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Abstract—Non-terrestrial networks (NTNs) complement the
terrestrial cellular networks by extending coverage to the user
equipments (UEs) located in unserved and underserved areas.
One of the most critical problems faced by NTN UEs is the
lack of uplink (UL) synchronization and the associated initial
access failure resulting from the high Doppler frequency offset
caused by satellite velocity. While NTN new radio (NR) UEs
rely on global navigation satellite system (GNSS) to resolve
the UL synchronization problem, it is not always feasible for
power-critical NTN Internet-of-Things (IoT) UEs. To this end,
we design Synchronization signal-based Positioning in IoT Non-
terrestrial networks (SPIN) which enables the IoT UEs to tackle
the UL synchronization problem. SPIN estimates position and
velocity of the UE using time difference of arrival (TDOA) and
frequency difference of arrival (FDOA) measurements on the
downlink synchronization signals. Consequently, the UEs can use
the position and velocity estimates to compute and compensate
for the residual time and frequency offsets, thereby successfully
synchronizing to the NTN uplink. We conduct physical layer
and system level simulations to show the effectiveness of our
solution. SPIN positioning accuracy achieves the Cramér-Rao
lower bound and meets the target accuracy required for UL
synchronization. We also compare the battery life of an NTN
IoT UE which uses SPIN for UL synchronization with that of
a UE using GNSS-based solution. Our numerical results show
that SPIN has significant battery life savings over GNSS based
solution while also maintaining a low computational complexity.

Index Terms—NTN, NB-IoT, LTE-M, Positioning, TDOA,
FDOA

I. INTRODUCTION

NON-terrestrial network (NTN) refers to a network which
involves satellites in low earth orbit (LEO), medium

earth orbit (MEO), or geostationary earth orbit (GEO) or
unmanned aircraft systems (UAS) enabling radio frequency
communication between users [1]. In Release 17, the 3rd gen-
eration partnership project (3GPP) standardized the first phase
of integration of conventional terrestrial cellular networks with
NTN with an objective to achieve global cellular coverage. The
3GPP NTN standardization plan for Release 17 and beyond
includes NTN support for new radio (NR) and Internet-of-
Things (IoT) which covers both enhanced mobile broadband
(eMBB) and massive machine type communications (mMTC)
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use cases. Cellular-NTN integration helps in extending the
cellular communication service to currently unserved and
underserved NR and IoT users which include those located
in remote villages, aircrafts, ships, and cell-edge regions [2],
[3]. While NTN use cases in eMBB mainly refer to high data
rate applications such as broadband connectivity and media
and entertainment, NTN-IoT use cases consider services such
as wide and local area connectivities [2]. The wide area NTN
IoT services include global connectivity between sensors and
actuators scattered over a large geographical area, which are
used in a variety of applications such as automotive and
road transport, energy, and livestock management [4], [5].
On the other hand, local area IoT services provided by NTN
encompass connectivity to sensors and actuators located in a
smart grid system or a moving platform, e.g., a container on-
board a vessel, a truck, or a train [2], [6].

In a cellular-NTN integrated network, the base station (BS)
is present either on-board the satellite or on the earth connected
to the satellite through a gateway. The main challenges faced
by NTN communication are long propagation delay due to
the large distance between satellite and user equipment (UE),
significant difference in timing advance (TA) between UEs at
different locations within the cell due to its large size, and
huge Doppler shifts due to the movement of satellites. The
large propagation delay results in stop-and-wait gaps in the
bidirectional communication between the UE and the BS. On
the other hand, the disparity of TAs between UEs situated
at different locations in the cell results in a large overlap of
uplink (UL) signals at the BS. Furthermore, the Doppler shift
due to satellite velocity results in a high frequency offset in
the UL signal at the BS. While the long propagation delay
affects only the data rate of communication, TA disparity
and Doppler shift directly impact the UL synchronization,
thus making the network inaccessible to the UE. To solve
the synchronization problem, 3GPP considers common TA
and Doppler compensations with respect to a reference point
(RP) in the cell. In addition, the working assumptions include
global navigation satellite system (GNSS) capability in the
UE. Thus, with the knowledge of its relative location with
respect to the RP, the UE can compute and compensate for
the residual TA and Doppler. The GNSS based solution is
feasible for NR devices, whereas it is not always viable for
IoT devices for several reasons including battery and cost con-
straints. While several state-of-the-art solutions are available
to counter the NTN UL synchronization problem [7]–[10],
a solution specifically tailored for IoT UEs which considers
both the power constraints and the required accuracy is still
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unavailable.  To this end, we design a positioning solution 
which utilizes the existing synchronization signals (SSs)  in 
IoT NTN, and operates with minimal power consumption. In 
the following, we explain the motivation of our work by having 
a detailed discussion of the UL synchronization issues,  GNSS  
based solution and its drawbacks,  and the other state-of-the-art 
solutions, before listing the main contributions of our paper.

A. Motivation

1) UL Synchronization Problem: To partially solve the UL
synchronization problem, 3GPP has agreed to enable the BS
to compensate for the common TA and Doppler offset with
respect to an RP in the cell [1]. While the BS pre-compensates
the common TA and Doppler offset in DL, it post-compensates
the common offsets on the received UL signal. During DL
synchronization process, the UE estimates the sum of residual
Doppler and local oscillator offset. However, unless the indi-
vidual offset components are estimated, the UE cannot accu-
rately pre-compensate for the residual Doppler. Likewise, for
timing synchronization, the UE is unable to estimate accurate
residual TA. Consequently, the UL signal suffers from large
residual TA and Doppler shift depending on the location of the
UE within the cell. For instance, if the RP is the cell center, the
UEs located at the cell edge experience large residual Doppler
and TA. Subsequently after DL synchronization, the UE tries
to establish a connection with the network by initiating random
access (RA) procedure, which involves the transmission of
an RA preamble. However, the frequency offset due to the
residual Doppler and the timing offset due to the residual
TA will cause the preambles to remain undetected at the
BS, resulting in connection establishment failure. It should be
noted that the residual TA and Doppler offset are significantl
high for LEO satellites while they are negligible for MEO or
GEO satellites [11]. On the other hand, UAS experiences very
low delay and Doppler which makes it similar or equivalent
to a terrestrial network [1]. Therefore, we consider only LEO
satellites in our design, analyses, and evaluation.

2) Need for UE Location: Since the network compensates
common TA and Doppler offset with respect to an RP, the UE
requires the knowledge of its own location, satellite location
and velocity, and the coordinates of the RP to compute the
residual offsets. To this end, 3GPP has decided to enable the
network to broadcast the location coordinates of the RP and the
ephemeris which consists of the position and velocity vectors
of the satellite. In addition, 3GPP considers only those UEs
with GNSS capability such that the UEs know their location
and hence can compute and pre-compensate residual Doppler
and TA. However, when battery-powered low-cost IoT UEs are
considered, the assumption of GNSS capability poses several
challenges which are discussed in the following.

3) GNSS Optimization Problem: 3GPP has recently agreed
to allow UEs to have time gaps for the purpose of performing
GNSS position fix The working assumptions for IoT NTN
include UE incapability to perform GNSS and cellular oper-
ations simultaneously. Therefore, before the positioning time
gaps, an IoT UE must terminate radio resource control (RRC)

connected mode and transition to RRC idle mode to perform
GNSS positioning. After obtaining the position fix the UE
must re-establish connection which involves synchronization
and RA procedures, thus resulting in huge battery drain.
Consequently, for a battery-powered mobile IoT UE which
occasionally changes its location, and has long connected
modes, it is not feasible to rely on the GNSS assisted UL syn-
chronization. In this regard, the 3GPP work item description
(WID) document for NTN IoT Release 18 includes an item
which is aimed at optimizing the GNSS operations involved
in the UL synchronization procedure [12].

4) GNSS Unavailability Problem: Though 3GPP is cur-
rently focusing on IoT UEs with GNSS capability, there are
many scenarios where GNSS is unavailable. First, GNSS
chipset is not necessarily integrated into all cellular IoT
devices for cost and battery impact reasons. Second, GNSS
suffers from poor link budget due to long distance [13].
Consequently, GNSS fails even in outdoor scenarios with
NLOS signals [14]. On the other hand, LEO satellites with
antenna gains same as or more than that of GNSS, have
better link budget [13]1. Furthermore, GNSS signals are also
highly susceptible to jamming and spoofin [8]. All the above
problems result in GNSS unavailability which eventually leads
to NTN communication failure in the UE.

5) Location-Based Services (LBS): There is a wide range
of services which essentially require the UE’s location, called
LBS. Among them are emergency services, e.g., E911, and
infotainmentservices such as map services, direction to a loca-
tion, and local advertising [15, Ch. 1]. In terrestrial networks,
UEs rely on GNSS, cellular positioning, or a hybrid of both to
obtain the location. However, in an IoT NTN, these methods
either do not work due to the lack of cellular coverage and
the unavailability of GNSS or are not feasible due to UE
power constraints. Alternatively, the focus on utilizing LEO
communication satellites for LBS has been growing recently
in light of the massive LEO constellations such as Starlink
and Amazon-Kuiper [16].

To solve all the above discussed problems, we need a
positioning solution as an alternative to GNSS which should
be designed to specificall cater to the NTN-IoT requirements.

B. Related Work

To address the NTN UL synchronization problem during
GNSS unavailability, a positioning solution using time differ-
ence of arrival (TDOA) measurements, is proposed in [7]. This
method uses NR primary synchronization signals (PSS) from
the serving LEO communication satellite to get the position
fix However, this solution has several shortcomings. First,
the method targets 5th generation (5G) NR UEs and hence
cannot be directly adopted for NTN IoT standards such as long
term evolution-MTC (LTE-M) or narrowband IoT (NB-IoT).
For instance, when an NB-IoT UE uses narrowband primary
synchronization signals (NPSS) and/or narrowband secondary
synchronization signals (NSSS) in place of NR PSS, the

1This is not always true, since sometimes the LEO satellites may have lower
antenna gains which results in a link budget similar to that of GNSS [1].
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accuracy will  be worse due to their smaller bandwidth. Second, 
the method directly uses the time of arrival (TOA) estimates 
obtained from the cellular synchronization step for positioning, 
which is limited by the sampling rate. Despite using a high 
sampling rate of 30.72 Msps in NR UEs, the achieved accuracy 
is found to be insuffic ent. Directly a dopting this s olution for 
NB-IoT and LTE-M UEs which use an acquisition sampling 
rate of 1.92 Msps makes it completely unfi  f or UL synchro-
nization purpose. Moreover, the method considers only NR 
PSS  for which the accuracy could be improved by including 
NR secondary synchronization signal (SSS).  The next problem 
is that the method uses unweighted least squares for solving 
the firs  o rder Taylor s eries b ased l inearized e quations. I n an 
NTN network consisting of LEO satellites  which move at 
a high velocity relative to the UE, the signal-to-noise ratio 
(SNR) of the received signal varies significantl  o ver time. 
Under the highly varying SNR,  a weighted least squares 
(WLS)  solution undoubtedly gives better accuracy. Moreover, 
the solution does not utilize the frequency difference of arrival 
(FDOA) measurements which could significantl  i mprove the 
position estimation [17]. Another pertinent problem with the 
method is that it uses beam center broadcast by the network as 
the initial location for the iterative positioning algorithm. How-
ever, we fin  that the beam center for set-3 and set-4 satellites,  
the newly  introduced satellite scenarios [18], can be very far 
from the true UE location. This may cause the positioning 
algorithm to wrongly converge to a local minimum. More 
importantly, this solution define  o nly p osition acquisition 
which is performed before initiating an RRC connection. It 
does not defin  a ny p osition t racking, w hich i s e ssential for 
maintaining the accuracy when the UE is mobile and stays 
in connected mode for long time. Finally, we also fin  some 
shortcomings regarding the evaluation assumptions including 
the number of satellites,  measurement noise model, and the 
UE location. The method considers only a single satellite for 
positioning which largely  affects the achievable accuracy and 
the time taken to get a position fix  I t t akes approximately 
4.2 minutes to achieve a positioning accuracy of around 700 m. 
The achieved accuracy is insufficien  f or t he p urpose o f UL 
synchronization in NTN especially  when the synchronization 
error attributed by other sources, e.g.,  local oscillator offset, 
is high. In addition, the large positioning time results in high 
latency and huge energy consumption which are not feasible  
for an IoT UE. Currently planned and recently deployed LEO 
satellite constellations, e.g.,  Starlink [19], [20] and Amazon-
Kuiper [20], are large such that the UEs may get visibility  
to several LEO communication satellites  simultaneously or 
sequentially in a specifie  d uration o f t ime. T herefore, the 
positioning solution and evaluation should consider a reference 
constellation which is a realistic scenario. Although a similar 
solution proposed in [21] takes the advantage of both TDOA 
and FDOA measurements, the evaluated positioning accuracy 
is not sufficien  f or the purpose of UL s ynchronization. Since 
their work aims to solve the TA estimation problem for NTN 
UEs, the required positioning accuracy is much less stringent 
than that of UL synchronization as discussed in Section II.

