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Abstract—Derived from the regular perturbation treatment
of the nonlinear Schrödinger equation, a machine learning-
based scheme to mitigate the intra-channel optical fiber
nonlinearity is proposed. Referred to as the perturba-
tion theory-aided (PA) learned digital back propagation
(LDBP), the proposed scheme constructs a deep neural
network (DNN) in a way similar to the split-step Fourier
method: linear and nonlinear operations alternate. Inspired
by the perturbation analysis, the intra-channel cross phase
modulation term is conveniently represented by matrix
operations in the DNN. The introduction of this term
in each nonlinear operation considerably improves the
performance, as well as enables the flexibility of PA-LDBP
by adjusting the numbers of spans per step. The proposed
scheme is evaluated by numerical simulations of a single-
carrier optical fiber communication system operating at 32
Gbaud with 64-quadrature amplitude modulation and 20
× 80 km transmission distance. The results show that the
proposed scheme achieves approximately 1 dB, 1.2 dB, 1.2
dB, and 0.5 dB performance gain in terms of Q factor over
LDBP, when the numbers of spans per step are 1, 2, 4, and
10, respectively. Two methods are proposed to reduce the
complexity of PA-LDBP, i.e., pruning the number of pertur-
bation coefficients and chromatic dispersion compensation
in the frequency domain for multi-span per step cases.
Investigation of the performance and complexity suggests
that PA-LDBP attains improved performance gains with
reduced complexity when compared to LDBP in the cases
of 4 and 10 spans per step.
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processing, fiber nonlinearity compensation, machine learn-
ing, perturbation theory.
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I. INTRODUCTION

Our digitally-interconnected world relies heavily on op-
tical fiber communications to transport the majority of
tremendous information. Over the past decades, digital
signal processing (DSP) has played an essential role to
achieve reliable and high-speed optical fiber communi-
cations [1]–[6]. To date, most of the linear impairments,
such as chromatic dispersion (CD) and polarization mode
dispersion, have been studied extensively and addressed
well by DSP algorithms [7], [8]. Fiber nonlinearity, on
the other hand, appears to be the dominant barrier that
limits the performance of today’s optical fiber communi-
cation systems. The power-dependent nature of the fiber
nonlinear effect restricts the maximum launch power
into the optical fiber, and hence, limits the effective
signal-to-noise ratio (SNR) at the receiver. To mitigate
the nonlinear effects, several DSP techniques have been
proposed, such as the digital back-propagation (DBP)
and perturbation theory-based (PB) nonlinearity com-
pensation (NLC) [9]–[13]. DBP attempts to compensate
the deterministic fiber nonlinearity at the receiver by
emulating the signal propagation in the fiber channel
in a reverse direction. Its complexity is significantly
higher than linear compensation. PB-NLC is typically
developed based on the first-order perturbation of the
nonlinear Schrödinger equation (NLSE). The PB-NLC
technique exhibits reduced computational complexity in
comparison with DBP. A number of variants based on
DBP and PB-NLC have been developed to strike a
balance between performance and complexity [14]–[16].
Nonetheless, the sophisticated nature of the distortion
caused by the interaction between the CD, fiber nonlin-
earity, and amplified spontaneous emission noise have
made it challenging to develop a NLC DSP algorithm to
achieve good performance and low complexity suitable
for commercial implementation.

Recently, the potential of machine learning to overcome
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fiber nonliearity has been explored in the literature [17]–
[21]. In general, these techniques seek to establish a
mapping between the input and output through training,
and the learned mapping is employed at the inference
stage to remove nonlinear effects. For example, in
learned PB-NLC, the data triplets are used as input,
and the output is the additive nonlinear distortion field
[21]. The mapping is obtained through training, using
a large amount of data instead of rigorous mathematical
reasoning; as such, it typically requires empirical experi-
ence to find out the model hyper-parameters [22]. Unlike
such “black-box” solutions, a technique that employs a
deep neural network (DNN) to unfold the conventional
DBP, referred to as the learned DBP (LDBP), has been
proposed recently [23], [24]. LDBP interprets the split-
step Fourier method (SSFM) as a DNN with each
hidden layer as the linear section and the correspond-
ing activation function as the nonlinear section. As a
result, LDBP incorporates the optimization capability
of a DNN into the conventional DBP by parametrizing
the SSFM and training the parameters through super-
vised learning. Performance improvement and complex-
ity reduction compared to the conventional DBP are
achieved. Additionally, this technique leads to explicit
hyper-parameters selection, such as the number of layers
and the activation function. This approach has also been
validated through experiments [25]–[27]. More recently,
a complex-valued neural network has been considered to
replace the real-valued neural network structure in LDBP
[28]. To summarize, the LDBP technique accomplishes
the linear steps through the weight matrices operation
in DNN or CNN, and the nonlinear steps through the
nonlinear activation functions. However, the number of
layers in the DNN increases with the number of fiber
spans in the link, and such a deep structure faces several
challenges, such as the extended training time/memory
and the well-known vanishing gradient problem [22].

