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Deep Neural Network for Joint Nonlinearity
Compensation and Polarization Tracking in the

Presence of PDL
Reza Mosayebi, Member, IEEE, and Lutz Lampe, Senior Member, IEEE

Abstract—This paper presents a novel deep linear and nonlin-
ear compensation network (DLNCN) that effectively addresses
linear and nonlinear distortion in conjunction with polarization-
dependent loss (PDL), while also accounting for changes caused
by the joint impact of PDL and time-varying rotation of the
state of polarization (RSOP). To accomplish this, we introduce
neural network layers dedicated for PDL compensation, and
we devise a transfer learning approach that selectively updates
weights in layers affected by the variations while keeping the
remaining weights unchanged. To monitor RSOP with PDL,
we employ a pilot-based acquisition and a pilot-aided decision-
directed tracking technique. Our numerical tests demonstrate
successful RSOP tracking in the presence of PDL impairments,
outperforming state-of-the-art schemes by an average of over
0.75 dB in Q-factor for a dual-polarized 960 km 32 Gbaud
64-QAM transmission with a polarization linewidth of 3 kHz.
These results highlight the effectiveness of our proposed deep
neural network structure, which includes a dedicated layer for
PDL compensation, and its ability to work seamlessly with RSOP
tracking.

Index Terms—Fiber optics, nonlinearity compensation, deep
neural networks, polarization-dependent loss, transfer learning.

I. INTRODUCTION

Attenuation is a critical parameter that characterizes optical
fibers and components [1]. As a single-mode fiber can support
two polarization modes, the attenuation of the fiber may vary
depending on the polarization of the propagating light. This
phenomenon is typically insignificant for standard telecom-
munication fibers, but it can be significant for certain optical
components such as erbium-doped fiber amplifiers (EDFAs),
reconfigurable optical add-drop multiplexers (ROADMs), iso-
lators, couplers, switches, and other similar elements that
are known to be susceptible to polarization-dependent loss
(PDL) [2], [3]. When multiple components with PDL are
combined, they can degrade the overall performance of the
communication link [4]–[6]. Furthermore, the interaction of
the component-induced PDL with linear and nonlinear distor-
tions introduced along the fiber compounds the challenge of
nonlinearity compensation (NLC) and rotation of state of po-
larization (RSOP) tracking at the receiver [7]. Therefore, it is
important to consider PDL compensation (PDLC) techniques
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when designing and optimizing fiber optical communication
systems.

In recent years, machine learning (ML) techniques have
gained significant attention for their potential in NLC within
optical fiber communication. This is evident in notable studies
such as for example [8], [9]. Among the ML methods for NLC
available, model-based deep neural network (DNN) designs
have emerged as effective solutions that strike a favourable bal-
ance between performance and complexity. A key advantage of
these ML approaches, as opposed to “black-box” solutions, is
their foundation on a thorough understanding of the underlying
physical phenomena occurring in optical fibers. Specifically,
learned digital back-propagation (LDBP) [8], [10] utilizes a
DNN framework that emulates digital back-propagation (DBP)
[11] and incorporates learned parameters when alternating
linear and nonlinear operations. LDBP can also be seen as an
instance of unfolding or unrolling of the DBP algorithm [12].
The effectiveness of these DNN architectures in addressing
both linear and nonlinear impairments has been extensively
discussed in works such as [8], [10], [13]–[16] and refer-
ences therein. The deep convolutional recurrent neural network
with distributed compensation of polarization mode dispersion
(DCRNN-PMD) from [13] has been demonstrated to have a
superior performance compared to other NLC methods, and it
has been extended to the case of time-varying RSOP in [14].
However, we note that none of the existing ML-based methods
have explicitly accounted for the effects of PDL.

In this paper, we aim to close this gap. We build on
the DCRNN-PMD model and augment it by incorporating
PDLC. Our proposed solution entails the addition of a simple
yet effective layer to the neural network architecture, while
preserving the distributed nature of the overall impairment
compensation mechanism. We refer to the new DNN model
as deep linear and nonlinear compensation network (DLNCN).
To train the proposed DLNCN model, like many other neural
network structures, we face a practical challenge due to the
non-convex nature of the optimization problem. This charac-
teristic often results in the existence of multiple local optima.
Consequently, uncertainty arises when seeking the best possi-
ble solution for a given architecture. To address this challenge,
we have explored various approaches, including the utilization
of different random and deterministic weight initializations, to
discover an approximate optimal performance.

Comparisons of the DLNCN with the state-of-the-art
DCRNN-PMD model reveal an enhanced performance for
the former in the presence of PDL, assuming that the RSOP
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remains static. When PDL occurs in conjunction with time-
varying RSOP, we suggest the use of transfer learning via
online training [17]–[20]. In particular, a DLNCN derived
from offline training with a static RSOP is applied as the
foundation model. Then, we selectively update the learned
weights solely in layers affected by changes compared to the
training scenario, keeping the remainder of the acquired model
unaltered. Our proposed approach builds upon the training
methodology employed in previous studies [8], [14], [21],
[22]. We apply a pilot-based acquisition strategy followed
by a pilot-aided decision-directed tracking algorithm to ef-
fectively monitor time-varying RSOP in the presence of PDL.
During the acquisition stage, we adapt the layers responsible
for accounting for disparities between the PDL and RSOP
realizations in the dataset utilized for offline training and the
one representing the operational scenario. Once a successful
acquisition, characterized by a notable increase in Q-factor,
is achieved, we resort to the use of intermittent pilots in
the tracking stage. This reduction is facilitated by employing
a modified decision-directed technique. Our findings demon-
strate the efficacy of this approach in accurately tracking RSOP
in the presence of PDL impairments within the fiber, thereby
supporting the practicality of this ML detection method.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of the theoretical foundation
related to fiber impairments, which sets the stage for the sub-
sequent discussions. In Section III, we introduce the DLNCN
model and the online model adaptation scheme, which helps
track RSOP in the presence of PDL. Section IV presents
performance results for the proposed NLC techniques and
comparisons with the state-of-the-art scheme in static and
time-varying channels. We also discuss the details of the DNN
training routine. Finally, Section V concludes the paper by
summarizing the key insights from our study and suggesting
future research directions.