Another state-of-the-art solution for the UL synchronization 
problem is the network assisted closed-loop frequency and

TA control [22]. This method can work even when the UE
is in RRC connected mode. This is in contrast with the GNSS
solution which cannot function simultaneously with cellular
connected mode, especially in low-cost IoT devices. However,
closed-loop control requires configuratio of measurement
signals, e.g., sounding reference signal (SRS), and frequency
and TA offset signaling via media access control (MAC) layer
control element (CE) and/or downlink control information
(DCI). In addition, closed-loop control can work only after the
UL transmission of msg1 [23], which demands the support for
enhanced physical random access channel (PRACH) formats
and/orpreambles [1]. The signaling overhead, the specificatio
impact, and the requirement for enhanced PRACH make the
closed-loop frequency and TA control an unfavorable choice.

Another solution recently introduced to tackle the UL syn-
chronizationproblem during GNSS unavailability is to directly
estimate the Doppler shift using the cellular reference signals
transmitted at more than one frequency [8]. However, the
method requires the network to transmit additional synchro-
nization signal blocks (SSBs) at frequencies suffi iently far
from that of the cell-definin SSB (CD-SSB). In addition,
the network is also required to include indication of time
and frequency locations of the additional SSB in the system
information broadcast 1 (SIB1) associated with the CD-SSB.
This signaling associated with the additional SSBs results
in network overhead. Moreover, the SSB based solution is
applicable only to NR UEs, and hence cannot be directly
adopted to IoT UEs.

With an objective to design a positioning solution which
solves the UL synchronization problem, it is worthwhile to
study the cellular positioning techniques developed for terres-
trial networks to determine if there are any solutions adoptable
for NTNs. The currently standardized positioning methods
for the terrestrial cellular networks mainly include observed
time difference of arrival (OTDOA), uplink time difference of
arrival (UTDOA), and enhanced cell ID (E-CID) [24]. While
OTDOA is based on TDOA measured by the UE using the DL
reference signals, UTDOA is based on the TDOA measured by
the BS using the UL SRS. On the other hand, E-CID uses the
geographical location of the BS as a rough estimate for the UE
location, along with one or more additional measurementssuch
as reference signal received power (RSRP), angle of arrival
(AoA), TA, or round-trip time (RTT) to get a fine estimate.
However, both AoA and UTDOA require UE to transmit SRS
resulting in huge battery drain, which is not feasible for an IoT
UE. On the other hand, RSRP based methods are very sensitive
to the characteristics of the channel and hence provide poor
accuracy. Furthermore, their positioning accuracy does not
benefi from the signal characteristics such as duration and
bandwidth [25]. More importantly, in all the above cellular
positioning methods, the location server (LS) estimates the
UE location using the measurements reported by either the
UE or the BS [26]. Such solutions can operate only after
the UE establishes an RRC connection with the network,
and hence they cannot be used to solve the NTN UL syn-
chronization issues. However, if self-positioning is performed
by the UE using the TDOA measurements on DL broadcast
signals, it could be used to solve the UL synchronization
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problem. Similarly, the existing positioning solution for NR 
NTN [7] performs TDOA based self-positioning at the UE. 
To this end, inspired from both OTDOA and [7], we design 
SPIN, Synchronization signal-based Positioning in IoT Non-
terrestrial networks, which performs TDOA measurements on 
the DL SSs,  to enable self-positioning in an IoT UE. In 
contrast to the terrestrial network, the BSs  in an NTN, i.e.,  
the satellites,  are moving, which results in varying Doppler 
shifts. Consequently, the UE experiences frequency differences 
between the DL signals received from one or more satellites  
at same or different time instants. Exploiting these additional 
measurements, we design SPIN such that the positioning 
algorithm includes both FDOA and TDOA measurements.

Thus, considering the shortcomings of the state-of-the-art 
solutions and the power constraints associated with IoT UEs, 
we design SPIN which

• solves the NTN UL synchronization problem by meeting
the target accuracy requirements,

• utilizes both TDOA and FDOA measurements on PSS
and SSS,

• includes tracking solutions to enable continuous position-
ing,

• achieves the theoretical bounds of position and velocity
estimation accuracy,

• neither requires termination of the RRC connected mode
nor interrupts the ongoing communication, thus resulting
in minimal battery drain, and

• does not require any network modification additional
reference signals, or extra control signaling.

SPIN firs estimates TOA and frequency of arrival (FOA)
of SSs from one or more satellites. It then computes the
differences between TOA and FOA measurements to get
TDOA and FDOA measurements, respectively. Finally, SPIN
estimates the UE’s position and velocity from the joint set of
TDOA and FDOA measurements, which it uses to compute
and compensate residual TA and Doppler.

C. Contributions

We summarize the contributions of this paper as follows:
• We design a new positioning algorithm called SPIN, to

specificall address the UL synchronization problem in
NTN IoT UEs, and explain the key operations involved.

• We design SPIN by exploiting appropriate state-of-the-
art signal processing techniques including fast Fourier
transform (FFT), correlation, and fin resolution curve
fitting and joint TDOA and FDOA based positioning,
with an objective to achieve the theoretical bounds of
position and velocity estimation accuracy.

• We provide comprehensive analyses that include dis-
cussion on theoretical bounds of position and velocity
accuracy, i.e., Cramér-Rao lower bound (CRLB), and
energy consumption of SPIN.

• We perform a thorough simulation based evaluation
which includes physical layer (PHY) simulation to eval-
uate TOA and FOA estimations, and system level sim-
ulation to evaluate the fina positioning accuracy, and
compare with CRLB. For the system level simulation,

we consider an appropriate model which consists of a
reference satellite constellation and global uniform dis-
tribution of UEs. We also perform comparison of battery
life impact of SPIN with that of GNSS-based solution and
the evaluation of the computationalcomplexity associated
with SPIN.

To the best of our knowledge, the positioning solution de-
signed in this paper, which is particularly tailored for low-cost
and low-power NTN IoT UEs, and solves the UL synchroniza-
tion problem, is the firs of its kind.

Some of the notations and operations used in the paper are
as follows.

• ∗ represents the convolution operation between two func-
tions.

• ⟨·, ·⟩ represents the vector dot product operation.
• ∥·∥ represents the vector magnitude.
• The bold face letters indicate vectors or matrices.
• The superscript (·)∗ represents the complex conjugate

operation.
• |(·)| denotes the magnitude operation.
• (̂·) represents an estimated parameter.
• ˙(·) represents the time derivative of (·).
• The subscript M × N represents the size of the matrix

in terms of its number of rows and columns.
• The superscripts (·)T and (·)−1 denote matrix transpose

and inverse operations, respectively.
• 0M×N denotes a zero matrix of size M ×N .
• [A]ij represents the element of matrix A located on the

ith row and jth column.
Outline: The rest of the paper is organized as follows.

We present the preliminaries including the system model and
target requirements in Section II, and the SPIN algorithm in
Section III. We discuss the theoretical bounds of positioning
accuracy and the energy consumption in Section IV, and their
numerical results and computational complexity in Section V.
In Section VI, we briefl discuss the behavior of our position-
ing algorithm under additional scenarios. Finally, conclusions
are drawn in Section VII.

II. PREL IMINARIES

A. System Model

We consider an NTN which consists of one or more LEO
satellites orbiting the earth, terrestrial UEs, gateway, radio
access network (RAN) and core network (CN), as shown
in Fig. 1. The NTN illustration shown in Fig. 1 depicts
a transparent payload type architecture where the RAN is
located on the earth [1], [2]. Conversely, there is regenerative
payload type architecture where the RAN is located on-board
the satellite [1], [2]. However, our design of SPIN is agnostic
to the network architecture and hence works in both cases.
In an NTN, the radio link which serves the UEs is referred
to as the service link, whereas the one which connects the
satellite with the gateway is called the feeder link. In the
service link, the UEs are served by one or more beams from
the satellite, where single or multiple beams can correspond
to a cell depending on the network implementation [1]. When
the NTN consists of a constellation of satellites, optionally,
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Fig. 1. An illustration of a non-terrestrial network.

inter-satellite links (ISL) exist between them. The backhaul
consists of the RAN, e.g., 5G RAN, which enables the cellular
communication through the selected radio access technology
(RAT), and the CN, which connects eventually to the data
network. To serve the NTN IoT applications, 3GPP has
chosen NB-IoT and LTE-M, the standards which are already
implemented and currently in use in the terrestrial cellular
networks [18]. Using NB-IoT and LTE-M standards for NTN
IoT applications gives several advantages. We can reuse the
existing infrastructure, which minimizes implementation cost,
and also gives stable and predictable performance. Therefore,
in our work, we consider NB-IoT and LTE-M standards as the
baseline RATs to design and evaluate our solution.

1) Radio Access Technology: As we discussed above, we
design and evaluate SPIN by considering NB-IoT and LTE-
M as the underlying RATs. While 3GPP considers Ka-band
(20 GHz) frequency for NR NTN, which enables high data
rate applications, it chooses S-band (2 GHz) for NTN-IoT,
which is ideal for IoT applications. Both NB-IoT and LTE-
M standards use orthogonal frequency division multiplexing
(OFDM) modulated signals for communication. The NB-IoT
and LTE-M OFDM signals are structured as 1 ms time units
called subframes (SFs), which consist of 14 OFDM symbols.
In the frequency domain, the OFDM subcarriers are usually
spaced 15 kHz apart in both UL and DL for LTE-M and NB-
IoT. Additionally, the BS can also configur the UL subcarrier
spacing (SCS) in NB-IoT as 3.75 kHz. Further, physical
random access channel (PRACH) has multiple options for
SCS depending on the selected PRACH format. While the
LTE-Category M1 (LTE-Cat M1) standard, the widely used
LTE-M variant, occupies a bandwidth of 1.4 MHz, the NB-
IoT standard uses a narrow bandwidth of 180 kHz. To enable
synchronized communication between the BS and the UEs,
LTE-M and NB-IoT standards periodically broadcast PSS, SSS
and NPSS, NSSS, respectively. These SSs are implemented
using standard sequences such as Zadoff-Chu (ZC) and/or
m-sequences, which hold excellent correlation properties. In
the following, unless the standard is specificall mentioned,
we use the general terms SS, PSS, and SSS to indicate
synchronization signals in both LTE-M and NB-IoT.

