contains values of the channel matrix G that result in low SNR. While there are

many possibilities for defining a suitable R, spherical and cubical regions provide simple

and tight bounds. Of these two possibilities the spherical region provides a tighter and

simpler bound, but a closed-form expression cannot be found for more than one receive

antenna [36]. In this section, for simplicity we will present the FER bound assuming one

receive antenna and the spherical bound, but we note that the bound can be extended to

any number of receive antennas using the cubical bound. We define region R as an NT

dimensional hypersphere of radius R centered around the origin

R ,

{

G

∣

∣

∣

∣

∣

NT
∑

nt=1

|g1nt|2 ≤ R2

}

, (2.46)

and upper bound the FER by

Pe = Pr{e|G ∈ R}Pr{G ∈ R} + Pr{e|G 6∈ R}Pr{G 6∈ R} (2.47)

≤ Pr{G ∈ R} + Pr{G 6∈ R}
∑

aα

Pr(aα)
∑

aβ 6=aα

P (aα → aβ|G) . (2.48)

Making use of the derivation in [36, Appendix] and the PEP from Eq. (2.41), we can

find a closed-form expression for the bound on the FER. The bound is dependent on

the relationship between the squared Euclidean distances ∆nt . As an illustration we will

explicitly show expressions for the bound for two different special cases.

A) Distinct Euclidean Distances: When all squared Euclidean distance terms are
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unique, i.e., for ∆nt 6= ∆i for nt 6= i, the bound can be written as

Pe ≤
[

1 − e−R2

(

NT
∑

nt=1

R2nt

nt!

)]

+
1

2

∑

aα

Pr(aα)
∑

aβ 6=aα

[

NT
∑

nt=1

(

∏

i6=nt

1

(∆i−∆nt)γ

)

e−(1+∆ntγ)R2

(1 + ∆ntγ)

]

,

(2.49)

where γ = 1/(4N0).

B) Identical Euclidean Distances: When all squared Euclidean distance terms are

identical, i.e., ∆nt = ∆ for 1 ≤ nt ≤ NT , the bound can be written as

Pe ≤
[

1 − e−R2

(

NT
∑

nt=1

R2nt

nt!

)]

+
1

2

∑

aα

Pr(aα)
∑

aβ 6=aα

[

e(1+∆γ)R2
NT −1
∑

nt=0

R2nt

(1 + ∆γ)NT −nt

1

nt!

]

.

(2.50)

During numerical evaluation of Pe, the radius, R, of the hypersphere is optimized to

produce the tightest upper bound using a Golden Section search [56, Section 10.1].

Truncated Bound on FER The number of distance terms that need to be considered

for the FER bound, e.g. in Eqs. (2.49) and (2.50) for the two special cases, can be reduced

by using the concept of simple error events, cf. e.g. [36, 37, 38]. An error event is considered

a simple error event if the erroneous sequence diverges from the transmitted sequence and

re-merges only once, i.e., there is only one erroneous segment in the received stream. Fur-

thermore, because calculation of the entire distance spectrum is computationally expensive

we truncate the sum such that terms whose product distance

p(∆) ,

NT
∏

nt=1

∆nt (2.51)

for ∆ , [∆1 . . . ∆NT
] exceed a threshold pmax are discarded. Hence, considering for exam-

ple the case that all ∆nt are unique [Eq. (2.49)], the truncated bound can be numerically
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evaluated as

Pe ≤
[

1 − e−R2

(

NT
∑

nt=1

R2nt

nt!

)]

+
∑

p(∆)<pmax

A(∆)

[

NT
∑

nt=1

(

∏

i6=nt

1

(∆i−∆nt)γ

)

e−(1+∆ntγ)R2

(1 + ∆ntγ)

]

,

(2.52)

where A(∆) accounts for the multiplicity and the probability of the pair-wise error events

with distance vector ∆. The contribution of ∆nt to the bound in Eq. (2.49) decreases

exponentially with increasing ∆nt , therefore, when pmax is large the truncated bound is a

good approximation of the upper bound. Similar expressions for the truncated bound can

be found for any number of unique and repeated squared Euclidean distance terms, e.g.

for the case of all repeated Euclidean distances considered in Eq. (2.50).

The weight A(∆) can be evaluated by assuming that the frame length Nf is very large.

Using this assumption edge effects caused by termination of trellis can be neglected and

all error events can be assumed to start in the middle of a long block. Analysis of this kind

is referred to as first error event analysis [57]. Following this assumption, an error event of

length Le symbols may be repeated Nf/Le times. Therefore, the weight of an error event

with distance vector ∆ is written as

A(∆) =
∑

Le

∑

b

Nf

Le
Ne(b, Le, p(∆))

Le
∏

i=0

P (γ1[i]) (2.53)

where Ne(b, Le, p(∆)) denotes the multiplicity of error events with number of bit errors b,

length Le, and product distance p(∆), and P (γ1[i]) denotes the probability of difference

sequence γ1[i] and is given by P (γ1[i]) = (M − |γ1[i]/2|)/M .

Note that the difference sequences for all antennas nt > 1 are uniquely determined

by the difference sequence of antenna nt = 1. Therefore, the probability of the pair-wise

error event with distance vector ∆ is dependent only on the data stream transmitted from

antenna nt = 1.
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Algorithm for Numerical Evaluation of the Truncated FER Bound

To find the optimal DBST-CPM ST code for any given CPM format we require an efficient

search algorithm. Our proposed algorithm finds the optimum code C by evaluating the

truncated upper bound [e.g. Eq. (2.52)] for all possibilities for C and selecting the code

that produces the lowest bound. In particular, exploiting the symmetry of the problem,

(M !/NT !)NT −1 combinations of code vectors need to be examined.

To find all pairs (∆, A(∆)) required for the truncated bound, i.e., the distance spec-

trum, we extend the algorithm presented in [58] for CPM with a single antenna. Initially,

the possible difference sequence sets {γnt} for the ST code and their probabilities must be

determined. For example, for a two antenna system, M = 4, and ST code

C =

















−3

−1






,







−1

+3






,







+1

−3






,






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+1

















the possible difference sequences are given by

















γ1

γ2

















=








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
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0
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Additionally, the bound pmax on the product distance and a bound on the length of

error sequences must be set.

Table 2.1 shows the pseudo-code for the algorithm that calculates the distance spec-

trum. ei denotes an error sequence, i.e., a vector of difference sequences, and the algorithm

begins by evaluating the distance of all possible error sequences of length Le = 1. The algo-

rithm maintains a list L of error sequences that satisfy all of the criteria of the algorithm.
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Once the length one error sequences have been evaluated each error sequence is treated

individually and extended by one difference symbol, and the corresponding Euclidean dis-

tance, the error sequence weight, and the length of the error sequence are recorded, and the

algorithm proceeds with Le = 2 and so forth. As the algorithm proceeds error events that

exceed the bound pmax are discarded, and error events with the same product Euclidean

distance
∏NT

nt=1 ∆nt , the same number of bit errors b, the same length Le, and the same

phase state
∑n

i=1 γ1[i] are merged by adding their weighting factors. If the error event

path re-merges with the transmitted stream, i.e.,
∑n

i=1 γnt [i] = 0 for all nt = 1, . . . , NT ,

then the path is saved and is no longer updated. The algorithm is terminated when there

are no remaining error events to update with p(∆) < pmax, or the error event path length

reaches a pre-defined upper bound.

2.3.5 Performance Results

In this section, we present extensive performance results for the proposed DBST-CPM

scheme. The ST codes considered for simulation have been optimized by setting pmax =

30NT in the search algorithm in Table 2.1. The same threshold is applied for all numerical

FER results shown in this section. One receive antenna and a frame length of Nf = 130 are

assumed in all cases. The number of filters in the receive filter bank is chosen to be D = 3.

Phase-increment mapping [26] is applied for all CPM schemes. Unless stated otherwise,

DBST-CPM with M = 4, h = 1/2, and 1REC pulse is assumed. Numerical and simulation

results are presented as function of the SNR Eb/N0, where Eb = Es

log2(M)/NT
denotes the

average received energy per bit.
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Figure 2.7: FER vs. 10 log10(Eb/N0) for 1REC pulse, h = 1/2, and M = 4. DBST-CPM
(NT = 2 and NT = 3) with repetition code and optimal code and CPM with NT = 1.
Simulation results and the analytical upper bound are compared for the QSFC.

Coherent Detection

In order to separate the effects of code optimization, state reduction, and non-coherent

detection, we first present results for coherent detection and the QSFC. The subsequent

section will show that the gains obtained under these conditions also apply to non-coherent

detection and non-quasi-static fading environments.

A) MLSD: Figure 2.7 depicts the FERs of coherent MLSD for the optimal ST code

C found with the algorithm from Section 2.3.4 and for the repetition code for NT = 2 and

NT = 3, respectively. As a reference, the FER for the same CPM scheme andNT = 1 is also

shown. It can be seen that the results obtained from simulation (dashed lines) and from

numerical evaluation of the truncated bound (solid lines) are in good agreement. We note
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that the tightness of the bound is a function of the truncation parameter pmax, which should

be set with some care. Large pmax are computationally expensive, and small pmax may not

provide an upper bound. Importantly, however, when we set pmax = 30NT we found that

the bound accurately predicts the performance ordering of different codes for numerous

system parameters and gives a quantitatively precise approximation of the performance

gained by using the optimal code C in comparison to e.g. the simple repetition code. For

the chosen example, this gain amounts to 2 dB in power efficiency for both NT = 2 and

NT = 3.

Comparing the performances for DBST-CPM with NT = 2, NT = 3 and single-antenna

CPM, we observe that DBST-CPM with multiple antennas results in considerable improve-

ments in power efficiency. In particular, the slopes of the FER curves confirm the diversity

advantage of DBST-CPM. Since the same CPM scheme is used for both NT = 1, NT = 2,

and NT = 3, the data rate for single-antenna CPM is double of that for DBST-CPM with

NT = 2 for example. However, a truly fair comparison is difficult as increasing the size M

of the signal constellation also affects the bandwidth of the CPM signal.

B) RSSD: When the repetition code is employed the CPM signals transmitted over

NT antennas are all identical, which means that the number of states for MLSD is pML−1

(independent of NT ) and less than that for the optimal code with in general pNTML−1

states. Figure 2.8 provides a comparison of DBST-CPM with MLSD and RSSD. For the

optimal code, MLSD is performed in a four-state trellis while a trellis with only two states

is used for RSSD, (the number of states required for MLSD of the repetition code, cf.

Figure 2.6). We observe that state reduction causes only a small performance degradation.

In particular, the gains from code optimization are also well preserved for RSSD.

C) Overview of Results for QSFC: Tables 2.2-2.4 provide an overview of the nu-

merically evaluated performance gains obtained with optimized DBST-CPM for NT = 2
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Figure 2.8: FER vs. 10 log10(Eb/N0) for 1REC pulse, h = 1/2, and M = 4. DBST-CPM
(NT = 2) with repetition code and optimal code. MLSD and RSSD with CSI for the
QSFC.

and NT = 3 antennas and a variety of CPM formats. In particular, the popular 1REC,

2RC, and 3RC CPM pulse shapes (for 2RC and 3RC CPM, the frequency pulse g(t) is a

raised cosine pulse of length L = 2 and L = 3, respectively, cf. [42]), constellation sizes

M = 4 and M = 8, and modulation indices of h = 1/2, 1/3, and 1/4 are considered. The

tables present the optimum codes C for NT = 2 and NT = 3 and the associated perfor-

mance gains compared to repetition codes, with respect to the required 10 log10(Eb/N0) to

obtain an FER of 10−2.

These tables show that depending on the number of transmit antennas and the modu-

lation format gains between 0.7 dB and 5 dB are possible by using an optimally selected

code. A direct comparison of the performance of single antenna transmission and the
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performance of the ST coding scheme is difficult due to the non-linear relationship of the

normalized CPM bandwidth (B99%T ) and parameters M and h. However, we will make

one comparison here to illustrate the benefits of the proposed ST coding scheme. The

quaternary 2RC DBST-CPM scheme with NT = 2 and h = 1/4 (see Table 2.2) has a nor-

malized bandwidth of B99%T = 1.24. A binary 2RC single-antenna scheme with h = 1/2

has the same data rate and the normalized bandwidth is B99%T = 1.05, i.e., quite compa-

rable to that of DBST-CPM. DBST-CPM achieves a FER of 10−2 at 19.2 dB, whereas the

single-antenna scheme requires 28.0 dB. This is a significant performance improvement of

more than 8 dB.

Non-coherent Detection

In this section, we will present performance results for the different fading channel models

introduced in Section 2.1 and non-coherent detection employing the branch metrics de-

scribed in Section 2.3.3. In all cases, the first two symbols of each frame are assumed to

be known at the receiver to allow for an initialization of the reference symbol defined in

Eq. (2.36). The filter length used for the reference symbol is gradually increased from 2 to

Nd at the beginning of each frame until the N th
d symbol is received.

Figure 2.9 shows the performance results for the QSFC and non-coherent detection

with different values of Nd. DBST-CPM with the optimal ST code and with the repetition

code are compared for NT = 2. The respective curves for coherent detection are included

as a reference. We would like to emphasize that the number of states for non-coherent

detection is the same as that for coherent detection (see Section 2.3.3). As can be seen, the

FER curves for non-coherent detection closely approach those for coherent detection with

increasing Nd. Hence, code optimization based on the MLSD bound for coherent detection

also yields results relevant for the case of non-coherent detection. The repetition code

yields a somewhat faster convergence with increasing Nd, since in this case DBST-CPM
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Figure 2.9: FER vs. 10 log10(Eb/N0) for 1REC impulse, h = 1/2, and M = 4. DBST-CPM
(NT = 2) with repetition code and optimal code. Coherent detection with CSI and non-
coherent detection without CSI for the QSFC. 2-state trellis for repetition code, 4-state
trellis for optimal code.

has a trellis with only p = 2 phase states, whereas pNT = 4 phase states are present for the

optimal code design (cf. Figure 2.6).

For the same DBST-CPM scheme, Figure 2.10 shows the performances for the optimal

and the repetition ST codes for the QSFC channel with phase noise of variance σ2
∆ = 0.01.

Nd = 2 and Nd = 5 are chosen for non-coherent detection. We observe that although

both codes suffer from a performance degradation compared to ideal coherent detection,

the optimal code still outperforms the repetition code by approximately the same margin

as for coherent detection.

Finally, the performance of DBST-CPM with the same codes as above is shown for a
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Figure 2.10: FER vs. 10 log10(Eb/N0) for 1REC pulse, h = 1/2, and M = 4. DBST-CPM
(NT = 2) with repetition code and optimal code. Coherent detection with CSI and non-
coherent detection without CSI for the QSFC with phase noise with variance σ2

∆ = 0.01.
2-state trellis for repetition code, 4-state trellis for optimal code.

continuous fading channel in Figure 2.11. The fading bandwidth is adjusted to BfT = 0.03

and Nd = 2 and Nd = 14 are chosen for non-coherent detection. We observe that, different

from the QSFC, the performance gain offered by the optimal DBST-CPM code over the

repetition code continues to increase for SNRs up to 30 dB. For this fading scenario,gain

becomes fixed, i.e., the curves run parallel, only at very high SNR. It can further be seen

that the improvement due to the optimal ST code predicted from considering coherent

detection is closely realized also for non-coherent detection with appropriately chosen Nd,

which confirms the relevance of the conducted code optimization. Of course, a gap in

absolute power efficiency between coherent and non-coherent remains for this relatively
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Figure 2.11: FER vs. 10 log10(Eb/N0) for 1REC pulse, h = 1/2, and M = 4. DBST-
CPM (NT = 2) with repetition code and optimal code. Coherent detection with CSI and
non-coherent detection without CSI for the continuous fading channel with normalized
bandwidth BfT = 0.03. 2-state trellis for repetition code, 4-state trellis for optimal code.

fast fading environment. We note however that coherent detection with perfect CSI is only

an idealized model, which cannot be realized in practice.

Comparison with ST-CPM Schemes from the Literature

Although the main advantage of the proposed DBST-CPM is its flexibility with respect to

the CPM parameters and the number of antennas, it is insightful to compare the power ef-

ficiency of DBST-CPM with those of less flexible but also non-coherent detectable schemes

from the literature for the same/similar bandwidth efficiency. In particular, we consider

the ST-CPM schemes devised by Pande, Huh, and Krogmeier [3] (PHK scheme) and Pan-
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Figure 2.12: BER vs. 10 log10(Eb/N0) for DBST-CPM and the PV scheme [2], both with
NT = 2. DBST-CPM: 1REC pulse, h = 1/2, and M = 4. PV ST-CPM: 1REC pulse,
h = 1/2, and M = 4 (“sub-optimal”) and M = 8 (“optimal”). Data rate is 1 bit per
symbol duration T in all cases. Non-coherent detection without CSI for the continuous
fading channel with normalized bandwidth BfT = 0.001. As reference: DBST-CPM and
coherent detection with CSI.

caldi and Vitetta [2] (PV scheme), which are designed for NT = 2 and full response CPM

and its special case CPFSK, respectively.

