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Abstract—Power line communication (PLC) modems are trans-
mitting high-frequency signals through the electric grid infras-
tructure. These signals can also be interpreted as probing or
sensing signals. PLC is thus a natural candidate for integrated
sensing and communication (ISAC). The implementation of grid
sensing or monitoring with PLC has already been studied in
previous work. In this paper, we ask the question what accuracy
for (fault) parameter estimation can be achieved through power
line ISAC. Since this is the first study of this kind, we are
mainly concerned with introducing methodology. We adopt the
Cramér-Rao lower bound (CRLB) as a performance criterion
that is universally applicable regardless of the specific ISAC
implementation. We show how to connect measurement variables
and unknown parameters typically experienced in grid moni-
toring to obtain expressions for the CRLB. Using transmission-
line modeling for PLC signal propagation, we identify automatic
differentiation as a suitable tool to evaluate those expressions. The
effectiveness of power line ISAC is illustrated through numerical
results for a fault location estimation use case.

Index Terms—Power line communication (PLC), integrated
sensing and communication (ISAC), Cramér-Rao lower bound
(CRLB), fault estimation, fault monitoring, smart grid, automatic
differentiation.

I. INTRODUCTION

The primary purpose of power lines is to transport and
distribute electrical power. This is done by way of carry-
ing electromagnetic waves at the 50 Hz or 60 Hz mains
frequency. Naturally, power lines can also support waves at
higher frequencies. When combined with modulating these
high-frequency signals, this has given rise to power line
communications (PLC) [1]. It is not surprising that the original
use case for PLC was the support of power grid operations [1,
Ch. 1]. This use case has experienced significant growth with
the emergence of smart grids [2]. The growing need for reliable
and fast communication to enable smart grid applications came
along with advancements of PLC technology. As a result, the
standardized physical layers of today’s PLC modems (PLMs)
are quite comparable to those in modern transceivers used for
other communication media, such as wireless or coaxial or
twisted pair cables [3].

PLC has been referred to as a reuse technique, as it exploits
the existence of power lines to also transmit communication
signals. On the other hand, one can also exploit the exis-
tence of communication signals sent between PLMs for the
purpose of grid monitoring, e.g. [4], [5]. More specifically,
PLMs can be seen as active (when sending and receiving
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PLC signals) or passive (when listening to power line noise)
grid sensors. This means one can reuse already deployed
PLC networks performing for example smart metering [6] for
grid monitoring purposes. PLC therefore permits non-intrusive
monitoring during regular grid operation and the transmission
of raw or processed sensing data for further inference. Most
of the literature on PLC-based monitoring has focused on fault
detection and localization for overhead lines, e.g. [7], [8], and
underground cables, e.g. [4], [5], [9]. Another trend especially
in the more recent body of work is the use of machine learning
to facilitate the detection and estimation in the case of model
uncertainty, e.g., [4], [5], [9], [10].

The dual-function use of PLMs for communications and
grid monitoring falls squarely into the area of integrated (or
joint) sensing and communication (ISAC), which has garnered
substantial interest in the wireless transmission domain, see
[11] and references therein. One of the key aspects of ISAC
lies in enabling the respective sensing and communication
functionalities by the shared hardware resources. In the context
of wireless ISAC, the sensing functionality usually refers to
position and velocity estimation alike in radio detection and
ranging (radar). In the context of power line ISAC, sensing
can be applied to a broad spectrum of unknown quantities.
These could relate to line and load parameters in normal grid
operations, e.g., [12], parameters indicative for fault prediction,
e.g., [4], [9], or parameters characterizing faults, e.g. [4], [5],
[7], [8]. Reference [13] investigates how different categories of
faults affect PLC signal propagation and provides guidelines
to distinguish between them.