The PSS and SSS are known to the UE immediately after
the DL sync. From the numerical values of CRLB discussed

in Section IV, we observe that these SSs have sufficien
bandwidth and duration to be utilized for positioning. Hence,
we propose to use PSS, SSS and NPSS, NSSS in LTE-M and
NB-IoT respectively, for the purpose of positioning in SPIN.
The DL SSs received at the UE can be represented as

rs(t) = (s ∗ h)(t) + w(t), (1)

where s is the transmitted SS which includes both PSS and
SSS, w(t) are additive white Gaussian noise (AWGN) samples,
which are assumed to be w(t) ∼ N (0, N0

2 ), and h is the
impulse response of the NTN channel. The latter is modelled
by

h(t) =
L∑

i=1

αi(t) exp(j2πfo,it)δ(t− τo,i), (2)

where L is the number of paths in the channel and αi, τo,i,
and fo,i are the attenuation, time offset, and frequency offset
of ith channel path, respectively. In addition to small scale
fading which is caused mainly due to the UE velocity and
the obstacles close to the UE, τo,i and fo,i also include time
of fligh from the satellite to the UE and the Doppler shift
due to satellite velocity, respectively [2]. It follows that, the
signal rs(t) is acquired by the UE at a sampling rate, fs =
1/Ts, resulting in a discrete time signal, rs(nTs), where n =
0,±1,±2, . . . is the discrete time index. In the following, for
simplicity, we use rs(n) to represent rs(nTs).

2) Synchronization Process: During DL synchronization,
an IoT UE performs a series of operations on the received
DL signal to get time and frequency synchronization [27]. In
an NTN, the DL SSs are already pre-compensated at the BS
for the common Doppler with respect to an RP in the cell.
Therefore, the received frequency, fRX, suffers only from the
residual componentof Doppler depending on the displacement
of the UE from the RP. We show an illustration of the
synchronization process and the associated frequency errors
in Fig. 2. The UE and BS oscillator errors are represented by
x1 and x2 parts per million (ppm), respectively. On the other
hand, the offset between the DL transmit (TX) and receive
(RX) frequencies, which results from the residual Doppler, is
denoted by x3 ppm. In Fig. 2, we see that the frequency offset
estimated by the UE in DL synchronization is the sum of the
residual Doppler and the oscillator errors. Subsequently, the
UE adjusts its frequency to fRX and transmits UL signal at
a frequency spaced at duplex distance away from fRX. On
the received signal, the satellite performs post-compensation
of the common Doppler offset with respect to the RP to
partially compensate for the Doppler effect in UL channel.
The resultant signal experiences a frequency offset of twice
the residual Doppler offset as shown in Fig. 2. The values of
residual frequency offsets for different LEO orbits and beam
configuration denoted by sets 1-42 are given in Table I [11],
[28]. It should be noted that the maximum allowed frequency
offset in UL as per the standard is 0.1 ppm [29]. However,
from Table I, it is evident that the residual frequency offsets
in NTN are significantl high compared to the allowed limit.

2The beam configuratio sets given in Table I refer to the satellite sets
define in [1], [18], which differ in terms of antenna parameters and the
resulting beams.
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Fig. 2. UL synchronization in NTN [11].

TABLE I
UL RESIDUAL FREQUENCY OFFSET IN PPM

Beam configuration LEO 1200 km LEO 600 km
Set 1 1.92 2.20
Set 2 3.92 3.86
Set 3 21.56 21.14
Set 4 - 39.90

In addition to the above method of UL synchronization, [11]
discusses another option where the UE pre-compensates its UL
signal by the total frequency offset estimated in the DL. For
the sake of conciseness, we do not explain that option here. It
could be noted that, for sets 1 and 2, the alternative method
results in higher residual frequency offsets than the method
discussed above. However, for the other beam configuration
sets, it provides residual frequency offsets similar to or better
than that of the method discussed above. Nevertheless, both
the synchronization options are inadequate as they result in
residual frequency offsets higher than 0.1 ppm, which is the
limit set by the standard. Similarly, after the DL synchroniza-
tion process, the UE time synchronization also suffers from
residual TA with respect to the RP in the cell. For all the
reasons discussed above, the options currently available for
UL synchronization in NTN are insufficient.

3) Reference Coordinate System and Satellite Constella-
tion: For SPIN, we consider the earth-centered earth-fixed
(ECEF) coordinate system, which is a Cartesian coordinate
system where the axes are named as X, Y, and Z in three-
dimensional space [15, Ch. 2]. The ECEF system is termed
earth-centered since the origin is the center of mass of the
earth, i.e., the geocenter, and earth-fixed since the coordinate
system is fixed with respect to the earth, i.e., the axes rotate
along with the earth. The Z-axis aligns with the rotation axis
of the earth and hence passes through the geocenter and the
north pole. Furthermore, the X-axis intersects the equator of
the earth at the Greenwich meridian. Finally, the Y axis is
defined with reference to the X-axis such that it completes
a right-handed orthogonal coordinate system. Compared to
other coordinate systems, ECEF system is more convenient
to calculate the line-of-sight (LOS) distance between two

Fig. 3. An illustration of LEO satellite constellation around the earth,
represented in an ECEF coordinate system. The earth is plotted using [33].

points [15, Ch. 2]. Therefore, it is ideal for SPIN that considers
TDOA measurements which are functions of pseudo-range
difference measurements. Moreover, global positioning system
(GPS), the widely used GNSS solution which is owned and
operated by the USA, adopts ECEF for positioning. This also
makes ECEF a preferable coordinate system for SPIN, which
effectively operates as an alternative to GNSS.

For the design and evaluation of SPIN, we consider a
reference constellation which is represented in the standard
format, i : t/p/f , where i is the inclination of the orbital
plane, t is the total number of satellites, p is the number of
orbital planes, and f is the phasing parameter which denotes
the relative spacing between the adjacent orbital planes [30],
[31]. In our evaluation, we consider a near-polar Walker-star
LEO satellite constellation, which gives global coverage with
simple constellation design [32]. Regardless, SPIN is agnostic
to the type of constellation and works if the UE gets visibility
to a sufficient number of satellites. In Fig. 3, we show an
example of a LEO near-polar Walker star constellation which
uses a pattern of 87.5◦ : 100/10/5, represented in an ECEF
coordinate system.

In the design and evaluation of SPIN, we use the following
notations to represent the position and velocity vector in the
ECEF coordinate system. Let [xi yi zi] and [vxi

vyi
vzi ] be the

position coordinates and the velocity vector of the satellite,
respectively. Since SPIN uses a set of multiple measurements
from the satellites, which we define in later sections, the
subscript i denotes the index of the associated measurement in
the set. Further, we represent the unknown location coordinates
and the velocity vector of the UE as X = [x y z] and
V = [vx vy vz], respectively.

B. Target Requirements

In the following, we find the upper bound of the positioning
error for solving the UL synchronization issues. To begin with,
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the Doppler shift, fDoppler, experienced in an NTN relative to 
the carrier frequency, fc, is given by

fDoppler

fc
=

⟨Vsat-UE,Usat-UE⟩
c ∥Usat-UE∥

, (3)

where Vsat-UE is the relative velocity between the satellite and
the UE, Usat-UE is the position vector from the satellite to
the UE, and c is the speed of light. The firs order Doppler
error [34] is given by

Fe =
∆fDoppler

fc
= ⟨Vsat-UE,PUsat-UE

∆Usat-UE

c ∥Usat-UE∥
⟩︸ ︷︷ ︸

Pe

+ ⟨∆Vsat-UE,
Usat-UE

c ∥Usat-UE∥
⟩︸ ︷︷ ︸

Ve

, (4)

where ∆fDoppler is the Doppler error, ∆Vsat-UE is the relative
velocity error, ∆Usat-UE is the error in position vector Usat-UE,
andPUsat-UE is the orthogonal projection to Usat-UE. Hence, Pe is
the portionof the Doppler error attributed to position error, and
Ve is the portion attributed to relative velocity error. From (4),
the position and relative velocity errors can be expressed as

∥∆Usat-UE∥ ≤ Pe,max
c

Vsat-UE
∥Usat-UE∥ (5)

and
∥∆Vsat-UE∥ ≤ Ve,maxc, (6)

respectively. In (5) and (6), Pe,max and Ve,max represent the
portion of the maximum Doppler error attributed to error in
position and velocity respectively, and they are related to the
maximum Doppler error, Fe,max, as,

Fe,max = Pe,max + Ve,max. (7)

The achievable satellite position and velocity accuracy avail-
able in the public domain [35] are

∥∆Usat∥ ≤ 3 m (8)

and
∥∆Vsat∥ ≤ 0.2 m/s. (9)

As per 3GPP standards, a maximum frequency error of
0.1 ppm is allowed in the UL to facilitate successful reception
at the BS [29]. Since the Doppler shift due to UE velocity in
NTN is same as that of a terrestrial network [11], we disregard
the UE velocity factor in the following. Hence, we replace
∆Vsat-UE with ∆Vsat, and we compute Ve,max from (6) using
(9). In the NR UL synchronization study conducted in [34],
80% of the frequency error is attributed to the local oscillator
drift after DL synchronization and the remaining 20% to the
residual Doppler shift. Since the residual Doppler error in the
UL is twice the one-sided Doppler, the maximum Doppler
pre-compensation error, Fe,max, is 0.01 ppm for the above
error ratio. Now, we consider LEO satellite at an altitude of
600 km and a velocity of 7.69 km/s. We approximate∥Usat-UE∥
by the satellite orbit altitude, which is the minimum distance
between the UE and the satellite. Using the above error
ratio, Ve,max, (5), and (7), we compute the allowed position
error, ∥∆Usat-UE∥max = 218.5 m. To guarantee the overall
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Fig. 4. Maximum allowed position error for varying local oscillator error.

positioning error requirement represented by ∥∆Usat-UE∥max,
the satellite and UE position error should satisfy

∥∆UUE∥+ ∥∆Usat∥ ≤ ∥∆Usat-UE∥max . (10)

Considering the worst-case satellite position error, represented
by ∥∆Usat∥max, the UE position error should satisfy

∥∆UUE∥ ≤ ∥∆Usat-UE∥max − ∥∆Usat∥max

= 218.5− 3 = 215.5 m. (11)

If the above limit is satisfie by UE positioning, the over-
all positioning error requirement is guaranteed, provided the
satellite position error does not exceed 3 m.

We performed the above analysis for a fi ed error budget of
80%− 20% between local oscillator offset and Doppler shift
errors. However, in practice, the oscillator errors in the UE
can be different. Therefore, we have also plotted the allowed
position errors for different error budget allocations in Fig. 4.
In the figure we show the allowed maximum UE position error
for different values of possible local oscillator error. The local
oscillator error is represented in terms of percentage of the
maximum frequency error in the UL allowed by the standard.
For example, when the local oscillator error is 80% of the
maximum uplink frequency error, i.e., 0.1 ppm, the tolerance
in UE positioning error is 20%, which corresponds to 215.5 m.

In the above, we discussed about the UL frequency synchro-
nization problem and the target requirementfor UE positioning
to resolve the issue. As we already discussed in Section I,
UL time synchronization also faces issues. For successful
detection at the BS, the timing error should be within ±CP

2 ,
where CP is the cyclic prefix Correspondingly, the required
positioning accuracy is given by ∥∆Usat-UE∥ ≤ CP

4 c =
±7250 m [34]. Compared to the UL frequency synchronization
problem, residual TA problem requires more relaxed posi-
tioning accuracy. Therefore, we consider the accuracy needed
for UL frequency sync as the target requirement for our
positioning solution.

III. S PIN
We design SPIN by utilizing the varying TOA and FOA

of the DL SSs transmitted by one or more satellites. We

"Copyright (c) 2023 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes 
must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org." 1
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TABLE II
S UMMARY OF FEATURES IN PRIOR-ART POS ITIONING S OL UTIONS COMPARED WITH S PIN.

