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Abstract—We introduce a deep learning-based hybrid beam-
forming (HBF) strategy for millimeter-wave transmission sys-
tems, specifically addressing the challenges posed by phase noise
of local oscillators. Our approach utilizes a deep neural network
to optimize precoding and combining matrices based on channel
state information. We incorporate the symbol index through
an adaptive attention mechanism and employ a self-supervised
learning approach with a phase-noise-aware loss function to
mitigate the effects of phase noise. While primarily focused
on phase noise, our method also accommodates other practical
constraints, such as limited-resolution phase shifter and imperfect
channel estimation. Simulation results demonstrate that our
design outperforms traditional and deep-learning based HBF
methods in terms of data rate both in scenarios impacted only
by phase noise and compounded distortion scenarios including
low-resolution phase shifters and channel estimation errors.

I. INTRODUCTION

Today’s millimeter-wave (mmWave) multiple-input and
multiple-output (MIMO) transceivers employ hybrid beam-
forming (HBF) architectures to strike a balance between
performance, device cost, and power consumption [1]–[5]. An
HBF system features an analog and digital precoder at the
transmitter and an analog and digital combiner at the receiver
to create optimized antenna patterns using the channel state in-
formation (CSI). HBF optimization algorithms are divided into
codebook-based [6], [7] and codebook-free schemes [1]–[4].
Codebook-based HBF, prevalent in 4G and 5G technologies,
offers low computational complexity by using predefined ma-
trices for precoding and combining. However, its performance
may fall short due to limited adaptability to channel conditions.
Conversely, codebook-free schemes allow for optimization of
precoder and combiner pairs based on objective functions such
as channel capacity, achievable rate or signal-to-interference-
plus-noise ratio (SINR) in a continuous space. This paper
concentrates on codebook-free HBF optimization methods,
and the term HBF hereafter specifically refers to codebook-
free HBF systems.

The design of HBF for mmWave systems has been in-
vestigated in numerous works, addressing problems such
as reducing the computational complexity associated with
beamforming optimization [8], [9], mitigating the impact of
channel estimation error [10], [11], and studying the effects
of hardware-related impairments such as power amplifier non-
linearity [12], low-resolution phase shifters [4], [13], and
oscillator phase noise [14], [15].
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Phase noise originating from local oscillators is a critical
hardware impairment in mmWave systems often modeled as
Wiener random process. Phase noise induces signal constella-
tion rotation, known as common phase error (CPE), and inter-
carrier interference (ICI) in orthogonal frequency-division
multiplexing (OFDM) transmission. Additionally, it impacts
the spatial selectivity of beamforming. The body of research
on CPE and ICI mitigation techniques is substantial [14]–[18].
Nevertheless, addressing phase-noise effects on beamforming
optimality remains a challenge. This issue is important due
to its direct impact on beamforming array factor mismatch
and gain loss, leading to a reduction in achievable rate [19]–
[23]. Current model-driven [1]–[3] and data-driven [5], [24],
[25] HBF optimization techniques primarily assume ideal local
oscillators without phase noise. This assumption makes such
HBF systems susceptible to performance degradations in real-
world scenarios where phase noise exists. The detrimental
impact of phase noise is compounded by the fact that antenna
patterns of both the transmitter and the receiver of HBF
systems are jointly optimized based on channel measurements
taken prior to data transmission. Phase noise variations during
data transmission alter the effective channel matrix and render
the beamforming matrices mismatched. In MIMO systems,
phase-noise-aware combining techniques are conventionally
employed to mitigate the effects of phase noise [26]–[28].
However, we note a gap in the literature concerning the adverse
effects of phase noise in two-sided beamforming systems,
which necessitate jointly optimized precoders and combiners.
This unresolved issue can significantly impact the achievable
rate of MIMO systems.

Recently, deep learning-based methods have emerged as
an effective tool for mmWave HBF optimization, offering
efficient parallelized inference [29]–[31] and adaptability to
specific environments via fine-tuning [32], [33]. In this paper,
we present a deep learning-based HBF optimization solution
that adaptively pre-distorts the antenna radiation pattern to
mitigate beamforming mismatches caused by phase noise.
Building upon state-of-the-art methods [31], [34]–[37], we
employ a convolutional neural network with residual connec-
tions (ResNet) at the core of our design. We demonstrate
that progressively reducing the directivity of antenna pattern
lobes significantly enhances robustness against beamform-
ing mismatches. To achieve this, we propose an adaptive
attention mechanism called AdaSE-ResNet—a time-adaptive
version of the squeeze-and-excitation residual network (SE-
ResNet) from [38]—which dynamically adjusts antenna pat-
tern smoothing for each OFDM symbol. This is implemented
through self-supervised learning using a phase-noise-aware
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Figure 1. Block diagram of the multiuser hybrid beamforming system with one base station transmitting to NUE users.

loss function that accounts for the time-dependency of the
effective channel resulting from phase noise fluctuations and
phase-noise-induced ICI. Furthermore, the proposed method
addresses practical challenges such as low-resolution analog
phase shifters and channel estimation errors, ensuring robust
performance under practical constraints.

A critical factor underpinning the success of our methodol-
ogy is the extensive use of transfer learning during training.
We employ an approach in which initial training occurs on a
series of quantized datasets, each increasing in size, followed
by further training on the actual dataset. This technique
significantly accelerates the training process, which otherwise
appeared to be intractable, allowing us to efficiently train the
proposed model.

For clarity and emphasis, we summarize our main contri-
butions:

• We introduce AdaSE-ResNet, which recalibrates the at-
tentional weights of the squeeze-and-excitation module
for each OFDM symbol index.

• We propose a deep learning-based HBF optimization
method that adaptively pre-distorts the antenna radiation
pattern using the proposed AdaSE-ResNet to mitigate
beamforming mismatches caused by phase noise. By pro-
gressively reducing the directivity of the antenna pattern
lobes, our method enhances robustness to beamforming
mismatches and mitigates signal-level loss.

• The data-driven nature of our method allows for its
application across diverse phase noise models, including
scenarios based on lab-measured phase noise samples.
This adaptability allows for fine-tuning to specific deploy-
ment environments, enhancing its applicability in real-
world scenarios.