In this paper, we introduce a quantitative measure for the
performance of sensing in power line ISAC. Specifically,
we present the application of the Cramér-Rao lower bound
(CRLB) [14, Ch. 3] to the estimation of fault parameters. This
is similar to the use of the CRLB as a radar performance
metric in wireless ISAC, e.g., [15]. We believe that this is
the first work to apply the CRLB to power line ISAC. In
particular, we introduce the mechanics of obtaining the CRLB
for given sets of observed variables used for sensing and
unknown parameters to be estimated. The observation variables
suitable for inference are measurements of the network access
impedance and the channel frequency response. The former
corresponds to single-ended sensing using one PLM and the
latter to double-ended sensing using two PLMs. Both quantities
are already estimated in state-of-the-art PLMs for the purpose
of data communication over the power line channel. One
subtlety compared to conventional applications of CRLB [14,
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Fig. 1. Representation of the link between two PLMs using chain matrices.

Ch. 3] is that we typically need to estimate complex parameters
in power line ISAC. We make use of transmission-line models
[16] to develop expressions for the Fisher information matrix
(FIM) for combined complex and real unknown parameters
and suggest the use of automatic differentiation [17] for their
evaluation. We present numerical results for the task of locating
a high-impedance fault along an underground power cable,
using settings typical for a PLC system. Our results highlight
the ability of power line ISAC for accurate location estimation
and provide guidelines for the design of an effective ISAC
scheme.

The remainder of this paper is organized as follows. In
Section II, we describe the PLC signal propagation model
using transmission line theory. The signal model is related to
observations used for sensing in Section III. In Section IV,
we introduce expressions for the FIM and thus the CRLB and
the preferred method for their numerical evaluation. Numerical
results for a fault location case are presented and discussed in
Section V. Finally, we conclude in Section VI.

II. SIGNAL PROPAGATION MODEL

We consider a link between two PLMs using two conductors
of transmission lines.1 The grid components affecting the link
between the two modems can be represented in the frequency
domain through 2× 2 chain parameter matrices Φ(f) ∈ C2×2

(see e.g. [16, Sec 6.5]) as shown in Figure 1, where f ∈ R
denotes the frequency variable.

The representation in Figure 1 isolates the fault component
with chain matrix Φf from the remainder of the network,
where Φn1 and Φn2 represent the network components in the
direction towards PLM1 and PLM2 from the fault location,
respectively. Φ1 and Φ2 are the chain matrices for the two
PLMs. The overall chain matrix between PLM1 and PLM2 is
given by

Φo(f) = Φ1(f)Φn1(f)Φf(f)Φn2(f)Φ2(f) . (1)

Example 1. As a concrete example, let us consider a trans-
mission line network in which the two PLMs are connected
via a power line of length L. PLM1 transmits with a source
impedance Zs, PLM2 receives with a load impedance Zr, and
the characteristic impedance and propagation constant of the
line are Zc and γ, respectively. Furthermore, we consider a
high-impedance fault that puts an impedance Zf between the
two conductors. All variables are generally complex-valued and

1The extension to multi-conductor PLC transmission is straightforward.

frequency-selective, i.e., functions that map from f ∈ R to C.
The corresponding chain matrices are

Φni =

[
cosh(γℓi) Zc sinh(γℓi)

Z−1
c sinh(γℓi) cosh(γℓi)

]
, i = 1, 2 (2)

Φ1 =

[
1 Zs

0 1

]
(3)

Φf =

[
1 0

Z−1
f 1

]
(4)

Φ2 =

[
1 0

Z−1
r 1

]
(5)

where we omitted the dependency on frequency f for compact-
ness and ℓi denotes the length of the respective transmission
line piece, i.e., ℓ2 = L− ℓ1.

III. OBSERVATION MODEL

PLMs routinely estimate the channel frequency response as
well as the network access impedance. The former is part of
the data detection process of PLMs providing moderate to high
data rates [3]. These modems use multicarrier transmission
and estimate the frequency response H: R → C at subcarrier
frequencys fk, k ∈ K, where K is the set of used subcarriers.
The access impedance Z: R → C can be measured similarly,
usually with the purpose of adjusting the transmit power or
facilitating in-band full duplexing [18], [19]. Writing the chain

matrix as Φo =

[
Φo,11 Φo,12

Φo,21 Φo,22

]
with elements Φo,ij , we can

express the frequency response for transmission from PLM1 to
PLM2 as

H(f) = (Φo,11(f))
−1 (6)

and the access impedance experienced at PLM1 as

Z(f) = Φo,11(f)(Φo,21(f))
−1. (7)