II. SYSTEM MODEL

The propagation of a dual-polarized optical signal through
a single-mode fiber is a complex process that can be subject
to linear and nonlinear impairments. To effectively describe
this process, the Manakov-PMD equation has been proposed
in the literature [23]. The equation is shown at the bottom
of the page as (1), where E(z, t) = [Ex(z, t), Ey(z, t)]

T ,
and Ex(z, t) and Ey(z, t) represent the complex baseband
signals of the X and Y polarizations, respectively. Note that
the baseband signal is a function of both time t ≥ 0 and
location 0 ≤ z ≤ L, where L represents the total length
of the fiber. In (1), the coefficients α, β2, and γ correspond
to the attenuation coefficient, the group velocity dispersion
coefficient accounting for chromatic dispersion (CD), and the
nonlinear coefficient, respectively. Additionally, the parameter
∆β1 describes the differential group delay (DGD) between
the two polarizations and is related to the PMD coefficient

DPMD through DPMD = 2
√
2Lc∆β1, where Lc represents the

correlation length of the two polarizations. The matrix Σ(z)
describes the linear evolution of PMD along the fiber length
[24].

It is important to note that (1) does not have a closed-
form solution. Therefore, some approximation approaches
have been proposed in the literature. We consider the widely
used split-step Fourier method (SSFM) [25], which partitions
the fiber into G×N small spatial steps where G is the total
number of spans and N denotes the number of steps per span.
Within each spatial step, we can assume that the linear and
nonlinear effects can be treated independently as summarized
in the following, allowing us to apply them successively to
numerically solve (1).

A. CD

The impact of CD over a step of length Ls can be charac-
terized in the frequency domain as

Ẽ(z + Ls, f) = exp
(
j2β2π

2f2Ls
)
Ẽ(z, f), (2)

where Ẽ(z, f) represents the Fourier transform of E(z, t).

B. Signal Attenuation

For each step of length Ls, the signal attenuation can be
expressed in the time domain as

E(z + Ls, t) = exp

(
−αLs

2

)
E(z, t). (3)

At the end of each span of the fiber, represented by multiple
SSFM steps, a lumped optical amplifier is applied to compen-
sate for the attenuation. We note that this adds additive white
Gaussian noise (AWGN) to the signal through the generation
of amplified spontaneous emission (ASE).

C. Nonlinearity

The Kerr nonlinearity can be modeled by considering its
impact over a step of length Ls according to

E(z + Ls, t) = exp

(
j
8

9
γ ∥E(z, t)∥2Leff

)
E(z, t), (4)

where

Leff = 1− (1/α) exp(−αLs) . (5)

D. PMD and Time-Varying RSOP

The effect of PMD on each step n with a length of Ls within
each span g can be represented as [24]

Ẽ(z + Ls, f) = Dg,nU g,nẼ(z, f). (6)

∂E(z, t)

∂z
= −α

2
E(z, t) + ∆β1Σ(z)

∂E(z, t)

∂t
− j

β2

2

∂2E(z, t)

∂t2
+ jγ

8

9
E(z, t)∥E(z, t)∥2 (1)
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The matrix Dg,n represents the DGD and can be expressed
as

Dg,n =

[
exp(jπfτg,n) 0

0 exp(−jπfτg,n)

]
, (7)

where τg,n is the DGD for the n-th step of the g-th span.
The matrix U g,n is a random unitary matrices that apply
SOP rotations along the birefringent axes. This matrix, which
can also be interpreted as a polarization scrambler, can be
represented as a time-invariant rotation matrix of the form

U g,n =

[
exp(jϕ1) cos θ exp(jϕ2) sin θ

− exp(−jϕ2) sin θ exp(−jϕ1) cos θ

]
, (8)

where ϕ1, ϕ2, and θ are the angles in Stokes space that are typ-
ically different for each pair (g, n) ∈ {1, . . . , G}×{1, . . . , N}.

The above-mentioned phase scramblers U g,n are static.
However, in practical optical communication systems, the
RSOP of a signal may change over time due to various factors,
such as temperature fluctuations, pressure changes, vibrations,
and cable bends. To model this effect, the well-known hinge
model [26] assumes that most of the rotation matrices are
static, with only a few polarization scramblers at the “hot
spots” (i.e., hinges) evolving over time. These hinges may
serve as amplifier locations which are added at the end of each
span or fiber segments that are susceptible to temperature or
mechanical fluctuations in maintenance huts, railroad bridges,
and similar structures. Assuming that the fiber has H hinges,
according to the hinge model, the RSOP at each hinge h at
time instance k can be represented by a 2 × 2 time-varying
matrix J k,h in the Jones space. This matrix can be expressed
as [27]

J k,h = exp
(
−jζk,h ·−→σ

)
J k−1,h, (9)

where the random variable ζk,h in (9) is drawn from a
Gaussian distribution with mean 0 and covariance 2π∆pTI 3.
That is,

ζk,h ∼ N (0, 2π∆pTI 3) . (10)

In (10), ∆p represents the polarization linewidth, which de-
termines the rate of change of time-varying RSOP, T is the
time duration between updates, −→σ = (σ1,σ2,σ3) is a tensor
of the Pauli spin matrices [28], and I 3 is a 3 × 3 identity
matrix. The dot operation ζk,h ·

−→σ can be interpreted as linear
combination of the three Pauli spin matrices as

ζk,h ·−→σ =
3∑

i=1

ζk,h[i]σi (11)

where ζk,h[i] is the i-th element of ζk,h.

E. PDL

Suppose that the fiber contains U inserted elements (am-
plifiers, switches, etc.) that each create a power imbalance
between the two polarizations. To model PDL for each element
u, a 2 × 2 matrix Γu is used in Jones space to describe the
impact of that local PDL component on E(z, t). Therefore, the

effect of PDL in Jones format can be expressed as ΓuE(z, t)
with the following general model for PDL [28]

Γu = exp
(
−αu

2

)
exp

(
αu ·−→σ

2

)
, (12)

where αu = ∥αu∥ is the loss coefficient of the inserted
element, and vector αu is the PDL vector in Stokes space,
and exp(·) in (12) represents matrix exponential. When
αu = [αu, 0, 0]

T , Γu reduces to a diagonal matrix, given
by

Γu =

[
1 0
0 e−αu

]
, (13)

which can be further normalized to

Γu ∝
[√

1 + γu 0
0

√
1− γu

]
(14)

with γu = tanhαu. This normalized matrix is widely used
in the literature to describe a diagonal PDL matrix [29]–[31],
and we adopt it in this paper.