The remainder of this paper is organized as follows. Sec-
tion II presents the system model considered in this paper. In
Section III, we derive the proposed HBF optimization using
deep learning. Numerical results are presented and discussed
in Section IV. Conclusions are provided in Section V.

II. SYSTEM MODEL

We consider the downlink of a multi-user (MU) MIMO-
OFDM HBF system. For concreteness, we assume operation
in a frequency division duplex (FDD) mode, although the
methodologies described are also equally applicable to time
division duplex (TDD) communication. The difference lies
in the CSI measurement procedure, which is essential but
independent of the beamforming optimization process, pro-
vided the CSI is accessible at the base station (BS). In FDD
systems, there is an inherent delay as CSI is measured in the
downlink by user equipment (UE) and then transmitted to the
base station. In contrast, TDD systems benefit from channel
reciprocity, allowing the base station to directly measure CSI
in the uplink, thereby eliminating any delay. This distinction in
CSI acquisition impacts the timeliness but not the applicability
of our beamforming approach across duplex modes.

We assume that the base station has Na
B antennas and NRF

B

RF chains, and each user equipment has Na
U antennas and

NRF
U RF chains, operating on K subcarriers. As depicted in

Fig. 1, the system applies digital precoding and combining
within the discrete Fourier transform (DFT) domain and
applies analog precoding and combining to the up-converted
signal through a network of adjustable analog phase shifters
and signal adders.

Local oscillators used for up/down-conversion in the RF
chain can operate in two distinct configurations: the inde-
pendent local oscillator (ILO) structure, where each oscillator
feeds only a single RF chain, and the common local oscillator
(CLO) structure, where one oscillator feeds multiple RF chains
[11]. Although the CLO architecture is appealing due to
its singular phase-noise source, the ILO architecture is used
in large antenna array systems where the spacing between
antennas is large and distributing the signal from a single
oscillator to all RF chains in such settings can be prohibitively
expensive and technically challenging [27]. Thus, we consider
the more general ILO configuration in this work. Having
outlined the overall system model, we now discuss specific
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aspects in more detail.

A. Phase Noise

Let ϕ[t] denote a phase noise sample at sample time t. A
typical model for the temporal evolution of phase noise is the
first-order recursion ϕ[t] = ϕ[t − 1] + ∆ϕ[t], where ∆ϕ[t] is
the phase noise innovation, which is typically assumed as an
i.i.d. Gaussian process. This model is known as Wiener phase
noise [39]. Other common models are often defined by their
power spectral density, typically modeled using a Lorentzian
spectrum that exhibits low-pass signal characteristics [40],
[41]. For the derivation of our HBF design, we make no
assumption about the statistics of the phase noise process other
than that the phase noise innovation is small to permit an
approximation which is explained later.

B. Channel Model

We adopt the geometric mmWave channel model proposed
in [1] with NC scattering clusters and NL scatterers in each
cluster. The Na

U ×Na
B channel matrix experienced by the kth

OFDM subcarrier for the transmission from the BS to a UE
u can be written as

Hu[k] =

NC∑
c=1

NL∑
l=1

αc,lar(β
r
c,l)(at(β

t
c,l))

He−j2πηc
k
K (1)

where ar and at are the antenna array responses of the UE
receiver and the BS transmitter, respectively. For concreteness,
we consider a uniform linear array configuration with antenna
spacing d and wavelength λ at both the transmitter and receiver
sides, and thus

ar(β) =
1√
Na

U

[1, ej2πd sin(β)/λ, . . . , ej2π(N
a
U−1)d sin(β)/λ]T,

(2)

at(β) =
1√
Na

B

[1, ej2πd sin(β)/λ, . . . , ej2π(N
a
B−1)d sin(β)/λ]T.

(3)
Furthermore, αc,l ∼ CN (0,

Na
BNa

U

NCNL
) is the path gain, βr

c,l and
βt
c,l are the angle of arrival (AoA) and angle of departure

(AoD) of the lth reflecting element of the cth cluster, respec-
tively, and ηc denotes the time lag of the cth cluster.

In communication systems equipped with codebook-free
beamforming, channel estimation is typically conducted in
two stages: 1) before the start of data transmission frame
for beamforming optimization and 2) during data transmission
frame for data detection. Before the start of the data frame,
each UE utilizes the channel state information reference signal
(CSI-RS) to estimate channel conditions, and then sends this
information back to the base station to facilitate beamforming
optimization [7]. Within the data frame, demodulation refer-
ence signals (DMRS) are used for estimating and equalizing
the channel for data detection [7]. Let NCSI denote the period-
icity of the CSI-RS, indicating the number of OFDM symbols
within each data frame. We assume that the air interface
channel, excluding the effects of phase noise, remains constant
during transmission of NCSI OFDM symbols. Moreover, in
realistic FDD systems, the delay introduced by measuring

ej(2πfct+ϕ1[t])

e

j(2πfct+ϕ
NRF

B
[t])

ej2πfct

ej2πfct

ejϕ1[t]

ejϕ1[t]

e

jϕ
NRF

B
[t]

e

jϕ
NRF

B
[t]

Figure 2. (a) Illustration of a partially connected analog precoder with NRF
B

RF chains and LOs with carrier frequency fc and phase noise ϕi[t]. (b)
Equivalent representation of the structure noting that the effect of phase noise
can be considered after the precoding.

and transmitting the downlink CSI to the BS via the uplink,
compared to NCSI, is negligible [7]. In TDD systems, thanks
to channel reciprocity, downlink CSI is measured directly at
the BS, thus eliminating any delay. Therefore, we assume that
the CSI used for beamforming optimization in both duplex
modes is not outdated.

C. MIMO-OFDM HBF

As in most related literature [1]–[3], [42], we consider a
partially connected analog beamforming structure as shown
in Fig. 2, for its lower hardware complexity and power
consumption compared to a fully-connected architecture. In
MIMO-OFDM systems, the digital precoder at the transmitter
and combiner at the receiver can be optimized separately for
each subcarrier. However, this is not the case for the analog
counterparts, as they interface with the aggregate OFDM
signal in the time domain, meaning they must be designed
to function effectively across all subcarriers [1], [5].