The estimates Ĥ of the frequency response H and Ẑ of the
access impedance Z are the observation variables available to
perform inference for the unknown fault-related parameters. To
account for estimation errors, we use the measurement model

pĤ(f)(x) = CN (x;H(f), σ2
h) (8)

pẐ(f)(x) = CN (x;Z(f), σ2
z ), (9)

where pX : C → R denotes the probability density function
of the complex random variable X , and CN (x;µ, σ2) denotes
the circularly symmetric complex Gaussian distribution with
mean µ ∈ C and variance σ2 ∈ R evaluated at x ∈ C.
For simplicity, in this study we model the noise variances
as frequency independent, while extensions could account for
frequency dependence due to colored measurement noise in
PLC links [20], [21].

The estimate Ĥ(fm), m ∈ M ⊆ K, and Ẑ(fn), n ∈ N ⊆
K, that are used for inference are stacked into the vector of
observations X ∈ CT of length T = |M|+ |N |. The unknown
quantities related to the fault can be a mix of pc complex-
valued parameters θc and pr real-valued parameters θr. We
thus define the parameter vector θ = [θc θr]

T ∈ Cpc×Rpr . We
assume that the estimation-noise samples for the channel and



impedance measurements used for inference are statistically
independent. Then, the resulting observation model connecting
the observation and parameter vectors is given by

pX(x) =

T∏
k=1

CN (xk; gk(θ), σ
2
k), (10)

where gk : Cpc × Rpr → C depends on the model from
Section II and σk = σ2

h for 1 ≤ k ≤ |M| and σk = σ2
z

for |M| < k ≤ T .

Example 1. (continued) A typical task would be to identify
the location, i.e., ℓ1 or equivalently ℓ2 = L − ℓ1, and the
severity, i.e., Zf , of the fault. Then, and assuming that the
line properties are known, θ = [Zf , ℓ1]

T and pc = pr = 1.
Furthermore, considering (8) and (9), the function gk in (10)
is given by

gk(θ) =


(Φo,11(fm(k)))

−1, 1 ≤ k ≤ |M|
Φo,11(fm(k))

Φo,21(fm(k))
, |M| < k ≤ T

where m(k) is the frequency index associated with the k-th
observation and the Φo,ij need to be evaluated from (1) using
(2)-(5).

IV. CRLB FOR FAULT PARAMETER ESTIMATION

In this section, we present the CRLB suitable for the sensing
problems encountered in cable fault diagnostics by employing
the observation model from Section III. Since the unknown
parameters can be mixed real- and complex-valued quantities,
we first introduce the application of the CRLB for complex
parameters developed in [22]. Then we present a pragmatic
approach to evaluate the CRLB expressions using the signal
propagation model from Section II.

A. CRLB Expressions

A direct approach for the CRLB for complex parameters
that does not require the expansion into real-valued vectors of
stacked real and imaginary parts is described in [22]. It uses the

extended parameter vector θ =
[
θT
c θH

c θT
r

]T
and the complex

Fisher information matrix

I(θ) = E

[(
∂ log(pX)

∂θ

)∗ (
∂ log(pX)

∂θ

)T
]

(11)

to bound the covariance matrix of any unbiased estimator as
[22, Th. 1]

E
[
(θ̂ − θ)(θ̂ − θ)H

]
≥ I(θ)−1, (12)

where E is the expectation operator and the matrix
inequalityA ≥ B means that (A−B) is positive semi-definite.
In (11), we use the complex gradient [22, Def. 1]

∂h

∂θ
=


∂h
∂θc
∂h
∂θ∗

c
∂h
∂θr

 (13)

for any scalar function h. The derivatives with respect to
complex variables θc and θ∗

c are evaluated using the Wirtinger

calculus, which defines suitable differential operators for non-
analytic functions [23, App. A].

Applying (11) to the observation model in (10) gives

I(θ) =

T∑
i=1

T∑
j=1

1

σ2
i σ

2
j

E

[(
∂|xi − gi|2

∂θ

)∗ (
∂|xj − gj |2

θ

)T
]

︸ ︷︷ ︸
Iij(θ)

.