In this paper, we propose a novel design, where the
nonlinear steps of LDBP are improved with the aid of
the first-order perturbation analysis. One may see that the
proposed perturbation-aided (PA)-LDBP scheme shares
some merits with the enhanced SSFM (ESSFM), where
the nonlinearity compensation requires the adjacent sym-
bols of the current symbol of interest. However, the
differences between the proposed PA-LDBP and ESSFM
in [24] and [29] are evident. Specifically, in [24], the
focus is on the performance gain of LDBP that adopts
ESSFM over the conventional DBP with ESSFM; while
in [29], the aim is to improve the performance at each
nonlinear step, and only 1 span per step is considered.
In this work, we show that the benefits of our proposed

PA-LDBP are fourfold:

• The perturbation analysis is employed to facili-
tate the DNN initialization. This physics-informed
initialization guides the training deterministically
towards a promising solution, and thus, significantly
reduces the training effort.

• It provides a flexible structure which enables a
multi-span per step configuration.

• It outperforms LDBP for the same number of spans
per step.

• It achieves a reduction in complexity when multi-
span per step is considered.

The remainder of this paper is organized as follows.
In Section II, the system model, the LDBP, and the
proposed PA-LDBP scheme are introduced. In Section
III, a comprehensive performance analysis is carried out,
the performance of PA-LDBP is compared to that of
LDBP, and the initialization for PA-LDBP is discussed.
In Section IV, the complexity analysis is provided, and
two approaches to reduce the overall complexity are
presented. Finally, conclusions are drawn in Section V.

Notations: Throughout the paper, the upper case bold
letters represent matrices, while the lower case bold font
denotes column vectors. AT indicates the transpose of
matrix A, and A∗ denotes the complex conjugate of
matrix A. C represents the set of complex numbers, and
Z is the set of integers.

II. THE PROPOSED PA-LDBP SCHEME

In this section, the system model is introduced, followed
by a brief description of the LDBP technique. Then,
details of the proposed PA-LDBP are provided.

A. System Model
In a single mode optical fiber, the propagation of the
optical field envelope u at the retarded time frame t and
distance z is governed by the scalar NLSE, which is
given as

∂

∂z
u(z, t) +

α

2
u(z, t) + j

β2
2

∂2

∂t
u(z, t)

= jγ|u(z, t)|2u(z, t), (1)

where α is the attenuation coefficient, β2 is the group
velocity dispersion coefficient, and γ is the nonlinear-
ity coefficient [30], [31]. The signal launched into the
optical fiber channel is given by

u(0, t) =
√
P

∞∑
n=−∞

sng(0, t− nT ), (2)
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where P is the launch power, sn is the nth symbol,
g(0, t − nT ) is the pulse, and T is the symbol du-
ration. The symbol sequence is assumed independent
and identically distributed and with unit power. After
propagating through the optical channel, the signal is
coherently detected. Then, it passes through a low-pass
filter and is sampled at t = nT, n ∈ Z. Subsequently,
a sampled sequence, x = [x1, x2, ..., xN ]T , is obtained.
The objective of NLC techniques is to recover informa-
tion from x.