First, we consider the PV scheme for which bit-error rate (BER) results were presented

in [2, Figure 1] for a continuous fading channel with BfT = 0.001 and the parameters

NT = 2, NR = 1, 1REC pulse, h = 1/2, and both M = 4 and M = 8. The PV schemes

with M = 4 and M = 8 were referred to as “optimal” and “suboptimal” in [2], and the

data rate is 1 bit per symbol duration T in both cases. In Figure 2.12, we show the

BER for the PV scheme and for DBST-CPM with the same parameters but M = 4 only,

i.e., DBST-CPM has the same bandwidth efficiency as the PV scheme with M = 4, and
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Figure 2.13: BER vs. 10 log10(Eb/N0) for DBST-CPM and the PHK scheme [3], both
with NT = 2. DBST-CPM: 1REC pulse, h = 1/4, and M = 4. PHK ST-CPM: 1REC
pulse, h = 1/2, and M = 2. Data rate is 1 bit per symbol duration T in all cases.
Non-coherent detection without CSI for the continuous fading channel with normalized
bandwidth BfT = fdT = 0.01 and BfT = fdT = 0.03 according to Clarke’s model for
DBST-CPM and a third order Butterworth spectrum for PHK scheme. Nd = 10 for
DBST-CPM corresponds to N = 5 for the PHK scheme.

a higher bandwidth efficiency than the PV scheme with M = 8, due to the bandwidth

expansion of CPM with M = 8. It can be seen that DBST-CPM outperforms the PV

schemes with M = 4 and M = 8 in terms of BER, i.e., it is advantageous both in power

and in bandwidth efficiency. It is difficult to compare the detection complexities for DBST-

CPM and the PV scheme, since the latter employs a “codeword-by-codeword” detection,

where a codeword corresponds to an M-ary ST-CPM symbol. As a coarse indicator of

complexity, we mention that the number of (branch) metric calculations needed per data

symbol is 16 for DBST-CPM, and 4 and 8 for the PV scheme with M = 4 and M = 8,

respectively.
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Next, we consider the PHK scheme and MSK, i.e., 1REC pulse, M = 2 and h = 1/2,

for which results were presented in [3, Figure 5] for NT = 2, NR = 1 and continuous fading.

The data rate of this PHK scheme is 1 bit per symbol duration T . In order to achieve

the same data rate we use quaternary DBST-CPM. We further choose a 1REC pulse and

h = 1/4, whose normalized CPM bandwidth is B99%T = 1.44, which is reasonably close

to the B99%T = 1.18 of MSK used in [3]. The spectrum of the fading process in [3] has a

third order Butterworth characteristic with 3 dB bandwidth fdT , which is different from

the fading spectrum according to Clarke considered in this paper. Still, we compare BER

curves from [3, Figure 5] with those for DBST-CPM and the Clarke fading model with

BfT = fdT = 0.01 and 0.03, respectively, in Figure 2.13. The curves from [3, Figure 5]

with detection parameter N = 5 are plotted in Figure 2.13, which corresponds to non-

coherent detection with Nd = 10 for DBST-CPM. It is interesting to observe that the

PHK scheme suffers from a significantly higher error floor as compared to DBST-CPM.

This difference in error floor can be attributed to (a) the orthogonal ST-code structure

of the PHK scheme, which is more sensitive to channel variations than the diagonal code

structure adopted for DBST-CPM, and (b) the superior non-coherent detector developed

for DBST-CPM. We note that the error floor is a function of the fading bandwidths BfT

and fdT , which are adjusted to the same values in Figure 2.13. The performance difference

for lower SNR values could be due to the different fading processes considered.

2.4 Conclusions

In this chapter, we have presented and analyzed two ST-CPM coding schemes. In Section

2.2, we proposed a simple OSTBC scheme for CPM. The advocated burst–based approach

allows the straightforward combination of any CPM format with ODs. After an appropriate

combining at the receiver, the same detection techniques as in case of single–antenna
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transmission can be applied. The proposed scheme entails a lower complexity than all

previously proposed ST coding schemes for CPM and yields a better performance for the

important case of NT = 2 transmit antennas. For NT > 2 transmit antennas OSTBC for

CPM suffers from the same rate loss as all ST coding schemes based on ODs.

In Section 2.3, we proposed the DBST-CPM scheme for power-efficient transmission

over fading channels. The design was inspired by DSTM for linear modulation employing

diagonal signal matrices and, similar to DSTM, enables non-coherent detection without

CSI. We devised a low-complexity receiver design including branch metrics for reduced-

state non-coherent sequence detection of DBST-CPM and different fading channels. To

facilitate code selection we derived an upper bound for the FER of DBST-CPM and pro-

posed an efficient algorithm for finding the optimal DBST-CPM code. Numerical and

simulation results showed that the upper bound accurately predicts the performance of

DBST-CPM for coherent detection in a QSFC. Similarly, the numerical and simulation re-

sults showed that the proposed code optimization yields significant improvements in power

efficiency for all channel models, and for both coherent and non-coherent detection.
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Table 2.1: Pseudo-code for distance spectrum calculation for DBST-CPM.

Input: [NT , Nf , pmax, CPM parameters]

Generate list of difference sequences γ1 . . . γJ , J is the number of difference sequences
List of error events (length n) L = ∅
List of error events (length n + 1) L′ = ∅
for (n = 1, . . . , Nf )

In = 1 (Number of error sequences of length n)
L = L′

L′ = ∅
for (i = 1, . . . , In)
Select next error sequence ei from L

for (j = 1, . . . , J )
Extend ei by γj

Calculate ∆, A(∆)
if (ei is simple and p(∆) ≤ pmax)

if (ei can be merged with another entry in L′)
Update A(∆) for the matching entry in L′

else

Add ei to L′

end if

end if

end for

end for

end for
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Table 2.2: Optimized DBST-CPM for NT = 2 and M = 4. Gain with respect to repetition
code considering an FER of 10−2.

1REC 2RC 3RC

M = 4 Gain Optimal Code Gain Optimal Code Gain Optimal Code

h = 1
2

2.3

−3,−1

−1,+3

+1,−3

+3,+1

2.0

−3,−1

−1,+3

+1,−3

+3,+1

1.2

−3,−1

−1,+3

+1,−3

+3,+1

h = 1
3

1.6

−3,−3

−1,−1

+1,+3

+3,+1

1.5

−3,−1

−1,+3

+1,−3

+3,+1

1.9

−3,−1

−1,+3

+1,−3

+3,+1

h = 1
4

1.6

−3,−1

−1,+3

+1,−3

+3,+1

1.7

−3,−1

−1,+3

+1,−3

+3,+1

2.0

−3,−1

−1,+3

+1,−3

+3,+1
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Table 2.3: Optimized DBST-CPM for NT = 2 and M = 8. Gain with respect to repetition
code considering an FER of 10−2.

1REC 2RC 3RC

M = 8 Gain Optimal Code Gain Optimal Code Gain Optimal Code

h = 1
2

0.7

−7,−7

−5,−5

−3,−1

−1,−3

+1,+5

+3,+1

+5,+3

+7,+7

1.1

−7,−7

−5,−1

−3,−5

−1,+7

+1,+1

+3,+5

+5,−3

+7,+3

4.0

−7,−5

−5,+3

−3,−1

−1,−7

+1,+7

+3,+1

+5,−3

+7,+5

h = 1
3

2.1

−7,−7

−5,−5

−3,−1

−1,−3

+1,+1

+3,+3

+5,+7

+7,+5

2.2

−7,−7

−5,+5

−3,−1

−1,+3

+1,−3

+3,+1

+5,−5

+7,+7

1.4

−7,−7

−5,−1

−3,−5

−1,+1

+1,+7

+3,+3

+5,−3

+7,+5

h = 1
4

2.2

−7,−5

−5,−1

−3,+5

−1,−7

+1,+3

+3,+7

+5,−3

+7,+1

2.2

−7,−7

−5,−5

−3,+7

−1,−1

+1,+5

+3,−3

+5,+3

+7,+1

3.8

−7,−7

−5,−3

−3,+3

−1,−1

+1,+5

+3,−5

+5,+1

+7,+7
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Table 2.4: Optimized DBST-CPM for NT = 3 and M = 4. Gain with respect to repetition
code considering an FER of 10−2.

1REC 2RC

M = 4 Gain Optimal Code Gain Optimal Code

h = 1
2

5.0

+1,−3,+1

+3,−1,−3

−3,+1,+3

−1,+3,−1

2.4

−1,−3,+1

+3,−1,−3

+1,+1,+3

−3,+3,−1

h = 1
3

3.3

−3,−3,+3

−1,+3,−1

+1,−1,+1

+3,+1,−3

4.2

−3,−3,−3

−1,−1,−1

+1,+1,+1

+3,+3,+3

h = 1
4

3.1

−1,−3,+1

+3,−1,−3

+1,+1,+3

−3,+3,−1

3.0

−1,−3,+1

+3,−1,−3

+1,+1,+3

−3,+3,−1
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Distributed ST-CPM

When a network consists of a large number of wireless devices with the ability to relay

transmissions, cooperation among these devices has been shown to improve the error per-

formance and capacity of the wireless system [22]-[60]. In fact, it is possible for cooperative

networks to achieve gains in the fading channel equal to those for devices with co-located

antennas when nodes are positioned favorably, and the correct relay protocols are used

[61]. In distributed relay applications (for example sensor networks) wireless devices are

often battery-powered with stringent cost and energy constraints. In this environment,

distributed ST codes employing linear modulation can produce a prohibitively large power

drain at the linear power amplifier due to their high peak-to-average power ratios (PA-

PRs) [62]. Therefore, in this chapter we extend the concept of distributed space-time (ST)

codes to transmission with continuous phase modulation (CPM) [42]. As always, CPM

is a natural fit under energy constrained conditions due to its constant-envelope property

that enables the use of energy-efficient and inexpensive nonlinear power amplifiers.

Node cooperation can take one of two forms: coordinated cooperation, or uncoordinated

cooperation [21, 60, 63]. If coordinated cooperation is employed, cooperating nodes know

which nodes are participating as source, destination and relay nodes, and standard ST codes

optimized for co-located antennas can be used for relaying among the known devices. On

the other hand, if uncoordinated transmission is employed the cooperating nodes (source,

destination, and relays) are unaware of which nodes are active and participate in the

transmission, and ST codes need to be designed correspondingly.
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In this chapter the distributed ST-CPM codes we design are intended for use in a

network employing uncoordinated node cooperation. The proposed codes are the product

of two components: a ST code matrix (each relay node encodes the same information

with the same ST code), and a unique signature vector. We adopt the diagonal block-

based ST-CPM codes proposed in Chapter 2 for the underlying ST code, and we provide

appropriate design rules for signature vector construction and efficient numerical methods

for generation of signature vector sets. Employing the decode-and-forward (DF) protocol,

assuming statistically identical relay-destination fading channels, and time synchronous

transmission, the proposed distributed ST-CPM codes are found to provide a diversity

order d = min{NS , Nc} whenNS relay nodes are active and the ST-CPM codes are designed

for Nc co-located antennas. Furthermore, the proposed distributed codes are also shown

to incur only small losses in coding gain with respect to co-located antenna systems.

To the best of our knowledge, the proposed scheme is the first to present a distributed

ST code for general CPM transmission, and thus to demonstrate that and how distributed

ST processing for constant envelope signaling can be accomplished. While the proposed

distributed ST-CPM scheme has a constant PAPR of one, the PAPR problem of linear

modulations is only compounded when ST coding is applied. Thus, in the later portion

of the chapter we analyze the energy savings made possible by switching to a CPM based

distributed ST code using both the Class AB power amplifier used for linear modulation,

and the more energy efficient Class C amplifier. This analysis shows definitively that the

distributed ST-CPM scheme offers energy savings.

The chapter begins with an introduction to the relay network setup in Section 3.1.

Then, in Section 3.2 the proposed distributed ST-CPM scheme is presented, and detection

at the destination node is discussed. In Section 3.3, the energy consumption of the pro-

posed distributed ST-CPM is analyzed and compared with the energy consumption of a
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distributed ST scheme built upon linear modulation. Section 3.4 concludes the chapter.

3.1 Relay Network Setup

We consider a network consisting of a (possibly large) number (N + 2) of nodes. During

communication between two nodes, i.e. the source and destination node, the other N nodes

act as potential relays for the signal transmitted from the source. We label each of the relay

nodes n ∈ N , N , {1, 2, . . . , N}. We assume that the network employs DF relaying and

an error detecting code, for example a cyclic redundancy check (CRC) code [21, 22, 60].

Under these assumptions the active subset of relay nodes, i.e. those that were able to

correctly decode the received message, is a priori unknown. More explicitly, we apply an

uncoordinated approach in the sense that the source-destination pair has no knowledge of

which nodes act as relays, and the relay nodes have no knowledge of the source-destination

pair or of which other nodes are participating relay nodes. We assume, however, that the

clocks of the nodes are sufficiently synchronized and that the maximal distance between

relay nodes satisfies dmax ≪ c·T , where c is the speed of light and T is the symbol duration,

so that all relay signals are received synchronously at the destination node. The source-

relay and relay-destination channels are modeled as quasi-static frequency-nonselective

fading channels, which is an appropriate model for many distributed relay networks such

as wireless sensor networks (WSNs) for monitoring, detection, and automation (cf. e.g.

[22]-[60] where the same assumptions have been made).

Let us now consider the relay step. Due to coding with an Nc × Nc ST-CPM code as

explained below, signals are organized in vectors of lengthNc. Denoting the transmit signal

of relay n by the vector function sn(t) , [sn,1(t), sn,2(t), . . . , sn,Nc(t)]
T and the channel gain
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Phase 1

Phase 2

Source

Destination

Figure 3.1: Two phase transmission in the relay network.

to the destination node by hn, the received signal at the destination node is given by

r(t) =
∑

n∈S
gnsn(t) + n(t), (3.1)

where S = {n1, n2, . . . nNS
} ⊆ N is the a priori unknown subset of active relay nodes of

size NS , card{S}. Note that S can change with the active source-destination pair, and

between frames of data transmitted between the same source-destination pair. The channel

gains gn are modelled as for the QSFC (i.e. independently and identically distributed (i.i.d.)

zero-mean complex Gaussian random variables with unit variance), and the noise term

n(t) , [n1(t), n2(t), . . . nNc(t)]
T is modelled as an independent additive white Gaussian

noise (AWGN) vector process with power spectral density N0.

3.2 Distributed ST-CPM for Relay Transmission

The distributed ST-CPM scheme that we propose consists of two components: an ST-

CPM code that is common to all network nodes and signature vectors that are assigned
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uniquely to each network node. This structure is inspired by [21], where distributed ST

codes for linear modulation were devised. More specifically, if the signature vectors are

Nc × 1 unit-norm vectors κn = [κn[1], . . . , κn[Nc]]
T ∈ K, n ∈ N , where K denotes the set

of all signature vectors, the relay signals are generated as

sn(t) =
√
ρSS(t,a)κn, n ∈ S, (3.2)

where ρS , Nc/NS ensures that, for purposes of a fair comparison, the total transmitted

energy in any given symbol period is independent of the number of active nodes, and where

S(t,a) is given in (2.30). Because of the block-diagonal properties of S(t,a), signal sn(t)

maintains the continuous-phase, constant envelope properties after κn is applied. The

resulting signal is given by

sn(t) =
√
ρS [x1(t)κn[1], x2(t−NfT )κn[2], . . .

. . . , xNc(t− (Nc − 1)NfT )κn[Nc]]
T .

(3.3)

Hence, by design, sn(t) is a CPM signal for blocks of Nf consecutive symbols. As for the

ST-CPM schemes given in Chapter 2 transitions between blocks should not be regarded as

a violation of the CPM property since these are analogous to transitions between frames in

CPM-type systems like GSM and Bluetooth. Hence, signature vectors can take the general

form

κn = [κn[1], κn[2], . . . , κn[Nc]]
T , ‖κn‖2

2 = 1, 1 ≤ n ≤ N. (3.4)

If, however, the constant-envelope property is desired throughout the entire transmission

cycle, “constant-envelope” (ce) signature vectors

κce
n =

1√
Nc

[

ejφn[1], ejφn[2], . . . , ejφn[Nc]
]T
, 1 ≤ n ≤ N, (3.5)
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are preferable. Of course, the unit-norm constraint is satisfied, i.e., ‖κce
n ‖2

2 = 1. Optimiza-

tion of the signature vectors is discussed in Section 3.2.2.

3.2.1 Detection of the Distributed ST-CPM Signals

Defining KS ,

[

κn1 ,κn2 , . . . ,κnNS

]

and gS ,

[

gn1, gn2, . . . , gnNS

]T

we can re-write the

received signal (3.1) as

r(t) =
√
ρSX(t)KSgS + n(t) = X(t)geff

S + n(t), (3.6)

where geff
S ,

√
ρSKSgS is an Nc ×1 column vector. We observe that, from the destination

node’s perspective, distributed ST-CPM is seen as ST-CPM with co-located antennas and

an effective channel geff
S . Hence, coherent detection schemes (with estimation of geff

S ) and

non-coherent detection schemes (without estimation of geff
S ) as devised in Chapter 2 are

immediately applicable. In particular, complexity for detection (and channel estimation)

remains the same as for ST-CPM with co-located antennas.

3.2.2 Optimization of Distributed ST-CPM

In this section, we consider the optimization of distributed ST-CPM. To this end, we

first derive a suitable performance criterion. Based on this criterion, it is shown that

optimization of the ST-CPM code and the signature vectors can be separated. Hence,

next a numerical method for the optimization of the signature vector set K is presented.

Performance Criteria for Optimization of Distributed ST-CPM As is common

for ST transmission with co-located antennas [10] we choose the pairwise error probability

(PEP) as the optimization criterion for distributed ST-CPM. Following the method de-

scribed in [4], the Chernoff bound for the average PEP between two signals x(t) and x̃(t)
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can be derived as

P (x(t) → x̃(t)) ≤





r(A)
∏

i=1

1

λi(A)



 (4N0)
−r(A) , (3.7)

where A , ρSKH
S V KS , and λi(A) and r(A) are the non-zero eigenvalues, and the number

of non-zero eigenvalues of matrix A, respectively. The Nc × Nc matrix V is given by

V = diag{[△1,△2, . . . ,△Nc]} where △i ,
∫ Nf T

0
|xi(t) − x̃i(t)|2dt. For use as design tools,

and in a manner similar to [10], we define

d , r(A) and G ,





r(A)
∏

i=1

λi(A)





1/r(A)

, (3.8)

as the diversity order and coding gain of the distributed ST-CPM code, respectively.

Diversity Order: The maximum diversity order d is achieved when both V and KS

have full rank. When the number of active users is greater than the signature vector

length, NS ≥ Nc, the diversity order is given by d = r(KH
S V KS) = Nc [64], and is

guaranteed by proper independent design of the ST-CPM code and the signature vector

set K. When NS < Nc code design is more complicated because the ST-CPM code and

the signature vectors must be jointly optimized [21]. In this case, the achievable diversity

order is d ≥ NS − (Nc − NS) [64]. However, as for the linear-modulation case studied in

[21], we found that signature vector sets K designed assuming NS = Nc perform well for

any NS , achieving d = NS for NS < Nc.