(14)
Since

∂|xi − gi|2

∂θ
= −(xi − gi(θ))

∂(xi − gi)
∗

∂θ

−(xi − gi(θ))
∗ ∂(xi − gi)

∂θ
,

we can evaluate the summation terms Iij(θ) in (14) as

Iij(θ) =
1

σ2
i σ

2
j

E
[
(xi − gi(θ))(xj − gj(θ))

∗∆∗
i∆

T
j

+(xi − gi(θ))(xj − gj(θ))∆
∗
i ∆̃

T

j

+(xi − gi(θ))
∗(xj − gj(θ))

∗∆̃
∗
i∆

T
j

+(xi − gi(θ))
∗(xj − gj(θ))∆̃

∗
i ∆̃

T

j

]
=

{
Ii(θ), if i = j
0, if i ̸= j

, (15)

where ∆i =
∂gi
∂θ , ∆̃i =

∂g∗
i

∂θ , and

Ii(θ) =
1

σ2
i

[
∆∗

i∆
T
i + ∆̃

∗
i ∆̃

T

i

]
. (16)

Accordingly, (14) simplifies to

I(θ) =

T∑
i=1

Ii(θ). (17)

B. CRLB Evaluation

The evaluation of the expressions in (16) and (17) is con-
ceptually straightforward. Since the functions gk are computed
using the transmission-line model in (1), their partial deriva-
tives with respect to the fault parameters can be evaluated with
the repeated use of the chain rule of derivatives.

Example 1. (continued) Let us consider the fault location ℓ1
as a parameter of interest and the frequency response (8) as
the kth component function gk, 1 ≤ k ≤ |M|. Defining a =
[1 0]

T and dropping the dependency on the frequency fm(k) for
brevity, the corresponding partial derivative can be evaluated
as follows:

∂gk
∂ℓ1

=
∂
(
aTΦoa

)−1

∂ℓ1

= −
(
aTΦoa

)−2
aT ∂Φo

∂ℓ1
a

= −
(
aTΦoa

)−2
aTΦ1

∂Φn1ΦfΦn2

∂ℓ1
Φ2a

= −
(
aTΦoa

)−2
aTΦ1

[
∂Φn1

∂ℓ1
ΦfΦn2

+Φn1Φf
∂Φn2

∂ℓ1

]
Φ2a. (18)



TABLE I
AUTOMATIC DIFFERENTIATION FOR Φn1 IN EQ. (2) USING THE

COMPUTATIONAL GRAPH IN FIG. 2. THE NOTATION v̇i =
∂vi
∂ℓ1

IS USED. THE
NUMERICAL VALUES ARE CHOSEN FOR SIMPLE ILLUSTRATION.

computation of Φn1 computation of ∂Φn1
∂ℓ1

v1 = ℓ1 = 1.0 v̇1 = ℓ̇1 = 1.0
v2 = γ = 1.0 v̇2 = γ̇ = 0

v3 = Zc = 0.5 v̇3 = Żc = 0

v4 = v2v1 = 1.0 v̇4 = v̇2v1 + v̇1v2 = 1.0
v5 = cosh(v4) = 1.5 v̇5 = sinh(v4)v̇4 = 1.2
v6 = sinh(v4) = 1.2 v̇6 = cosh(v4)v̇4 = 1.5
v7 = v3v6 = 0.6 v̇7 = v̇3v6 + v̇6v3 = 0.8
v8 = v6/v3 = 2.4 v̇8 = (v̇3v6 + v̇6v3)/v23 = 3.1

Φn1 = v9
∂Φn1
∂ℓ1

= v̇9

=

[
v5 v7
v8 v5

]
=

[
1.5 0.6
2.4 1.5

]
=

[
v̇5 v̇7
v̇8 v̇5

]
=

[
1.2 0.8
3.1 1.2

]

The partial derivatives in (18) require one more application of
the chain rule and are elementary.