Input-Output Relation: Let Su
ns
[k] ∈ AN denote the signal

sent from the BS to UE u over subcarrier k of the nth
s OFDM

symbol, where A is the quadrature amplitude modulation
(QAM) signal constellation of size M = |A|, and N is the
number of data streams. Furthermore, let V u

D[k] ∈ CNRF
B ×N

and V RF ∈ GNa
B×NRF

B be the digital and analog precoders
and W u

D[k] ∈ CNRF
U ×N and W u

RF ∈ GNa
U×NRF

U be the
digital and analog combiners of the uth user, respectively,
where G = {1, ej2π/2Nb , . . . , ej2π(2

Nb−1)/2Nb} for Nb-bit
phase shifters. Moreover, ID represents the D × D identity
matrix, E(·) signifies the expected value operator, the function
BlkDiag(·) is used to create a block-diagonal matrix from its
inputs, and (·)K denotes the modulo-K operation. Then, we
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can express the received vector Y u
ns
[k] ∈ CN for UE u as

Y u
ns
[k] =(W u

RFW
u
D[k])

H
K′∑
q=1

Λns
u [(k − q)K ]Hu[q]×

K′∑
m=1

Λns

B [(q −m)K ]V RF

NUE∑
i=1

V i
D[m]Si

ns
[m]

+(W u
RFW

u
D[k])

H
K′∑
q=1

Λns
u [(k − q)K ]Zns

[q],

(4)

where

Λns

B [k] ≜ BlkDiag(θns
1 [k]I Na

B
NRF

B

, . . . , θns

NRF
B

[k]I Na
B

NRF
B

),

Λns

U [k] ≜ BlkDiag(ϕns
u,1[k]I Na

U
NRF

U

, . . . , ϕns

u,NRF
U

[k]I Na
U

NRF
U

).
(5)

In (5), θns
n [k] represents the phase noise at the kth subcarrier

of the nth
s OFDM symbol, originating from the local oscillator

of the nth RF chain of the transmitter. Similarly, ϕns
u,n[k] rep-

resents the phase noise at the kth subcarrier of the nth
s OFDM

symbol, stemming from the local oscillator of the nth RF chain
of the receiver. In (4), Zns [k] ∈ CNa

U denotes additive white
Gaussian noise (AWGN) at the user side. We further assume
that E{Su

ns
[k]} = E{Zns

[k]} = 0, E{Su
ns
[k](Su

ns
[k])H} =

IN , and E{Zns
[k](Zns

[k])H} = σ2IN , where σ2 is known to
the BS. Furthermore, we applied the following approximations
regarding phase noise in (4). Firstly, in line with established
practices in the literature [14], [39], [43], we substitute the
actual phase noise observed during OFDM signal transmission
with its cyclically extended counterpart. Secondly, acknowl-
edging the predominantly lowpass characteristic of the phase
noise process [39], [44], we truncate the summations in (4) to
include only K ′ ≪ K terms.

We rewrite (4) more compactly as

Y u
ns
[k] = Gu

ns
[k]Su

ns
[k] +Qu

ns
[k], (6)

where

Gu
ns
[k] =(W u

RFW
u
D[k])

HH̃
u

ns
[k]V RFV

u
D[k], (7)

represents the transmission path gain of the user’s data signal,

H̃
u

ns
[k] =

∑
q

Λns
u [(k − q)K ]Hu[q]Λns

B [(q − k)K ]. (8)

is the effective channel including the effect of phase noise,
and Qu

ns
[k] is the total interference plus noise consisting of

inter-user interference, ICI due to phase noise, and AWGN.
Demodulation: Considering the model in (6) and (7), chan-

nel estimation via DMRS will produce an estimate of H̃
u

ns
[k].

For the purpose of the problem formulation in Section III, we
assume that a perfect estimate is available for demodulation.
Imperfect channel estimation will be considered for numerical
results in Section IV.

During data transmission, user u processes Y u
ns
[k] to com-

pute log-likelihood ratios (LLRs) for the bits represented
by Su

ns
. For this, we adopt a pragmatic approach as in

[36] and separate the data streams using a linear minimum-
mean squared error (LMMSE) equalizer. Following [45], dur-
ing equalization, we assume that the interference plus noise

Qu
ns
[k] has a known covariance matrix C. Then, the LMMSE

equalized signal for the uth user is obtained as [46]

Ru
ns
[k] =

diag
(
(Gu

ns
[k])H(Gu

ns
[k](Gu

ns
[k])H +C)−1Gu

ns
[k]
)−1

× (Gu
ns
[k])H(Gu

ns
[k](Gu

ns
[k])H +C)−1Y u

ns
[k],

(9)

where diag(·) returns a square matrix in which the diagonal
elements of the input matrix are placed on the main diagonal,
and all off-diagonal elements are zero. The LLR for the mth

bit associated with the nth data stream in Su
ns
[k] is calculated

as

Lu,n,m
ns

[k] = log

∑x∈Am,1
e−|ru,n

ns
[k]−x|2/σ2

u,ns
[k]∑

x∈Am,0
e−|ru,n

ns [k]−x|2/σ2
u,ns

[k]

 , (10)

where Am,b represents the subset of constellation points with
the mth bit label equal to b and ru,nns

[k] denotes the nth

element of Ru
ns
[k]. Furthermore, σ2

u,ns
[k] represents the post-

equalization noise power of the LMMSE equalizer for the nth
s

symbol on the kth subcarrier at the uth user. This is given by
the diagonal elements of the covariance matrix of the residual
interference and noise [46, Lemma B.19]

Cr
u,ns

[k] =(
(Gu

ns
[k])H(Gu

ns
[k](Gu

ns
[k])H +C)−1Gu

ns
[k]
)−1

− IN .