In our study, we introduce the concept of the local PDL
measured in decibels (dB) for the u-th component. The local
PDL, denoted as ρu, is defined mathematically as

ρu = 10 log10

(
1 + γu
1− γu

)
. (15)

This measure quantifies the magnitude of the PDL induced by
the specific element, indicating its severity.

A schematic model for the g-th span of a fiber, which
includes a time-varying RSOP hinge [24], [27] and a com-
ponent incurring PDL, is illustrated in Fig. 1. In this figure,
it is assumed that there is a hinge and a PDL component at
the end of the span. As can be seen, the signal in the g-th
span undergoes N DGD and N − 1 static RSOP and finally
experiences a time-varying RSOP and a PDL impairment.

F. Simulation Model

Based on the preceding discussions, we simulate fiber by
applying various effects to each spatial step n within each span
g. This involves applying CD, signal attenuation, nonlinearity,
and PMD with static RSOP based on (2), (3), (4), and
(6), respectively. To compensate for attenuation, a lumped
amplifier is added at the end of each span, which introduces
AWGN. Additionally, the impact of each local PDL element
is emulated using (14). Lastly, when time-varying RSOP is
present in the fiber, at each hinge h we calculate J ⌊k/F⌋,h
using (9) and apply it to E(z, kTs/F ) by computing the
product J ⌊k/F⌋,hE(z, kTs/F ) for each time instance k/F ,
where 1/Ts denotes the baud rate, F is the sample-per-symbol
rate of the SSFM, and ⌊·⌋ indicates the floor operation. In
our simulations, we incorporate a PDL element at the end of
each span. Moreover, in the presence of time-varying RSOP,
we take into account the inclusion of a hinge at the end of
each span. The initial matrices J 0,h are selected uniformly at
random from the set of all 2 × 2 unitary matrices ensuring
uniformly distributed SOP across the Poincaré sphere [27].
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Fig. 1. A schematic model of PMD, PDL, and time-varying RSOP impairments in the g-th span of a fiber, assuming the presence of a hinge and a PDL
component at the end of the span.

G. Transmitted and Received Signals

For the sake of notation convenience, in the following
sections, we will use the notations x(k) and y(k) to represent
the quadrature amplitude modulation (QAM) data symbols at
time instance k for the X and Y polarizations, respectively.
This can be expressed as

E(0, t) =
∞∑

k=−∞
p(t− kTs)

[
x(k)
y(k)

]
, (16)

where p(t) is a root-raised cosine (RRC) pulse shape.
At the receiver, we assume that the received signal E(L, t)

is coherently detected. It is then subjected to low-pass filtering
using an optical filter of the form

LPF(f) = exp

(
−
( f

fcut

)ξ)
, (17)

where fcut is the cutoff frequency, and the power exponent
ξ determines the rate of decrease after the cutoff frequency.
Following the low-pass filtering, the signal is sampled at a rate
of 2 samples per symbol before being fed into the NN models
for further processing. These inputs to the NN models are
denoted by x0 and y0 for X and Y polarizations, respectively,
and are defined as[

x0(k)
y0(k)

]
= E(L, kTs/2). (18)

III. LEARNING-BASED IMPAIRMENTS MITIGATION AND
TRACKING IN THE PRESENCE OF PDL

In this section, we present the proposed DLNCN model with
PDLC layers and describe it in detail. We also discuss how to
efficiently transfer knowledge from a trained model with static
RSOP to the case where RSOP changes over time. Throughout
the paper, we employ the mean squared error (MSE) as the
chosen loss function for all training/adapting schemes.

A. Deep Linear and Nonlinear Compensation Network (DL-
NCN)

The proposed DLNCN model employs a distributed com-
pensation architecture comprising five distinct types of layers,
each designed to compensate for a specific channel impair-
ment. Fig. 2 shows the five layers in the i-th step, and the
entire DLNCN is a concatenation of M such steps, which is

referred to as the number of DLNCN steps. The 2-samples-per-
symbol sequences that are inputs to the i-th step are denoted
as

{xi} = . . . , xi(k − 1), xi(k), xi(k + 1), . . .

for the X polarization and

{yi} = . . . , yi(k − 1), yi(k), yi(k + 1), . . .

for the Y polarization. The neural network receives the input
sequences {x0} and {y0} from X and Y polarizations, respec-
tively, and processes these sequences through different layers
which will be explained in detail in the following. Finally, the
output sequences of the model, denoted by {xM} and {yM}
for the X and Y polarizations, respectively, are input to an
RRC-matched filter (MF), whose output is sampled at symbol
rate and compared with the true transmitted symbols x(k) and
y(k) in order to train the model.

Remark 1: In several related works [9], [21], [32]–[34]
including our previous work [14] the MF is applied before
the NN model. This retains the position of the MF in the
receiver processing chain when only using linear CDC and
PMD compensation. However, since the role of the NN, as
well as conventional DBP, is to invert the optical channel, it
is more meaningful to place the MF after the NN.1

The first part of the DLNCN model is a complex-valued
convolutional layer that compensates for CD equally on both
polarizations. The second part compensates for DGD using
a short real-valued filter with the same coefficients for both
polarizations but in a reversed order. To effectively mitigate
the impact of PDL, we add a third layer dedicated to PDLC.
Its primary function is to rectify power disparities between the
two distinct polarization modes. Accordingly, one polarization
signal is subject to multiplication by a trainable parameter pi,
while the signal of the other polarization remains unaltered.
The fourth layer applies a rotation matrix to the signal to
compensate for RSOP, and finally, a bidirectional recurrent
layer is used to account for nonlinearity compensation. As
mentioned above, these five layers are repeated M times, and
the output of the last step is used to estimate the transmitted
symbols. Fully training the NN models from scratch is called
initial training which will be further evaluated in Section IV-A.