B. The LDBP Technique

DBP can be viewed as a concatenation of linear and
nonlinear steps. In the absence of noise, the transmitted
signal is estimated by reversing the NLSE:

∂

∂z
u(z, t) = (D̂−1 + N̂−1)u(z, t), (3)

where D̂ = −j β2

2
∂2

∂t2 −
α
2 and N̂ = jγ|u(z, t)|2 are the

linear and nonlinear operators, respectively, and(·)−1 is
the reverse operation [31]. Given the sampled signal, x,
the linear step of DBP is expressed as

xCD = exp(
α

2
µ)F−1(Fx exp(−j β2

2
ω2µ)), (4)

where F is the N ×N discrete Fourier transform (DFT)
matrix, F−1 is the inverse DFT matrix, µ is the step
size, and ω is the DFT angular frequency, whose ith
element is given by ωi = 2πfi (fi = fs(i − 1)/N if
i < N/2 and fi = fs(i − 1 − N)/N if i ≥ N/2). fs
is the sampling rate. After that, a nonlinear operation is
performed sample-by-sample in time domain according
to

xNL
n = xCD

n exp
(
−jζγLeff(µ)|xCD

n |2
)
, (5)

where xNL
n is the nth sample after the nonlinear step, ζ

is a parameter which needs to be optimized empirically,
Leff(µ) = (1 − exp(−αµ)/α) is the effective nonlinear
length, and xCD

n is the nth sample in xCD. Typically, a
smaller step size leads to an enhanced performance but
results in higher complexity.

LDBP employs the connection between the DBP and a
DNN: in both cases, linear and nonlinear steps alternate.
In LDBP, all linear steps are parametrized as the DNN
weight matrices W(1), ...W(`), ...W(L), where W(`) ∈
C is an N -by-N matrix, the superscript (`) represents
the `th step, and L represents the number of steps. On
the other hand, the nonlinear operation at the `th step is
performed by applying the activation function

σ(l)(xCD
n ) = xCD

n exp(−jη(`)γLeff(µ)|xCD
n |2) (6)

in the DNN, where η(`) corresponds to ζ in (5) and is
configured as a non-trainable parameter in LDBP [24].
By concatenating all the steps, LDBP can be expressed
concisely as

ΠLDBP(x) = σ(W(L)...σ(W(1)x)). (7)

A parameter set (W(1), ...,W(`), ...,W(L)) is defined,
which is optimized through supervised learning. It is
worth noting that the rows of the linear matrix W(`)

are circularly-shifted versions of
h(`) =

(
h
(`)
−V , . . . , h

(`)
−1, h

(`)
0 , h

(`)
1 , . . . , h

(`)
V , 0, . . . , 0

)
,

where h
(`)
v ∈ C, v = −V, . . . , V represent the fi-

nite impulse response (FIR) filter coefficients for CD
compensation [24]. Note that the filter is symmet-
ric, so the trainable parameters at the `th step are
hv

(`) =
(
h
(`)
0 , h

(`)
1 , . . . , h

(`)
V

)
. Thus, the parame-

ter set for the entire model is downsized to θ ={
hv

(1), . . . ,hv
(`), . . . ,hv

(L)
}

. Recently, a CNN struc-
ture has been employed to replace the DNN structure
[29]. The CNN-based LDBP considers a block of sym-
bols as the input, while the output is the equalized
symbol corresponding to the center of the input block.
In spite of different structures, both DNN and CNN
perform circular convolutions-based time-domain equal-
ization (TDE) to compensate for the CD at each step.

LDBP offers important advantages over other machine
learning-based NLC methods which are data-driven [18],
[21]. Firstly, the DNN structure is based on physical
principles, which is the SSFM approximation of the
signal propagation over optical fibers. It follows that
hyper-parameters, such as the type of the activation
function and the number of layers, are associated with
physical parameters and their choice or optimization are
interpretable similar to the case of conventional DBP.
Secondly, the initialization of the DNN weights for linear
steps can be based on analytical results used in the DBP,
which greatly facilitates successful and fast training.
These benefits will be inherited by the proposed PA-
LDBP scheme.

C. The PA-LDBP Scheme

LDBP has been shown to substantially improve the
performance and complexity when compared to the
conventional DBP [24]. An important factor in the
complexity reduction of LDBP is the pruning of network
parameters, i.e., the number of non-zero elements of
the weight matrices W(l), which effectively reduces the
number of coefficients of the TDE filter [32]. However,
it is noticed that most of the investigations of the LDBP
scheme consider self phase modulation (SPM), and thus,
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Fig. 1: PA-LDBP structure. The proposed technique can be viewed as a DNN with interleaving linear and nonlinear
operations. The parameters W(`) and C(`) are optimized by supervised learning.

a relatively small number of spans per step is required.
In other words, the number of layers in LDBP needs to
increase with the number of fiber spans for successful
nonlinearity compensation. Hence, a very deep DNN
is required, which is challenging [22]. To overcome
the above-mentioned problems, we propose to refine
the nonlinearity compensation by considering both SPM
and intra-channel cross-phase modulation (IXPM). The
details are presented in the following.