While the procedure illustrated in the example is generally
applicable for the signal propagation model from Section II,
it quickly becomes cumbersome and the final expressions
become humongous when power line networks with more
branches and loads are considered. An effective alternative
to this symbolic differentiation is automatic differentiation
[17]. Automatic differentiation computes derivatives alongside
the computation of function values and provides accurate
numerical results without the need for closed-form expressions.
That is, when one computes for example the value H in (6) for
given parameters θ′, then the values of the partial derivatives
∂H
∂θ

∣∣∣
θ=θ′

are also computed. Automatic differentiation is thus a

meaningful approach if one is interested in quantitative results
and not in analyzing trends based on a closed-form expression.

Example 1. (continued) We illustrate the steps of automatic
differentiation until the computation of ∂Φn1

∂ℓ1
in (18). For this,

we consider the forward mode automatic differentiation and
follow the exposition in [17, Sec. 3.1]. Accordingly, we draw
the computational graph in Fig. 2 representing the operations
for the execution of (2) to compute Φn1. The corresponding
numerical calculations are given in the left-hand side of Ta-
ble I. The first three rows are the initialization of the input
parameters. The derivative ∂Φn1

∂ℓ1
is computed via automatic

differentiation at the right-hand side of Table I.

v1ℓ1

v2γ

v3Zc

v4

v5

v6 v7

v8

v9 Φn1

Fig. 2. Computational graph to compute Φn1.

V. NUMERICAL RESULTS

We continue with the setting from Example 1 and evaluate
the CRLB expressions for the case of a 1000 m long N2XSEY
cable (see [4] for details) with a high-impedance fault Zf at

2 5 10 15 20 25 30

Frequency [MHz]

-35

-25

-15

-5

F
re

q
u
e
n
c
y
 r

e
s
p
o
n
s
e
 [
d
B

]

High imp.

Low imp.

Fig. 3. Frequency response for the considered system with a high-impedance
Zf = (1000 + j50) Ω and low-impedance Zf = (10 + j50) Ω fault.

ℓ1 = 200 m distance from PLM1. In the context of power
line ISAC, we assume that the PLMs operate in the frequency
range of 2-30 MHz and use multicarrier transmission with a
subcarrier spacing of 24.4 kHz. Pilot signals at subsets of those
subcarriers are used to obtain frequency response and access
impedance measurements. The source impedance is Zs = 5 Ω
and the load impedance is set to Zr = (100 − j5) Ω, as low
source and higher load impedance are typical for PLC.

Figure 3 shows the frequency response H from PLM1 to
PLM2 when Zf = (1000 + j50) Ω and Zf = (10 + j50) Ω,
respectively. The former is a high-impedance fault and the
frequency response is mostly that of a power cable causing
higher signal attenuation with increasing frequency. The second
case for Zf is more a low-impedance fault, and one can observe
ripples in the frequency response due to signal reflections at
the location of the impedance. From this visual inspection of
H , one would expect that it may be difficult to infer fault
parameters for high-impedance faults with large resistance.

Throughout the following we focus on results for the task of
identifying the location ℓ1 of the fault. We expand the vector θ
of unknown parameters by unknown fault and load impedances,
Zf and Zr, which are thus nuisance parameters.

A. Using Frequency Response

We start by using only the estimates of the frequency
response H in (6) for inference. The variance σ2

h is ad-
justed according to a specified signal-to-noise ratio (SNR)
1

|M|
∑

m |H(fm)|2/σ2
h for frequencies in the range 2 ≤ fm ≤

6 MHz.
1) Unknown impedances are known to be constant: We first

assume that the fault and load impedance are unknown but
known to be frequency independent, i.e., θ = [Zf , Zr, ℓ1]

T

with pc = 2, pr = 1.
Figure 4 shows the CRLB for the root mean square error

(RMSE) versus the number of measurements T for Ĥ in the
range of 2−28 MHz used for location estimation of a fault with
Zf = (1000+ j50) Ω. We observe that an estimation accuracy
in the tens of meter and below 10 m can be obtained if more
than about 20 measurements are used at an SNR of 0 dB and
20 dB, respectively. These values demonstrate the potential for
accurate fault localization using channel estimation based on
PLC pilot signals.