An important parameter in the optimization of signature vector sets is the number of

users that we assume to be active, which we will denote as Na. Once Na has been selected

the maximum diversity is unaffected by the true number of active users and is limited to

d = min{Na, Nc}. We shall assume Na = Nc for the design of all signature set vector sets
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K.

Coding Gain: If we assume that the maximum diversity design criterion has been

satisfied, i.e. both V and KS have full rank, and NS ≥ Nc, the coding gain can be

re-written as [64]

G = ρS

(

Nc
∏

nc=1

λnc(K
H
S V KS)

)1/Nc

= ρS
(

det{V }det{KSKH
S }
)1/Nc

.

(3.9)

Equation (3.9) shows that optimizing the distributed ST-CPM code (by minimizing the

bound on the maximum PEP in (3.7)), can be achieved by separately optimizing each of

the component codes, i.e. the ST-CPM code and the signature vector set K. The design

of the ST-CPM code in [4] guarantees that V is of full rank and maximizes det{V },

and therefore, we need only concentrate on the design of the signature vector set K. In

particular, the pertinent performance parameter given a subset S of active nodes is the

signature set coding gain (see (3.9))

KS , det{KSKH
S }. (3.10)

Before we move on to the actual optimization, it is useful to define the average distri-

bution loss [21] as

Lave(NS) ,
1

K

∑

S,card{S}=NS

(ρSK
1/Nc

S )−1, (3.11)

where (ρSK
1/Nc

S )−1 quantifies the loss in coding gain for distributed ST-CPM with a par-

ticular subset S of NS active nodes compared to ST-CPM with co-located antennas and

K ,
(

N
NS

)

is the number of subsets S ∈ N .
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Signature Vector Set Optimization Based upon the previous discussion, it follows

that we can define the optimum signature set Kopt as

Kopt = argmax
K

{ min
S

card{S}=Na

{KS}}, (3.12)

where the optimization is constrained

subject to ‖κn‖2
2 = 1, 1 ≤ n ≤ N (3.13)

subject to κce
n =

1√
Nc

[

ejφn[1], ejφn[2], . . . , ejφn[Nc]
]T
, (3.14)

1 ≤ n ≤ N

for the general set and the constant envelope set, respectively. Note that the cost function

KS is not convex in KS , and thus the above optimization problem may have local minima.

We propose simulated annealing in tandem with a gradient search for numerical solu-

tion of the optimization problem. In particular, similar to a proposed simulated annealing

algorithm for continuous spaces in [56, Ch. 10.9] we add a positive, logarithmically dis-

tributed random variable, proportional to the annealing temperature TA, to the value of

our optimization metric KS and then use this value to determine which subset KS should

be adapted. Once this subset is chosen, we employ a simple gradient algorithm for the

update. This process is repeated in a number of iterations. While the adaptation in

each iteration is not optimal, through simulated annealing the overall system is allowed

to slowly converge to the global maximum. We select the simulated annealing algorithm

for optimazation of the signature vector sets, and show that the resulting sets provide

performance approaching that of co-located antenna, however, any algorithm appropriate

for the non-convex, continuous space optimization could be used to generate the signature

sets.
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For the general set, the vectors κn are directly updated and the constraint (3.13) is

enforced after the update, as in [21]. The corresponding gradient is given by (assuming

KS is an Nc ×Nc full-rank matrix)

ΥS =
∂KS
∂K∗

S
= KS

(

KH
S
)−1

(3.15)

where K∗
S is a matrix that contains the complex conjugate of the elements of KS .

For constant envelope sets we found that intrinsic incorporation of the constraint (3.14)

into the search yields best results. Hence, the update is performed on the set ΦS ,

[φn1
,φn2

, . . . ,φNNS

]T of phase vectors φn , [φn[1], φn[2], . . . , φn[Nc]]. The gradient of KS

with respect to ΦS is defined as

Υce
S =

∂KS
∂ΦS

=
∂KS

∂ ~KS

∂ ~KS
∂ΦS

+
∂KS

∂ ~K∗
S

∂ ~K∗
S

∂ΦS
, (3.16)

where ~KS , vec{KS}, ~K∗
S , vec{KH

S }, and

∂KS

∂ ~KS
= KSvec{(KT

S )−1} , ∂ ~KS
∂ΦS

= (j)diag{ ~KS} ,

∂KS

∂ ~K∗
S

= KSvec{(KH
S )−1} , ∂ ~K∗

S
∂ΦS

= (−j)diag{ ~K∗
S} .

The pseudo-code for the proposed simulated annealing algorithm for solving the opti-

mization problem in (3.12)-(3.14) is given in Figure 3.2. Initial and final values for the

algorithm variables were found by experimentation [56]. The initial constant envelope set

is chosen as an harmonic frame with optimized coefficients, cf. [65].

Finally, we note that an alternative to the deterministic generation of signature vector

sets is the random selection of signature vectors at each node [21, 66]. This may be desirable

in situations where the number of nodes is highly dynamic. We therefore also consider

77



Chapter 3. Distributed ST-CPM

the use of random sets whose constraints are equivalent to those for the deterministic

general and constant envelope sets, i.e., the random vectors are uniformly distributed

on a complex hypersphere [constraint (3.13)] and their elements have a uniform phase

distribution [constraint (3.14)], respectively.

3.2.3 Simulation Results

In this section, we present simulation results for the proposed distributed ST-CPM codes

employing signature sets designed with the algorithm in Figure 3.2 and the random gen-

eration method, respectively. In the following, we will refer to these sets as deterministic

and random sets, respectively. First, we will consider the average distribution loss, Lave

[Eq. (3.11)], and the role that this expression can play as an indicator of the performance of

the different signature vector sets. Then, we will evaluate the average bit error rate (BER)

for relay communication with distributed ST-CPM. Finally, we compare distributed ST-

CPM with the linear-modulation scheme from [21]. For space limitations, we restrict

ourselves to ST-CPM with Nc = 2 and signature sets optimized for Na = Nc = 2.

In Figure 3.3, the average distribution losses of deterministic and random sets are shown

for NS = 2, 3 and 5 active nodes (the acronym “CE” indicates constant envelope sets). The

distribution loss for random sets is independent of the number of total nodes because each

node randomly generates its own signature vector when it becomes active. The determin-

istic general sets consistently yield the lowest average distribution loss. Furthermore, Fig-

ure 3.3 shows that as the number of active nodes, NS , is increased the performance losses

incurred by enforcing the constant envelope criterion becomes less significant. Random

sets appear an efficient alternative for relatively large numbers of nodes. However, we note

that results for the average distribution loss may not completely characterize the perfor-

mance of randomly generated signature sets. More specifically, although the performance
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1. Initialization:
Set i = 0, TA = T0, µ = µ0

Generate an initial set of Nc × 1 vectors
Gen: κn are random vectors with ‖κn‖2 = 1
CE: κce

n are from an optimized harmonic frame [65]
2. Find worst set Smin :

Smin = argmin
S

card{S}=Na

{GS − TA log(rand(1))}

K ′
Smin

= KSmin

3. Adaptation:

Gen: K ′
Smin

= KSmin
+ µΥSmin

CE: Φ′
Smin

= ΦSmin
+ µΥce

Smin

4. Update Signature Set:

Gen: κn =
κ′

n

‖κ′
n‖2

, n ∈ Smin

CE: κce
n =

1√
Nc

[

ejφ′
n[1], . . . , ejφ′

n[Nc]
]T

, n ∈ Smin

5. Check Update:

Recalculate KSmin

If
|KSmin

−K ′

Smin
|

|KSmin
| > ǫ then µ := λµ and goto 2.

6. Update Annealing:
If TA > Tf , set TA := (1 − ζ)TA and goto 2, otherwise goto 7.

7. End:
κn or κce

n , 1 ≤ n ≤ N , is the desired set Kanneal.

Gen : general signature set
CE: constant envelope signature set
µ0 = 10−2, λ = 1 − 10−5, ǫ = 10−5, T0 = 10−2, Tf = 10−6, ζ = 0.7
rand(1) returns one sample of a [0, 1) uniformly distributed random variable

Figure 3.2: Annealing algorithm for signature set generation.
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Figure 3.3: Average distribution losses as a function of the total number of nodes N , and
the number of active nodes NS = 2, 3, 5. Deterministic signature vector sets optimized for
Na = Nc = 2 active nodes and random signature vector sets are considered. ‘CE’ indicates
constant envelope sets.

of the randomly generated signature sets may be comparable to the performance of the

deterministically generated signature sets on average, when transmissions are considered

on individual basis random signature sets have a high probability of producing a higher

distribution loss than the worst-case distribution loss of a deterministic set. Therefore,

randomly generated sets may only be desirable for highly dynamic networks.

We now turn to BER results. We assume that all relay nodes have an equal probability

of being active and the BER is averaged with respect to the fading gain distribution. As an

illustration we adopt the CPM scheme with the parameters M = 4, h = 1/4 and a 1REC

phase pulse. The underlying ST-CPM code is given in [4, Table I] for Nc = 2 co-located

antennas, resulting in a diversity order d = 2. Unless stated otherwise, optimal coherent
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detection of ST-CPM is assumed.
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Figure 3.4: Average BER of a distributed ST-CPM code versus 10 log10(Eb/N0) for a
network with N = 30 nodes and different numbers of active nodes NS . Deterministic
signature vector sets optimized for Na = Nc = 2 active nodes and random signature vector
sets are considered. ‘CE’ indicates constant envelope sets. The ST-CPM code is optimized
for Nc = d = 2 with the CPM parameters M = 4, h = 1/4, and a 1REC phase pulse as
given in [4, Table I].

First, we only consider the relay phases, i.e., transmission from relay nodes to the

destination node. Figure 3.4 shows the average BER vs. Eb/N0 (Eb = EsNc/log2(M)

denotes the received energy per bit) for the distributed ST-CPM scheme with N = 30.

Results for deterministic and random sets are shown. For comparison purposes the results

for co-located antennas are also included. This figure illustrates that both signature set

designs yield a network BER performance that approaches that of one node with Nc = 2

co-located antennas when NS ≥ Nc. The simulation results also confirm the performance

ordering of the different signature set designs given by the distribution loss results shown
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in Figure 3.3. More specifically, the results in Figure 3.3 predict losses for the constant

envelope set, the general random set, and the constant envelope random set of 0.6, 1.3, and

3.1 dB with respect to the designed general set for NS = 2, and similarly the BER results

in Figure 3.4 indicate losses of 0.6, 1.3, and 2.3 dB when Eb/N0 = 25 dB. The single

discrepancy may be attributed to the fact that the distribution loss was derived under

the assumption of high SNR. Furthermore, while the distributed ST-CPM scheme always

maintains a diversity order of d = Nc when NS ≥ Nc, we have found from simulations for

various values of Nc > 2, which cannot be shown due to space constraints, that a diversity

order equal to the number of active user d = NS is achieved when NS < Nc.

Next, we consider two phase transmission in a distributed network. In the first phase,

a relay node conserves energy by listening for transmission from the source node with

probability pl. In the second phase, nodes that were listening in the first phase and able

to correctly decode the source’s transmission retransmit to the destination node (i.e. the

number of active nodes (NS) in the second phase is random). The average received energy

per bit at each listening relay node is assumed to equal Eb. Figure 3.5 shows the results

for a two phase network composed of N = 30 nodes. Nodes in this network listen with

probability pl = 1/3, 1/5, and 1/7. We observe that the signature sets provide very similar

performances, which closely approach that for the co-located antenna system. For example,

for pl = 1/3 and pl = 1/5 the respective BER curves run parallel, i.e. full diversity is

achieved by the distributed system, and the losses are only 0.5, and 1.1 dB with respect

to a co-located antenna system.

The above example considered transmission with a spectral efficiency of 2/3 bit/s/Hz,

which is likely sufficient for many network applications with low-power transceivers. If

higher spectral efficiencies are desired, the proper choice of the parameters M , h, and

pulse shape q(t) is critical for ST-CPM, since, different from linear modulation, the signal
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Figure 3.5: Average BER of a distributed ST-CPM code versus 10 log10(Eb/N0) for a net-
work with N = 30 nodes where the number of active nodes NS depends on the probability
p that any given node is listening for the source’s transmission. Deterministic signature
vector sets optimized for Na = Nc = 2 active nodes and random signature vector sets are
considered. ‘CE’ indicates constant envelope sets. The ST-CPM code is optimized for
Nc = d = 2 with the CPM parameters M = 4, h = 1/4, and a 1REC phase pulse as given
in [4, Table I].

bandwidth increases with M . Favorable parameter combinations are given in [67, Tables

5.2-5.4]. At the same time, the PAPR advantage of ST-CPM over linear ST modulation

increases with larger spectral efficiency, which renders distributed ST-CPM an interesting

solution also for this scenario.

83



Chapter 3. Distributed ST-CPM

3.3 Energy Consumption of Distributed ST Coding

Methods

In this section, we analyze the energy savings made possible if the modulation technique

underlying a distributed ST coding scheme is switched from linear modulation to CPM.

The energy savings that are offered by CPM are savings of energy in the hardware of the

device; the constant-envelope property of CPM guarantees a PAPR of one and allows for

the use of non-linear, energy-efficient components. Typically, the performance of similar

communication schemes is compared with respect to the received radiant energy. If, how-

ever, we wish to perform a fair comparison of linear modulation (LM) schemes with CPM

schemes, we must perform this comparison with respect to both the energy that is radi-

ated and the energy that is consumed by device hardware. Indeed, recently, some effort

has been made to evaluate and compare schemes based upon both transmitted and circuit

energy usage [68]-[71]. These efforts have taken two different approaches: analysis of the

power consumption of the entire transceiver [68], and analysis of the power consumption

of a specific element of the transceiver [69]-[71]. Cui et al. [68] adopted the first approach

and analyzed the total energy consumption of a transmitter and receiver for coded and

uncoded M-ary Quadrature Amplitude Modulation (MQAM) and M-ary Frequency-Shift

Keying (MFSK) systems in order to minimize overall energy consumption by optimizing

constellation size and transmission time. In this case, synthesizing the entire transceiver

becomes a concern; state-of-the art components can be selected from the literature, how-

ever their inter-operability cannot be guaranteed. Therefore, Li-Chung and Krogmeier [69],

Liang et al. [70], and Rapp [71] chose to study the energy consumption of a single element

of the transceiver - the power amplifier, which is one of the largest consumers of energy

in the transmitter. Practical power amplifiers have non-linear characteristics (resulting in
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signal distortion) and, depending on classification, can consume varying amounts of en-

ergy in relation to the required transmitted power. The authors of these works compared

the energy consumption of LM and CPM schemes in a traditional communication context

(single transmitter, single receiver, adjacent channel interference, and an additive white

Gaussian noise (AWGN) channel). In addition, since the publication of these works power

amplifiers with a higher degree of linearity and a lower energy consumption have become

available.

In this section, we study the energy consumption of the power amplifier for the dis-

tributed ST coding scheme proposed earlier in the chapter, and a distributed ST coding

scheme built upon linear modulation (distributed ST-LM) [21]. We perform a detailed

study of the performance of the distributed schemes in the context of an ad-hoc sensor

network, using state-of-the-art power amplifier models, and a channel model appropriate

for a wireless sensor network. These performance comparisons quantitatively show that

distributed ST-CPM offers significant performance gains over distributed ST-LM based

schemes for a variety of power amplifier implementations.

3.3.1 Distributed ST Coding Overview

In this section, we briefly overview the distributed ST-LM coding scheme [21] that we

use for comparison. Then we introduce the power amplifier characteristics relevant to the

distributed ST-LM, and distributed ST-CPM coding schemes. We assume the same relay

network as outlined in Section 3.1.

Distributed ST-LM Code The distributed ST-LM [21] and ST-CPM [72] codes con-

sidered here have very similar constructions. The distributed ST-LM code also consists

of a ST matrix containing the information from the source node, and a signature vector

unique to the individual relay node, n ∈ N . Active relay nodes employing the distributed
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ST-LM code transmit the following signal in successive NB ≥ Nc symbol intervals 2

sn[k] =
√
ρSB[k]κn, n ∈ S, (3.17)

where sn[k] , [sn,1[k]sn,2[k] · · · sn,NB
[k]]T , k ∈ Z is a discrete time index, ρS = Nc is a

normalization constant and B[k] ∈ B is an NB×Nc matrix. The signature vectors, κn ∈ G,

n ∈ N are unit-norm ||κn||22 = 1 vectors of length Nc where G denotes the set of signature

vectors. The code B is normalized such that E{BH [k]B[k]} = (NB/Nc)INc . Thus, the

average energy transmitted per node and symbol interval is E{sH
n [k]sn[k]}/NB = 1.

After the signal sn[k] is generated it is fed into a root raised cosine filter with roll-off

factor α (we assume α = 0.5) to limit the signal bandwidth. This filtered signal is input

into a gain unit and multiplied by a factor, γ, to give the signal an average power of P in

and then fed into the power amplifier. After amplification the signal is perturbed by fading

and AWGN. The filtered, the amplified, and the received signals are given by

sF
n(t) =

∞
∑

k=−∞

NB
∑

i=1

sn,i[k]f(t− (kNB + i− 1)T ), (3.18)

sA
n (t) = F(|γsF

n(t)|) s
F
n(t)

|sF
n(t)| , (3.19)

r(t) =
∑

n∈S

(

gns
A
n (t)

)

+ n(t), (3.20)

respectively. Here, T is the symbol duration, F(·) is an amplification function that is

dependent upon the power amplifier (described in Section 3.3.2), f(t) denotes the impulse

response of the root raised cosine filter, the channel gains gn are modelled as independently

and identically distributed (i.i.d.) zero-mean complex Gaussian random variables with

unit variance, and the noise term n(t) is modelled as a zero mean AWGN process with

2Note that the normalization constant has been modified from [21, see Eq. (1)] to allow for fair
comparison of power consumption in the power amplifier.
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power spectral density N0. The received signal is filtered by another root raised cosine

filter (matched to the transmit filter) and sampled. Maximum-likelihood decoding for the

underlying ST code is used to decide on the transmit symbols (see [21] for details).