Remark 2: It is worth noting that by removing the PDLC
layer, the network can be reduced to the DCRNN-PMD model

1We acknowledge the reviewer of [14] who raised the question about the
position of the MF during the review process.
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Fig. 2. Architecture of the proposed DLNCN model at the i-th step.

introduced in [14]. Although the addition of the PDLC layer
may seem like a minor modification, our numerical results
demonstrate that it considerably improves the quality of the
output symbols when static RSOP is present and even more
so when time-varying RSOP is present, as the difference in
the power of the X and Y polarizations can be substantial.

Remark 3: To gain preliminary insights into the effect of
PDL on the transmission chain, let us momentarily assume
that there is no RSOP in the fiber link. Under this assumption,
as both DGD and PDL matrices are diagonal, we can consider
the combined impact of DGD and PDL as given by

ΓuDg,n=

[
exp(jπfτg,n)

√
1 + γu 0

0 exp(−jπfτg,n)
√
1− γu

]
(19)

By examining (19) and comparing it to (7), we observe that
to compensate for both DGD and PDL, a scaled version of
the reversed filter for the other polarization must be employed.
This will be accomplished by introducing the trainable coef-
ficient pi for each step i of the distributed neural network.

B. Adaptation of Learned DLNCN Model

Transfer learning [17]–[20] plays a vital role in simplifying
the training process by leveraging similarities in distribution
and features to modify a pre-trained neural network model
from a source domain to a target domain, thus enabling
effective online learning. In our specific case, dealing with
time-varying RSOP in the presence of PDL, we build upon
the concept of transfer learning in distributed NLC networks,
which has been previously explored in works like [8], [14],
[21]. Leveraging the interpretability of the layer roles in the
DLNCN model, we selectively update only the weights that

correspond to changes when compared to the source domain,
facilitating seamless adaptation to new datasets and changing
environmental conditions. In this section, we discuss how
to perform transfer learning, which includes retraining on
different datasets and online training through acquisition and
tracking.

1) Retraining: Retraining a pre-trained DLNCN network
on a different dataset enables us to leverage knowledge learned
from a source domain to improve performance on a target
domain. For efficient retraining, we can exploit the fact that the
DLNCN layers mirror impairments introduced by the optical
fiber. Hence, we can freeze layers, i.e., keep weights fixed, for
layers whose associated impairments we can assume to remain
constant when transitioning from one dataset to another. For
example, for a given optical link setup, we expect that CD
and nonlinearity of the fiber are constant and thus we would
keep the CDC and NLC layers fixed. On the other hand, as
the PMD and PDL realizations of a new dataset are likely to
be different from the ones used for initial training, we will
adapt the layers corresponding to these impairments during
the retraining process. In Section IV, we will demonstrate
that DLNCN can be optimized with a relatively small number
of epochs during retraining. This is possible because the
network has already learned foundational features from the
source dataset. By fine-tuning the adaptable layers with the
target dataset, DLNCN can quickly adapt to the new domain,
reducing training time and computational complexity.

2) Acquisition and Tracking: Retraining still uses a full
dataset and adapts the NN weights through processing that
dataset for several epochs. Adaptation of the NN in a deployed
communication system should be performed via online learn-
ing. Nevertheless, efficient retraining via adapting weights of
specific layers guides the implementation of online learning for
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the DLNCN. We propose a two-stage online training process
via acquisition and tracking. During acquisition, the layers of
the DLNCN network that correspond to impairments that may
have changed from the initial training, e.g., DGD, PDL, and
RSOP compensation layers, are adapted using pilot data x(k)
and y(k). That is, the MSE loss at the k-th time instance

LossAcq.(k) =

∥∥xM (k)− x(k)
∥∥2 + ∥∥yM (k)− y(k)

∥∥2
2B

,

(20)

where B is the batch size and

xM (k) = [xM (k−B+1), . . . , xM (k−1), xM (k)]T , (21)

yM (k) = [yM (k−B+1), . . . , yM (k−1), yM (k)]T , (22)

x(k) = [x(k−B+1), . . . , x(k−1), x(k)]T , (23)

y(k) = [y(k−B+1), . . . , y(k−1), y(k)]T , (24)

is used to perform one update of the selected layers.
After successful acquisition, the second stage utilizes a

decision-directed scheme to update the network based on the
output decisions made by the DLNCN. Typically, we can
assume that the tracking scheme involves updating only the
RSOP compensation layers while keeping the other layers
frozen. The decision-directed approach employs these deci-
sions as true target data and calculates a loss function to update
the network’s weights. Accordingly, the loss at the k-th time
instance can be written as

LossTrack(k)=

∥∥xM (k)−[xM (k)]D
∥∥2+∥∥yM (k)−[yM (k)]D

∥∥2
2B

(25)

where

[xM (k)]D=
[
[xM (k−B+1)]D, . . . , [xM (k−1)]D, [xM (k)]D

]T
[yM (k)]D=

[
[yM (k−B+1)]D, . . . , [yM (k−1)]D, [yM (k)]D

]T
.

(26)

are the hard-decision symbols obtained from xM (k) and
yM (k), respectively.

This process enables the DLNCN to adapt to the changing
conditions during data transmission. However, although the
decision-directed scheme is generally effective in tracking
changes over time, it is sensitive to decision errors. That
is, there may be instances where the performance drops and
fails to recover promptly, or it may never recover at all. To
address this limitation, we propose augmenting the approach
with a threshold-based signal processing technique and the
use of intermittently transmitted small sets of pilots. This
combination helps the DLNCN to minimize the occurrence
of scenarios where performance drops and to recover quickly
when it does.

The threshold-based signal processing technique is ap-
plied during decision-directed tracking and used to determine
whether to update the learned model or not. A symbol decision
is deemed reliable enough for updating filter coefficients of the
learned model if the Euclidean distance between estimated

soft symbols and hard-decision symbols does not exceed a
threshold value Th, i.e.,√∥∥xM (k)− [xM (k)]D

∥∥2 + ∥∥yM (k)− [yM (k)]D
∥∥2

2B
≤ Th.

(27)

As we will illustrate in Section IV, this selective filter updat-
ing based on reliability improves tracking performance. The
proposed tracking scheme is summarized in Algorithm 1.