Without loss of generality, we consider the first step of
PA-LDBP, and the first-order nonlinear distortion to the
nth sample is given as

∆n = jP
3
2

∑
m,k

xCD
k (xCD

m+k)
∗
xCD
m Cm,k, (8)

where Cm,k is the perturbation coefficient that can be
obtained by (9) shown at the bottom of the page, with
f(z) as the power profile function defined as exp(−αz)
[10], [33]. It is worth noting that the distortion for
other steps can be calculated in a similar way using
(8). By expanding (8) and performing some algebraic
simplifications, the distortion field can be separated into
the SPM, IXPM, and intra-channel four-wave mixing
(IFWM) effects, as follows:

∆n = jP
3
2xCD

n

|xCD
n |2C0,0 + 2

∑
k 6=0

|xCD
k |2C0,k


+ jP

3
2

∑
m6=0,k 6=0

xCD
k (xCD

m+k)
∗
xCD
m Cm,k. (10)

Let φn = P
3
2

[
|xCD
n |2C0,0 + 2

∑
k 6=0|xCD

k |2C0,k

]
. Then,

when SPM and IXPM are both considered, the nonlinear
step in PA-LDBP can be represented as

σ(xCD
n ) =xCD

n −∆n

≈xCD
n (1− jφn)

≈xCD
n exp(−jφn)

=xCD
n exp

(
−jP 3

2 (xCD
k )T c0

)
, (11)

where xCD
k is the vector

[|xCD
n−k|2, ..., |xCD

n |2, ..., |xCD
n+k|2]T and c0 represents the

perturbation coefficients vector which accounts for the
SPM and IXPM effects, i.e., [2C0,k, ..., C0,0, ..., 2C0,k]T .
Note that (11) holds when φn � 1. By carefully
examining (11), it can be seen that PA-LDBP involves
one additional operation when compared to LDBP at
each nonlinear step. This operation aims to learn the
nonlinearity interaction between a number of adjacent
samples. To generalize, we consider the `th step,
which includes 2 sets of weights: W(`) and C(`).
The former can be configured in the same way as in
LDBP for CD compensation. The rows of the latter are
circularly-shifted versions of c

(`)
0 . By concatenating all

the steps, one can summarize the PA-LDBP as

ΠPA-LDBP(x) = σ(C(L)W(L)...σ(C(1)W(1)x)). (12)

The resulting structure of PA-LDBP is shown in Fig-
ure 1. The dashed-line window, given as an exam-
ple, includes three neurons for nonlinearity calculation
contributing to the neuron (in blue) of the next layer.

Cm,k =
1

T

∫ z

0

dzγf(z)

∫
dtg∗(z, t)g(z, t−mT )g(z, t− kT )g∗(z, t− (m+ k)T ) (9)
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Fig. 2: Simulation system block diagram. LO: local oscillator.

Although the complexity at each step increases compared
to LDBP, the introduced extra operation significantly im-
proves the nonlinearity compensation performance, and
enables a flexible structure with multiple spans per step.
In other words, compared to LDBP, PA-LDBP could
achieve similar performance with a smaller number of
steps, L.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the performance of the proposed PA-
LDBP is investigated through numerical simulations.
First, the details about the simulation implementation
are provided, which is followed by the discussion of the
simulation results.

A. Simulation Setup

1) Optical Fiber System Setup: A single carrier system,
shown in Fig. 2, is employed to generate the training
and testing data. A 64-quadrature amplitude modulation
(QAM) signal at 32 Gbaud with a roll-off factor of
0.1 is generated to modulate an optical carrier through
the in-phase quadrature modulator (IQM). The carrier is
provided by an external cavity laser (ECL) with 1550.12
nm center wavelength. Then, the modulated signal is fed
into 20 spans of standard single mode fiber (SSMF).
For each span, the SSMF is 80 km, followed by an
Erbium-doped fiber amplifier (EDFA). The SSFM has
an attenuation coefficient of 0.2 dB/km, a dispersion
parameter of 17 ps/nm/km, and a nonlinear coefficient
of 1.3 /W/km. The EDFA has a 5 dB noise figure and
16 dB gain. The propagation is emulated by the SSFM
with 400 steps per span. Similar to [24] and [29], carrier
frequency offset and laser phase noise are not considered
in the simulation. At the receiver, the processing includes
static equalization and phase rotation recovery. The Q
factor is used as performance metric, and is defined as
Q = 20log10(

√
2erfc−1(2BER)), where erfc(·) is the

complementary error function and BER is the system
bit error rate [11].