Distributed ST-CPM Code The details of the distributed ST-CPM scheme are given

in Section 3.2. The ‘constant envelope’ signature set is employed. When Es = 1, (i.e

the energy per symbol is set to one) the average transmitted energy per node and symbol

interval is E{
∫ Nf T

0
sH

n (t)sn(t)dt}/Nf = 1.

The CPM signal sn(t) given in (3.2) is input into a gain unit to give the signal an

average power of P in before amplification. Thus, the amplified signal, given by the vector

sA
n (t) , [sA

n,1(t), s
A
n,2(t), · · · , sA

n,Nc
(t)]T , and the received signal are given by

sA
n,i(t) = F(|γsn,i(t)|)sn,i(t), 1 < i < Nc, (3.21)

r(t) =
∑

n∈S

(

gnsA
n (t)

)

+ n(t), (3.22)

respectively, and n(t) , [n1(t), n2(t), · · · , nNc(t)].

3.3.2 Power Amplifier Modeling

The study of CPM for low power applications is usually motivated by the ability to use high

efficiency, non-linear Class C amplifiers instead of the lower efficiency, highly linear Class A,

or AB amplifiers that are typically used for linear modulations. However, the performance

of a power amplifier can not be characterized by one parameter. The efficiency of the

power amplifier is completely dependant upon its operating point (see Section 1.2.2 for

more details). Therefore, to get a true measure of the energy consumption savings that

a switch to a CPM based scheme will yield from an efficiency perspective we need to

analyze the power amplifier over its entire operating range. For this purpose, in this work
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we consider a low power Class AB power amplifier designed for mobile wireless terminals

using the IEEE 802.11a and 802.11n standards and utilizing a low supply voltage [5], and

a low power Class C amplifier [6]. The transfer characteristics of these amplifiers are

shown in Figure 3.6 [5] and Figure 3.7 [6]. These characteristics include drain efficiency

(η), power added efficiency (PAE), output power (Pout), dc power supplied to the power

amplifier (Pdc), and power gain (Pout − Pin (dB)) all plotted with respect to input power.

For both power amplifiers shown in these figures drain efficiency and power added efficiency

are functions of input power. In fact, drain efficiency values vary from 0 − 24% for the

Class AB power amplifier and from 5 − 56% for the Class C amplifer.

Amplifier linearity also motivates the study of the power amplifier over its entire op-

erating range. Obviously, the Class C amplifier operates primarily as a non-linear device

(although it may have a region of linear operation at low power, see Figure 3.7), however,

the Class AB amplifier also has a region of non-linear operation (see Figure 3.6). Non-

linear amplification causes signal distortion and bandwith expansion for linear modulations.

Although these effects do not render operation in these regions impossible, performance

losses due to non-linear amplification of a linear signal often mean that power amplifiers

employ a back-off region in which they do not operate. These problems are compounded

for distributed ST codes employing linear modulations because signal multiplexing leads to

large values of PAPR. Distributed ST-LM schemes can compensate for large PAPR values

by using a more linear power amplifier (increased energy cost) or by employing a larger

back-off region (reducing the maximum output power of the power amplifer resulting in

a smaller region of coverage). Employing CPM avoids the energy consumption/coverage

range tradeoff.

Thus, due to the dependence of the efficiency and linearity of the power amplifier upon

the operating point of the power amplifier we study of the performance of the amplifier
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Figure 3.6: Drain efficiency, η, (%), power added efficiency, PAE, (%), output power, Pout,
(dBm), dc power supplying the power amplifier, Pdc, (dBm), and power gain - output
power minus input power (dB) vs. input power for the Class AB power amplifier designed
by Carls et al. [5].

over its entire transfer characteristic. In general form, the input signal (that determines

the voltage/power of the power amplifier output) is given by

vin(t) = Vin(t) cos(2πfct+ θin(t)), (3.23)

where Vin(t) is the non-negative envelope of the input signal, fc is the carrier frequency,

and θin(t) is the phase of the input signal. The resulting RF output of the power amplifier

is given by

vout(t) = F(Vin(t)) cos(2πfct+ θin(t)), (3.24)

where the transformation F(·) is dependent upon the structure and properties of the par-
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ticular power amplifier, and Pin(t) = (Vin(t))
2, and Pout(t) = F2(Vin(t)) (Pout as a function

of Pin, independent of time, is shown for the Class AB and Class C power amplifiers in

Figs. 3.6 and 3.7, respectively). We note that the power amplifiers used in this chapter,

from the recent references [5, 6], cause only amplitude distortion in contrast to the power

amplifiers used in [69] and [71] which cause both phase and amplitude distortion.
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Figure 3.7: Drain efficiency, η, (%), power added efficiency, PAE, (%), output power, Pout,
(dBm), dc power supplying the power amplifier, Pdc, (dBm), and power gain - output
power minus input power (dB) vs. input power for the Class C power amplifier designed
by Cao et al. [6].

3.3.3 Energy Consumption Analysis

When comparing different communication schemes it is conventional to use Eb/N0 as a

performance metric, where Eb is the received energy per bit. However, in applications

where device lifetime is an important consideration (e.g. wireless sensor networks) we seek
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a performance metric that includes both the energy that is radiated by a device, and the

energy that is consumed by the device’s hardware. In this section, we will investigate one

previously proposed metric (total power amplifier energy) and use it as a springboard to

propose a new, more generic performance metric (transmission distance).

Total Energy To provide a performance indicator that encompassed both transmitted

energy and energy consumed by hardware Liang et al. [70] proposed total energy per

transmitted bit (where total energy refers to the total energy used by the power amplifier),

which is given by

Et =
P̄t

Rb
=

(P̄dc + P̄in)

Rb

=
P̄out(1 + (1 − PAE)Pdc/P̄out)

Rb

, Eb′ + Ec (3.25)

where Eb′ , P̄in/Rb is the transmitted energy per bit, Ec denotes the energy that is

consumed in the amplifier in order to transmit a bit with energy Eb′, and Rb denotes the

bit rate.

The authors of [69]-[71] evaluate the performance of their communication schemes using

the ratio of total energy Et to total losses NL, where NL includes path loss, and the noise

power spectral density N0. Thus, the ratio Eb′/NL is equivalent to the received signal-

to-noise ratio Eb/N0. The ratio Et/NL is generated using a two step process. First, bit

error rate (BER) curves are generated for a range of values of total loss NL and over

the operating range of the amplifier (Pin). Then, using these curves values of maximum

allowable total loss NL are found for given input powers Pin and a target BER. Unlike

Eb/N0, the resulting values of Et/NL are dependent upon Pin. Thus, inherent in each

value of Et/NL is information pertaining to the input/output characteristic of the power
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amplifier and a strict limitation on transmission loss. A comparison of different power

amplifiers is hampered because information regarding the efficiency of the amplifier (i.e.,

radiated energy Eb′ vs. circuit energy Ec) and the total loss NL is obscured because of the

ratio form of this metric. Therefore, in the next section, we introduce a new performance

metric based upon transmission distance.

Transmission Distance In order to determine the maximum possible transmission

distance of the communication scheme, we first look to the minimum permissible received

power allowable for a targeted BER, which is characterized by the receiver sensitivity. The

required receiver sensitivity is given by

Preq(BER, Pin) = N0 +NF + 10 log10(B) + Eb′(Pin) −NL(BER, Pin) +Rb (dB), (3.26)

where N0, NF , and B are the thermal noise power for a 1 Hz noise equivalent bandwidth

(-174 dBm), the receiver noise figure, and the noise equivalent bandwidth, respectively.

As previously mentioned Eb′ is the energy at the output of the power amplifier, and NL

is the total system loss (path loss, and noise power spectral density). If the power ampli-

fier transmits with energy Eb′ and the receiver has a sensitivity Preq(BER, Pin) then the

maximum loss the system can tolerate while maintaining a given BER is

Lmax(BER) = Eb′(Pin) +Rb − Preq(BER, Pin) +G (dB),

= NL(max)(BER, Pin) −N0 −NF +G (dB), (3.27)

where G includes any gains and losses generated by the transmitter or receiver, and NL(max)

is the signal loss allowable in order to achieve a given BER at a set input power to the

power amplifier. Attenuation during transmission is given by the general path loss model
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[73]

PL = 10n log

(

d

d0

)

+ PL(d0) +Xσ (dB), (3.28)

where PL(d0) = 20 log
(

4πd0

λ

)

is the path loss at a reference distance d0 that is in the far

field of the transmitting antenna (we assume a small antenna and a value of d0 =1 m [73]),

and λ, n, and Xσ are the wavelength of the transmitted signal, the path loss exponent,

and a log-normal fading shadowing term given by a zero mean Gaussian random variable.

Therefore, the maximum allowable path loss is a function of BER and power amplifier

input power, and is given by

PLmax(BER) = Lmax(BER) (dB). (3.29)

Thus, we can upper bound the transmission distance for a target BER at a given input

power by

dmax(BER, Pin) = d010

„

NL(max)(BER,Pin)+G−NT −NF −10 log10(B)−PL(d0)−Xσ

10n

«

(dB). (3.30)

3.3.4 Simulations

In this section, we compare the performance of the distributed ST-LM and distributed ST-

CPM schemes outlined in Sections 3.3.1. These distributed ST schemes employ different

classes of state-of-the art power amplifiers as described in Section 3.3.2. The performance

comparisons are performed using BER and the maximum transmission distance metric

detailed in Section 3.3.3.

We assume that the network we employ is populated by N = 30 potential relay nodes,

that all relay nodes have an equal probability of being active, and that BER is averaged

with respect to fading gain distribution. The ST codes are designed for a signature vector
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length of Nc = 2. The distributed ST-LM scheme uses BPSK modulation, Alamouti’s

ST block-code (STBC), and a signature set generated using a gradient search [21]. The

normalized bandwidth of the BPSK signal after it has passed through the root raised cosine

filter is BT = 1.5. To obtain the same data rate for the distributed ST-CPM scheme, the

CPM parameters are chosen as M = 4, h = 1/4, and a 1REC phase pulse was used, which

has a normalized bandwidth of B99%T = 1.54. The underlying ST-CPM code is given in

Table 2.1.
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Figure 3.8: BER performance vs. input power Pin (dBm) of the distributed ST-LM code
for different values of total loss (NL). Class C amplifier [6].

BER Figure 3.8 shows the average BER performance vs. amplifier input power Pin

(dBm) of the distributed ST-LM coding scheme for different values of total loss (NL) when

the Class C amplifier is employed [6]. For this example, Ns = 5 of the 30 potential relay

nodes are active in any given transmission. The curves shown in Figure 3.8 are convex in
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shape.

Initially, increasing the input power has the expected effect of reducing the incidence of

bit errors, however, continuing to increase the input power towards the maximum operating

point of the amplifier sees the number of bit errors increase once again. The increase in bit

errors occurs because the amplifier operates as a non-linear device at high values of input

power, and non-linear amplification causes signal distortion and bandwidth expansion for

schemes based upon linear modulation. Increasing the size of the distributed ST-LM block

code, B, and the length of the signature vector, κ, has the effect of increasing the PAPR of

the resulting signal, s(t), and thereby lowering the point at which the BER performance

begins to degrade. In contrast, while the performance of the ST-CPM scheme at low input

power resembles that of the ST-LM scheme, at high input power and for BERs greater

than 10−4 the BER of the ST-CPM remains constant rather than increasing as the ST-LM

scheme does. Finally, we note that the results for the distributed ST-LM employing a Class

AB amplifier are similar in shape to those shown in Figure 3.8, with a less pronounced

BER degradation near the amplifier’s maximum operating point.

Transmission Distance We assume operation in the ISM band at 2.4 GHz and d0 = 1

m which gives PL(d0) = 40.05 dB. We set G = 20.4 dB and NF = 19.0 dB as specified by

[74], which details a receiver front-end design for wireless sensor networks. Values of the

path loss exponent, n, are dependent upon the environment in which the network operates.

In an office environment the value of n can vary from n = 1.9 to n = 6.3 [75], and the

value of Xσ can vary from Xσ = 3.0 to Xσ = 14.1 dB [73]. We select n = 2.5 and Xσ = 3.0

dB for the results shown here. Following the IEEE 802.11 standard, we assume a symbol

duration of 4 µs. We note that any change in the parameters selected here will change

the margin of performance improvement from one scheme to another but not the relative

performance ordering.
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Figure 3.9: Total energy (nJ) per active node, per symbol vs. maximum transmission
distance (m) to achieve a BER of 10−3 for a distributed ST-LM scheme (‘LIN’) and a
distributed ST-CPM scheme (‘CPM’). The number of active nodes includes Ns = 2, 3, and
5. A Class AB amplifier [5] is employed.

First, we consider the upper bound on transmission distance (m) vs. total energy

consumption (nJ) per symbol in order to achieve a BER of 10−3. Results for the Class AB

power amplifier are shown in Figure 3.9, and for the Class C power amplifier in Figure 3.10.

Results for the distributed ST-LM scheme are denoted ‘LIN’ and results for the distributed

ST-CPM coding scheme are denoted ‘CPM’. Curves for Ns = 2, Ns = 3, and Ns = 5

active nodes are shown. Note that for the purpose of comparing the results of a differing

number of active nodes the total energy consumption shown in the following figures is

per active node, however, the corresponding transmission distances reflect the total energy

transmitted by all active nodes (i.e. the results for Ns = 5 have a factor 5/2 higher total

energy consumption than those for Ns = 2). Figures 3.9 and 3.10 clearly illustrate the

negative effects of operating the distributed ST-LM scheme in the non-linear region of the
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Figure 3.10: Total energy (nJ) per active node, per symbol vs. maximum transmission
distance (m) to achieve a BER of 10−3 for a distributed ST-LM scheme (‘LIN’) and a
distributed ST-CPM scheme (‘CPM’). The number of active nodes includes Ns = 2, 3, and
5. A Class C amplifier [6] is employed.

amplifier. After an initial expansion in the range of coverage of the distributed ST-LM

scheme, the coverage range begins to shrink with increasing transmit energy. It should be

noted that although the performance loss is worse for the less linear Class C amplifier the

highly linear Class AB amplifier also suffers a performance loss. In Figure 3.10, we see that

the performance of the distributed ST-LM scheme in the saturation range of the amplifier

actually worsens as the number of active nodes increases. This performance loss occurs

because each of the active nodes is transmitting and amplifying a unique signal (due to

the use of the signature vector). Therefore, as the number of active nodes increases so too

does the likelihood that one or more of the active nodes will transmit a signal with a high

PAPR. At the receiver the resulting signal, which is the summation of the Ns unevenly

amplified signals, suffers the effects of both magnitude and phase distortion for which the
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Figure 3.11: Total energy (nJ) per active node, per symbol vs. maximum transmission
distance (m) for Ns = 5 active nodes and for a distributed ST-LM scheme (‘LIN’) and
a distributed ST-CPM scheme (‘CPM’). Results are shown for BERs of 10−2, 10−3, and
10−4. A Class C amplifier [6] is employed.

coherent detection scheme (using only information about the channel and the signature

vectors) is unable to correct. In contrast, the performance of the distributed ST-CPM

scheme does not deteriorate in the saturation region of either of the power amplifiers.

More specifically, the results for the Class AB power amplifier shown in Figure 3.9

indicate that the CPM based scheme outperforms the distributed ST-LM scheme when

the power amplifier is operated at mid to high power levels. In fact, the CPM based

scheme increases the range of the distributed ST coding scheme by 1.3 m (2.6% of total

range), 10.8 m (15.4%), and 18.5 m (19.7%) for Ns = 2, 3, and 5, respectively. When the

power amplifier is operated at low power the linear based scheme offers a slight performance

98



Chapter 3. Distributed ST-CPM

improvement over the CPM based scheme. However, in this power range the CPM based

scheme requires minimal additional energy to provide comparable performance, i.e. at

most 6.4 nJ, 2.0 nJ, and 0.4 nJ per symbol for Ns = 2, 3, and 5 active nodes, respectively.

Next, we consider the performance of the Class C power amplifier shown in Figure 3.10.

Using the Class C power amplifier, the CPM based scheme extends the range of the dis-

tributed ST coding scheme by 0.9 m (4.8% of total range), 4.9 m (18.5%), and 8.4 m

(23.7%) for Ns = 2, 3, and 5, respectively. In this case, the distributed ST-LM scheme out-

performs the CPM based scheme at low power only for Ns = 2 and not at all for Ns = 3

and 5. This single performance gap can be closed by and addition of 10.0 nJ per symbol

to the CPM based scheme. As a final note on Figs. 3.9 and 3.10, we observe that while

recognizing that the Class AB and Class C amplifiers used in this work have been designed

for different purposes, the larger transmission distances made possible by selecting the

Class AB power amplifier come at the cost of a large increase in energy consumption.

Finally, we consider the performance of the ST-LM and ST-CPM schemes for different

BERs employing the Class C amplifier and Ns = 5 active nodes. Figure 3.11 shows the

performance of both schemes for average BERs of 10−2, 10−3, and 10−4. The CPM scheme

offers energy savings of 18.8 nJ, 10.0 nJ, and 23.2 nJ per symbol at the maximum operating

range of the linear based scheme for BERs of 10−2, 10−3, and 10−4, respectively. In addition,

the CPM based scheme increases the range of the distributed ST coding scheme by 6.0

m (10.7% of total range), 8.4 m (23.7%), and 9.6 m (43.8%) for BERs of 10−2, 10−3, and

10−4, respectively.

3.4 Conclusions

In this chapter, we have proposed a distributed ST-CPM code that enables uncoordinated

node cooperation in wireless networks together with energy-efficient CPM transmission.
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The devised distributed ST-CPM scheme is a combination of the diagonal ST-CPM code

proposed in Chapter 2, which is shared by all nodes and signature vectors that are uniquely

assigned to nodes. A numerical method for the optimization of signature vectors sets has

been developed. Applying optimized signature vectors, the performance of the proposed

distributed ST-CPM scheme is close to that achievable with co-located antennas.