Algorithm 1: Tracking scheme in online learning
1: Network has already been updated through acquisition.
2: Keep all layers frozen but RSOP compensation layers.
3: while true do
4: Compute xM (k) and yM (k)
5: if x(k) and y(k) are available then
6: Compute LossAcq.(k).
7: Backpropagate.
8: else
9: Compute

Q(k) =

√∥∥xM (k)−[xM (k)]D

∥∥2
+
∥∥yM (k)−[yM (k)]D

∥∥2

2B

10: if Q(k) ≤ Th then
11: Compute LossTrack(k).
12: Backpropagate.
13: else
14: Do not update weights.
15: end if
16: end if
17: end while

In summary, transfer learning is applied in the DLNCN
for addressing the challenges posed by the time-varying
RSOP in the presence of PDL. Specially, employing transfer
learning in the two-stage online training process allows DL-
NCN to operate in a practical receiver and to track dynamic
time-varying impairments via acquisition and tracking. The
proposed threshold-based signal processing approach further
enhances the DLNCN’s capability to recover and improve
performance, improving robustness in changing environments.

IV. NUMERICAL RESULTS

In this section, we conduct a numerical performance eval-
uation of the proposed DLNCN architecture and compare
its performance with that of DCRNN-PMD, specifically in
scenarios where PDL is present in the fiber.

For concreteness, we adopt the simulation setup from [14],
with slight adjustments made to the parameters. The details
are provided in Table I. Different from [14], we consider
EDFAs with a 6 dB noise figure and a local PDL of 3 dB
(for the initial training case with static RSOP) and 2 dB (for
the retraining and time-varying RSOP cases) at the end of
each span, respectively. In order to manage complexity, both
NN models consist of M = 12 steps, which is the same as
the number G of fiber spans, unless stated otherwise. While
this 12-step configuration is assumed for most numerical tests,
we also study the impact of varying the number of steps on
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TABLE I
SIMULATION PARAMETERS FOR INITIAL TRAINING.

Parameter Value
Modulation 64 QAM
Polarization Dual

Center wavelength 1552.93 nm
Symbol rate 32 GBd

Cutoff frequency(fcut) 18.75 GHz
Filter power exponent (ξ) 40

SSFM bandwidth 128 GHz (F = 4 samples per symbol)
Receiver bandwidth 64 GHz (2 samples per symbol)

Pulse shape Root-raised cosine
Pulse roll-off 0.06
Span length 80 km
# Spans (G) 12
Fiber loss(α) 0.21 dB/km

Dispersion parameter 16.8 ps/nm/km
Nonlinearity parameter (γ) 1.14 1/W/km

PMD 0.1 ps/
√

km
EDFA noise figure 6 dB
Local PDL (ρu) 3 dB

SSFM steps per span (N ) 500
# Training symbols 5× 105

# Test symbols 5× 105

Learning rate scheduling Cosine annealing
Max. learning rate 10−3

Min. learning rate 10−4

# Epochs 2× 103

Batch size 104

# DLNCN steps (M ) 12

the performance of the proposed DLNCN model. Table I also
includes the learning rate schedule used for training the NN
models, with more details provided in the following.

We use the Q-factor, defined as

Q-factor =
√
2 erfc−1(2BER) , (28)

to assess the effectiveness of each model on the provided
datasets. The Q-factor is obtained from the empirical bit
error rate (BER) via the inverse complementary error function
(erfc−1) and can be interpreted as an equivalent signal-to-noise
ratio (SNR).

A. Initial Training

Optimization problems performed on neural networks are
generally non-convex, which means they can have multiple lo-
cal optima, saddle points, and lack a globally optimal solution
[35]–[39]. This poses a practical challenge in training neural
networks, as there is no guarantee of finding the best possible
solution for a given architecture. To address this challenge,
researchers have explored different approaches, including the
use of various random and deterministic weight initializations
[40]–[43].

In optical communication systems, a number of studies
have investigated the impact of different initialization methods
on neural network performance [8], [10], [14]. Notably, in
[10], the authors found that random initialization did not yield
satisfactory results. However, contrasting these findings, [14]
stated that random initializations provided the best outcomes.
This suggests that the choice of initialization method may
depend on the specific structure of the neural network model
including hyper-parameters and the communication system
settings.
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Fig. 3. Performance comparison of DCRNN-PMD and DLNCN models for
ρu = 3 dB.

Given this insight, we performed experiments with multiple
random and deterministic weight initializations, tailored to our
network architecture. While deterministic weight initialization
simplifies training and ensures consistent results across dif-
ferent runs, our investigations consistently revealed that the
best outcomes were achieved through random initialization.
More precisely, our training attempts show that the best results
for both DCRNN-PMD and DLNCN models are obtained
by using the Adam optimizer [44] along with employing
Xavier weight initialization [45] for CD, DGD, rotation, and
NL compensation layers along with initialization via a real-
valued normal distribution with mean 1 and variance 10−4

for the PDLC layer. For the following figures, we have
chosen the best result obtained with 20 random initializations.
This approach allows us to showcase the performance of the
neural network using the most favorable initialization instance
identified during our experiments. For all training attempts, we
have employed the well-known cosine annealing schedule for
learning rate adaptation with the parameters given in Table I.

Fig. 3 depicts the Q-factor as a function of launch power
for DCRNN-PMD and DLNCN in the presence of PDL with
ρu = 3 dB. For a fair comparison, we also include the curve
for DCRNN-PMD with the MF after the NN in the figure.
As can be seen, in the linear regime (launch power less than
5 dBm), the DLNCN and DCRNN-PMD models perform
almost the same. However, as the launch power increases and
the system transitions into the nonlinear regime, the DLNCN
model outperforms the original DCRNN-PMD model with
the MF at the beginning of receiver digital signal processing
by about 0.55 dB and the modified DCRNN-PMD model
with the MF at the end of receiver by 0.20 dB. The gain
can be attributed to the introduction of the PDLC layer. The
difference is more pronounced in the presence of time-varying
RSOP, which will be discussed later in Fig. 8. We note that
since having the MF at the end of receiver chain provides
better results, we also consider this setup for the benchmark
DCRNN-PMD scheme in the sequel.
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Fig. 4. Offline training performance versus different number of steps M for
a transmit power of 7 dBm.