(11)

Achievable Information Rate (AIR): The LLRs obtained
from the demodulation in (10) can be used to define a posterior
distribution for the associated bit as

P (bu,n,mns
[k]|ru,nns

[k]) =
1

1 + e(−1)b
u,n,m
ns [k]Lu,n,m

ns [k]
. (12)

Following [47], we can compute the empirical binary cross
entropy (BCE)

E[k] = − 1

NUENCSIN
×

NUE∑
u=1

log2 M∑
m=1

NCSI∑
ns=1

N∑
n=1

log2
(
P (bu,n,mns

[k]|ru,nns
[k])
) (13)

for subcarrier k and average it over several frames with
independent channel realizations to obtain Ē[k]. The empirical
approximation of the AIR is

R[k] = log2(M)− Ē[k]. (14)

III. PROPOSED HBF OPTIMIZATION

In this section, we introduce our proposed deep-learning-
based method for hybrid beamforming optimization. The dig-
ital precoding and combining matrices are optimized at the
BS independently for each subcarrier. This methodology is
consistent with state-of-the-art practices [1]–[3], [5], which
leverage the orthogonality of signals across subcarriers. In our
implementation, this strategy allows the deep neural network
(DNN) to manage a significantly reduced input and output
size, necessitating fewer parameters and thus enabling more
efficient training.
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In practical systems, phase noise presents two significant
challenges for HBF optimization: 1) the loss of signal orthog-
onality across subcarriers due to ICI, and 2) the progressive
misalignment of beamforming throughout the frame, caused by
phase noise-induced variations. Therefore, HBF designs that
are unaware of phase noise are necessarily suboptimal.

To address the first challenge, we propose a HBF opti-
mization method that processes a neighborhood of subcarriers
simultaneously to mitigate the effects of ICI. This approach
is effective because the interference is generally limited to a
small group of subcarriers around the subcarrier of interest k,
as a result of the low-pass nature of phase noise innovations
[39], [44]. Therefore, we consider the K ′ adjacent subcarriers
K(k) = {k − K′

2 , . . . , k, . . . , k + K′

2 } to generate effective
beamforming matrices for subcarrier k, where K ′ is an even
number.

Before addressing the second challenge, we remark that
beamforming cannot benefit from any post-signal-detection
information. Hence, phase noise estimation and tracking im-
plemented at the data detection stage can only be used for
equalization and improving the ICI and cannot reduce the
phase-noise-induced beamforming mismatch. We propose a
variant of the attention mechanism [48] which we refer to
as adaptive attention to enhance robustness against unknown
phase noise variations. The primary function of this module
is to progressively smooth the antenna patterns as the OFDM
symbol index ns within each data frame increases, thereby
reducing sensitivity to phase noise. To ensure the smoothing
level is aligned with the phase-noise-induced mismatch at each
ns, we integrate ns as an auxiliary input to the proposed
DNN alongside the CSI matrix. Additionally, we select a loss
function that specifically emphasizes the dependency on ns.
The components of the proposed DNN will be detailed further
in the subsequent sections.

A. Deep Neural Network Architecture

In this section, we discuss the structure of our proposed
DNN and explain the specific design choices that help the
algorithm tackle phase-noise-induced beamforming mismatch
and ICI.

To address the design requirements for subcarrier-specific
and aggregate OFDM signal processing in HBF systems for
digital and analog parts, respectively, we choose a neural
network architecture comprising two specialized branches.
The first branch is dedicated to processing subcarrier-specific
channel information, i.e., H̃

u

0 [k], yielding digital precoders
and combiners. The second branch processes matrix product
(H̃

u

0 [k])
HH̃

u

0 [k], aggregated over all subcarriers to produce
analog precoder and combiners. This methodological choice
to utilize aggregated channel squared matrices to design the
analog beamforming allows the neural network to incorpo-
rate all paths in the analog beamforming, regardless of the
phase differences among these paths across subcarriers. This
approach ensures that the analog beamforming process is
comprehensive, capturing essential channel components to
optimize performance.

Denoting by Fη the input-output function of a DNN char-
acterized by the parameter set η, we can express the operation
of the proposed DNN as


V 1

D[k]

V 2
D[k]
...

V NUE

D [k]

 ,V RF,


W 1

D[k]

W 2
D[k]
...

WNUE

D [k]

 ,


W 1

RF

W 2
RF
...

WNUE

RF


 =

Fη(H̃0[k], P̃ 0, ns),

(15)

where,

H̃0[k] =




H̃

1

0[κ]

H̃
2

0[κ]
...

H̃
NUE

0 [κ]

 | κ ∈ K(k)

 , (16)

is the phase-noise-affected CSI at ns = 0 for the set of adjacent
subcarriers K(k) around k, and

P̃ 0 =
∑
k


(H̃

0

0[k])
HH̃

0

0[k]

(H̃
1

0[k])
HH̃

1

0[k]
...

(H̃
NUE

0 [k])HH̃
NUE

0 [k]

 , (17)

is the phase-noise-affected channel matrix products stacked in
the user domain at ns = 0.

To implement (15), we introduce a DNN consisting of
Adaptive SE-ResNet (AdaSE-ResNet) modules. These mod-
ules are organized into a tree-like structure as illustrated in
Fig. 3. In this figure, each dashed orange box represents a
distinct sub-network that outputs the precoding and combining
matrices for a user. Furthermore, drawing on insights from
[49], we propose parameter binding for these sub-networks
to prevent the overall neural network’s parameter count from
increasing with the number of users. As long as the users share
the same antenna array structure and each user-specific sub-
network possesses adequate learning capacity, the aforemen-
tioned parameter binding process does not adversely impact
performance. It is important to note that each sub-network
has a user-specific channel input, thereby generating a user-
specific output.

Table III in the appendix provides detailed information
about the modules shown in Fig. 3, which are used for
the numerical results in Section IV. The architecture choices
summarized in this table were carefully determined through
extensive testing and iterative refinements to achieve strong
performance while maintaining a compact DNN structure. In
the following, we discuss the specifics for the AdaSE-ResNet
blocks as well as the chosen activitation functions.