Reduced energy consumption is the primary motivation for selecting a CPM based

scheme. Therefore, in the second portion of this chapter, we investigated the energy con-

sumption of a distributed ST-LM scheme and the proposed distributed ST-CPM schemes

when these schemes employ practical non-linear Class AB and Class C amplifiers. The

distributed ST schemes were compared using the total energy (radiated and used in hard-

ware) required to supply a target BER at a maximum transmission distance. For a relay

network composed of N = 30 possible relay nodes, the comparisons showed that the linear

based scheme outperforms the CPM based scheme when the power amplifiers are operated

at low power, but that at low power the performance gap can be closed by the addition of

a very small amount of energy (0 to 10.0 nJ per symbol for the relay configurations con-

sidered here). At high power the CPM based scheme offers significant energy savings, and

extended coverage for both types of power amplifiers (from 2.6% to 43.8%). Performance

gains were shown to increase with the number of active relay nodes Ns.

The considerable energy savings and extended coverage range provided by the proposed

distributed ST-CPM coding make this scheme an excellent candidate for application in ad-

hoc networks, such as sensor networks.
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Concatenated Coding for

Space–Time Coding with Continuous

Phase Modulation

Since Shannon published his landmark paper [76] placing an upper limit on channel ca-

pacity information and coding theorists have sought to find codes that will approach the

Shannon limit. In 1966, Forney proposed concatenating codes together, an idea that pro-

duced codes which reduced the bit error rate (BER) exponentially, whilst only increasing

the decoding complexity algebraically. The next innovation in the field of concatenated

codes was the Turbo code, which used parallel concatenation and an interleaver. The

interleaver further reduced error rate by negating the effects of fading over consecutive

sequences of data. These systems could employ iterative decoding, which involved the ex-

change of soft information about the transmitted bits, so that each decoder could improve

on the soft bit estimates with each exchange of information. As a result Turbo codes pro-

duced practical systems that perform close to the Shannon limit. In [77], Benedetto et al.

showed that serially concatenated systems could provide performance results equal, and in

some cases superior to those achievable with Turbo codes. Serially concatenated codes can

sequentially combine coding (as an outer element) and modulation (as an inner element).

If the inner encoder is recursive in nature then increasing the length of the interleaver

improves the performance of the concatenated code (yielding an interleaver gain).
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In this chapter, we investigate a serially concatenated system employing space–time

(ST) continuous phase modulation (CPM) as the inner code, and a class of simple block

codes called double parity check (DPC) codes [24] as the outer code. We are motivated in

this investigation by the recursive nature of CPM that makes it an excellent fit for a serially

concatenated decoding scheme, and by the energy efficiency offered by ST–CPM. We have

opted to pair ST-CPM with the DPC class of codes because the DPC codes have a low

decoding complexity, and have been shown to enable performance approaching capacity

when combined with differential phase-shift keying (DPSK). We study the performance

of the serially concatenated ST-CPM system using two different channel models. First,

we look at the additive white Gaussian noise (AWGN) channel model traditionally used

to study the performance of concatenated codes. Then, in order to further motivate of

the selection of ST–CPM as the inner encoding element we study the performance of the

concatenated scheme over the quasi-static fading channel (QSFC).

Serially concatenated systems that are built upon single antenna CPM have been in-

vestigated by a number of research groups, for example [7], [78] and [79]. In most instances

these systems employ a convolutional code as the inner code together with a fairly simple

CPM scheme for the outer code. Additionally, serially concatenated ST–CPM systems

have received some study. Zhang and Fitz [8] proposed an adaptive soft-output demod-

ulator for ST coded CPM that performed joint channel estimation and data detection.

They examined the performance of this demodulator in an interleaved ST–CPM system

to evaluate the impact of iterative decoding on channel estimation. Their iterative system

consisted of a convolutional outer code and a CPM delay diversity scheme for the inner

code. Subsequently, Bokolamulla and Aulin [9] designed an optimum symbol-by-symbol

iterative detector for serially concatenated ST–CPM. Their system employs previously de-

signed full rank ST–CPM codes and uses a frequency offset to ensure orthogonality. The
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frequency offsets introduce bandwidth expansion and are the result of an exhaustive search

possible only for fast fading channels. Furthermore, Gabrowska et al. [23] have proposed a

serially concatenated ST–CPM code for which the outer code is once again a convolutional

code. The code has rate 1, and is designed such that the NT encoded sequences at the

output of the convolutional encoder are the sequences that are modulated and transmit-

ted over each of the NT transmit antenna. Orthogonality is ensured by designing the NT

encoded and interleaved signals to be independent by employing a Gram–Schmidt linear

decomposition of the CPM waveforms. Using this technique the complexity of the receiver

is increased because the CPM waveform is approximated by L(M−1)+1 linear waveforms.

In this chapter, we investigate serially concatenated ST–CPM codes that maintain the

constant-envelope properties that are at the heart of the energy savings offered by CPM. We

will employ EXIT charts to pair CPM with a class of parity check block codes called Double

Parity Check (DPC) codes, which were originally designed for use with differential-phase

shift keying (DPSK) [24]. The DPC class of codes are an excellent companion code for

ST–CPM as they have a low computational cost (minimizing overall energy consumption)

and yet provide performance that is close to capacity.

4.1 Concatenated Coded Transmission System

In this section, we briefly overview the structure and operation of a concatenated code.

A block diagram of the serial concatenated encoder employed in this chapter is shown in

Figure 4.1. The outer DPC encoder receives at its input the binary bits u. These bits are

processed by the outer DPC encoder into the bit sequence c. The encoded bits c are input

to an interleaver and are output as the bit sequence cint. The interleaver bits are input

to the ST–CPM inner encoder, which converts the bit sequence to the symbol sequence a

and outputs the CPM waveform S(t,a) [see Section 2.30 for details]. As in Section 2.30,
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u ST-CPM S(t, a)

Encoder

DPC
π

c Interleaver

Encoder

cint

Figure 4.1: Block diagram of a serially concatenated transmission system.

we assume that the ST-CPM system has NT transmit antennas and NR receive antennas.

A block diagram of the iterative decoder is shown in Figure 4.2. The ST–CPM inner

decoder has two inputs: the received signal r(t), and the a priori information generated

by the outer DPC decoder. The received signal is given by Eq. ( 2.2), which is repeated

here for clarity,

r(t) = G(t)S(t,a) + n(t), 0 ≤ t < NTNfT (4.1)

assuming the QSFC outlined in Section 2.1. The noise term n(t) is a vector consisting of

NR independent zero mean AWGN processes with power spectral density N0. The filtered

received signal for D receive filters is given by

R[n] =


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
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, (4.2)

where the elements r
(d)
nr [n] of R[n] are given in (2.31).

During the first iteration the inner decoder only uses the received signal because no

a priori information is available from the outer decoder. For every other iteration the a

priori bit information received from the outer encoder is converted into a priori symbol

information and used in conjunction with the received signal to generate the a posteriori

probability (APP) of the bit sequence cint. Before the APPs are passed to the de-interleaver

and then to the outer decoder, any a priori information used to generate these probabilities

must be removed. If the a priori information generated by the outer encoder is included
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Figure 4.2: Block diagram of a serially concatenated transmission system.

in the bit probability information supplied to the outer encoder incorrect bit decisions

may be reinforced causing a complete failure of the iterative decoder. Once the a priori

information has been removed from the APP, the resulting extrinsic information, λCPMe is

passed to the de-interleaver. The de-interleaved extrinsic information becomes the a priori

input to the outer decoder, λDPCa . The outer encoder processes the a priori sequence

λDPCa and outputs the extrinsic bit sequence λDPCe . The extrinsic information sequence

λDPCa can either be re-interleaved and used in another iteration cycle, or combined with

the a priori information sequence λCPMe to produce hard decisions on the transmitted bit

sequence.

Having outlined the structure and operation of the serially concatenated ST–CPM

system, we now overview how the information is exchanged and some mathematical tools

for generating this information. A compact means of communicating both the decisions

and the reliability of the decisions is the log likelihood ratio (LLR) given by

L(u) , log

(

p(u = 0|(inputs))
p(u = 1|(inputs))

)

, (4.3)

where inputs refers to all inputs to the inner or outer decoder. Following the methods used

in [24] we treat the LLR generated by one decoder as a priori information at the input
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of the subsequent decoder. In the case of the ST–CPM decoder the LLR information is

treated as a priori information about the encoded symbol and is used in conjunction with

the information received over the channel (see Section 4.1.3 for more details). In the case

of the DPC decoder the LLR information is the only input (see 4.1.1 for more details).

Processing the LLR values requires the decoding units to generate the LLR of the

modulo-2 addition of two information bits. This operation is called the boxplus and is de-

noted by the ⊞ notation. Using the u[i] to denote a generic information bit, the probability

of the modulo-2 addition of two information bits is given by

p(u[i] ⊕ u[k] = 0) = p(u[i] = 1)p(u[k] = 1) + (1 − p(u[i] = 1))(1 − p(u[k] = 1)) (4.4)

where we can calculate p(u[i] = 1) from (4.3) as p(u[i] = 1) = eL(u[i])

(1+eL(u[i])
. Using the above

the boxplus operation is defined by

L(u[i]) ⊞ L(u[k]) , L(u[i] ⊕ u[k])

= log

(

1 + eL(u[i])+L(u[k])

eL(u[i]) + eL(u[k])

)

, (4.5)

where the following boxplus operations yield

L(u[i]) ⊞ ∞ = L(u[i]), (4.6)

L(u[i]) ⊞ −∞ = −L(u[i]), (4.7)

L(u[i]) ⊞ 0 = 0. (4.8)

To minimize the complexity of the decoding algorithm and to preserve the integrity of the
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c[3] c[2k − 3]

c[0] c[2] c[2k − 4] c[2k − 2]

c[1] c[2k − 5]

Figure 4.3: The structure of the DPC I rate k/(2k − 1) code.

LLR information we define [77]

∗
max

i=1,...,K
(L(u[i])) = log

(

K
∑

i=1

eL(u[i])

)

= max
i=1,...,K

(L(u[i])) + δ(L(u[1]), . . . , L(u[K])) (4.9)

for the addition of LLR information, where δ(L(u[1]), . . . , L(u[K])) is a correction term

added to the max operation that is recursively calculated, i.e.,

δ(a, b) = log(1 + e−|a−b|), (4.10)

δ(a, b, c) = log(1 + e−|δ(a,b)−c|). (4.11)

4.1.1 Double Parity-Check (DPC) Codes

DPC codes were introduced by Mitra and Lampe [24] for use in a serially concatenated

system with multi-level DPSK. The capacity approaching performance of DPC codes with

DPSK, combined with their low decoding complexity make these codes an excellent can-

didate for concatenated with CPM and ST–CPM. In this section, for ease of reference

we briefly overview the structure of these DPC codes. The outer encoder shown in Fig-

ure 4.2 accepts Nb bits at its input, which are denoted as [u[0], · · · , u[Nb−1]], and outputs
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c[2k − 5] c[2k − 3]c[2k − 1] c[2k]

Figure 4.4: The structure of the DPC II rate k/(2k + 1) code.

NDPC bits at its output, which are denoted as [c[0], · · · , c[NDPC − 1]]. The DPC code is a

block code that processes the frame of input bits in blocks, with a code rate of k/n (i.e.

NDPC = (n/k)Nb). The DPC codes proposed in [24] can be separated into two classes,

denoted as DPC I and DPC II. The DPC I class of codes has rate r = k/n = k/(2k − 1).

As the length k of the block of input bits is increased the rate of the DPC I class of codes

approaches 1/2. Mathematically, the code bits are given by

c[2i] = u[i],

c[2i+ 1] = u[2i] ⊕ u[2i+ 2]. (4.12)

The Tanner graph for the DPC I code is shown in Figure 4.3, where the even-indexed

code bits (c[0], c[2], · · · c[2k − 2]) represent the data bits input to the encoder, and the

odd-indexed code bits (c[1], c[3], · · · , c[2k − 3]) represent the parity bits generated by the

modulo-2 addition of the adjacent two input data bits. The minimum Hamming distance

of the DPC I class of codes is dmin = 2 because the data bits that begin and terminate the

block of data that is input to the DPC encoder only affect the value of one parity bit each

(in contrast to all of the other input data bits that affect the value of two parity bits). The

low weight errors that result from a small minimum Hamming distance cause the onset of

an error floor at low signal-to-noise ratio (SNR). Therefore, the authors of [24] proposed
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a second class of DPC codes (DPC II) with a lower data rate r = k/(2k + 1) but a larger

minimum Hamming distance, dmin = 3. The minimum Hamming distance of the DPC II

code is increased over that of the DPC I code by adding two extra parity bits that have

only one input. The Tanner graph for the DPC II group of codes is shown in Figure 4.4,

and mathematically the DPC II code is generated by

c[2i] = u[i],

c[2i+ 1] = u[2i] ⊕ u[2i+ 2]

c[2k − 1] = u[0] = c[0],

c[2k] = u[k] = c[2k − 2]. (4.13)

Once again, as the length k of the block of input bits is increased the rate of the DPC II

class of codes approaches 1/2.

Soft Decoding of DPC Codes

The Tanner graphs shown in Figures 4.3 and 4.4 confirm that both codes are cycle free.

Therefore, message passing decoding is optimum for both codes. Message passing decoding

for the DPC codes is accomplished using a conventional forward/backward (FB) algorithm

with the following forward and backward recursion metrics

f [i] = (f [i− 1] + λDPCa(c[2i− 2])) ⊞ λDPCa(c[2i− 1]), (4.14)

b[i] = (b[i+ 1] + λDPCa(c[2i+ 2])) ⊞ λDPCa(c[2i+ 1]), (4.15)

where λDPCa(c[i]) is the a priori information about bit c[i] that is passed to the FB al-

gorithm from the ST–CPM BCJR decoder (described in 4.1.3) in form of a log-likelihood

ratio (LLR). A Tanner graph showing the generation of the forward and backward re-
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Figure 4.5: Generation of the forward and backward recursion metrics (f [i] and b[i]) for
DPC I and DPC II.

cursion metrics is given in Figure 4.5. The initial and final values of the forward and

backward recursion metrics are f [0] = 0, and b[k − 1] = 0, respectively, for DPC I, and

f [0] = λDPCa(c[2k − 1]), and b[k − 1] = λDPCa(c[2k]), respectively, for DPC II. The FB

algorithm outputs the extrinsic a posteriori probabilities of the data bits

λDPCe(c[2i]) = f [i] + b[i], (4.16)

and of the parity bits

λDPCe(c[2i+ 1]) = (f [i] + λDPCa(c[2i− 1])) ⊞ (b[i] + λDPCa(c[2i− 2])) , (4.17)

The a posteriori probabilities for the two additional parity bits required for the DPC II

code are generated by

λDPCe(c[2k − 1]) = λDPCa(c[0]) + λDPCe(c[0]) − λDPCa(c[2k − 1]) (4.18)

λDPCe(c[2k]) = λDPCa(c[2k − 3]) + λDPCe(c[2k − 3]) − λDPCa(c[2k]) (4.19)

After the bit LLRs have been generated they are passed through the interleaver and input

to the ST–CPM decoder, and used to generate symbol LLRs that can be used in the
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00 01 10 11

Ungerboeck (UL) −3 −1 +1 +3
Gray1 (GL1) −3 −1 +3 +1
Gray2 (GL2) −3 +1 +3 −1

Table 4.1: Symbol labeling for M = 4.

ST–CPM decoder.

4.1.2 ST–CPM

For the inner encoder, we adopt the diagonal block-based ST–CPM scheme detailed in

Chapter 2. As shown in Figure 4.2 the ST–CPM encoder receives the bits [cint[0], · · · , cint[NDPC−

1]] and outputs the symbols [ant [0], · · · , ant [Nf − 1]] on 1 ≤ nt ≤ NT antenna. However,

the bit-to-symbol mappings that were optimal for the non-iterative system used in Chap-

ter 2 are not optimal for the iterative decoding system that we consider here. In fact, even

in the case of one transmit antenna the bit-to-symbol mapping has significant influence

on the performance of the iterative system, (we will examine in detail the role of symbol

labeling in Section 4.2). For M = 4, we can generate the mutual information transfer

characteristics for all 24 possible labelings and determine those that are unique. For the

CPM schemes used as examples in this work, three distinct labelings were identifiable:

traditional Ungerboeck (or natural) labeling (UL), and two types of Gray labeling ((GL1)

and (GL2)). These mappings are given in Table 4.1.

For M = 8, rather than re-examine the 8! different mapping possibilities, we will study

the performance of several mappings that have been shown to have superior performance in

iterative coding schemes employing PSK modulation. In particular, six different labelings

are considered. These labelings include Ungerboeck labeling (UL), Gray labeling (GL),

Antigray labeling (AGL), Semi-set partitioning labeling (SSPL) [80], Howard and Schlegel
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000 001 010 011 100 101 110 111

Ungerboeck (UL) −7 −5 −3 −1 +1 +3 +5 +7
Gray (GL) −7 −5 −1 +7 +3 +1 +5 −3
Antigray (AGL) −7 +7 −5 +5 +3 −3 +1 −1
Semi-Set Partitioning (SSPL) −7 +3 −3 +7 +1 −5 +5 −1
Howard and Schlegel (HSL) −7 +7 −5 +1 −3 −1 +5 +3
Nuriyev and Anastosopoulos (NAL) −7 +7 −1 +1 +3 −3 +5 −5

Table 4.2: Symbol labeling for M = 8.

labeling (HSL) [81], and Nuriyev and Anastosopoulos labeling (NAL) [82]. These mappings

are given in Table 4.2. In addition, when we consider transmission over multiple transmit

antenna we will consider only the repetition code, i.e. the same symbol labeling applied

to antennas nt = 1, . . . , NT . Selecting the repetition code allows a simple EXIT chart

analysis of the different symbol labelings, and allows for a simple lower bounding of the

outage probability of the scheme when the QSFC is considered. In addition, we will show

that when the repetition code is used with optimal symbol labeling over the QSFC the

resulting scheme yields performance near the lower bound on outage probability.