Features
Solutions [7] [42] [24] [43] [17] [39] [44,

Ch. 5]
[41] SPIN

NTN ✓ ✓ × × × × ✓ × ✓
IoT × × ✓ × × × × × ✓
PSS ✓ × × ✓ × × × × ✓
SSS × × × ✓ × × × × ✓

Fine resolution/
curve fittin × × × × × × × × ✓

TDOA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
FDOA × ✓ × × ✓ × ✓ × ✓

Taylor series/
iterative ✓ ✓ ✓ × × ✓ ✓ ✓ ✓

Weighted iterative × ✓ ✓ × × ✓ × ✓ ✓
2-WLS/

2-WLS initialize × × × × ✓ × ✓ ✓ ✓

Time multiplexed
tracking × × × × × × × × ✓

Self positioning ✓ ✓ × ✓ ✓ - ✓ ✓ ✓
Solv es UL

sync problem * * × * * * * * ✓

* represents that the solution has either insufficien accuracy or the accuracy has not been evaluated.

consider SSs that are transmitted by either a single satellite
at different instants of time or multiple satellites at same or
different instants of time on different frequency carriers. Since
TOA and FOA measurements suffer from UE clock time and
frequency offsets, they are error-prone to be directly used for
positioning. Therefore, SPIN takes differences between TOA
and FOA measurements to obtain TDOA and FDOA mea-
surements, respectively. Next, we need to solve UE position
and velocity from the TDOA and FDOA measurements, which
is a nonlinear and non-convex problem [36]. There are sev-
eral state-of-the-art solutions available which can be broadly
classifie into two categories. The firs category consists of
two-step weighted least squares (2-WLS) solutions, which
give closed-form position and velocity estimates [17], [37]. 2-
WLS methods represent the nonlinear equations in linear form
by adding additional unknown nuisance parameters. 2-WLS
and modifie 2-WLS methods discussed in the literature have
very low computational complexity [17], [37]. However, these
methods suffer from poor accuracy due to high bias [38]. In the
second category of methods, position and velocity are obtained
using iterative algorithms [39], [40]. Unfortunately, unless
sufficientl accurate initial position and velocity are assumed,
these methods converge to wrong local minima, resulting in
high error. Foy’s method, alternatively called Taylor series-
based weighted least squares (TWLS) method, is one such
iterative method [39]. TWLS uses the firs order Taylor series
to approximate the nonlinear equations as linear and solves
them iteratively using weighted least squares. In [41], 2-WLS
method is used to obtain rough estimate of position which then
initializes the TWLS method. Finally, TWLS method delivers
fin position estimates. Inspired from [41], we adopt a similar
method for SPIN in the context of IoT NTN. We use the 2-
WLS method to get rough estimates of position and velocity
and use them to initialize TWLS, which finall delivers fine
estimates.

Like any other real-time positioning solutions, SPIN in-

corporates an acquisition block which acquires position for
the firs time during a cold-start. A UE usually performs
acquisition when it is in RRC idle mode and gets a UL data
request from the upper layers. Before initiating the connection
request, the UE requires its own position to compute and
compensate the residual Doppler during RA. In this case, the
UE does not have valid measurements from the past to be
used for positioning. However, after obtaining position and
velocity fi by acquisition, SPIN maintains the accuracy within
acceptable limits by performing tracking. SPIN performs this
tracking operation in a time-multiplexed manner with the
ongoing NTN cellular communication, which makes it unique
from the prior-art solutions. We provide a summary of the
features supported in relevant prior-art positioning solutions
and our solution in Table II. In the following, we defin SPIN
by firs introducingthe SPIN block diagram, and then having a
detailed discussion of the individual blocks and the operations
involved in the positioning algorithm.

We show the block diagram of SPIN in Fig. 5, which mainly
consists of three blocks, namely, TDOA and FDOA estimation,
SPIN acquisition, and SPIN tracking. In the following, we
explain each of these blocks and their functions.

A. TDOA and FDOA Estimation

1) TOA and FOA Estimation: SPIN firs performs TOA
and FOA measurements on SSs arriving from one or more
satellites over a period called SPIN window (WSPIN). For TOA
and FOA estimation, SPIN reuses a part of the synchronization
algorithm used in cellular DL and performs some additional
operations. For instance, when SPIN operates in an NB-IoT
UE, it can reuse the cellular NB-IoT DL synchronization
algorithm to get time and frequency synchronization. An
example of a low-complexity synchronization method for NB-
IoT is given in [27]. If the NB-IoT UE uses this method, SPIN
can reuse the sliding auto-correlation based synchronization
detection and coarse time-frequency synchronization as dis-

"Copyright (c) 2023 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes 
must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org." 1
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TDOA and FDOA Estimation

Correlation Curve fitting
FFT

DL sync signals
(coarse synced) Get TDOA,

FDOA

SPIN Acquisition

Initialize
Acquisition output
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TWLS2-WLS

SPIN Tracking

Initialize

Initialize
TWLS

Tracking output
(x, y, z, vx, vy, vz)

TOA

FOA

Fig. 5. Block diagram of SPIN.

cussed in [27]. The coarse synchronization is followed by
a fin synchronization step which involves cross-correlation
of the received signal with the known templates of PSS.
Since the channel SNR may vary depending on the coverage
scenario, the correlation may require several synchronization
signals to be combined. The UE may perform 1 ms coherent
combining [45] followed by incoherent combining over longer
duration to synchronize successfully . A successful synchro-
nization detection delivers TOA and FOA estimates. However,
the accuracy of these estimates are insufficien for SPIN
mainly for two reasons. First, the cellular synchronization
process in the UE does not necessarily use SSS to obtain
the synchronization, especially during the initial cell access
when the SSS sequence is unknown to the UE. Second,
the TOA and FOA accuracies are largely affected by the
finit sampling rate. Regardless, SPIN utilizes the time and
frequency synchronization output of the DL synchronization
process to refin the time-frequency search space. However, to
achieve the target positioning accuracy, SPIN performs some
additional operations.

First, SPIN performs cross-correlation of combined PSS
and SSS templates with the received signal. Like the fre-
quency offset estimation in cellular UEs [46], SPIN estimates
FOA by frequency-domain cross-correlation. To this end, the
correlation block in Fig. 5 performs two types of cross-
correlations, pre-FFT cross-correlation to estimate TOA and
post-FFT cross-correlation to obtain FOA. The pre- and post-
FFT signal correlations are represented by

ρ(τ) =
∑
n

rs(n)s
∗(n+ τ) (12)

and
Λ(φ) =

∑
k

Rs(k)S
∗(k + φ), (13)

respectively, where s(n) is the SS template in discrete form
sampled at fs, Rs(k) and S(k) are the FFTs of rs(n) and
s(n), respectively. τ and φ are the pre- and post-FFT cross

correlation lags, respectively. The lags at which the cross-
correlation peaks occur in (12) and (13) are found by

τ̂ = arg max
τ

|ρ(τ)| (14)

and
φ̂ = arg max

φ
|Λ(φ)|, (15)

respectively.
Second, SPIN incorporates fine-resolutio curve fitting

which operates on the magnitude of pre- and post-FFT cross
correlation outputs to get fine TOA and FOA estimates. To
this end, we use 3-point parabolic curve fittin [47] which uses
the peak value of the cross-correlation magnitude and its adja-
cent two values. The fractional offsets from the estimated peak
to the fine-resolutio peak obtained using 3-point parabolic
curve fittin on pre- and post-FFT correlation outputsare given
by

δτ =
|ρ(τ̂ − 1)| − |ρ(τ̂ + 1)|

2
(
|ρ(τ̂ − 1)| − |ρ(τ̂)|+ |ρ(τ̂ + 1)|

) (16)

and
δφ =

|Λ(φ̂− 1)| − |Λ(φ̂+ 1)|
2
(
|Λ(φ̂− 1)| − |Λ(φ̂)|+ |Λ(φ̂+ 1)|

) , (17)

respectively. Note that curve-fittin based fin estimators are
biased estimators [47]. However, from our evaluations, we
observe that the bias in our case is negligible and hence the
performance is not affected. The resulting TOA and FOA
estimates achieve the CRLB, which is the theoretical bound
for an unbiased estimator.

It should be noted that the FOA estimated using the above
steps do not include the common Doppler shift with respect to
the RP in the cell. This is due to the Doppler pre-compensation
already performed by the BS on the DL SSs. Since the FOA
measurements are possibly acquired from multiple satellites,
the common Doppler may be different for different FOA
measurements. Therefore, to get correct positioning, satellite-
specifi common Doppler needs to be added back to get the
actual FOA estimates. For this purpose, SPIN computes the

"Copyright (c) 2023 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes 
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common Doppler, which can be easily  done using the satellite 
ephemeris and the coordinates of the RP.

The fin  resolution TOA a nd F OA e stimates obtained after 
curve fittin  a re g iven by

tTOA,i =
1

fs
(τ̂i + δτ,i), i = 1, 2, . . . , N, (18)

and

fFOA,i =
fs

NFFT
(φ̂i+δφ,i)+fcom,i, i = 1, 2, . . . , N, (19)

respectively, where the subscript i denotes the measurement
index, N is the total number of measurements, NFFT is the
length of the FFT, and fcom,i is the common Doppler with
respect to the RP. Now, we compute range measurements, ri,
using the fin TOA measurements, tTOA,i, as

ri = c · tTOA,i, i = 1, 2, . . . , N. (20)

Similarly, we compute range rate [42], ṙi, using fin resolution
FOA measurements, fFOA,i, as

ṙi = − c

fc
fFOA,i, i = 1, 2, . . . , N. (21)

Next, we relate these range measurements and the UE and
satellite position and velocity vectors by (22), where ∆T is
the interval between consecutive TOA/FOA measurements,
ηTO is the effective time offset due to satellite and UE clock
deviations, and ni is the estimation error in the ith range
measurement which conforms to the Gaussian distribution
N (0, σ2

ni
). Similarly, the range rate measurements can be

expressed as (23), where ηFO is the effective frequency offset
due to satellite and UE local oscillator offsets, and n′

i is
the estimation error in the ith range rate measurement which
conforms to the Gaussian distribution N (0, σ2

n′
i
). It should be

noted that the mathematical model define above is applicable
to both acquisition and tracking and hence ∆T could be
replaced by either acquisition interval or tracking interval,
which are define later in this section.

In the next step, to eliminate the UE clock and local oscilla-
tor offsets in (22) and (23), we take differences between TOA
and FOA estimates to get TDOA and FDOA measurements,
respectively.

2) TDOA and FDOA Measurements: For N TOA estimates,
there are N(N−1)

2 possible TDOA measurements. However,
when the received signal is cross-correlated with the clean
template of SSs, only N−1 TDOAs are sufficient This is due
to the fact that the remaining combinations result in redundant

TDOA adding no extra information [48]. N − 1 TDOAs can
be generated either by taking the difference with respect to
a single arbitrary reference TOA or by taking differences
between the adjacent TOA measurements, which we refer to
as adjacent TDOA [7]. Adjacent TDOA is particularly useful
in continuous SPIN tracking which comprises of a sliding
time window which includes new TOA measurements while
dropping old measurements continuously over time. When
adjacent TDOA is used in a continuous tracking scenario,
a fi ed number of stale TDOA get dropped when the same
number of fresh TDOA get added, whereas the rest of the
TDOA measurements remain unchanged between the tracking
loops. The above reasoning is also applicable for getting
FDOA values from the FOA measurements. Without loss
of generality, we assume adjacent TDOA and FDOA in the
following. Thus, we get range and range rate difference
measurements, which are the scaled versions of TDOA and
FDOA, as

rij = ri − rj = c(tTOA,i − tTOA,j) (24)

and
ṙij = ṙi − ṙj = − c

fc
(fFOA,i − fFOA,j), (25)

respectively, where i = 2, 3, . . . , N and j = i−1. Substituting
(24) and (25) into (22) and (23), respectively, we obtain

rij = fi(X,V )− fj(X,V ) + ξij (26)

and

ṙij = gi(X,V )− gj(X,V ) + ξ′ij , (27)

where i = 2, 3, . . . , N , j = i−1, ξij = ni−nj , ξ′ij = n′
i−n′

j

and fi(·) and gi(·) are the functions indicated in (22) and (23),
respectively. We denote the set of 2(N − 1) range and range
rate difference measurements obtained in this step as

ϕ = [r21, r32, . . . , rN N−1, ṙ21, ṙ32, . . . , ṙN N−1]
T. (28)

In the next step, we use (26) and (27) to estimate the UE
position and velocity.