In Figure 5 we inspect the role of the frequency range over
which the pilots are distributed. The figure shows the CRLB for
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T = 20 measurements for frequency spans from B = 1 MHz
to B = 25 MHz, i.e., the PLMs operate in the frequency range
from 2 MHz to (B + 2) MHz, at a 20 dB SNR. As it can be
seen, the CRLB remains fairly constant at around 4-6 m for
all frequency spans B. We attribute the fluctuations such as at
B = 19 MHz to the specific frequency samples of H that are
being used for location estimation, rather than the frequency
span itself.

Next, we explore the sensitivity to the severity of the
high-impedance fault. We fix the number of measurements to
T = 20, the frequency band to 2-6 MHz, and the SNR to
20 dB. Figure 6 shows the CRLB as a function of the fault
resistance. As expected, the estimation accuracy is high for low
resistance values but declines fairly steeply for high resistances
above 1 kΩ. For further increasing resistance values above
10 kΩ (not shown), the CRLB may become useless, i.e., the
estimation error exceeds the link length or the FIM becomes
ill-conditioned and its inversion numerically unstable.

2) Unknown impedances are not assumed constant: It is
likely too strong an idealization to assume that fault and load
impedances are constant over the entire frequency range used
for measurements. We therefore relax this constraint and adopt
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Fig. 6. CRLB as a function of the resistance of Zf . Reactance is 50 Ω.
T = 20 observations of Ĥ in 2− 6 MHz are used. SNR= 20 dB.
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Fig. 7. CRLB as a function of the number U of unknown impedance values
in the frequency range. T = 100 observations of Ĥ in 2− 6 MHz are used.
Zf = (1000 + j50) Ω and SNR= 20 dB.

a piece-wise constant model. That is, we assume that there
are pc = 2U unknown impedances with U ≥ 1, which
are constant only over a coherence bandwidth which is the
U th fraction of the entire frequency band. Using T = 100
measurements Ĥ in the frequency band from 2− 6 MHz at an
SNR of 20 dB, Figure 7 shows the CRLB versus the number
U . For those results, for consistency with the previously shown
results, we keep the actual realizations of Zf and Zr frequency
independent. However, the estimator needs to estimate (2U+1)
unknown parameters Zf(f), Zr(f), and ℓ1. We observe how
the estimation accuracy deteriorates with increasing number of
unknown impedances. While the degradation is fairly benign at
first, beyond U = 33 the FIM becomes ill-conditioned and no
meaningful results are obtained. The ratio between number of
measurements T and number U of unknown impedance values
is important. The results in Figure 7 suggest T/U ≳ 3, i.e.,
three measurements per unknown impedance value of Zf and
Zr, should be used.

B. Using Frequency Response and Network Impedance

Finally, we use estimates of the frequency response H in
(6) and the network access impedance Z in (7) for inference.
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Figure 8 presents the results for the same setting as in Figure 7.
The SNR for the access impedance estimates is defined as
1

|N |
∑

n |Z(fn)|2/σ2
z . First, we observe that the additional

use of access-impedance estimations Ẑ provides significant
benefits in the entire range of U , but especially for large
numbers of unknowns. This is because the ratio between the
total number of measurements T and the number of unknowns
is increased by a factor of two compared to only using Ĥ .
Secondly, the use of both Ĥ and Ẑ permits accurate fault
location estimation also at relatively lower SNRs for channel
and impedance estimation. Finally, the performance when only
using Ẑ degrades much sharper with increasing number of
unknown parameters than that when only using Ĥ for the same
SNR of 20 dB. This suggests that the network impedance is
less informative than the channel frequency response. This may
be due to the differences between single-ended (network access
impedance) versus double-ended (channel frequency response)
sensing, and warrants further investigation.

VI. CONCLUSIONS

In this paper, we introduced the CRLB as a measure for
sensing performance in power line ISAC. We believe that
this is a new contribution that will support the development
and analysis of grid monitoring solutions that exploit the
through-the-grid property of PLC. Our work focused on the
methodology for formulating and evaluating the CRLB. We
applied our method to the use case of estimating the location
of a high-impedance fault. The results highlight the potential of
ISAC in achieving high estimation accuracy and shed light on
the roles of system parameters for the estimation task. Future
work will include the consideration of more complex power
line networks and the extension to detection problems.
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