4.1.3 Soft Decoding of ST–CPM

The object of the soft decoding algorithm employed by the ST–CPM decoder is to use both

the received signal and the a priori information provided by the DPC decoder to generate

the a posteriori probability Pr{a1[i] = m|R}, where R = [R[0], . . . , R[Nf ]]. Note that,

the DBST-CPM scheme given in Chapter 2 fixes the symbols transmitted over antennas

nt = 2 · · ·NT with respect to the symbols transmitted over antenna nt = 1 and the

ST-CPM code C, therefore it sufficient to refer to the symbols transmitted over antenna

nt = 1. As shown in Figure 4.2, these APP symbol probabilities can then be converted into

APP bit probabilities, de-interleaved and then recycled as the input to the outer (DPC)

decoder. The BCJR algorithm [83] is the optimal trellis based soft-output algorithm for
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estimating the probabilities Pr{a1[i] = m|r}. In this case the BCJR algorithm operates

on the ST–CPM trellis discussed in Section 2.3.3.

The iterative decoder employs LLRs, therefore it suffices to calculate the joint proba-

bility of the transmitted symbol a1[i] and the received signal frame R, given by

p(a1[i] = m,R) =
∑

si

∑

si−1

αi−1(si−1)γm(si, si−1)βi(si) (4.20)

where αi−1(si−1) is denoted as the forward metric, βi(si) is denoted as the backward met-

ric, and γm(si, si−1) = p(R[i], si, a1[i] = m|si−1), m ∈ {−M + 1,−M + 3, · · · ,M − 1} is

denoted as the branch transition metric. The branch transition metric is the probability

of transitioning from state si−1 to state si when the symbol transmitted is a1[i] = m can

also be expressed as

γm(si, si−1) = p(R[i]|a[i] = m, si, si−1)P (si|si−1) (4.21)

where p(R[i]|a[i] = m, si, si−1) is the conditional probability of the received signal R[i]

given that the symbol a[i] = m was transmitted starting in state si and finishing in state

si−1, and P (si|si−1) = λCPMa(a1[i] = m) is the a priori probability of the transition from

state si−1 to state si, or equivalently the a priori probability of the symbol a[i] = m. The

forward metric, αi, which is the probability of transitioning from the beginning of the frame

to the state si, is given by

αi(si) = p(si,R
i
0),

=
∑

si−1

∑

m

γm(sisi−1)αi−1(si−1), (4.22)

where Ri−1
0 denotes the vector [R[0] · · ·R[i − 1]]. Similarly, the backward metric, βi(si),
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which is the probability of transitioning from the end of the frame to the state si, is given

by

βi(si) = = p(R
Nf−1
i |si),

=
∑

si+1

∑

m

γm(si+1si)βi+1(si+1). (4.23)

The initialization of α and β is dependent on the initial and final states of the ST–CPM

trellis. The termination state of the trellis is unknown and therefore the values of βi(si)

corresponding to the final state of the trellis (βNf−1(sNf−1)) are uniformly initialized. In

contrast, the initial state of the trellis is assumed to be known and the probability of this

state is set to one, while the probability of the other states (α0(s0)) is set to zero.

In Section 2.3.3, we defined the branch metric for the Viterbi decoder as the cross-

correlation of the received signal and the filtered signal element ρnt
(d[i]), where d[i] is an

‘address vector’ composed of the L most recent M-ary data symbols a[i], and the NT p-ary

phase states that contain the phase information for each of the nt antenna that has been

accumulated over symbols transmitted from the beginning of the frame to the L− 1 most

recent symbol. For clarity we will restate the address vector d[i] here

d[i] , [Υ1[i− L], · · ·ΥNT
[i− L],a[i− L+ 1], · · · ,a[i]]. (4.24)

In order to derive the probability p(R[i]|a[i] = m, si, si−1) we must slightly redefine the

expression for the signal element ρnt(t, d[i]) filtered by the matched filter bank specified by

the vector hD(t) (see Eq. (1.20)). The filtered signal elements used by the BCJR algorithm

are given by

ρB
nt

(d[i]) =

∫ T

0

ρnt(t,d[i])h∗
D(t)dt, (4.25)

where ρnt(t,d[i]) is the signal element transmitted over antenna nt in the period iT +(nt−
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1)NfT ≤ t < (i+ 1)T + (nt − 1)NfT, 0 < i < Nf corresponding to the address vector d[i].

If we assume coherent detection the probability p(r|a1[i] = m, si, si−1) can be written as

p(R|a1[i] = m, si, si−1) =

1

(πσ2)NT

NT
∏

nt=1

NR
∏

nr=1

exp
(

(rnr [i+ (nt − 1)Nf ]g
∗
nrnt

[i+ (nt − 1)Nf ] − ρB
nt

(d[i]))HC−1

(rnr [i+ (nt − 1)Nf ]g
∗
ntnr

[i+ (nt − 1)Nf ] − ρB
nt

(d[i]))
)

. (4.26)

where rnr [i] denotes the filtered signal received on antenna nr [see Section 2.3.3].

The BCJR algorithm as it has been presented is computationally complex and can

become unstable when small probability values are generated. In logarithmic form the

BCJR algorithm is computationally less complex and numerically stable. The branch

transition metric in logarithmic form can be written as

Γm(si, si−1) = log (γm(si, si−1)) ,

=

NT
∑

nt=1

NR
∑

nr=1

(

(rnr [i+ (nt − 1)Nf ]g
∗
nrnt

[i+ (nt − 1)Nf ] − ρB
nt

(d[i]))HC−1

(rnr [i+ (nt − 1)Nf ]g
∗
nrnt

[i+ (nt − 1)Nf ] − ρB
nt

(d[i]))
)

+λCPMa(a1[i] = m) +K, (4.27)

where λCPMa(a1[i]) are the a priori symbol LLRs that are generated from the bit LLRs

λDPCe that are produced by the DPC decoder. Thus, if Ωnt [m], 1 ≤ m ≤ M is the data

mapping for input symbol m on antenna nt then the a priori information on symbol a1[i]

is given by

λCPMa(a1[i] = m) =
∗

max
j:aj

1[i]=1
(λDPCe(Ω1[c

int[i log2M + j]]) 0 ≤ i < Nf , (4.28)
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Note that we need only to generate extrinsic information for nt = 1 because the probability

of ant [i] = Ωnt [c
int[i log2M + j]] is independent of the antenna and of the data mapping.

Similarly, we can write the forward and backward metrics in logarithmic form

Ai(si) = log(αi(si)) = log(
∑

si−1

∑

m

exp(log(γm(si, si−1))) + log(αi−1(si−1))),

=
∗

max
si−1,m

(Γm(si, si−1) + Ai−1(si−1)) , (4.29)

and

Bi(si) = log(βi(si)) = log(
∑

si+1

∑

m

exp(log(γm(si+1, si))) + log(βi+1(si+1))),

=
∗

max
si+1,m

(Γm(si+1, si) +Bi+1(si+1)) . (4.30)

Using the above equations we can write the APP probability of a symbol as

APP (a1[i] = m) =
∗

max
si,si−1

[Ai−1(si−1) + Γm(si, si−1 +Bi(si))]. (4.31)

If we denote the bits that comprise the symbol a1[i] as [a1
1[i], a

2
1[i], · · · , alog2 M

1 [i]], then we

can write the LLR of bit aj
1[i] as

L(aj
1[i]) =

∑

a1[i]:aj
1[i]=0

APP (a[i] = m)−
∑

a1[i]:aj
1[i]=1

APP (a[i] = m), 0 < j ≤ log2M. (4.32)

Before the LLR given above is passed through the de-interleaver and then to the DPC

decoder the a priori information supplied to the ST–CPM decoder must be removed to leave

only extrinsic information. The extrinsic information about the DPC coded, interleaved
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bit aj
1[i] = cint[i log2M + j] generated by the BCJR algorithm for ST–CPM is

λCPMe(c
int[i log2M+j]) = L(aj

1[i])−λCPMa(c
int[i log2M+j]), 0 ≤ i < Nf , 0 < j ≤ log2M.

(4.33)

4.2 Analysis and Design of Concatenated ST–CPM

Using EXIT Charts

In general, the performance of an iterative decoding scheme can be characterized by a BER

curve with three distinct regions. At low SNR the BER shows minimal improvement with

increasing SNR. At some threshold SNR the BER drops distinctly, in what is often called

the waterfall region. Finally, as SNR is increased beyond the threshold SNR the iterative

decoding scheme will at some point encounter an error floor. The threshold SNR at which

the scheme enters the waterfall region, and the SNR at which the scheme encounters the

error floor are both parameters that are dependent upon the design of the inner and outer

codes.

Several methods have been proposed to predict the performance of an iterative de-

coding scheme, and in particular the SNR at the onset of the waterfall region. One of

the proposed methods is density evolution [84]. Density evolution involves calculation of

the probability density functions (pdfs) of the information that is exchanged between the

decoding units. By tracking the evolution of these pdfs and using a thresholding mech-

anism density evolution is able to predict the SNR at which the waterfall region begins.

Several simpler methods have been proposed that are also very accurate in predicting the

onset of the waterfall region. One of these methods is the EXIT chart [85] which focuses

on the exchange of mutual information (i.e. a single parameter of the pdf instead of the
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entire pdf) between the inner and outer decoding units. Using the EXIT chart approach

allows for analysis of the individual component decoders, rather than requiring a study

of the entire iterative decoder. Once the relationship between the mutual information at

the input and output of the component decoders has been established, the performance of

the overall operation of the iterative decoder can be examined; the mutual information at

the output of the ST–CPM decoder is the mutual information at the input of the DPC

decoder and, similarly, the mutual information at the output of the DPC decoder is the

mutual information at the input of the ST–CPM decoder. Note that an ideal interleaver

(which ensures that consecutive bits are independent) has no impact on the exchange of

mutual information.

In the following, we overview the method used to generate the mutual information

transfer characteristics of the inner and outer codes. Next, we create a sample EXIT

chart for the AWGN channel and explain how the EXIT chart can be used to predict the

performance of the concatenated code. We conclude the section, by detailing how an EXIT

chart can be generated for ST–CPM when a QSFC is considered.

4.2.1 Generation of the Mutual Information Transfer

Characteristics

The first step in the generation of the EXIT chart is to establish the relationship between

the mutual information at the input and output of the component decoders. Here, we will

briefly overview the mathematical background of the EXIT chart [85]. We will assume a

generic decoder that receives a signal r, that is generated by an input symbol u plus a

Gaussian random variable n with zero mean and variance σ2
n (i.e. r = u+n). This systems

corresponds to transmitting the concatenated coded signal over an AWGN channel. The
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LLR generated by this signal is given by

L[r] = log

(

r|u = 0

r|u = 1

)

=
2

σ2
n

(u+ n). (4.34)

In [85], ten Brink noted that simulation results indicate that the probability density func-

tions of the extrinsic information generated by the decoding units that make up the iterative

decoder tend towards Gaussian-like distributions as the number of iteration is increased.

This means that the a priori input to a decoding unit has a Gaussian-like distribution. In

addition, when the interleaver length is large the a priori LLR information is uncorrelated

with information received over the channel. Therefore, the a priori LLR information at

the input of the inner decoder is modelled as a Gaussian variable

λa = µau+ na, (4.35)

where na is a Gaussian random variable with zero mean, and variance σ2
a, and µa = σ2

a.

The conditional probability density of this a priori LLR information is given by

pλa(ξ|U = u) =

exp

(

− (ξ−σ2
a
2

u)2

2σ2
a

)

√
2πσa

. (4.36)

The mutual information between the a priori LLR λa and the transmitted bits U is given

by

Ia(σa) = I(U ; λa) =
1

2

∑

u=−1,+1

∫ +∞

−∞
log2

[

2pλa(ξ|U = u)

pλa(ξ|U = −1) + pλa(ξ|U = +1)

]

pλa(ξ|U = x)dξ,

(4.37)
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and substituting (4.36) this can be written as

Ia(σa) = 1 −
∫ +∞

−∞

exp

(

− (ξ−σ2
a
2

)2

2σ2
a

)

√
2πσa

log2 [1 + exp(−ξ)] dξ. (4.38)

To simplify future calculations we define

J(σ) , Ia(σa = σ), (4.39)

lim
ρ→0

J(σ) = 0, limσ→∞ J(σ) = 1, σ > 0. (4.40)

The expression for mutual information as a function of input noise variance given in (4.39)

cannot be expressed in closed form. Therefore, for the purposes of computer simulation

we use an approximation furnished by the non-linear least squares Marquardt-Levenberg

algorithm [86, 87]. Employing this approximation, evaluation of J(σ) is split into two

intervals: 0 ≤ σ ≤ σtp, and σtp < σ < 10, where σtp = 1.6363. The approximation for J(σ)

is given by

J(σ) ≈























aJ,1σ
3 + bJ,1σ

2 + cJ,1σ 0 ≤ σ ≤ σtp

1 − exp[aJ,2σ
3 + bJ,2σ

2 + cJ,2σ + dJ,2] σtp < σ < 10

1 σ ≥ 10

(4.41)

where

aJ,1 = −0.0421061, bJ,1 = 0.209252, cJ,1 = −0.00640081,

aJ,2 = −0.00181491, bJ,2 = −0.142675, cJ,2 = −0.0822054, dJ,2 = 0.0549608.

(4.42)
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Figure 4.6: Plot of the J(σ) function.

Similarly, the inverse of the function J(σ) = J−1(I) is evaluated in two intervals: 0 ≤ I ≤

Itp, and Itp < I < 1, where Itp = 0.3646. The approximation of J−1(I) is given by

J−1(I) ≈











aσ,1I
2 + bσ,1I + cσ,1

√
I 0 ≤ I ≤ Itp

−aσ,2 · log[−bσ,2(I − 1)] − cσ,2I Itp < I < 1
(4.43)

where

aσ,1 = 1.09542, bσ,1 = 0.214217, cσ,1 = 2.33727,

aσ,2 = 0.706692, bσ,2 = 0.386013, cσ,2 = −1.75017.
(4.44)

The J(σ) function is shown in Figure 4.6. Having analyzed the relationship between the

variance term σ2
a and the a priori mutual information, Ia, at the input of a decoder we

now consider the relation between the mutual information of the extrinsic information at
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the output of the decoder, Ie, and the variance term σ2
a. The mutual information of the

extrinsic information at the output of the decoder can be written as

I(λCPMe ;Cint) = 1 −
∫ +∞

−∞
pλCPMe

(ξ|Cint = 1) log2[1 + exp(−ξ)]dξ,

I(λDPCe;C) = 1 −
∫ +∞

−∞
pλDPCe

(ξ|C = 1) log2[1 + exp(−ξ)]dξ. (4.45)

As described in [85], the probability distributions pλCPMe
(ξ|Cint = 1) and pλDPCe

(ξ|C = 1)

given in (4.45) are generated by simulation. Mutual information is measured for different

values of σ2
a, by applying the Gaussian random variable given in (4.35) as the a priori

input to the decoder. Using the time averages (an arbitrarily close approximation of

(4.45)) mutual information is given by

ICPMe = I(λCPMe;Cint) ≈ 1 − 1

NDPC

NDPC
∑

n=1

log2(1 + e−cint[n]λCPMe (cint[n])),

IDPCe = I(λDPCe;C) ≈ 1 − 1

NDPC

NDPC
∑

n=1

log2(1 + e−c[n]λDPCe (c[n])), (4.46)

where the approximations are valid when pdfs for the LLR are both symmetric, i.e.,

pλCPMe
(ξ|X = 1) = pλCPMe

(−ξ|X = 0), pλDPCe
(ξ|X = 1) = pλDPCe

(−ξ|X = 0), (4.47)

and consistent, i.e.,

pλCPMe
(ξ|X = 1) = pλCPMe

(−ξ|X = 1) exp(ξ), pλDPCe
(ξ|X = 1) = pλDPCe

(−ξ|X = 1) exp(ξ).

(4.48)

Having evaluated Ie(σa) (Ie(σa, Eb/N0) for the outer decoder), and Ia(σa) we can determine

the extrinsic information transfer function Ie = T (Ia) (or Ie = T (Ia, Eb/N0) in the case of

the outer decoder.

122



Chapter 4. Concatenated Coding for Space–Time Coding with Continuous Phase Modulation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

DPC I − Rate 2/3

DPC I − Rate 3/5

DPC I − Rate 10/19

DPC I − Rate 2/5

DPC I − Rate 3/7

DPC I − Rate 10/21

I D
P

C
e

IDPCa

Figure 4.7: Mutual information transfer chart for the DPC codes.

The mutual information transfer chart (IDPCe vs. IDPCa) for the DPC I and DPC II

classes of codes are shown in Figure 4.7. The figure shows that as the rate of the DPC code

is decreased the DPC decoder is able to make better use of the a priori mutual information

provided to it.

4.2.2 Generation of the EXIT Chart for the AWGN channel

The EXIT chart is generated when the mutual information transfer characteristics of the

inner and outer decoders are plotted on the same figure, noting that when the iterative

decoder is operating IDPCe = ICPMa and ICPMa = IDPCe . Figure 4.8, shows an EXIT chart

for the ST–CPM code employing NT = 1 transmit antenna, and M = 4, h = 1/4, a
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Figure 4.8: EXIT chart depicting the mutual information transfer for the DPC II rate
10/21 code and for the ST–CPM code employing NT = 1 transmit antenna, and M = 4,
h = 1/4, a 1REC pulse with Ungerboeck mapping, and with an SNR (AWGN channel) of
ranging from 10 log10(Eb/N0) = +0.2 dB to +5.2 dB in increments of 0.2 dB.