1) AdaSE-ResNet Block: To enhance robustness against
phase-noise-induced beamforming mismatch, we integrate the
OFDM symbol index ns along with the CSI as an additional
input. This index serves as auxiliary data that can be linked
to the phase-noise effects on beamforming. For the joint
processing of random CSI and deterministic symbol-index
inputs, we draw inspiration from the methodology described in
[50], where the authors employ a soft attention mechanism to
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Figure 3. Architecture of the proposed DNN. Table III in the appendix provides details and parameter choices for all the depicted modules. Each orange box
encloses a sub-network that produces the user-specific matrices V u

D[k], W u
D[k], and W u

RF. The notation "x4" next to AdaSE-ResNet indicates a series of
four consecutive AdaSE-ResNet blocks with identical configurations.

Figure 4. Structure of the proposed AdaSE-ResNet used in the neural network
architecture shown in Figure 3.

use the signal-to-noise ratio (SNR) as auxiliary information for
adjusting the compression ratio in image data source coding.
Expanding on this concept and the principles of squeeze-and-
excitation residual network, we introduce the adaptive version
of SE-ResNet, named AdaSE-ResNet, shown in Fig. 4.

The AdaSE-ResNet architecture features two complemen-
tary paths to optimize HBF under the effects of phase
noise. The main path processes the CSI instance to generate
beamforming matrices, while the auxiliary path employs an
attention mechanism to dynamically adapt to the symbol index
ns throughout the transmission frame. This dual-path design
allows for simultaneous processing of CSI and time-adaptive
beamforming calibration.

The attention mechanism functions as follows: the right-
hand-side branch of Fig. 4 generates an output through the
sigmoid function, referred to as the excitation vector (de-
picted with rearranged colors). This excitation vector rep-
resents symbol-index-specific attentional weights that tailor
the ResNet’s output to each symbol index ns. By calibrating
feature maps for each ns and utilizing a frame-wise loss
function, as detailed in Section III-B, these attentional weights
aim to maximize the total AIR across the entire frame.
Notably, these weights are not pre-defined, but they are learned
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during backpropagation along with the other parameters of the
DNN. This adaptive process equips the module with sufficient
flexibility to effectively anchor antenna patterns to the symbol
index.

By integrating both the CSI context H̃0[k] and the sym-
bol index ns, the AdaSE-ResNet learns a unique, time-
adaptive feature-map calibration strategy for each symbol
index. This capability allows the network to dynamically pre-
distort the antenna radiation patterns, thereby ensuring optimal
beamforming performance and robustness against mismatches
caused by phase noise throughout the transmission frame.

2) Activation Functions: To optimize the performance of
the proposed DNN under the constraints of limited-resolution
phase shifters for V RF and W u

RF, we employ the tanh-
approximated quantizer activation function [51]

Q̂Nb
(x) =

π

2Nb−1

[(⌊
x
2π
2Nb

⌋
− 0.5

)

+ 0.5 tanh

(
α

(
xi
2π
2Nb

−

⌊
x
2π
2Nb

⌋)
+ 1

)] (18)

during training. In (18), α is the steepness factor that modu-
lates the proximity of the function to a step function, thereby
controlling the accuracy of the approximation. This method en-
sures that the network effectively learns to manage resolution
limitations while maintaining differentiability. In the inference
phase, the phase shifter angles are quantized to the nearest
elements in the set G.

Furthermore, in order to meet the unit amplitude constraint
of the elements of the analog precoding and combining ma-
trices, in the last layer of the V RF and W u

RF branches, we
apply the activation functions

fB
RF(x) = BlkDiag

(
ejx11 Na

B
NRF

B

, ejx21 Na
B

NRF
B

, . . . , e
jx

NRF
B 1 Na

B
NRF

B

)
,

(19)
and

fUE
RF (x) = BlkDiag

(
ejx11 Na

U
NRF

U

, ejx21 Na
U

NRF
U

, . . . , e
jx

NRF
U 1 Na

U
NRF

U

)
,

(20)
where 1D is the D × 1 all-one vector. In (19) and (20), the
all-one vectors scale the DNN outputs to match the dimen-
sional requirements and connectivity constraints of the analog
beamforming hardware in a partially connected architecture,
as detailed in [1, Eq. (4)]. Additionally, to normalize the per-
subcarrier transmit power, we apply

fB
D(V D[k]) = V D[k]

√
P

Tr(V RFV D[k]V
H
D[k]V

H
RF)

, (21)

where P is the allowed transmit power per subcarrier.

B. Training Procedure

In line with [5], [47], we adopt the empirical BCE from
(13) as our loss function. This choice is motivated by its
dependence on the ICI caused by phase noise, which guides
the gradient signals during backpropagation to mitigate ICI, as

well as the computational simplicity of the BCE when using
LLRs. Hence, the training process aims to solve the following
optimization problem with respect to the DNN parameters η:

min
η

E[k]

s.t. equation (15). (22)

This training approach is independent of the specific subcarrier
selected and can be conducted solely for k = 0. Once trained,
the proposed DNN can be applied across all subcarriers to
generate the corresponding HBF during the inference phase.

The distribution of the network input is determined through
the distributions of the random variables contributing to the
effective channel, i.e., AoAs, AoDs, path gains, users-BS
distances, and phase noises. Our experiments indicate that
training the DNN directly on the distribution corresponding
to the full spectrum of these variables is prohibitively time-
intensive. To overcome this limitation, we employ a variant of
transfer learning that utilizes a sequence of quantized proxy
datasets. These datasets are constructed through the Cartesian
product of increasingly finer quantized AoAs, AoDs, channel
gains, and user distances. In our method, we begin training
with the coarsest dataset and progressively transfer the learned
weights to training on finer datasets. This incremental process
enables gradual adaptation to the unquantized dataset. Al-
though this approach reduces overall training time, the use of
simplified proxy datasets may introduce artifacts that adversely
affect final performance, making its success dependent on
carefully selecting the quantization levels.

C. Scalability

For practical applicability, the scalability with respect to the
number of subcarriers, antennas, and users is critical.

1) Scalability with the number of subcarriers: As men-
tioned in the previous section, during the training phase, the
proposed model learns from a single subcarrier and gener-
alizes to the remaining subcarriers due to assumed identical
distribution across subcarriers. Consequently, the number of
parameters of Fη and the computational cost of training are
independent of the number of subcarriers.