B. SPIN Acquisition

When a position fi is required before initiating an RRC
connection, SPIN performs UE location acquisition. SPIN ac-
quisition involves obtaining TDOA and FDOA measurements
from the SSs over a time window called SPIN acquisition
window (WSPIN,acq). We call the time duration of incoherent

ri =

√(
xi − (x+ vxi∆T )

)2
+
(
yi − (y + vyi∆T )

)2
+

(
zi − (z + vzi∆T )

)2︸ ︷︷ ︸
fi(X,V )

+c · ηTO + ni, i = 1, 2, . . . , N. (22)

ṙi =
(vxi

− vx)
(
xi − (x+ vxi∆T )

)
+ (vyi

− vy)
(
yi − (y + vyi∆T )

)
+ (vzi − vz)

(
zi − (z + vzi∆T )

)√(
xi − (x+ vxi∆T )

)2
+
(
yi − (y + vyi∆T )

)2
+
(
zi − (z + vzi∆T )

)2︸ ︷︷ ︸
gi(X,V )

+
c

fc
ηFO + n′

i,

i = 1, 2, . . . , N. (23)
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Fig. 6. Timing diagram of SPIN acquisition.

combining required for each TOA/FOA measurement as SPIN
acquisition duration (TSPIN,acq). We decide TSPIN,acq based on
the duration needed for successful synchronization for the
maximum coupling loss (MCL) under consideration [18], [27].
The interval between successive TOA/FOA measurements in
the acquisition is referred to as SPIN acquisition interval
(ISPIN,acq). We show the SPIN acquisition timing diagram in
Fig. 6.

To perform positioning, in addition to TDOA and FDOA
measurements, UE also requires the satellite position and
velocity when the SSs were transmitted. As we mentioned in
Section I, the network broadcasts satellite ephemeris in NTN
system information broadcast (SIB). The UE can extrapolate
the ephemeris acquired at the beginning of an RRC connection
until the expiry of a network define timer called ephemeris
validity timer [49].

From (26) and (27), we get a joint set of 2(N−1) nonlinear
range and range rate difference equations, which are based on
the TDOA and FDOA measurements taken during WSPIN,acq.
To begin with, SPIN uses the 2-WLS method to obtain initial
rough estimates of UE position and velocity. In the firs step of
2-WLS, the non-linearequations are represented in linear form
by adding two extra estimation parameters. Thus, including the
UE position and velocity vectors, 8 parameters are estimated
using WLS. In the second step, using the relation between
the extra parameters and the UE position and velocity, the
estimation is refine to the original 6 parameters. To avoid
repetition, we do not provide the details of 2-WLS method
here but refer to [17].

Next, SPIN performs TWLS to get fine estimates of UE
position and velocity. In TWLS, the 2(N − 1) nonlinear
equations given by (26) and (27) are firs linearized using
the first-orde Taylor series based linear approximation. The
resulting equations can be expressed in the form

B = Aθ + n, (29)

where θ = [X V ]T and n = [ξ21, ξ32, .., ξ
′
21, .., ξ

′
N N−1]

T.
The WLS solution of (29) is given by

θ̂ = (ATWA)−1ATWB, (30)

where W is a weight matrix of size 2(N−1)×2(N−1). The
details of the Taylor series approximation and the definition
of A, B, and W are given in the Appendix. The matrices A
and B contain elements which are functions of initial values
of the estimation parameters. The matrix W is also unknown
initially and hence we firs compute that using the initial values
of position and velocity. To get accurate estimates, further we

perform several iterations of TWLS, every time updating A,
B, and W using the position and velocity estimates obtained
in the previous iteration.

The SPIN acquisition is summarized in Algorithm 1. In
the algorithm, for all the parameters and matrices which are
updated iteratively, we have added superscripts inside paren-
theses to indicate the iteration number. Since the weight for

Algorithm 1: SPIN acquisition algorithm.
Input:

Range, range rate measurements: ϕ
Satellite positions: xi yi, zi
Satellite velocities: vxi

, vyi
, vzi

Convergence threshold: ϵth
Maximum iteration: kmax

Output:
UE position estimate: X(k) = [x(k), y(k), z(k)]
UE velocity estimate: V (k) = [vx

(k), vy
(k), vz

(k)]
Initialization: 2-WLS on ϕ

1 Initialize weight to I2(N−1)×2(N−1);
2 k = 0;
3 while k ≤ 3 do
4 Estimate X(k),V (k) using 2-WLS;
5 Update weight using X(k),V (k);
6 k = k + 1;

TWLS Positioning: TWLS on ϕ
7 Compute W (0), A(0), B(0) using

X(k−1),V (k−1);
8 TWLS initialize: X0 = X(k−1), V0 = V (k−1);
9 k = 0;

10 Iteration error, ϵ(k) = ∞;
11 while ϵ(k) ≥ ϵth and k ≤ kmax do
12 Estimate X(k),V (k) using TWLS;
13 Compute W (k+1), A(k+1), B(k+1)

using X(k),V (k);
14 TWLS initialize: X0 = X(k), V0 = V (k);
15 k = k + 1;
16 Compute iteration error ϵ(k);

2-WLS is unknown initially, we use the identity matrix to get
an initial position fix Then we compute the weight matrix for
the 2-WLS using the estimated UE location and velocity. We
perform 2-WLS again to get more accurate estimates. We run
three iterations of such reweighted 2-WLS which are sufficien
to eliminate the effect of the uninformed initial estimate [50].
Then we compute the weight matrix for TWLS using the UE
location and velocity estimated from 2-WLS. We also use the
2-WLS estimation results to initialize the TWLS algorithm.
We run TWLS iteratively until the convergence criterion is
met, i.e., the difference in estimation results between succes-
sive iterations is confine below a sufficientl low threshold,
ϵth. To accommodate for the 2-WLS and TWLS computations
associated with SPIN, we include an extra processing time,
TSPIN,proc, after completing the measurements in the acquisition
window. One can vary the value of TSPIN,proc to adjust the SPIN
computational complexity based on the capability of the UE.
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C. SPIN Tracking

After acquisition, SPIN performs tracking to maintain the
position accuracy within acceptable limits. SPIN tracking uses
a similar technique for positioning as in acquisition except
for a few differences. SPIN tracking first initializes its TWLS
using the UE location fix obtained by acquisition, and then
tracks the location in loops by further initializing the TWLS
using the position fixes obtained in the previous tracking
loops. Like SPIN acquisition, tracking also involves a window
called SPIN tracking window (WSPIN,track), during which SPIN
performs one full loop of tracking. During each WSPIN,track,
SPIN measures TOA and FOA by combining SSs for a
duration of SPIN tracking duration (TSPIN,track). The tracking
measurements are done at an interval called SPIN tracking in-
terval (ISPIN,track). We show the SPIN tracking timing diagram
in Fig. 7(a). Like SPIN acquisition, tracking also includes extra
processing time, TSPIN,proc, after the tracking window.

Unlike SPIN acquisition which is usually performed before
initiating an RRC connection, SPIN tracking does not get
abundant time gaps. Therefore, we propose two methods for
SPIN tracking based on the availability of time gaps for
positioning.

1) Periodic SPIN Tracking: Periodic SPIN tracking in-
volves tracking periodically at fixed intervals which provides
the UE with high positioning accuracy that remains valid for
a long time. To this end, we define a timer called SPIN
position validity timer, TSPIN,val, upon the expiry of which
SPIN periodic tracking is mandatory. Thus, periodic SPIN
tracking requires relatively long but infrequent time gaps.
In the context of GNSS based positioning in NTN, 3GPP
has decided to enable the network to configure positioning
gaps [49]. SPIN can potentially utilize these gaps for the
purpose of periodic tracking. In addition, SPIN can also use
other available time gaps such as connected mode discontin-
uous reception (CDRX). Furthermore, as shown in Fig. 7(a),
the tracking windows in successive tracking loops are non-
overlapping in this method.

2) Continuous SPIN Tracking: Continuous SPIN tracking
maintains the accuracy at a specific level by means of con-
tinuous tracking measurements. This method is ideal for the
scenario when short time gaps are available frequently during
the NTN cellular communication. For instance, in the current
NB-IoT standard, the network provides the UEs with 40 ms
gaps after every 256 ms of continuous communication for the
purpose of resynchronization [51, Ch. 7]. When SPIN operates
on an NB-IoT UE, these gaps can be used for tracking. Since
SPIN can use the same resynchronization measurements for
positioning, it does not affect the resynchronization operation.
Similarly, LTE-M UEs are provided with periodic time gaps
for neighbor cell measurements [52]. The UE measures the
reference signals (RS) in the neighbor cells during these gaps.
Since both RS and SSs are present on the acquired signal,
SPIN can additionally perform measurements on the SSs
during these gaps. Furthermore, in continuous SPIN tracking,
the tracking window slides continuously by dropping old stale
TOA/FOA measurements and by including fresh TOA/FOA
measurements simultaneously. Therefore, the tracking win-
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Fig. 7. Timing diagram of (a) Periodic SPIN tracking (b) Continuous SPIN
tracking.

dows in adjacent loops overlap in time, as shown in Fig. 7(b).
Throughout the positioning operation, we assume that the

UE velocity does not change significantly during the short
positioning windows, WSPIN,acq and WSPIN,track. While long
positioning window gives highly accurate positioning result
for UEs with constant velocity, it results in poor accuracy
for UEs with changing velocity. Therefore, while choosing
WSPIN,acq and WSPIN,track, one needs to carefully consider the
UE mobility aspects and the target accuracy.

IV. PERFORMANCE ANALYSIS

In the previous section, we defined the detailed steps of
SPIN algorithm. In the following, we analyze the performance
of SPIN using two key indicators, positioning accuracy and
battery life.