1REC pulse, and for the DPC II rate 10/21 code. The extrinsic mutual information at the

output of the ST–CPM decoder is dependant not only on the a priori mutual information

available, but also upon the SNR of the received signal. Figure 4.8 shows results for a

SNR, assuming an AWGN channel, ranging from 10 log10(Eb/N0) = +0.2 dB to +5.2 dB

in increments of 0.2 dB. The SNR at which the mutual information transfer characteristic

of the inner decoder no longer intersects the transfer characteristic of the outer decoder is

often called the threshold SNR of the scheme. The opening between the inner and outer

decoder characteristics is commonly referred to as a ‘tunnel’. The threshold SNR at which

the tunnel opens is of interest because it is at this SNR the BER exhibits a sudden and

steep decline characteristic to concatenated codes, which is commonly referred to as the
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BER ‘waterfall’.

Ideally, the EXIT chart can be used to visualize the exchange of mutual information

between the constituent decoders. Figure 4.9 illustrates the decoding trajectory of a typical

concatenated system for two different interleaver lengths. The example shown on the right

of Figure 4.9 employs a long interleaver (on the order of 105 bits [85]). In this example

the mutual information exchange proceeds almost exactly as predicted by the EXIT chart.

However, due to the shorter interleaver used in the example on the left of Figure 4.9

correlations in the mutual information mean that the gains predicted by the EXIT chart

are not realized [85]. In the worst case, a short interleaver will cause the decoding trajectory

to terminate before the (1,1) mutual information point is reached and cause an error floor

for the scheme. In the best case, the decoding trajectory does reach the (1,1) point, but

requires many more iterations than a decoder using a long interleaver.

4.2.3 Generation of the EXIT chart for the Quasi-Static Fading

Channel (QSFC)

In this section, we derive an expression for the extrinsic mutual information at the output

of the ST–CPM decoder, ICPMe assuming a QSFC. Note that the extrinsic information at

the output of the DPC decoder is not a function of the channel. As previously discussed,

we will generate extrinsic mutual information for the ST–CPM under the condition that

repetition coding is used on all NT antenna. Under this condition symbol labeling must

still be optimized, however the same labeling is used on all antennas.

Employing maximal ratio combining (MRC) at the reciever (in order to obtain maxi-

mum diversity) the instantaneous SNR per bit, γb, is given by

γb = γ̄b

NR
∑

nr=1

NT
∑

nt=1

|gnrnt|2, (4.49)
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Figure 4.9: Two EXIT charts illustrating the effect of interleaver length on the decoding
trajectory. On the left a short interleaver is used, and on the right a long interleaver is
used.

where the average SNR γ̄b is given by γ̄b = Eb/N0. Using this expression for instantaneous

SNR we can write an expression for the extrinsic mutual information of a repetition coded

ST–CPM signal transmitted over the QSFC as

IQSFC
CPMe

(γb) = E(ICPMe(γ̄b

NR
∑

nr=1

NT
∑

nt=1

|gnrnt|2)),

=

+∞
∫

−∞

IDPCe(γb)p(γb)dγb. (4.50)

Under the assumption that the fading on the NRNT different channels is statistically in-

dependent, the probability density function (pdf) for the sum of γb =
∑NR

nr=1

∑NT

nt=1 γbnrnt

is a chi-squared pdf with 2NRNT degrees of freedom. Therefore, the expected capacity of
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a repetition coded ST–CPM signal is given by

IQSFC
CPMe

(γb) =

∞
∫

−∞

ICPMe(γb)
1

γ̄b
NRNT (NRNT − 1)!

(γb)
NRNT −1e−γb/γ̄bdγb. (4.51)

4.3 Capacity

The merit of a transmission scheme, such as concatenated coding, is usually proven by

comparing the performance of the scheme against some benchmark, such as capacity. Cal-

culating the capacity of a CPM based scheme is not a simple task because of the memory

element inherent to CPM. In this section, we first analyze the capacity of ST–CPM trans-

mitted over the AWGN channel, and then look at at the capacity of repetition coded

ST–CPM transmitted over a QSFC.

4.3.1 AWGN Channel

In order to calculate the capacity of the ST–CPM scheme transmitted over an AWGN

channel we adopt the simulation-based information rate computation method proposed in

[88] for systems with channel memory. The techniques proposed in [88] are immediately

applicable to ST–CPM for which modulation memory takes the place of channel memory.

In this section, we assume a single antenna system (NT = 1, NR = 1). In this case the

received signal can be written as r[n] = [r(1)[0], . . . , r(D)[Nf − 1]], and r
j
i = [r[i], . . . , r[j]],

and the transmitted signal sequence can be written as a = [a[0], . . . a[Nf − 1]], and a
j
i =

[a[i], . . . ,a[j]]. The objective of this algorithm is to calculate the mutual information

between the transmitted symbols a = [a[0], . . . a[Nf − 1]] and the received signal, given by

C = I(a; r
Nf−1
0 ) , lim

Nf→∞

1

Nf

I(a[0], · · ·a[Nf − 1]; r[0], · · ·r[Nf − 1]) (4.52)
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Under the assumption that these processes and the state process of the CPM trellis, S =

[S0, S1, S2, · · · ], satisfy

p(an
0 , r

n
0 , s

n
0 ) = p(s0)

n
∏

i=0

p(a[i], r[i], si+1|si), (4.53)

and

E (| log p(r[1]|s0, s1, a[0])|) <∞ (4.54)

the sequence 1
Nf

log2 p(r
Nf −1

0 ) converges with probability 1 to the entropy rate h(r). There-

fore, the estimated mutual information is given by

Î(a; r
Nf−1
0 ) , − 1

Nf
log2 p(r

Nf−1
0 ) − h(r

Nf−1
0 |a) (4.55)

where h(r
Nf−1
0 |a) is known analytically to be h(N), the entropy of a complex Gaussian

random variable, given by

h(N) = NT log2 (det(eπN0C)) , (4.56)

where C is the D × D array of cross-correlations of the basis functions that form the

D complex filters used to obtain sufficient statistics at the front-end of the receiver (see

Section 1.2.1). The entropy h(r) can be calculated by generating long sequences a
Nf−1
0

and r
Nf−1
0 (Nf ≥ 106 symbols [83]) and using the forward metric generated by the BCJR

algorithm. The probability p(r
Nf−1
0 ) can be found to be [see (4.22), (4.29)]

log
(

p(r
Nf−1
0 )

)

=
∑

sNf−1

αsNf−1
(sNf−1). (4.57)
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where αsi
is given in Section 4.1.3. Commonly, the forward metric is normalized at each

step (i.e. each calculation of αi(si)) because αi(si) → −∞ for long sequences. If the

normalization factor λnorm
i is introduced such that λnorm

i = −max lim∗(
∑

sn
αsn(sn)), then

the probability p(r
Nf−1
0 ) is given by

1

Nf
log
(

p(r
Nf−1
0 )

)

= −1

n

n
∑

0

λnorm
i (4.58)

and finally the estimated capacity can be written as

Ĉ =
1

log(2)

1

Nf

Nf−1
∑

i=0

λnorm
i −NT log2 (det(eπN0C)) . (4.59)

The estimated capacity vs. SNR for CPM with M = 4, a 1REC phase pulse, and with

h = 1/4 is shown in Figure 4.10. If we correct for the overall rate of the concatenated

coding system we can generate the ‘rate distortion’ BER [89], given by

BER = H−1

(

1 − Ĉ

R

)

, BER ≤ 0.5, (4.60)

where R is the target rate of the code, and H−1(x) denotes the inverse of the binary entropy

function H(x) = −x log2(x) − (1 − x) log2(1 − x) [90], which is unique for BER ≤ 0.5.

4.3.2 Quasi-Static Fading Channel

Due to the fading nature of the QSFC outage probability, Pout, is a more useful measure of

performance in this environment than capacity. Outage probability is the probability that

the instantaneous capacity of the channel is less than the outage capacity of the channel.

For example, if the concatenated ST–CPM scheme under study transmits Cout bits/channel

use then with probability Pout the instantaneous capacity of the channel is less than Cout.
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Figure 4.10: Estimated Capacity for M = 4 CPM employing a 1REC phase pulse, and
with h = 1/4.

Thus, the outage probability will provide a lower bound for the frame error rate (FER) of

the scheme under study. First, we must find an expression for instantaneous capacity. In a

manner similar that used in Section 4.2.3, we can write an expression for the instantaneous

capacity of the ST–CPM scheme in the QSFC when repetition coding is employed as

ĈQSFC(γb)) = Ĉ(γ̄b

NR
∑

nr=1

NT
∑

nt=1

|gnrnt|2). (4.61)

Then, the outage probability can be written as

Pout = Pr{(ĈQSFC(γb)) < Ĉout}. (4.62)

130



Chapter 4. Concatenated Coding for Space–Time Coding with Continuous Phase Modulation

For a given CPM scheme the estimated capacity can be generated over a range of γ̄b as

shown in Figure 4.10. Using these results the SNR required to support desired CPM

scheme at capacity, γout, can be determined. Then, the expression for outage probability

can be re-written as

Pout = Pr{
NR
∑

nr=1

NT
∑

nt=1

|gnrnt|2 <
γout

γ̄b
}, (4.63)

The random variable produced by the sum of the squared magnitudes of channel gains has

a chi-squared distribution. Thus, finally, using the cumulative density function (cdf) of a

chi-squared distribution, we can write the outage probability as

Pout = 1 − e
−(

γout
γ̄b

)
NRNT −1
∑

n=0

1

n!

(

γout

γ̄b

)n

. (4.64)

4.4 Results and Discussion

In this section we employ the EXIT chart to select the best symbol labelings for a select

group of ST–CPM concatenated codes. The BER performances of these symbol label-

ings are compared to appropriate capacity limits derived in Section 4.3.1 in the case of

the AWGN noise channel, and similarly the appropriate outage probabilities derived in

Section 4.3.2 in the case of the block fading channel. We conclude the section with a com-

parison of the performance of the proposed scheme and pre-existing concatenated CPM,

and ST–CPM schemes.

4.4.1 The AWGN Channel

In this section, we consider the performance of single antenna ST–CPM concatenated

with the DPC codes, for M = 2, 4 and 8-ary CPM schemes. We attempt to minimize the
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Figure 4.11: The mutual information transfer characteristics of a select group of DPC I
and DPC II codes, and MSK (CPM: M = 2, 1REC phase pulse and h = 1/2) with Eb/N0

in steps of 0.5 dB.

complexity of the ST–CPM for each value ofM , using the 1RC, 1REC, and 2RC waveforms.

We employ a pseudo-random (S-random) spread interleaver, which has been shown to yield

performance superior to many random interleavers [91]. Using the performance analysis

presented in this section we will show that the DPC class of codes are a good fit for

concatenation with CPM. Analysis of multiple transmit and receive antenna is reserved for

the block fading channel, and is given in Section 4.4.2.

First, we consider binary CPM. The EXIT chart displaying the mutual information

transfer characteristics for MSK (M = 2, a 1REC phase pulse, and h = 1/2) and for DPC I,

and DPC II class codes are shown in Figure 4.11. The MSK transfer characteristics are

shown for a range of values of received SNR. From the characteristics shown in the figure
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DPC Code
h = 1/2

Capacity Threshold SNR
(dB) (dB)

Code I - 2/3 1.21 3.39∗

Code I - 3/5 0.86 2.27∗

Code I - 10/19 0.44 1.39
Code II - 2/5 −0.02 1.23
Code II - 3/7 0.034 1.31
Code II - 10/21 0.22 1.44

Table 4.3: SNR to achieve capacity vs. threshold SNR from EXIT chart analysis for MSK.
Note that ()∗ denotes schemes whose EXIT chart tunnel opens after the ‘threshold’ SNR
given in this Table.

it is evident that SNR required to open a tunnel between the DPC II class of codes and

MSK is less than is required for the DPC I codes. In fact, due to the shape of the MSK

mutual information transfer characteristic the SNR required to completely open a tunnel

between the MSK and DPC I transfer characteristics is much higher than is needed for

the DPC II codes. However, increasing SNR gradually opens the EXIT chart tunnel for

MSK and the DPC I codes. Thus, although the BER performance of MSK concatenated

with the DPC I codes does not exhibit the waterfall characteristic until a higher SNR is

reached than its DPC II counterpart, the BER performance improves significantly with

increasing SNR. The EXIT chart predicts the onset of the BER waterfall at 1.23, 1.38, and

1.42 dB for MSK and the DPC II rate 2/5, 3/7, and 10/21 codes respectively. The EXIT

chart tunnel does not completely open until SNRs of 6.26, 3.21, and 1.79 dB for MSK and

the DPC I rate 2/3, 3/5, and 10/19 rate codes, respectively. However, the tunnels for the

MSK and DPC I rate codes (most notably the 2/3 and 3/5 rate codes) are mostly open at

significantly lower SNRs. If we define the threshold SNRs to be the SNR at which a BER

of 10−3 is reached then the threshold SNRs and the SNR for transmission at capacity for

MSK are given in Table 4.3.
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DPC Code
h = 1/3 h = 1/4

Capacity Threshold SNR Capacity Threshold SNR
(dB) (dB) (dB) (dB)

Code I - 2/3 1.61 3.81∗ 2.96 2.39∗

Code I - 3/5 1.17 2.30∗ 2.27 3.97“∗

Code I - 10/19 0.84 1.74 1.69 3.09
Code II - 2/5 −0.02 1.23 0.78 2.38
Code II - 3/7 0.08 1.13 0.93 2.48
Code II - 10/21 0.32 1.42 1.27 2.52

Table 4.4: SNR to achieve capacity vs. threshold SNR from EXIT chart analysis for binary
1REC with h = 1/3 and h = 1/4. Note that ()∗ denotes schemes whose EXIT chart tunnel
opens after the ‘threshold’ SNR given in this Table.

The simulated BER performance of MSK concatenated with the DPC codes is shown

in Figure 4.12 (non-bold curves). An interleaver of 8000 bits is employed. Rate distortion

capacity curves (bold curves) are also shown for reference in Figure 4.12. The performance

of the DPC II codes (shown on the right of the figure) is well predicted by the EXIT

chart. The 2/3, and 3/5 rate DPC I codes (shown on the left of the figure) do not exhibit

the very sharp BER waterfall characteristic, but do demonstrate a substantial BER drop

with increasing SNR as the EXIT chart opens. All of the DPC I codes have error floors.

We note, even at high SNR the tunnel between the MSK transfer characteristic and the

characteristics of the DPC I codes is not very large. Table 4.4 contains the SNR needed

to achieve capacity and the threshold SNRs for binary, 1REC, with h = 1/3, and h = 1/4.

Note again, a BER of 10−3 determines the threshold SNR. In general, the performance of

the ST-CPM code with the DPC II class of codes is superior to that of the DPC I class of

codes (particularly the rate 2/3, and rate 3/5 codes. Therefore, in the remainder of this

chapter we will employ the DPC II class of codes.

Next, we consider 4-ary CPM. The EXIT chart for CPM with M = 4, h = 1/4, a

1REC phase pulse and the rate 10/21 DPC II code is shown in Figure 4.13. The threshold
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Figure 4.12: Estimated capacity (bold curves) and simulated BER (non-bold curves) vs.
10 log10(Eb/N0) for MSK (CPM: M = 2, 1REC phase pulse and h = 1/2) concatenated
with DPC I class codes (in the figure to the left) and DPC II class codes (in the figure to
the right).

SNRs for the three labelings that produce distinct transfer characteristics are shown. The

Gray labeling yields the lowest threshold SNR (1.3 dB), but the threshold SNR of the

three labelings are separated by only 0.2 dB. Although, the transfer characteristics of the

three labelings are not strikingly different, we note that the size of the EXIT channel

tunnel opening is different for the different schemes before the threshold SNR is reached

(i.e. before the tunnel completely opens). Before the threshold SNR is reached the GL2

scheme has the smallest unopened tunnel size, followed by the UL scheme, and then the

GL1 scheme. We also note that at the upper right hand of the EXIT chart, when large

quantities of mutual information are being exchanged, the GL2 provides the largest tunnel

opening, followed by the UL labeling, and finally the GL1 labeling.
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Figure 4.13: EXIT chart showing the threshold SNR for three labelings of CPM (M = 4,
h = 1/4, a 1REC phase pulse) and the rate 10/21 DPC II code. SNR is Eb/N0.

Figure 4.14 shows the simulated BER results for the M = 4 scheme just described.

Again, the rate distortion capacity curve is provided for reference. BER results are shown

for an interleaver length of 4200, and 8400 bits. First, we consider the performance of

the three labelings when the interleaver length is 4200 bits. Given the fact that the three

labelings have comparable threshold SNRs, the size of the tunnel opening prior to the

threshold SNR has a significant affect on the shape and ordering of the BER curves in the

10−1 to 10−2 BER region. In fact, the BER can be determined directly from the a priori

at the input of the DPC decoder, and the extrinsic information at the output of the DPC

decoder for any point on the decoding trajectory [85]. Thus, when schemes have similar

threshold SNR, the shape of the mutual information transfer characteristic takes on an

added importance. From Figure 4.14, we see that as SNR is increased the GL2 labeling
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provides superior performance, and the GL1 labeling encounters and error floor. This

ordering can be attributed to the relatively short interleaver length, and the size of the

tunnel opening at high values of mutual information (i.e. at the upper right hand corner

of the EXIT chart). As discussed earlier when a short interleaver is employed correlation

amongst the extrinsic information generated by the decoders reduces the actual amount of

mutual information exchanged from the values predicted by the EXIT chart. If the EXIT

chart is already narrow the iterative decoding process may terminate prematurely causing

an error floor. Therefore, when a short interleaver is employed the size of the opening of the

EXIT chart tunnel is an important consideration. To see the effect of a longer interleaver,

we now look at the results of the 8400 bit interleaver. In this case none of the mappings

encounters an error floor before a BER of 10−7. We note that the M = 4, GL labeling

scheme that we have considered provides BER performance within 1.2 dB of capacity.