In Fig. 4, we examine the impact of varying the number
of steps on the DLNCN model’s performance, analyzing
the initial training performance in terms of Q-factor against
different step counts, M , at a transmit power of 7 dBm.
The figure illustrates that the DLNCN model’s performance
increases with a larger number of steps, first more sharply
and then more gradually at around the one-step-per-span point.
The performance improvement can be attributed to an increase
in the number of learnable parameters, which in this test is
linearly proportional to M . One may speculate that M = G
is a favourable setting as the NN model and the link structure
are matched in some way. However, we note that one could
also increase the number of parameters per layer for the cases
of M < G to achieve an optimized performance. Furthermore,
choosing M > G results in additional performance gains.
Overall, finding an optimal balance between the model’s com-
pactness and its learning capabilities is essential for achieving
a desired trade-off.

Before concluding the initial training results section, we
provide the scatter plot of the output of the DLNCN model in
Fig. 5 for a launch power of 7 dBm. The plot reveals that the
output samples exhibit a complex Gaussian-like distribution
centered around the transmitted data symbols. This finding
supports the selection of MSE as the loss function, as the NN
training indeed minimizes the uncertainty about the transmit-
ted data in the NN outputs.

B. Retraining

Applying a neural network model trained on a dataset
representing a specific scenario of an optical fiber link to a
different dataset even for a nominally identical link is likely
to yield an unacceptably low Q-factor. This is because of
the different instances of random link parameters between
the datasets, in particular the different realizations of RSOPs,
DGDs, and local PDLs. To deal with this distribution shift
from one scenario to another, we employ transfer learning,
as introduced in Section III-B1. In this approach, we set the
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Fig. 5. Scatterplot of the output symbols from the DLNCN at launch power
7 dBm.

initial weights as the final weights of the pre-trained network
and retrain it by only updating the DGD, rotation matrix, and
PDL filters, while keeping other weights and layers unaltered.

The learning curve for training from scratch (initial training)
with 2000 epochs is depicted alongside the learning curve for
retraining over 100 epochs, both in terms of the MSE loss
function, in Fig. 6, where both schemes are trained on the same
new dataset. To implement the retraining scheme, we borrowed
the initial network weights from a fully trained network with
training parameters given in Table I, and performed retraining
over a different dataset with different DGD and RSOP real-
izations and as well as a different local PDL of ρu = 2 dB,
using maximum and minimum learning rates of 10−2 and
10−3, respectively. This learning rate schedule is one order
of magnitude larger than the learning rate used for training
from scratch. As Fig. 6 shows, with only 100 epochs and by
updating only the DGD, RSOP, and PDL compensation layers
of the network, we were able to successfully retrain the model
on a new dataset, resulting in an obtained Q-factor of 9.78 dB.
This example demonstrates a significant overhead reduction
of 95% compared to the case without transfer learning, while
only incurring a loss of approximately 0.1 dB.

Next, we compare the performances of the proposed DL-
NCN model and the DCRNN-PMD model from [14]. Both
models are first trained on a dataset according to the pa-
rameters in Table I and then we examine four datasets with
ρu = 2 dB, each featuring different realizations of DGD and
RSOP. Table II shows the figures for the Q-factor obtained
after retraining. We also include the aggregated PDL, which
represents the ratio between the average powers for the X and
the Y polarizations at the output of the optical fiber link. The
results from this retraining procedure reveal that the DLNCN
model exhibits superior performance over the DCRNN-PMD
model, surpassing it by a margin of more than 0.3 dB when
PDL is present. Notably, when the aggregated PDL is higher,
the disparity between the proposed model and the benchmark
model becomes more pronounced. This difference can be as
large as 3.5 dB, as evident in the table for Dataset #4. These
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Fig. 6. Validation loss versus epoch for DLNCN model during initial training
and retraining, both on the same dataset with ρu = 2 dB at launch power
7 dBm.

TABLE II
PERFORMANCE COMPARISON WITH RETRAINING.

NN model Dataset for Aggregated Q-factor obtained
retraining PDL after retraining

DCRNN-PMD Dataset #1 2.20 dB 9.28 dB
DLNCN 9.78 dB

DCRNN-PMD Dataset #2 2.46 dB 9.58 dB
DLNCN 10.12 dB

DCRNN-PMD Dataset #3 0.60 dB 10.00 dB
DLNCN 10.30 dB

DCRNN-PMD Dataset #4 2.34 dB 6.07 dB
DLNCN 9.56 dB

results demonstrate the effectiveness of the DLNCN model in
addressing PDL in conjunction with other linear and nonlinear
channel impairments, and its suitability for efficient retraining.

In considering the results in Table II, it is also important to
recognize that while the aggregated PDL values are indicators
for the severity of impairments, the specific PMD realizations,
which vary between datasets, also play an important role.
For example, Dataset #2, despite having a slightly larger
aggregated PDL than Dataset #1, shows a slightly better Q-
factor.

C. Acquisition and Tracking

We now turn to the case of online training using acquisition
and tracking with only a single epoch. Acquisition is similar to
retraining in that known data in the form of pilot symbols are
available. Therefore, the insights gained from retraining above
can directly be applied here. In addition, online training via
acquisition and tracking is also meant to render the DLNCN
operating successfully when dynamic impairment are present,
in particular time-varying rotations of SOP along the fiber as
discussed in Section II-D. In such scenarios, due to the con-
tinuous change in the data distribution, the concept of offline
training with multiple epochs is not feasible. Instead, agile
tracking schemes with a single epoch should be employed to
effectively track these changes.
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Fig. 7. PDL over time for ∆p = {0, 3, 5} kHz with ρu = 2 dB.

In the presence of time-varying RSOP, the powers of X and
Y polarizations change over time. To highlight the interplay of
PDL and RSOP dynamics, Fig. 7 shows the time-varying PDL
experienced by the signal at the fiber output measured for a
sliding window (SW) of 212 symbols and different polarization
linewidths ∆p, when ρu = 2 dB and the launch power is
set to 7 dBm. The figure illustrates that in the absence of
time-varying RSOP (∆p = 0), the SW PDL remains relatively
constant (it will become constant and identical to the aggre-
gated PDL as the SW size increases). However, increasing the
polarization linewidth results in a rapidly changing SW PDL,
and it reaches levels of up to 10 dB in our example. The rate
of change of the SW PDL is proportional to the level of RSOP
dynamics as represented by ∆p.