During the inference phase, Fη is applied separately to the
CSIs of overlapping sets K(k) of fixed size K ′ to generate the
beamforming matrices for all K subcarriers. As a result, the
computational load during the inference phase scales linearly
with K.

2) Scalability with the number of antennas: To ensure a
sufficiently large receptive field for effectively processing the
CSI matrix, the depth of the overall neural network must
scale with the number of antennas. As discussed in [52], the
receptive field of a convolutional neural network at each input
dimension is linearly proportional to its depth. The proposed
adaptive attention mechanism only recalibrates the feature
maps, thus it does not alter the theoretical receptive field of the
underlying convolutional layers. Consequently, both the depth
of the neural network and the computational costs during the
inference phase scale linearly with the number of transmit or
receive antennas. Additionally, the computational cost of the
training phase increases with the number of antennas at least
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linearly. Precisely quantifying this relationship is challenging,
as the number of training epochs is generally determined
through empirical methods. We employ early stopping in
our training methodology, a widely recognized pragmatic ap-
proach, which results in a distinctly linear relationship between
computational cost of the training phase and the number of
antennas.

3) Scalability with the number of users: As mentioned
in Section III-A1, we use parameter binding for the user-
specific sub-networks. Therefore, the number of parameters
of the proposed DNN does not increase with the number of
users. However, the computational cost of the inference phases
scales linearly with the number of users, as each user-specific
sub-network is processed individually. Similar to the case of
scaling with the number of antennas, the computational cost of
the training phase increases at least linearly with the number
of users. This increase is strictly linear when employing early-
stopping during the training process.

IV. NUMERICAL RESULTS

In this section, we present and discuss simulation results
to assess the performance of the proposed data-driven beam-
former design. We also aim to provide some insight into
the type of HBF solutions the trained DNN generates in the
presence of phase noise.

A. Simulation Setting

For our simulations, we use the following specifications.
1) System and Channel: We consider an MU-MIMO sce-

nario where the transmitter is equipped with 16 antennas and 4
RF chains. The OFDM, propagation channel, and phase noise
parameters are specified in Table I. The BS serves 4 users,
each equipped with 4 antennas and 1 RF chain. The users
are located within a disc around the BS with an inner radius
of 20 m and an outer radius of 400 m. In each simulation
iteration, users are redistributed uniformly at random within
the coverage area. The path loss for a user at a distance d from
the base station is modeled as 128.1+37.6 log10(d/1 km). The
power spectral densities of the noise and transmitted signal
are set to be −174 dBm/Hz and −55 dBm/Hz, respectively.
Furthermore, following the approach in [1], we generate the
AoAs βr

c,l and AoDs βt
c,l in (1) using a Laplacian distribution,

with the cluster mean value uniformly between 0 and 2π and
an angular spread of 10 degrees within each cluster. The phase
noises at LOs are generated as independent Wiener processes
with a phase noise level L in dBc/Hz at f0 = 100 kHz (see
Table I).

2) DNN: The modules used in the DNN architecture are
described in detail in Table III in the appendix. We apply
10 AdaSE-ResNet layers for the analog beamforming branch
and 11 for the digital beamforming branch, resulting in 20
and 22 convolutional residual layers, respectively, each with
64 feature maps. This setup ensures deep feature extraction,
which is essential for beamforming optimization. Additionally,
the use of 3x3 kernels strikes a balance between computa-
tional efficiency, fine-grained spatial feature extraction, and the
number of trainable parameters. The proposed neural network

Table I
SIMULATION PARAMETERS

Property Variable Value
Signal constellation A 16QAM
Subcarrier spacing ∆f 15 kHz
FFT size K 1024
Sampling time Ts 65.104 ns
Symbols per slot Nslot 14
CSI-RS symbol periodicity NCSI 20Nslot [53]
Frequency offset from the carrier f0 100 kHz
Phase noise level L {−95,−100,−105} dBc/Hz
Phase noise innovation variance - 4π2f2

0 10
L/10Ts [54]

Size of influential subcarriers set K′ 4
Number of scattering clusters NC 5
Number of scatterers NL 10
Antenna spacing - λ/2
Phase shift in cth cluster ηc c− 1 [1]
Steepness factor of tanh in (18) α 10

has approximately 4.3 million parameters. For training, we
employ the adaptive moment estimation (ADAM) optimization
algorithm [55], complemented by a reduce-on-plateau learning
rate scheduler [56]. We conduct a hyperparameter search to
determine the optimal learning rate tailored to our specific
problem. Consequently, the initial learning rate is set to 10−4,
the minimum possible rate is set to 10−7, with a decay rate of
0.5, and patience of one epoch. For the training, we employ
32, 000 samples and an equivalent number of phase noise
vectors where each phase noise vector is of size NCSI × K
for each RF chain. For both the initial and subsequent training
we use a small batch size of 8 to introduce gradient noise
for improved generalization. To monitor generalization per-
formance and prevent overfitting, a validation set of size 1024
samples is utilized. Moreover, we implement early stopping
with a specified patience to avert over-training and enhance
the computational efficiency of the training process. Training
continues until the maximum number of 20 epochs is reached.

B. Performance Evaluation

To highlight and assess the performance of our proposed
method, we compare it against three state-of-the-art HBF
techniques. The first two methods, higher-order singular
value decomposition (HOSVD) [2] and constrained tensor
decomposition-based hybrid beamforming (CTDH) [3], use
an optimization-based approach. HOSVD employs a low-
complexity disjoint optimization where the analog precoder
and combiners are designed using the channel’s SVD, ignoring
multi-user interference effects. The digital precoders and com-
biners are then optimized, with fixed analog components, to
maximize the SINR. CTDH involves a two-stage optimization
process. Initially, a low-rank constrained Tucker2 decomposi-
tion is used to optimize the analog precoder and combiners.
This is followed by deriving the digital precoder and combiner
from the CSI’s SVD in the subsequent stage. The third method,
called two-timescale (TTS) end-to-end learning [5], is a deep
learning-based approach developed for a single-user scenario
that jointly optimizes beamforming, pilots, and CSI compres-
sion. At each OFDM symbol, the TTS method recalculates the
digital precoding at the BS and the digital combining at the UE
using DNNs. This approach assumes (i) the availability of an
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auxiliary uplink channel to communicate the low-dimensional
“equivalent CSI” matrix WH

RFH̃
u

ns
[k]V RF at every OFDM

symbol, and (ii) that the UE has sufficient processing power
to run a DNN during the inference phase. For the purpose of
comparison with the proposed method, we make the idealized
assumption that perfect equivalent CSI is available for both
precoder and combiner recalculation at every OFDM symbol.
Therefore, the results represent an upper bound on TTS’s
performance. Since the TTS method from [5] is applied to
single-user MIMO (SU-MIMO) scenarios, we do not include
it in the set of comparisons for MU -MIMO transmission
discussed in Section IV-B2 below.