Finally, we consider 8-ary CPM. The mutual information transfer characteristics of five

of the six 8-ary labelings given in Table 4.2 are shown in Figure 4.15 for CPM with h = 1/4

and a 2RC phase pulse. The mutual transfer characteristic of the HL is not shown as it

is almost identical to the characteristic of the SSPL. Of the six labelings only two reach

the (1,1) point of mutual information when the ‘tunnel’ opens at a relatively low SNR.

The other four labelings are expected to demonstrate the BER waterfall characteristic but

to produce BER error floors. The two labelings that reach the point of (1,1) of mutual

information are the AGL and NAL labelings. The NAL labeling scheme has a threshold

SNR of 1.0 dB, and the AGL labeling has a threshold of 0.9 dB and wider opening between

the inner and outer mutual information transfer characteristics at low SNR.

Figure 4.16 shows the simulated BER results for the M = 8 scheme just described.

The rate distortion capacity is provided for reference. An interleaver of 4200 bits is used.

For reference the performance of the UL scheme is shown in Figure 4.16. As expected the
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Figure 4.14: Estimated capacity (bold curve) and simulated BER (non-bold curves) vs.
10 log10(Eb/N0) for CPM: M = 4, 1REC phase pulse and h = 1/4) concatenated with the
rate 10/21 rate DPC II code.

UL labeling scheme has an error floor at a relatively high BER (at 10−4). The AGL code

provides BER performance within approximately 1 dB of capacity.

4.4.2 Block Fading Channel

In this section, we consider the QSFC and the performance of proposed concatenated coding

scheme employing ST–CPM. In this section will set NR = 1, and assume the outer code

is the DPC II, rate 10/21 code. The transmitted energy per bit Ēb is always normalized

with respect to the number of transmit antenna. The ST–CPM coding scheme employs

repetition coding with the symbol labelings listed in Tables 4.1 and 4.2. It is worth noting

that repetition codings reduces the complexity of the DBST coding scheme from pNTML−1

states to pML−1 states.
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Figure 4.15: Mutual information transfer chart for the ST–CPM code employing NT = 1
transmit antenna, and M = 8, h = 1/4, a 2RC pulse, and with a SNR of 10 log10(Eb/N0) =
−2.0 dB and the symbol mappings given in Table 4.2.

We begin with the performance of scheme employing M = 4, and NT = 2. The CPM

scheme considered is 1REC with h = 1/4. The EXIT chart for this scheme is shown in

Figure 4.17. The spread of threshold SNRs in this case is 2.4, 3.8, and 3.0 dB for UL, GL1,

and GL2, respectively. Once again, we note that prior to the threshold SNR the EXIT

chart tunnel is most open for GL1, followed by GL2, and then UL.

The second scheme we consider employsM = 8, andNT = 3. The CPM scheme uses the

2RC phase pulse, with h = 1/4. The EXIT chart for this scheme is shown in Figure 4.18.

The mutual information transfer characteristics for the UL and the AGL are shown in the

EXIT chart. The AGL labeling has a threshold SNR of 1.4 dB, whilst the UL does not

open a tunnel until an SNR of 10 dB is reached. The FER performance of these schemes
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Figure 4.16: Estimated capacity (bold curve) and simulated BER (non-bold curves) vs.
10 log10(Eb/N0) for CPM: M = 8, 2RC phase pulse and h = 1/4) concatenated with the
rate 10/21 rate DPC II code.

is shown in Figure 4.19. The FER performance of the concatenated ST–CPM scheme with

NT = 2 antenna provides performance within 0.7 dB of the outage probability at capacity

up to a FER of almost 10−3. The different symbol mappings for NT = 2 provide very

similar performance. The 1.4 dB spread of threshold SNRs for NT = 2 is a relatively small

margin in the QSFC, and the shape of the mutual information transfer characteristics is

such that, for example, although the GL1 labeling has the highest threshold its tunnel is

also open to the furthest right (of the three labelings considered) of the EXIT chart before

the threshold SNR is reached.

As expected the AGL labeling provides performance superior to the UL for NT = 3 at

low to moderate SNR. At high SNR the tunnel opens for the UL and the scheme provides
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Figure 4.17: EXIT chart for NT = 2 (M = 4, 1REC, h = 1/4) and the 10/21 rate DPC II
code. The UL, GL1 and GL2 are shown at their threshold SNRs.

performance comparable to the AGL. However, by selecting the AGL, a FER performance

within 0.5 dB of the outage probability at capacity is provided. Finally, we note that the

concatenated coding schemes presented in Figure 4.19 have the same rate, and consume

the same amount of energy. Thus, increasing the number of transmit antenna provides an

excellent means to improve system performance.

4.4.3 Comparison with Previous Work

In this section, we compare the performance of the proposed scheme with that of existing

concatenated ST–CPM, and concatenated CPM coding schemes. We first make a com-

parison of the performance of the proposed concatenated CPM code without considering

the ST aspect. Using this comparison we can properly evaluate the merit of the proposed

141



Chapter 4. Concatenated Coding for Space–Time Coding with Continuous Phase Modulation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

UL

AGL

10/21, DPC II Code

1.4dB

5dB

10 dB

ICPMa
, IDPCe

I C
P

M
e
,I

D
P

C
a

Figure 4.18: EXIT chart for NT = 3 (M = 8, 2RC, h = 1/4) and the 10/21 rate DPC II
code. The UL and SSPL are shown for SNRs of 1.4, 5.0, and 10.0 dB.

pairing of the DPC class of codes with CPM. To date, all of the proposed schemes for

concatenated codes ST–CPM employ convolutional codes, e.g. Zhang and Fitz [8], Boko-

lamulla and Aulin [9], and Gabrowska et al. [23]. In fact, most of the work on concatenated

CPM employs convolutional codes. Therefore, the first comparison that we make is with

the concatenated CPM code proposed by Moqvist and Aulin in [7]. Figure 4.20 shows the

performance of MSK paired with a (7,5) convolutional code when transmitting over an

AWGN channel. The performance of this scheme is shown for interleaver lengths of 128,

512, 2048, and 8192 bits. Also shown in the figure is the performance of MSK concatenated

with the DPC 10/21 code (in this case the interleaver lengths are closely approximated

by 126, 525, 2058, and 8190 bits). The performance of the concatenated CPM-DPC code

clearly outperforms the performance of the concatenated CPM-CC code. Therefore, the
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Figure 4.19: Estimated outage probability (bold curve) and simulated FER (non-bold
curves) vs. 10 log10(Ēb/N0) for concatenated ST–CPM. Results for NT = 2 (M = 4,
1REC, h = 1/4), and NT = 3 (M = 8, 2RC, h = 1/4) and the 10/21 rate DPC II code.
UL, GL1, and GL2 shown for NT = 2, and UL, and SSPL shown for NT = 3.

DPC class of codes are good fit for use with CPM, and promise competitive performance

in a space-time system.

The second comparison we make with delay diversity concatenated ST–CPM scheme

proposed by Zhang and Fitz [8]. The scheme employs a (7,5) convolutional code, and

1RC, h = 1/4, M = 4 delay diversity CPM, and NT = 2 transmit antennas and NR = 2

receive antennas. We use the same underlying ST–CPM scheme and replace the (7,5)

convolutional code with the rate 10/21 DPC II code. An interleaver of 256 bits is employed

and a maximum of 5 iterations are permitted. The FER performance of these schemes over

a continuous fading channel with a fading bandwidth BfT = 0.008 is shown in Figure 4.21.

Note that the FER results shown in the figure are taken from [9], where the scheme proposed
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Figure 4.20: BER vs. 10 log10(Ēb/N0) for the concatenated CPM scheme proposed by
Moqvist and Aulin in [7], and for the proposed scheme employing MSK concatenated with
the rate 10/21 DPC II code over an AWGN channel.

in [8] was employed with an improved detector. Once again the FER performance results

show that the pairing of the DPC code with CPM is an improvement over a pairing with

a convolutional code.

Few results exist for the performance of concatenated ST–CPM coding schemes in

QSFC. Bokomulla and Aulin [9] studied the performance of their proposed scheme when

fading remained constant over a number of symbols rather than over an entire frame. We

compare the performance of the proposed with that of ‘System B’ in [9]. This scheme

employs NT = 2, and NR = 2 antenna, a (7,5) convolutional outer code, MSK, and

a 600 bit interleaver. Full diversity is achieved by offsetting the carrier frequencies of

the different transmit antenna by the normalized value ∆fT = 1/6. The overall rate of

144



Chapter 4. Concatenated Coding for Space–Time Coding with Continuous Phase Modulation

0 1 2 3 4 5 6
10

−4

10
−3

10
−2

10
−1

10
0

 

 
CPM & CC(7,5) from Zhang et al.
CPM & DPC II (10/21)
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Figure 4.21: FER vs. 10 log10(Ēb/N0) for the concatenated CPM scheme employing a (7,5)
convolutional code as proposed by Zhang and Fitz in [8], [9], and the performance of CPM
concatenated with the rate 10/21 DPC II code. The channel is a continuous fading channel
with fading bandwidth BfT = 0.008, and NT = 2, NR = 2 antenna are employed. The
underlying CPM scheme is 1RC, h = 1/4, M = 4. The interleaver length is 256 bits, and
5 iterations are used.

the code is 0.5 bits per symbol duration T , and excluding the frequency offset it has a

normalized bandwidth of B99T = 1.18. Due to the diagonal structure of our proposed code

we employ CPM with the 2RC phase pulse, M = 4, and h = 1/4. We use the DPC II

code with rate 10/21. The overall rate of the code is 0.4762 bits per symbol duration,

and it has a normalized bandwidth of B99T = 1.24. In Figure 4.22 the performance of the

Bokomullla and Aulin scheme is compared with that of the proposed scheme when fading

is constant for f = 1, 10 and 30 symbol intervals, and 10 iterations are permitted. The

proposed scheme provides comparable or superior performance regardless of the duration

of the fading interval. Significant improvement is observable as the fading duration is
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Figure 4.22: BER vs. 10 log10(Ēb/N0) for the concatenated CPM scheme denoted as
‘system B’ by Bokomulla and Aulin [9], and the proposed scheme. Both schemes employ
NT = 2, NR = 2, and a 600 bit interleaver. ‘System B’: (7,5) convolutional outer code,
MSK and a ∆fT = 1/6 normalized carrier offset. ST–CPM and DPC code: rate 10/21
DPC II code, 2RC phase pulse, M = 4, and h = 1/4. The channel is a QSFC constant for
f = 1, 10, 30 symbol intervals. 10 iterations are permitted.

increased.

We include no comparisons with the performance of the scheme proposed by Gabrowska

et al. [23] due to the rate difference of the codes. The set of concatenated ST–CPM codes

proposed in this chapter are by design highly flexible, low-rate, low complexity codes that

are capable of non-coherent detection. The set of codes proposed by Gabrowska et al. have

a high rate (the overall code rate is 1), but also a much higher degree of complexity at the

receiver. The Gram–Schmidt decomposition employed by Gabrowska et al. replaces the

CPM waveform with L(M − 1) + 1 linear waveforms. In addition, this decomposition was

previously designed specifically for CPFSK signals and all other CPM formats considered
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by Gabrowska et al. are approximated as LREC signals, which may result in a performance

degradation for CPM formats other than CPFSK. Lastly, no mechanism for non-coherent

detection of the codes proposed by Gabrowska et al. is discussed in [23]. Thus, the set

of codes proposed in this chapter may be a better fit for many strictly cost and energy

constrained, ad-hoc wireless applications.

4.5 Conclusions

A serially concatenated code for ST–CPM has been proposed. The concatenated code

employs the diagonal block-based ST code proposed in Chapter 2 as an inner code, and

a class of double parity check codes as the outer code. In order to evaluate the merit of

the proposed scheme a method for estimating the capacity of underlying ST–CPM scheme

in AWGN and over a QSFC was proposed. EXIT charts were employed to select the best

CPM symbol labelings for the ST–CPM code. The concatenated code formed from the

ST–CPM code and the DPC codes was shown to provide performance close to capacity,

and to provide performance superior to that provided by CPM, and ST–CPM schemes

that are concatenated with the commonly used convolutional code.
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Conclusions and Future Work

In this chapter, we conclude the thesis by summarizing our results and highlighting the

contributions of this dissertation. We also suggest several topics for further research.

5.1 Research Contributions

In this thesis, we have proposed space–time (ST) codes for use with continuous phase

modulation (CPM). In Chapter 2, we began by proposing a code that supports the combi-

nation of CPM with orthogonal designs (ODs). Then, we proposed a ST-CPM code using

a diagonal signalling matrix. In Chapter 3, we used the ST-CPM code with the diagonal

signalling matrix as the basis for a distributed ST-CPM code. Finally, in Chapter 4, we

proposed combining a ST-CPM with a diagonal signalling matrix with a double parity

check (DPC) code to form a serially concatenated code.

Specifically, in Chapter 2 we begin with the proposal of a simple orthogonal space–time

block coding (OSTBC) technique for CPM. Although the straightforward combination of

orthogonal designs (ODs) and CPM was deemed impossible in [1] and [15], the burst–

based approach accomplishes the task in very simple manner. The resulting ST-CPM

code can be combined with any CPM format. After an appropriate ST combining at the

receiver, the OSTBC scheme can utilize the same detection techniques as for a single–

antenna transmission scheme. Thus, the proposed scheme entails a lower complexity than

all previously proposed ST coding schemes for CPM. Additionally, simulation results along
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with accurate approximations that were derived for the bit error rate (BER) and the frame

error rate (FER) of CPM with OSTBC show that this scheme yields a better performance

for the important case of NT = 2 transmit antennas. For NT > 2 transmit antennas

OSTBC for CPM suffers from the same rate loss as all ST coding schemes based on ODs.

In the second part of Chapter 2 an alternate ST–CPM coding scheme was presented.

This scheme also employs a block–based approach to preserve the properties of CPM, but in

this case makes use of a diagonal signalling matrix rather than an OD. The resulting diag-

onal block-based ST–CPM (DBST–CPM) scheme facilitates non-coherent detection at the

receiver in addition to providing increased energy efficiency. It was noted that DBST-CPM

can be regarded as a non-trivial extension of the well-known differential ST modulation

(DSTM) scheme with diagonal signal matrices for linear modulation formats. An upper

bound on the frame-error rate of DBST–CPM in the quasi-static fading channel (QSFC)

was derived for use in optimizing the DBST-CPM code. Also, an efficient code optimiza-

tion algorithm was presented. Additionally, decision rules were derived for low-complexity

non-coherent detection of DBST-CPM in various fading environments. Numerical and

simulation results showed that (a) the derived upper bound accurately predicts the per-

formance of DBST-CPM in the QSFC, (b) the proposed code optimization yields highly

power-efficient designs, and (c) the non-coherent detectors approach the performances of

their coherent counterparts for various fading channel models.

In Chapter 3 we presented and analyzed the energy consumption of a distributed ST

code for CPM. The distributed ST codes were designed to operate in wireless networks

containing a large set of nodes N , of which only a small a priori unknown subset S ⊂ N

were active at any time. Under the proposed scheme, a relay node transmits a signal which

is the product of DBST–CPM code presented in Chapter 2 (optimized specifically for ST-

CPM transmission) and a signature vector of length Nc uniquely assigned to each node in
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the network. An efficient method was presented for the design and optimization of appro-

priate signature vector sets, assuming a quasi-static, frequency non-selective fading channel

model. It was shown that when a properly designed signature vector set is employed a

diversity order of d = min{NS , Nc} can be achieved, where NS is the number of active relay

nodes. The decoding complexity of the proposed scheme was shown to be independent of

the number of active relay nodes. In the same manner as for the underlying DBST–CPM

code, non-coherent receiver implementations, which do not require channel estimation, are

applicable. Simulation results showed that the performance of the proposed distributed

ST-CPM scheme is close to that achievable with co-located antennas. The chapter con-

cluded with a comparison of the total energy (radiated and used in hardware) required

to supply a target BER at a maximum transmission distance for the distributed ST-CPM

scheme and a distributed ST scheme based upon linear modulation. At high power the

CPM based scheme offers significant energy savings, and extended coverage range (from

2.6% to 43.8%). Performance gains were shown to increase with the number of active relay

nodes Ns.

Finally, in Chapter 4, we presented a serially concatenated code that used the diagonal

ST-CPM code in combination with a double parity check code. EXIT charts were used

to select the best performing symbol labelings in the AWGN channel and for the QSFC.

A method was proposed to obtain an estimate on the capacity of the diagonal ST-CPM

code over the AWGN channel. A lower bound on outage probability for the diagonal ST-

CPM code over the QSFC was derived in order to better evaluate the system. Simulation

results showed that the concatenated code provided performance close to capacity over

the AWGN channel, and achieved performance approaching the lower bound on outage

probability over the QSFC. Finally, the concatenated code formed from the ST-CPM code

and the DPC codes was shown to provide performance superior to that provided by CPM,
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and ST-CPM schemes that are concatenated with the commonly used convolutional code.

5.2 General Conclusions

The ST–CPM codes presented in this thesis are highly flexible codes that can be used

with any CPM format, any number of transmit and receive antenna, and can be used

with existing CPM receivers. In addition, the DBST-CPM code enables non-coherent de-

tection. CPM allows for the use of energy efficient low power amplifiers. In the case of

distributed coding we have shown that ST-CPM can provide considerable energy savings

and an extended coverage range in comparison to distributed ST linear coding schemes.

Serial concatenation of the ST-CPM code with DPC codes provides low error-rate perfor-

mance. In summary, the energy efficiency, flexibility, non-coherent detection capability,

and performance provided by the proposed ST-CPM coding make this code an excellent

candidate for application in wireless networks, especially highly energy constrained net-

works, such as sensor networks.

5.3 Suggestions for Future Work

1. The energy consumption analysis presented in Chapter 3 could be generalized from

the case of distributed ST-CPM coding to ST-CPM code to provide a more holistic

picture of the energy savings offered by employing a ST-CPM instead of a linear

based code.

2. The serially concatenated ST-CPM coding scheme presented in Chapter 4 uses rep-

etition coding. The scheme could be extended to use different symbol labelings on

each of the transmit antenna. Optimal symbol labelings could be selected with the

aid of a multi-dimensional EXIT chart.
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