1) Acquisition: To test the effectiveness of the proposed
online learning scheme, we conducted acquisition experiments
on a modified version of Dataset #1 (see Table II) that also
features time-varying RSOP with a polarization linewidth of
3 kHz. To investigate the impact of various factors on the
performance of the DCRNN-PMD and DLNCN models, we
tested different batch sizes, learning rates, and adaptation
methods for each model. The best results obtained from these
experiments for each model are presented in Fig. 8 (top two
curves), which shows the SW Q-factor over symbol index
(time) for acquisition on each model scheme. Similar to the
SW PDL results, also the SW Q-factor is averaged over a SW
of 212 symbols.

Through numerical tests we observed that a batch size of
only one symbol yields the best results for both models.
Furthermore, stochastic gradient descent (SGD) is found to
be the optimal adaptation method for DCRNN-PMD, while
the Adam optimizer performs best for the proposed DLNCN
model. This can be attributed to the fact that the adaptive
learning rates of Adam may be better suited for the architecture
of DLNCN model that has additional layers for PDLC. The
optimal learning rate for the DLNCN model is 10−4, one order
of magnitude smaller than the DCRNN-PMD model (10−3),
highlighting their differences and the need for a specialized
adaptation strategy to address RSOP changes over time in
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Fig. 8. Performance of acquisition for ∆p = 3 kHz, ρu = 2 dB, and batch
size equal to 1.

the presence of PDL. Most importantly, the DLNCN notably
outperforms the state-of-the-art DCRNN-PMD model when
PDL and time-varying RSOP are present. The average Q-factor
gain is over 0.75 dB. This showcases the effectiveness of the
proposed DNN structure with a dedicated layer for PDLC and
its ability to work in tandem with RSOP adaptation.

We have included three additional schemes for benchmark-
ing in Fig. 8 (bottom three curves). Two of them include the
SW least-squares (SW-LS) algorithm from [30], which has
been developed for RSOP tracking and PDL compensation
in the absence of other linear and nonlinear distortions. We
thus concatenate it with the DCRNN-PMD model as well as
a linear equalizer consisting of CDC and a 2 × 2-FIR filter.
We adapt the DCRNN-PMD model and the 2 × 2-FIR filter
up to 20,000 symbols for effective compensation of static
PMD, then halt their adaptation, and feed their output into
the SW-LS algorithm for further RSOP tracking and PDL
compensation. The SW-LS parameters have been set to L = 50
and ν = 1. Lastly, we consider another NN-aided model
for comparative analysis. This addition is the DLNCN with
ineffective RNN layers, i.e., it is similar to linear equalization
but with integrated RSOP tracking and PDL compensation.

The first notable observation is the comparable performance
between the conventional linear equalizer with the SW-LS al-
gorithm (dotted black curve) and the DLNCN with ineffective
RNN layers (green curve). It is noteworthy that the DLNCN
scheme with ineffective RNN layers, despite not having access
to the actual system parameters and not compensating for
nonlinearity, performs almost on par with the conventional
linear receiver that is informed of the CD parameter. As both
benchmarks do not address nonlinearity, their performance
falls short when compared to the other, more comprehensive
benchmarks. In addition, the results clearly demonstrate that
when the adaptation in the DCRNN-PMD model is ceased and
its output is transitioned to the SW-LS algorithm (solid black
curve), there is a significant decrease in Q-factor. This obser-
vation supports the notion that the continuous adaptation of the
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Fig. 9. Performance of tracking for ∆p = 3 kHz, ρu = 2 dB, and batch
size equal to 1. Blue and red curves serve as upper bounds.

neural network layers, as proposed in Section III-B2, is critical
for handling dynamic data streams. Consequently, integrating
conventional RSOP tracking as a standalone component at the
end of the neural network, in lieu of the transfer-learning based
adaptation scheme, is not recommended.

2) Tracking: In the acquisition phase discussed in previous
section, pilot data are used to permit the learned receiver
to adjust to the channel realization. We next proceed to the
tracking phase, where hard decisions from outputs generated
by the current model are used in the loss function (25) to
adapt the network. The decision-directed scheme is evaluated
against two upper bounds. The first upper bound represents the
acquisition case, assuming the availability of all transmitted
data (x(k) and y(k)) for adaptation. The second upper bound
is a genie-aided scheme, updating weights at time instance
k only if [xM (k)]D = xM (k) and [yM (k)]D = yM (k).
We expect that this provides a tighter upper bound on the
performance of any practical tracking scheme.

Fig. 9 shows the SW Q-factor results for decision-directed
tracking and the two upper bounds and the same setting as in
Fig. 8. For all curves, an acquisition phase using 2×104 pilot
symbols is performed. The comparison between the proposed
tracking and the fully acquisition scheme reveals the ability
of the former to track the time-varying RSOP well, up until
the symbol index 1.5 × 105. Although there are instances
where performance momentarily drops, it gradually recovers
and effectively aligns with the Q-factor curve of the proposed
upper bounds. However, after the symbol index 1.5 × 105,
where the Q-factor drops, the tracking mechanism fails to
recover the signal, resulting in a complete loss of track.
This can be attributed to the error propagation present in the
decision-directed process.

In order to enhance the performance of the tracking scheme,
we consider the application of thresholds on decision-directed
updates, as detailed in Section III-B2. The performances
achieved with this tracking scheme and different values for Th
in (27) are shown in Fig. 10. When a small threshold value,
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Fig. 11. Performance of tracking for ∆p = 3 kHz and ρu = 2 dB with
2.5% pilots.

such as Th = 0.1, is used, the scheme’s performance begins to
deteriorate earlier. This phenomenon can be attributed to the
continuously changing RSOP present in the data. Failing to
update the filter taps sufficiently frequently leads to significant
performance degradation. On the other hand, while increasing
the threshold value results in more frequent updates, the
quality of these updates deteriorates due to decision errors.
For the example considered in Fig. 10, setting the threshold to
0.15 seems to strike a favorable trade-off between frequency
and quality of the updates. As can been seen in Fig. 10, using
Th = 0.15 extends the tracking scheme’s capability to track
the signal up to symbol index 3.9×105. However, beyond this
point, this approach proves to be ineffective in following the
channel variations.