1) Performance Illustration: First, we illustrate the im-
pact of phase-noise-induced beamforming mismatch on the
received constellations. Fig. 5 shows scatter plots of the
equalizer outputs at the UE as a function of the OFDM symbol
index ns. We recall that the beamforming design for the
proposed method, HOSVD, CTDH, and the analog part of the
TTS method rely on the CSI at index ns = 0, while the digital
part of the TTS method is based on an updated equivalent
channel. The phase noise level is set to L = −100 dBc/Hz,
and the same level is used for training and testing of the
learned methods. We observe that, as ns increases, the point
clouds for the proposed method and the TTS method remain
more compact around the true locations for transmitted signals
compared to those for HOSVD and CTDH. This is further
confirmed by the mean-squared error (MSE) values reported
for each scatter plot. We attribute the improved robustness
of the proposed learned solution to the beam adaptation as
a function of ns, facilitated by the AdaSE-ResNet block.
Additionally, the better performance of the TTS method can
be attributed to its partial refreshing mechanism, achieved
through the recalculation of digital beamformers using a low-
dimensional equivalent channel.

To further highlight the antenna radiation pattern adaptation
of the proposed method, Fig. 6 shows the beamforming pattern
at the BS as a function of ns for the case that the BS serves one
UE and for four different channel realizations. It demonstrates
how the AdaSE-ResNet dynamically adjusts the pattern to
alleviate beamforming mismatch. This adjustment process is
governed by the ns-dependent attention mechanism within the
AdaSE-ResNet block. The progression observed in the figure
suggests a trend towards a smoother beamforming pattern over
time. This adaptation helps to reduce the system’s sensitivity
to phase-noise-induced variations in the channel, which causes
fluctuations in the angular distribution of paths throughout the
frame. Accordingly, we expect that the degree of smoothing
increases with the phase noise level.

2) Performance Results: We next report MU-MIMO sim-
ulation results for the AIR from (13) averaged for the four
UEs, comparing the proposed method and the optimization-
based benchmark methods HOSVD and CTDH. As in the
previous figures, we plot AIR as a function of ns, to delineate
the performance degradation due to beamforming mismatch.

Figure 7 shows the average AIRs for the three methods
and the three different phase-noise levels L = −95dBc/Hz,
L = −100dBc/Hz, and L = −105dBc/Hz. We assume a
perfect CSI for beamformer optimization and equalization, and

Figure 5. Scatter plot of the equalizer outputs at the UEs as a function of
OFDM symbol index ns. Comparison of HBF with the proposed DNN and
HBF with CTDH, HOSVD, and TTS, respectively.

infinite-resolution phase shifters. Furthermore, the proposed
DNN is specifically trained for each phase noise scenario
to achieve optimal performance. We observe that the DNN
solution consistently outperforms the benchmarks throughout
the frame, with the performance gap widening over time. The
results across various phase-noise levels indicate a favorable
balance between achieving near-optimal performance in the
absence of phase noise (almost realized at ns = 0) and main-
taining robustness against increasing phase-noise distortions
(at higher ns values).

As mentioned, in Fig. 7 the DNN solution was trained
for each level of the phase noise strength. In Table II, we
illustrate the impact of potential discrepancies in phase noise
levels between training and inference, as it might occur
in realistic scenarios, on the performance of our proposed
method. The values shown in this table represent the relative
change in average frame AIR between the cases of DNN
trained at Ltrain and evaluated at Linference and the ideal case
of Ltrain = Linference. We observe that the DNN solution
demonstrates considerable robustness to discrepancies in L.
For example, a 10 dB discrepancy in phase-noise level results
in a 15% decline in AIR, which we deem as relatively mild.

We now constrain phase shifters to have finite resolution.
Fig. 8 shows the average AIRs when using phase shifters with
2-bit and 4-bit resolution. The curves for infinite-resolution
phase shifters are included as a reference. Both the HOSVD
and CTDH methods quantize the phase shifter angles post-
convergence of their respective beamforming optimization
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Figure 6. Progression of beamforming pattern at the BS over time (ns) for
the proposed DNN. In this example, the BS serves one UE. The four plots
correspond to four different realizations of the propagation channel and user
location at a phase noise level of L = −100 dBc/Hz.

Table II
RELATIVE PERFORMANCE LOSS BECAUSE OF MISMATCH BETWEEN

TRAINING WITH Ltrain AND TESTING AT Linference .

Linference

Ltrain −105
dBc/Hz

−100
dBc/Hz

−95
dBc/Hz

−105 dBc/Hz 0% −2% −5%
−100 dBc/Hz −13% 0% −5%
−95 dBc/Hz −15% −12% 0%

algorithms, and then adjust the transmit power by scaling the
digital precoder considering the quantized analog precoder. We
observe a degradation in the proposed DNN’s performance at
smaller OFDM symbol indices and a consistent degradation
throughout the frame across benchmark methods when finite
resolution phase shifters are introduced. Recall from Fig. 6 that
the beamforming patterns generated by the DNN are smoother
at higher indices, which do not require high-resolution phase
shifters to produce. Consequently, the degradation is less
pronounced towards larger ns values. Additionally, incorporat-
ing the phase-shifter resolution constraint during the DNN’s
training phase through the tanh-approximated quantizer in
(18) as an activation function proves effective. This approach
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Figure 7. Average user AIR as a function of OFDM symbol index ns for
three different phase-noise levels L in MU-MIMO. Optimization and learning
based HBF systems with infinite-resolution analog phase shifters and perfect
CSI.
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Figure 8. Average user AIR as a function of OFDM symbol index ns for phase
noise with L = −105 dBc/Hz in MU-MIMO. Optimization and learning
based HBF systems with 2-bit and 4-bit analog phase shifters. Perfect CSI is
assumed.

results in only a moderate performance degradation when
using practical phase shifters with low resolution.