A. Positioning Accuracy

We find the theoretical bounds for SPIN positioning accu-
racy by applying the CRLB [53, Ch. 3]. We do this in two
steps: first we find the CRLB for TOA and FOA estimation,
and then we use this result to obtain the CRLB for position
and velocity estimation using TDOA and FDOA. For the
TOA and FOA estimation in SPIN, where the received noisy
signal is cross-correlated with a clean template, the CRLB
inequalities [54] are given by

σ2
T ≥ 1

8π2β2 E
N0

(31)

and
σ2

F ≥ 1

8π2κ2 E
N0

, (32)

respectively, where σ2
T is the variance of the TOA estimation

in (18), σ2
F is the variance of the FOA estimation in (19), E is

the energy of s(t) in the time window TSPIN,acq or TSPIN,track, β
is the root mean square (RMS) bandwidth, and κ is the RMS
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time of the signal. The RMS  bandwidth and time of the signal 
are define  by

β =

√√√√∫∞
−∞ f2 |S(f)|2 df∫∞
−∞ |S(f)|2 df

(33)

and

κ =

√√√√∫∞
−∞ t2 |s(t)|2 dt∫∞
−∞ |s(t)|2 dt

, (34)

respectively, where S(f) is the Fourier transform of s(t).
Next, we use the CRLB inequalities in (31) and (32) to

fin the CRLB of joint TDOA-FDOA based SPIN position
and velocity estimations. While closed-form expressions of
TDOA CRLB are given in [55, Ch. 4], we cannot use them
since they are meant for 2D positioning and also do not include
FDOA. Therefore, for SPIN, we apply the steps provided in the
literature [56] for computing TDOA CRLB, and extend that
to our scenario of joint TDOA-FDOA based positioning. We
consider an estimation problem where we need to estimate θ
from ϕ. First, we obtain the Fisher information matrix (FIM),
Jϕ, by assuming a Gaussian noise model for intermediate
estimates ϕ using the variances given in (31) and (32). Since
ϕ are Gaussian distributed, they have a covariance matrix,
Cϕ = W−1, where W is given in (58). It follows that, the
FIM with respect to ϕ is given by

Jϕ = Cϕ
−1 = W . (35)

The FIM with respect to the fina estimation parameters θ can
be expressed using the chain rule,

Jθ =
∂ϕ

∂θ
Jϕ

(
∂ϕ

∂θ

)T

= ÃTJϕÃ,

where Ã is given in (55). Finally, the CRLB inequality

C θ̂ ≥
[
J−1
θ

]
6×6

, (36)

provides a bound for the covariance matrix C θ̂ of the es-
timated parameters θ̂. The minimum mean squared error
(MMSE) of the estimated position, X̂ = [x̂ ŷ ẑ], and velocity,
V̂ = [v̂x v̂y v̂z], can be expressed as

Eθ

∥∥∥X − X̂
∥∥∥2 ≥

[
J−1
θ

]
11

+
[
J−1
θ

]
22

+
[
J−1
θ

]
33

(37)

and

Eθ

∥∥∥V − V̂
∥∥∥2 ≥

[
J−1
θ

]
44

+
[
J−1
θ

]
55

+
[
J−1
θ

]
66

, (38)

respectively.

B. Battery Life

In the following, we analyze the energy consumption of
an NTN IoT UE which uses SPIN for the purpose of UL
synchronization. We also provide an analysis for the energy
consumption of an NTN IoT UE which uses a GNSS based
solution. The energy consumption evaluation helps us to
investigate the impact of SPIN on the UE’s battery life and
also to directly compare the battery life with that of a GNSS

TABLE III
L IS T OF IMPORTANT NOTATIONS

Notation Meaning
PTX Transmission power
PRX Reception power
PLSL Power consumption during light sleep

PIDRX
Power consumption during idle mode discontinuous
reception (IDRX) sleep

Nsat Number of satellites visible to the UE
Tsync Sync time
Tcon Total duration of RRC connection
TMIB,RX Master information block (MIB) decoding time
TMIB,idle Idle time in MIB
TSIB ,RX SIB decoding time
TRTT RTT between UE and satellite
Tmsg1 msg1 duration
Tmsg1,idle Idle time between msg1 and msg2
Tmsg2 msg2 duration
Tmsg3 msg3 duration
Tmsg4 msg4 duration
Tmsg4,ACK msg4 acknowledgement (ACK) duration
TUL,data UL data duration
TUL,grant UL grant duration
TUL,RTT Total round trip wait time between UL data and grants
TDRX-INAT DRX inactivity timer
TCDRX CDRX cycle
TCDRX-ON CDRX-ON duration
TIDRX IDRX cycle
TIDRX-PO IDRX paging occasion (PO) duration
TGNSS ,acq GNSS acquisition duration
TGNSS ,track GNSS tracking duration
TGNSS ,val GNSS position validity timer

based solution. We provide the list of important notations in
Table III.

For the energy consumption analysis, we assume an IoT
traffi model where the UE reports UL data periodically at an
interval called data reporting interval. Considering the cellular
communication protocol fl w given in [18], the total energy
consumption per data reporting interval of an NTN IoT UE
which performs positioning through SPIN, is given by

ESPIN = PRX

(
WSPIN,acq + TSPIN,track

Tcon

ISPIN,track

)
︸ ︷︷ ︸

Sync + SPIN positioning

(39)

+NsatEMIB-SIB + ERA + EUL + ECDRX + EIDRX ,

where EMIB-SIB , ERA , EUL , ECDRX , and EIDRX are the energy
consumptionassociated with MIB and SIB decoding, RA, UL
data, CDRX, and IDRX, respectively. The above individual
energy components are given by

EMIB-SIB = PRXTMIB,RX + PLSL TMIB,idle + PRXTSIB ,RX ,
(40)

ERA = PTX
(
Tmsg1 + Tmsg3 + Tmsg4,ACK

)
+ 2PLSL TRTT

+ PRX
(
Tmsg1,idle + Tmsg2 + Tmsg4

)
, (41)

EUL = PTXTUL,data + PRXTUL,grant + PLSL TUL,RTT, (42)
ECDRX = PRXTDRX-INAT + PRX

(
NCDRXTCDRX-ON

)
+ PLSL NCDRX

(
TCDRX − TCDRX-ON

)
, (43)

and
EIDRX = PIDRXNIDRX

(
TIDRX − TIDRX-PO

)
+ PRXNIDRXTIDRX-PO, (44)
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where NCDRX and NIDRX represent the number of CDRX and 
IDRX cycles,  respectively, which are decided by the values of 
data inactivity (Tdata-INAT) and T3324

3 timers, respectively [57]–
[59]. For periodic SPIN tracking, ISPIN,track = TSPIN,val in (39). 
Note that when SPIN is used to get position fi  for the purpose 
of UL sync, UE operations associated with establishing RRC 
connection are done only once per reporting interval. However, 
SPIN requires extra synchronization measurements from one 
or more satellites  as it uses SSs  for positioning purposes.

As explained in Section I, recall 3GPP’s working assump-
tion that the IoT UEs are incapable of performing both 
GNSS  and cellular operations simultaneously. Based on this 
assumption, for the GNSS  based solution, the total energy 
consumption per data reporting interval is given by

EGNSS = PRX
(
TGNSS ,acq +NGNSSTGNSS ,track

)
,︸ ︷︷ ︸

GNSS positioning

(45)

+NGNSS (Esync + EMIB-SIB + ERA) + EUL + ECDRX + EIDRX ,

where Esync is the energy consumptionassociated with cellular
synchronization, given by

Esync = PRXTsync, (46)

and NGNSS represents the number of times GNSS positioning
is required in each reporting interval, given by

NGNSS =
Tcon

TGNSS ,val
. (47)

We see from (45) that the UE operations associated with
establishing cellular connection such as synchronization, RA,
and MIB and SIB decoding are performed NGNSS times.
This is because the IoT UEs do not have the capability to
simultaneously perform cellular and GNSS operations. The
UE terminates RRC connection and enters RRC idle mode
before GNSS positioning.

Based on the above energy consumption analysis, we now
defin the battery life of both SPIN and GNSS based solutions.
Let the data reporting interval of the UE be Irep hours and the
UE battery capacity be Eb Wh. Then, the battery life, in years,
of an NTN-IoT UE using SPIN and GNSS based solutions are
given by

LSPIN =
Eb × 60× 60

ESPIN
24×365

Irep

(48)

and

LGNSS =
Eb × 60× 60

EGNSS
24×365

Irep

, (49)

respectively, where ESPIN and EGNSS are in units of J.
In the next section, we provide the numerical results for

SPIN accuracy compared with the corresponding CRLB, the
SPIN battery life compared with that of GNSS based solution,
and the computational complexity of SPIN.

3T3324 timer starts when the UE enters IDRX mode which consists of
periodic paging cycles, and upon the expiry of the timer, it transitions into
deep sleeping power saving mode (PSM) [57]

V. NUMERICAL RES ULTS

In the above, we discussed the theoretical bounds of the
SPIN positioning accuracy and provided the analytical equa-
tions for battery life comparison of a UE using SPIN with
that of GNSS. In this section, we perform PHY and system
level simulations of SPIN to obtain the achieved positioning
accuracy and compare that with the corresponding CRLB. For
the same evaluation settings, we also provide numerical results
of battery life savings in an IoT UE which uses SPIN instead
of GNSS based solution. Finally, we show the computational
complexity of SPIN in terms of the number of operations and
memory requirements.

A. Simulation Settings

For both positioning accuracy and battery life evaluations,
we choose the evaluation parameters and their values from
the relevant 3GPP technical documents and reports [18], [59],
[60]. We list the parameters and their values we use for our
evaluations in Table IV. We adopt all the time parameters in
the protocol fl w and their values from [18], and hence we
do not repeat them in Table IV. We choose SPIN-specifi
measurement time parameters such as the acquisition and
tracking durations, windows, and intervals based on a trial
and error approach to fin the values required to achieve
the target requirements for UL synchronization. To achieve
global coverage, we select a satellite constellation of sufficien
size which is comparable with that of currently planned
and/ordeployed LEO constellations such as Starlink [19], [20]
and Amazon-Kuiper [20]. To evaluate the worst case which
corresponds to deep coverage, we perform both SPIN accuracy
and battery life evaluations at an MCL of 164 dB. Further, we
choose set-4 satellite beam configuratio for which the link
budget matches with 164 dB MCL [18], [61]. For the sake
of conciseness, we provide SPIN evaluation for only NB-IoT
standard. Nevertheless, the evaluations can be extended in a
similar way to LTE-M standard.

For the simulations, we apply the NTN channel models
recommended by 3GPP [2]. Considering the application sce-
narios, the NTN is not necessary for UEs located in urban
environments since they are mostly under cellular coverage.
On the other hand, suburban, rural, and open-sky environments
are ideal application scenarios where NTN support is critical.
While an open-sky environment always guarantees LOS sig-
nals and hence results in better positioning accuracy, suburban
and rural scenarios are characterized by NLOS probabilities
depending on the associated elevation angle [2]. To evaluate
the worst case among the relevant scenarios, we choose
the channel model parameters corresponding to a suburban
environment. The channel model includes small scale fading,
which emulates the multipath effect mainly caused by the
obstacles close to the UE, and the Doppler spread due to the
UE motion [2]. The SNR is obtained from the NTN IoT link
budget [1], [18] as

γ =
PEIRPG

BkBTαfsαatmαshαscαpolαadd
, (50)
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TABLE IV
S IMUL ATION S ETTINGS

Parameter Value Parameter Value
Positioning Evaluation Settings

Channel NTN TDL-D LEO height 600 km
Constellation 87.5◦:2400/40/20 Standard NB-IoT

Coherent time 1 ms Environment Suburban
Beam configuratio Set-4 fs 1.92 Msps
Minimum elevation 30◦ UE speed 120 km/h

kmax
(acquisition)

10 for parallel,
30 for sequential

MCL 164 dB
No. of UEs 1000

kmax
(tracking)

20 for parallel,
40 for sequential

ϵth 0.0001
TSPIN,proc 100 ms

Battery Evaluation Settings
Eb 5 Wh TCDRX 640 ms
PTX 543 mW TCDRX-ON 100 ms
PRX 37 mW TIDRX 1.28 s
PLSL 8.75 mW TIDRX-PO 100 ms
PIDRX 105 µW T3324 16 s
Nsat 8 TGNSS ,acq 1-30 s
TRTT 26 ms TGNSS ,track 1 s

TDRX-INAT 100 ms TGNSS ,val 6.4 s
Tdata-INAT 5 s Irep 2, 24 h
TSPIN,val 5.9 s Data size 200 bytes

Common Settings

WSPIN,acq
1.1 s for parallel,

5.2 s for sequential
ISPIN,acq 215 ms
ISPIN,track 296 ms

WSPIN,track
296 ms for parallel,
2.1 s for sequential

TSPIN,acq 215 ms
TSPIN,track 40 ms

where PEIRP is the effective isotropic radiated power
(EIRP) from the satellite, G/T is the antenna-gain-to-noise-
temperature of the UE, B is the bandwidth of the synchro-
nization signal, kB is the Boltzmann constant, αatm is the
atmospheric path loss, αsh is the shadowing margin, αsc is the
scintillation loss, αpol is the polarization loss, αadd includes all
other additional losses, and αfs is the free space path loss [2]
given by

αfs = (4πfcd/c)
2, (51)

where d is the distance between the satellite and the UE.
The numberof synchronization measurements that a UE can

perform in an acquisition or tracking window depends heavily
on the network implementation. This includes factors such as
the partition of available network bandwidth into intra- and
inter-frequency cells and the deterministic time offset between
the cells. Therefore, we assume two extreme cases for our
evaluations. First, we evaluate the worst case where the UE can
only sequentially acquire synchronization measurements from
one cell to another. The worst case corresponds to a scenario
where all the available synchronization signals in the SPIN
window belong to inter-frequency cells. However, it might
be possible for a UE with adequate processing capability to
measure synchronization signals from multiple intra-frequency
cells in the acquisition bandwidth simultaneously, if they are
time multiplexed. Therefore, we also evaluate the best case,
i.e., with parallel measurements, where the UE can simultane-
ously acquire all available synchronization measurements in a
SPIN window. SPIN takes longer time to get position fi when
acquiring SSs sequentially. Therefore, for sequential method,
we choose acquisition and tracking windows longer than that
of parallel method.