Finally, we integrate the proposed threshold-based tracking
strategy with an intermittent use of pilots, introduced in
Algorithm 1. The results obtained from this scheme with a
pilot density of 2.5% are depicted in Fig. 11. As evident
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Fig. 12. Performance comparison of acquisition and tracking schemes with
∆p = 10 kHz and ρu = 0.5 dB, featuring a time-varying RSOP segment at
a random location within each odd-numbered span.

from the results, the proposed scheme is able to seamlessly
track the signal. Although there are occasional instances where
performance dips, the algorithm promptly recovers and accu-
rately follows the signal trend. It is important to note that our
experimental findings reveal that these instances, characterized
by a decrease in the Q-factor, typically involve a maximum of
1000 symbols. To mitigate the impact of these burst instances,
we propose to utilize a suitable interleaver integrated with
forward-error-correction (FEC) codes, so that each code block
experiences an average of pre-FEC Q-factors.

3) Robustness: In the previous tests, each span consistently
featured one time-varying RSOP segment, located at its end
(see Fig. 1). During these tests, the RSOP linewidth was
maintained at ∆p = 3 kHz, and the local PDL was set to
ρ = 2 dB. In the subsequent discussion, we explore variations
in these settings.

First, we consider the scenario that a time-varying RSOP
segment is placed at a randomly-chosen location within each
odd-numbered span, i.e., spans 1, 3, 5, 7, 9, and 11, and the
even-numbered spans do not include a time-varying RSOP.
Additionally, the local PDL, applied at the end of each span,
is set to a reduced value of ρℓ = 0.5 dB, and the polarization
linewidth is increased to 10 kHz. The performance results are
shown in Fig. 12. We observe that the proposed acquisition
and tracking schemes operate effectively also when the time-
varying components of the link are distributed irregularly
across the fibre link.

Next, we compare the performances for the proposed DL-
NCN model across various linewidths (and ρu = 2 dB)
using pilot-based acquisition and pilot-aided decision-directed
tracking modes with a fixed learning rate of 10−4 for different
linewidths. Fig. 13 shows the symbol-error rate (SER) results
as a function of the polarization linewidth normalized by the
transmission baud rate. The SER is derived as a single value,
averaged over the entire data sequence of 650,000 symbols,
incorporating the impact of any fluctuations, such as dips in
the performance observed in previous figures. We observe
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tracking schemes versus different normalized polarization linewidths.

that our tracking scheme closely aligns with the upper-bound
performance of the pilot-based acquisition scheme until a
certain polarization linewidth and thus SER are exceeded.
Notably, at a pre-FEC BER around 10−2 and normalized
linewidth of 10−7, the SER is approximately 6 × 10−2, with
minimal performance difference from the upper bound using
only 2.5% pilots.

V. CONCLUSION AND FUTURE WORK

In this paper, we present an enhanced neural network
model that effectively compensates linear and nonlinear im-
pairments in optical fiber transmission. Our model incorporates
a physics-based network architecture and a PDL compensation
layer, resulting in improved symbol output quality compared
to state-of-the-art approaches, particularly in the challenging
nonlinear transmission regime. Our scheme outperforms ex-
isting methods in offline learning and retraining experiments.
Moreover, the performance benefits of our model compared
to the state-of-the-art schemes become more pronounced in
time-varying environments where PDL is combined with time-
varying RSOP. While the SW PDL may change drastically,
our acquisition-tracking scheme offers a solution for online
learning and effectively handles time-varying RSOP in PDL-
based optical fiber systems.

However, our simulation results have also revealed occa-
sional performance drops when the SW PDL changes dras-
tically. While increasing the pilot portion and employing an
interleaver in conjunction with FEC can alleviate these dips,
a potential avenue for future research may lie in investigating
more sophisticated tracking schemes. One possible direction
could involve studying the scaling of learning rates based
on the magnitude of very short SW PDLs or the actual
error amount. Regarding the latter, weighting the learning rate
inversely proportional to a power of loss via, for example,

lrnew=lrold×
(∣∣xM (k)−[xM (k)]D

∣∣2+∣∣yM (k)−[yM (k)]D
∣∣2)ν

with ν < 0, might be beneficial in further enhancing the
tracking scheme’s performance.

Finally, we note that we have not addressed the potential
need for re-acquisition after losing track. We did not observe
such instances when when simulating acquisition/tracking for
up to 650,000 symbols, but a study and/or mechanism for re-
acquisition is required towards practical use.
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[30] M. Farsi, C. Häger, M. Karlsson, and E. Agrell, “Polarization tracking
in the presence of PDL and fast temporal drift,” Journal of Lightwave
Technology, vol. 140, no. 19, pp. 1–9, 2022.

[31] H.-M. Chin, D. Charlton, A. Borowiec, M. Reimer, C. Laperle,
M. O’Sullivan, and S. J. Savory, “Probabilistic design of optical trans-
mission systems,” Journal of Lightwave Technology, vol. 35, no. 4, pp.
931–940, 2017.

[32] O. Sidelnikov, A. Redyuk, S. Sygletos, M. Fedoruk, and S. Turitsyn,
“Advanced convolutional neural networks for nonlinearity mitigation in
long-haul WDM transmission systems,” Journal of Lightwave Technol-
ogy, vol. 39, no. 8, pp. 2397–2406, 2021.

[33] D. Orsuti, C. Antonelli, A. Chiuso, M. Santagiustina, A. Mecozzi,
A. Galtarossa, and L. Palmieri, “Deep learning-based phase retrieval
scheme for minimum-phase signal recovery,” Journal of Lightwave
Technology, vol. 41, no. 2, pp. 578–592, 2023.

[34] J. Ding, T. Liu, T. Xu, W. Hu, S. Popov, M. S. Leeson, J. Zhao, and
T. Xu, “Intra-channel nonlinearity mitigation in optical fiber transmission
systems using perturbation-based neural network,” Journal of Lightwave
Technology, vol. 40, no. 21, pp. 7106–7116, 2022.
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