Figure 9 presents the AIR results under imperfect CSI
and 4-bit phase shifters. Imperfect CSI is modeled as an
additive Gaussian channel estimation error with a normalized
MSE (NMSE) of −10 dB, and the proposed DNN is trained
on channel realizations with this NMSE. In addition to the
proposed method and benchmarks HOSVD and CTDH, the
figure includes results from an ablation study where the
adaptive attention component (AdaSE) was removed, and only
the remaining neural network, consisting of ResNets, was
trained. The results show a significant performance decline
of approximately 1 bit/symbol across the proposed and
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Figure 9. Average user AIR as a function of OFDM symbol index ns for three
different phase-noise levels L in MU-MIMO. Optimization and learning based
HBF systems with 4-bit analog phase shifters. Imperfect CSI with an NMSE
of −10 dB is assumed. “ResNet” represents the DNN obtained by excluding
the AdaSE component from the proposed DNN, retaining only the ResNet
structure to explicitly assess the effectiveness of the AdaSE component.

benchmark methods due to imperfect CSI. Near ns = 0,
distortion from imperfect CSI dominates because phase-noise-
induced beamforming mismatch has not yet accumulated,
leading to similar performance across all methods. However,
as ns increases, the AdaSE-ResNet solution consistently out-
performs the benchmarks, particularly at higher phase noise
levels, where it maintains a substantial performance advantage.
Additionally, the ResNet-only DNN, obtained by removing the
AdaSE component, experiences a decline in AIR, especially at
the beginning and end of the frame. Without ns as an anchor
to tailor beam patterns for each symbol index, the DNN learns
a non-adaptive, universal beam pattern that balances the needs
of highly directive lobes for early symbols and smooth lobes
for late symbols, resulting in a mid-level smoothed pattern
most effective for the middle symbols.

To compare our proposed method with the TTS method,
as well as HOSVD and CTDH, we evaluate a single-user
scenario under three phase-noise levels: L = −95, dBc/Hz,
L = −100, dBc/Hz, and L = −105, dBc/Hz, assuming perfect
CSI and infinite-resolution phase shifters. Fig. 10 depicts the
average AIR in this scenario. We observe that the TTS method
exhibits superior robustness to beamforming mismatches com-
pared to the other benchmarks. This is achieved through
the recalculation of digital beamformers using the equivalent
channel WH

RFH̃
u

ns
[k]V RF. However, this advantage comes

at the cost of requiring (i) uplink transmission of the low-
dimensional CSI for every OFDM symbol and (ii) additional
processing power at the UE to execute part of the DNN
for generating the digital combiner during inference. The
latter can be limiting in legacy user devices or cost-sensitive
systems compared to HOSVD, CTDH, and our DNN solution.
Moreover, like the other benchmarks, TTS does not model the
phase-noise-induced ICI in its problem formulation and loss
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Figure 10. Average AIR as a function of OFDM symbol index ns for three
different phase-noise levels L in a SU-MIMO scenario. Optimization and
learning based HBF systems with infinite-resolution analog phase shifters and
perfect CSI.

function. Consequently, it suffers from a significant perfor-
mance gap relative to our proposed method, particularly under
high phase noise levels.

C. Implementation Remarks

While the proposed HBF method improves over state-of-
the-art approaches, we acknowledge necessary practical con-
siderations for real-world deployment. Implementing machine-
learning (ML)-based HBF requires specialized hardware, such
as graphics processing units (GPUs) or ML accelerators, to
execute inference efficiently. Although modern base station
deployments increasingly incorporate such hardware, legacy
systems and cost-sensitive deployments may face significant
challenges due to limited computational resources. To mitigate
these constraints, computational cost optimizations such as
model quantization, pruning, and distillation can be applied
[57], [58]. These techniques reduce computational and mem-
ory overhead, enhancing the feasibility of the proposed method
across a broader range of deployment scenarios.

Another critical factor is the dynamic nature of wireless
environments, particularly in high-mobility scenarios where
channel conditions vary rapidly. Addressing this requires peri-
odic evaluation of the model’s performance and adaptation to
real-world conditions to prevent degradation. The data-driven
nature of the proposed method enables on-line retraining or
fine-tuning using updated samples, ensuring adaptability and
robustness under varying operating conditions [32].

Online fine-tuning for ML-based HBF has primarily uti-
lized methods such as model-agnostic meta-learning [33] and
direct transfer learning with online retraining [32]. These
approaches are explicitly designed to achieve efficient fine-
tuning with a minimal number of samples, thereby minimizing
the computational cost of online training. Despite significant
advancements, they remain an active area of research, attract-
ing substantial interest, particularly among practitioners.
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V. CONCLUSION

This paper introduced and evaluated a new data-driven
approach for optimizing HBF in multi-user MIMO communi-
cation systems at mmWave frequencies. The proposed solution
distinguishes itself by considering the practical implementa-
tion challenge of phase noise impairments originating from
distributed local oscillators, and also accounts for limitations
in analog phase shifter resolution. We developed a self-
supervised learning algorithm equipped with a phase-noise-
aware loss function and an attention mechanism that facilitates
time-adaptive beamforming calibration. This approach pre-
distorts the antenna radiation pattern specifically for each
OFDM symbol, thereby mitigating beamforming mismatches
induced by phase noise. Accordingly, we observed a trend in
beamforming radiation patterns towards smoother configura-
tions across symbol indices, which effectively reduces sen-
sitivity to these mismatches. Simulation results demonstrated
the resilience of our proposed model against individual and
compounded distortions, highlighting its benefits for practical
use cases.

APPENDIX

Table III provides the detailed information about the com-
ponents of the DNN used in our proposed method.
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