For battery life comparison and computational complexity
evaluation, we use the same values of time parameters which
we used for SPIN accuracy evaluation. For estimating the
battery life of a UE using GNSS based solution, we choose
GNSS acquisition and tracking durations from 3GPP technical
report [18]. Without loss of generality, we use the term GNSS
throughout our evaluations to indicate GPS, which is the
widely used GNSS service. Finally, to maintain low compu-
tational complexity along with reasonably high accuracy, we
set TSPIN,proc to 100 ms.

B. Methodology

We perform the SPIN accuracy evaluation in two steps:
evaluation of i) TOA and FOA estimation using PHY sim-
ulation, ii) position and velocity estimation using system level
simulation, and compare with the corresponding CRLBs.

In the firs step, using MATLAB LTE and 5G Toolbox, we
generate SSs, pass them through the NTN channel models,
and estimate TOA and FOA. To account for the non-line-
of-sight (NLOS) paths in a suburban environment, we apply
a penalty by disregarding NLOS signals based on the LOS-
NLOS probability given in [2]. In our evaluations, we assume
that the UE filter out the NLOS signals, which can be done
based on the signal strength as explained in [7].

In the second step, we conduct system level simulations
of SPIN acquisition and tracking, by considering a satellite
constellation and a set of UEs located on the earth. Note
that the evaluation models in the existing work on NTN NR
positioning [7] do not consider the impact of true UE location
on the achieved accuracy. In reality, the achievable accuracy
varies significantl depending on the true UE location. To
this end, to fully capture the impact of all locations, we
consider uniformly spaced 1000 UEs on the earth. However,
for a near-polar Walker-star constellation, over-crowding of
satellites happens at the poles. In reality, some of the satellites
turn off their beams in a coordinated manner to avoid high
interference at those regions [62]. In effect, the polar UEs
will experience satellite and beam visibility very similar to
that of the UEs located anywhere else. Consequently, we
expect that the selected satellite beams will result in polar UEs
having similar SPIN accuracy compared to other UEs. Rather
than implementing an arbitrary pattern of selective beam
disabling, we simply exclude the polar regions which is also
an easier choice from the simulation perspective. Regardless of
the above simulation assumption, SPIN is applicable to UEs
located anywhere on the earth. Furthermore, our simulation
model accounts for the significan variation of SNR during the
satellite fly-b , thus ensuring accurate simulation results. To
this end, we calculate SNR using (50) for each measurement
and apply noise variance separately, instead of setting a fi ed
variance for the noise in all measurements.

C. Positioning Evaluation

1) Fine Time and Frequency Offset Estimation: We firs
evaluate TOA and FOA estimation accuracy using PHY sim-
ulation of PSS and SSS in NTN channel for the range of
SNR given by the NTN IoT link budget. We compare these
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Fig. 8. (a) TOA (b) FOA estimation errors compared with corresponding
CRLBs.

simulation results with the corresponding CRLB in Fig. 8.
The SNR for 164 dB MCL ranges from −12 to −7 dB
when the satellite moves from the minimum to the maximum
elevation angles of 30◦ to 90◦, respectively. The results in
Fig. 8 show that the TOA and FOA estimated using correlation
over the chosen acquisition and tracking durations followed
by fin resolution curve fittin approach the CRLB for the
concerned range of SNR. Only under very low SNR, both
the TOA and FOA estimations fail due to an unavoidable
anomalous behavior [63]. This occurs outside the asymptotic
region of CRLB and thus cannot be bounded by the CRLB
accurately [64]. However, considering that the possible SNR
range for the NTN scenario is within the asymptotic region, we
can still rely on CRLB as the lower bound in our simulation.
Additionally, at very high SNR, the TOA and FOA estimations
tend to saturate thus creating gaps with CRLB. This saturation
is due to the estimation bias caused by the small scale fading
in the channel.

2) Position and Velocity Estimation: In the above, we
showed that the TOA and FOA estimations in SPIN achieve
the corresponding CRLB s for the concerned range of SNR.
Therefore, for the following SPIN acquisition and tracking
simulations, we assume that the TOA/FOA measurements have
Gaussian distributions with mean and variance equal to the
true TOA/FOA values and CRLB, respectively. For uniformly

TABLE V
90TH PERCENTIL E RMS ERROR OF POS ITION AND VEL OCITY

Measurement
Type

Positioning
Step

Position (m) Velocity (m/s)
CRLB Simulation CRLB Simulation

Parallel Acquisition 17.4 20.6 0.1 0.8
Tracking 188.4 207.3 1.7 4.9

Sequential Acquisition 15.9 18.2 0.1 0.4
Tracking 193.9 212.6 2.0 3.1

spaced 1000 UEs on the earth, we show the 90th percentile of
RMS error in SPIN position and velocity and their comparison
with the corresponding CRLBs, in Table V. We see that in
all cases, SPIN results are close to the position and velocity
CRLBs. As given in Table IV, we set the number of TWLS
iterations to small values to have low computational complex-
ity. However, if we run SPIN for more TWLS iterations, the
position and velocity accuracy approach the corresponding
CRLBs, but at the expense of a higher computational com-
plexity. It should be noted that SPIN acquisition achieves the
target requirements shown in Fig. 4 for a wide range of error
budget covering low to very high oscillator errors. On the
other hand, we choose reasonably short SPIN tracking window
such that the results just meet the target requirements for
80−20% error budget. However, to get higher accuracy, SPIN
tracking window can be cautiously increased, provided that
the assumption of UE velocity remaining constant during the
entire window remains valid. To better investigate the overall
performance of SPIN for the entire distribution of UEs, we
have also plotted an empirical cumulative density function
(CDF) of the RMS position and velocity error in Fig. 9. As
expected, the CDF of the acquisition error is consistently lower
than that of the tracking. The 90th percentile of the position
and velocity errors are consistent with the results which we
showed in Table V. In Fig. 9, we also observe that majority
of the UEs experience much lower RMS positioning errors
compared to the target requirements discussed in Section II.
To make it concise, in the above, we showed the results for
only sequential measurements scenario. However, the trend is
similar in the parallel measurements case too.

In Table V and Fig. 9, we showed SPIN accuracy results for
stand-alone acquisition and tracking operations by configurin
appropriatedurations. To show the real-time accuracy variation
starting from SPIN acquisition until a few loops of SPIN
tracking, we have also plotted the 90th percentile of RMS
error against time in Fig. 10. For the sake of conciseness, we
show the results for only sequential measurements case here.
However, we see a similar trend in the parallel measurements
scenario too. For continuous tracking, the accuracy of both
position and velocity initially reduce over time before finall
saturating to a level. This is because SPIN maintains a sliding
tracking window which discards old measurements while in-
cluding new measurements. The TOA and FOA measurements
performed during the initial acquisition are superior than the
tracking measurements due to the longer acquisition duration
and hence give higher accuracy. Until the acquisition-tracking
boundary as shown in Fig. 10, the set of measurements include
at least one measurementfrom the initial acquisition. However,
afterwards, the accuracy remains approximately same since
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Fig. 9. Empirical CDF of (a) position (b) velocity estimation errors, for
sequential measurements case.

the following tracking measurements are performed with a
fi ed duration and interval. We observe that, SPIN maintains
position and velocity RMS error below 215 m and 2 m/s,
respectively, by performing measurements every 296 ms. On
the other hand, in periodic tracking, SPIN gets a position fi
every time when TSPIN,val expires. In our simulations, we set
TSPIN,val based on the value of UE speed. Since the UE is
moving, the error relative to the previous estimated position
increases over time. In this regard, we set TSPIN,val equal to
the time taken for the position error to reach 215 m, which
is the allowed position error for 80 − 20% error budget in
Fig. 4. For continuoustracking, the values of tracking window,
interval, and duration used in the simulations are specifie
in Table IV. However, periodic SPIN tracking measurement
parameters need to be similar to that of acquisition measure-
ment as they require high accuracy. Therefore, for periodic
tracking, we set WSPIN,track, ISPIN,track, and TSPIN,track equal
to the values of WSPIN,acq, ISPIN,acq, and TSPIN,acq given in
Table IV, respectively. The circles in Fig. 10 represent the
accuracy achieved by SPIN acquisition followed by periodic
tracking. Since we set the tracking window long enough to
get highly accurate position, the periodic tracking accuracy
remains valid until the expiry of TSPIN,val . Recall that we chose
the SPIN measurement time parameters for our simulations
based on the target accuracy requirement. Our intention is
not to achieve the best accuracy on par with, say, GNSS,
instead we aim to just achieve the target requirements for UL

0 10 20 30 40
Time (s)

0

50

100

150

200

250

90
th

 p
er

ce
nt

ile
 R

M
S

 e
rr

or
 (

m
)

A
cq

ui
si

tio
n-

tr
ac

ki
ng

 b
ou

nd
ar

y

215.5 m

Acquisition
Continuous tracking
Periodic tracking

(a)

0 10 20 30 40
Time (s)

0

0.5

1

1.5

2

2.5

90
th

 p
er

ce
nt

ile
 R

M
S

 e
rr

or
 (

m
/s

)

A
cq

ui
si

tio
n-

tr
ac

ki
ng

 b
ou

nd
ar

y

Acquisition
Continuous tracking
Periodic tracking

(b)

Fig. 10. 90th percentile RMS error of (a) position and (b) velocity estimation
vs. time, for sequential measurements case.

synchronization along with minimumenergy consumptionand
computational complexity. Alternatively, if SPIN is applied on
a different use-case than the UL synchronization, e.g., LBS,
one can tune the measurement time parameters to achieve
higher accuracy. However, the improved accuracy comes at
the cost of higher energy consumption and computational
complexity in the UE.

As already mentioned in Section II, UE velocity related
Doppler offset in the UL is taken care by the network.
However, given the high accuracy of UE velocity estimation
in SPIN, the IoT UE can additionally pre-compensate the UL
signal for the UE Doppler.

D. Battery Life Comparison

First, we compare the total energy consumption per report-
ing interval of an IoT UE which uses SPIN with that of a
UE using GNSS, in Fig. 11(a). The time to get a GNSS
position fi varies based on a range of factors including the
type of chipset, the positioning interval, and the visibility to
GNSS satellites. To this end, for Irep = 2 h, we vary the
GNSS acquisition duration, TGNSS ,acq, from 1 to 5 s where
GNSS performs a hot-startpositioning [18]. On the other hand,
GNSS performs a cold-start positioning when Irep = 24 h,
and hence we vary TGNSS ,acq from 5 to 30 s [18]. We see in
Fig. 11(a) that, for the entire range of TGNSS ,acq, GNSS based
solution consumes more energy than SPIN. This is mainly
because of repeated termination and re-establishment of RRC
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Fig. 11. (a) Comparison of energy consumption per reporting interval of
SPIN with GNSS based solution. (b) Battery life saving with SPIN.

connection associated with the GNSS positioning gaps. On
the other hand, SPIN is capable of performing positioning in
a time-multiplexed manner without interrupting the underly-
ing cellular communication. This results in significantl less
energy consumption associated with SPIN. Further, we see
that the energy consumptionin GNSS based solution increases
with increase in TGNSS ,acq, since longer duration of GNSS
reception is performed for higher TGNSS ,acq. On the other
hand, the energy consumptionin SPIN remains constant for all
combinations of settings, since it is independent of TGNSS ,acq.
SPIN consumes more energy when it performs sequential
measurements than when it performs parallel measurements.
This is because SPIN performs reception of SSs for longer
duration when it performs measurements sequentially. For the
sequential measurement case, periodic SPIN tracking con-
sumes more energy than continuousSPIN tracking. The reason
is that we set the periodic tracking duration to a large value to
get high accuracy which should remain valid until the expiry of
TSPIN,val . However, continuous tracking maintains the accuracy
within an acceptable limit by making use of short and frequent
time gaps, thus consuming less energy. This changes for the
parallel measurement case, in which the energy consumptions
for periodic and continuous tracking are approximately the
same. This is because of the same effective reception duration
of SS measurements for the chosen settings.

Finally, we show the battery life saving associated with

TABLE VI
COMPUTATIONAL COMPL EX ITY OF S PIN

Positioning
Step

Number of Operations
Parallel

Acquisition
Sequential
Acquisition

Parallel
Tracking

Sequential
Tracking

Curve Fitting 640 384 128 112
2-WLS 500702 153144 - -
TWLS 1294950 1095030 77620 124280
MOPS 17.96 12.48 0.78 1.24

SPIN over the GNSS-based solution in Fig. 11(b). For the
best case where SPIN performs parallel measurements, it saves
around 29 − 64% of the UE’s battery life. Even in the worst
case where sequential measurements are performed, SPIN
offers a significan battery life saving which ranges from 12 to
43%. Like we explained in the context of energy consumption
results, the significan battery life saving achieved by SPIN
also owes to its capability to perform positioning without
interrupting the cellular connection.

E. Computational Complexity

We show the number of basic arithmetic operations associ-
ated with SPIN acquisition and tracking for both parallel and
sequential measurements scenarios in Table VI. The numberof
operations in TWLS includes all the computations performed
during the entire iterative process until the convergence. Using
the number of operations and TSPIN,proc, we calculate the
computational complexity in terms of million operations per
second (MOPS). For SPIN acquisition, the MOPS associated
with parallel measurements case is higher than that of sequen-
tial measurements. Therefore, for an NB-IoT UE with low
complexity, SPIN acquisition with sequential measurements is
more suitable. On the other hand, an LTE-M UE with higher
computational capacity can perform SPIN acquisition with
parallel measurements which can achieve sufficien accuracy
in shorter measurement time. The evaluations also show that
MOPS required for both sequential and parallel measurement
cases in SPIN tracking are lower than that of acquisition since
tracking is performed with less number of measurements. The
most computationally demanding cases in NB-IoT are data
channel processing and SS detection which require 18.5 and
30 MOPS, respectively [51]. We see that the MOPS in both
parallel and sequential cases of SPIN are much lower than
the MOPS required by the existing computationally expensive
cases. For the above evaluation, we did not consider the
operations associated with the coarse synchronization step
since SPIN directly reuses the results from the cellular op-
eration. As the cellular UE has the computational capacity
to perform correlation on signals at same sampling rate and
comparable lengths as part of fin synchronization, we also
do not analyze the complexity associated with the subsequent
SPIN correlation operations.

We also computed the memory requirement in the UE
for performing SPIN, which is mainly decided by the size
of the matrices involved in 2-WLS and TWLS steps. The
highest memory requirement is for parallel SPIN acquisition
which needs 28 kB of storage space. On the other hand,
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sequential SPIN tracking takes only 1 kB of memory. This 
is not significan  f or I oT U Es w hich u sually h ave a  random 
access  memory (RAM) size of 256 kB [65], [66].

It should be noted that, in the battery life  analysis,  we did 
not consider the power consumption associated with the com-
putations related to SPIN, GNSS,  or cellular operations. For 
even a relatively less efficien  processor w ith a n e fficien y of 
144 MOPS/mW [67, Ch. 5], the power consumption associated 
with the computations in SPIN parallel acquisition, the most 
computationally demanding case,  is only 0.1 mW. However, 
for a superior processor efficien y o f 9 70 M OPS/mW, the 
power consumption further reduces to 18 µW. Therefore, it 
is meaningful to assume that the SPIN computations have 
negligible  impact on the battery life  of the UE.

VI. DIS CUS S ION

In this section, we provide brief qualitative analysis of SPIN 
in additional scenarios which are not evaluated in the paper.

A. LTE-M

In the above, we evaluated SPIN for NB-IoT standard where
it uses NPSS and NSSS for positioning. In a similar way,
we can evaluate SPIN for the LTE-M standard by replacing
NPSS and NSSS with PSS and SSS, respectively. In contrast to
NB-IoT, LTE-M is meant to support lower coverage level and
hence we can consider an MCL of 154 dB, which corresponds
to set-3 or set-2 beam configurat ons [18], [61]. For the LTE-
M standard, which uses PSS and SSS with a bandwidth higher
than that of NPSS and NSSS, we observe that the SPIN
accuracy is much higher than that of NB-IoT.

B. Reduced Constellation Size

The satellite constellation chosen for our evaluation gives
visibility to more than one satellite at any instant of time to
every UE. Nevertheless, SPIN also works in those scenarios
where there is limited visibility, e.g., a constellation consisting
of 510 LEO satellites at an altitude of 600 km, which is the
minimumconstellation size for global coverage [32]. However,
in a limited visibility scenario, SPIN takes a longer duration
to get an accurate position fix

C. Indoor Scenario

We considered outdoor UEs for the SPIN evaluations in
this paper. However, SPIN also works in soft indoor cases,
where an additional loss needs to be included in the link
budget, e.g., 9 dB [61]. However, for deep indoor cases which
suffer from severe outdoor-to-indoor (O2I) losses, the link
budget as per the satellite reference parameters define by
3GPP [1], [18] is insufficient Alternatively, if LEO satellites
with higher antenna gain are deployed, successful UL and DL
communicationare possible for deep indoorcases [13]. In such
a scenario, SPIN can operate successfully in an NTN UE and
can provide position fi to resolve UL synchronization issues
and to serve LBS.

D. Other Environments

For the evaluations in this paper, we considered an NTN
channel in a suburban environment with LOS probability as
define in [2]. In an open-sky environment, e.g., when the UEs
are mounted on aircrafts or boats, we can assume an AWGN
channel with 100% LOS possibility. On the other hand, in
an urban or dense urban environment, the LOS probability
is lower than that of a suburban scenario. Nevertheless, our
evaluations can be directly extended to the above cases. We
see that the accuracy in open-sky environmentis better than the
suburban scenario which we evaluated in our paper. However,
the accuracy will be lower in an urban environment due to the
lower LOS probability. This is not a major concern since the
IoT UEs located in urban environment are more likely to be
served by the terrestrial cellular BSs.

VII. CONCL US ION

SPIN enables self-positioning in NTN IoT UEs for the
purpose of solving the UL synchronization problem and to
provide LBS. SPIN performs positioning by utilizing TDOA
and FDOA measurements on the existing DL SSs, thus requir-
ing no network modification SPIN adopts widely accepted
signal processing techniques that are already proved to yield
good performance. The theoretical achievability of the target
accuracy using the available signals and measurements is
determined based on the CRLB for TOA, FOA, position,
and velocity estimations. The numerical results demonstrate
that SPIN indeed meets the target accuracy required for the
UL synchronization problem while achieving the CRLB. Our
analysis also shows significan battery life savings when a
GNSS-based solution is replaced with SPIN. Further, the
computationalcomplexity associated with SPIN is much lower
than that of the existing cellular operations. The computational
complexity and positioning accuracy analyses help us to decide
on the appropriate accuracy-complexity tradeoff for a selected
use-case. Since SPIN also estimates the UE velocity with high
accuracy, the UE can additionally compute and compensate
the Doppler caused by its own mobility thereby relieving the
network from doing the same. The positioning accuracy, the
battery life analyses, and the low complexity prove that SPIN
is an appealing solution for the UL sync problem in NTN IoT
UEs. Further, the analyses, the evaluation methodology, and
the results presented in this paper will help any future research
in the area of IoT NTN. A potential future research could
be conducted on optimizing the continuous synchronization
operations that can enable more efficien SPIN tracking and
thus leads to a reduction of overall computational complexity
in the UE.

APPENDIX

Using Taylor series firs order approximation, any nonlinear
multivariable function q(x, y, . . .), which is differentiable at
[x0, y0, . . .] can be expressed in linear form as

q(x, y, . . .) = q(x0, y0, . . .) +

[
∂q

∂x

∣∣∣∣∣
(x0,y0,...)

∂q

∂y

∣∣∣∣∣
(x0,y0,...)

. . .

]
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×
[
x− x0 y − y0 . . .

]T
. (52)

Using (52), fi(X,V ) and gi(X,V ) in (26) and (27) can be
expressed in linear form, which results in a set of 2(N − 1)
linear equations that can be represented in the form of (29).
The matrices A and B in (29) and (30) are given by

A = Ã
∣∣∣
X=X0,V =V0

(53)

and

B =



r21 − (R2 −R1)
...

rN N−1 − (RN −RN−1)

ṙ21 − (Ṙ2 − Ṙ1)
...

ṙN N−1 − (ṘN − ṘN−1)


+A[X0 V0]

T, (54)

respectively, where

Ã =



∂(f2−f1)
∂x

∂(f2−f1)
∂y . . . ∂(f2−f1)

∂vz

...
...

. . .
...

∂(fN−fN−1)
∂x

∂(fN−fN−1)
∂y . . . ∂(fN−fN−1)

∂vz
∂(g2−g1)

∂x
∂(g2−g1)

∂y . . . ∂(g2−g1)
∂vz

...
...

. . .
...

∂(gN−gN−1)
∂x

∂(gN−gN−1)
∂y . . . ∂(gN−gN−1)

∂vz


,

(55)

Ri = fi(X = X0,V = V0), (56)

and

Ṙi = gi(X = X0,V = V0), (57)

respectively. The weight matrix W is ideally a function of the
covariance matrix of the measurements, given by

W =

 c2W−1
TDOA 0N−1×N−1

0N−1×N−1
c2

f2
c
W−1

FDOA


−1

, (58)

where W−1
TDOA and W−1

FDOA are given by

W−1
TDOA = (59)

σ2
T,2 + σ2

T,1 σ2
T,2 0 . . . 0

σ2
T,2 σ2

T,3 + σ2
T,2 σ2

T,3 . . . 0
0 σ2

T,3 σ2
T,4 + σ2

T,3 . . . 0
...

...
...

. . .
...

0 0 0 . . . σ2
T,N + σ2

T,N−1


and

W−1
FDOA = (60)

σ2
F,2 + σ2

F,1 σ2
F,2 0 . . . 0

σ2
F,2 σ2

F,3 + σ2
F,2 σ2

F,3 . . . 0
0 σ2

F,3 σ2
F,4 + σ2

F,3 . . . 0
...

...
...

. . .
...

0 0 0 . . . σ2
F,N + σ2

F,N−1

 ,

respectively, where σ2
T,i and σ2

F,i are the variance of estimation
errors in ith TOA and FOA measurements as indicated in (31)
and (32), respectively. However, in practice, the covariance
matrix is unknown. For SPIN, since we have rough position
and velocity estimates obtained from 2-WLS, we use them to
compute initial value of W . We update W after each TWLS
iteration based on the updated position and velocity estimates.
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