2) Configurations with Different Number of Spans per
Step: According to (9) and (11), a given pulse interacts
nonlinearly with a certain number of neighbouring pulses

TABLE I: FIR filter and c0 lengths per step for PA-
LDBP initialization.

Scenarios
(span(s)/step)

FIR filter lengths c0 lengths

1 77 11
2 149 25
4 293 31

10 725 41

over a distance, and this number depends on the fiber
length. To investigate the flexibility of the proposed
scheme, we consider four scenarios with 1, 2, 4, 10 spans
per step. Accordingly, h and c0 are initialized with fiber
lengths of 80 km, 160 km, 320 km, and 800 km (note
that same h and c0 are used to initialize each step in
LDBP and PA-LDBP). For h, the FIR filter is obtained
based on the least squares criterion [24], and c0 can
be computed by (9). The length of c0 depends on the
window length corresponding to a truncation threshold
[16]. The truncation keeps only the significant coeffi-
cients, which accomplishes a complexity reduction. A
truncation criterion, defined as 20log10|Cm,k/C0,0|= χ,
is applied, with χ as a truncation threshold. In Fig.
3, we show the values of χ ranging from −25 dB to
−5 dB with a step size of 5 dB for different spans of
fiber length. Given a selected truncation threshold, the
numbers of significant terms of perturbation coefficients
increases with augmenting the number of spans because
of the dispersive effect. In the simulation, a truncation
threshold of −20 dB is used, and the corresponding
length of c0 for the four scenarios are 11, 25, 51,
and 101, respectively. This threshold value is a good
compromise between performance and complexity, as the
performance improvement of PA-LDBP with a smaller
threshold is insignificant. Furthermore, in the cases of 4
and 10 spans per step, we found that the lengths of c0 can
be reduced to 31 and 41 after the training, respectively,
without performance penalty. The lengths of the FIR
filter and c0 to initialize PA-LDBP for the 4 scenarios
are summarized in Table I.

3) Training of PA-LDBP: The PA-LDBP is imple-
mented in TensorFlow. The input is the signal after
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Fig. 3: Perturbation coefficients contour plot for fiber length of 1, 2, and 4 spans, respectively, with χ ranging from
−25 dB to −5 dB. The number of significant perturbation coefficients increases with augmenting the number of
spans at the same χ value.
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Fig. 4: Performance comparisons between LDBP and
PA-LDBP, with different number of spans/step, as well
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coherent detection with 2 samples per symbol. The
training data set includes 256 frames and each frame
includes 2048 samples, while the testing data set includes
64 frames with the same frame length as the training data
set. Therefore, the Q factor is calculated from 393,216
bits. Adam is chosen as the optimizer with a learning rate
of 0.001, and the batch size is 32. The loss function is
the mean-squared error defined as L(s, ŝ) =

∑N
n=1|sn−

ŝn|2/N , where ŝn is the nth symbol after downsampling
and phase de-rotation. Furthermore, the effective SNR,
calculated by 10 log10

(
L(s, ŝ)−1

)
, is employed as an

alternative performance metric to better demonstrate the
DNN’s convergence performance in the next section.
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Fig. 5: Constellation samples after fiber nonlinearity
compensation when applying LDBP and PA-LDBP, with
1 span and 2 spans per step, respectively, at a launch
power of 2 dBm.

B. Performance of the PA-LDBP

First, we present the Q factor performance of the pro-
posed PA-LDBP and compare it to that of LDBP, as
shown in Fig. 4. The threshold corresponding to a BER
of 0.02 is 6.25 dB in terms of the Q factor. In addition,
the constellations obtained after LDBP and PA-LDBP
with 1 span per step and 2 spans per step at the launch
power of 2 dBm are depicted in Fig. 5. From these
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constellations, we can see the quality difference of the
signal processed by LDBP and PA-LDBP. The perfor-
mance gains of PA-LDBP over linear compensation are
approximately 4.2 dB, 2.2 dB, 1.7 dB, and 0.7 dB, when
the numbers of spans per step are 1, 2, 4, 10, respectively.
Furthermore, PA-LDBP outperforms LDBP by 1.0 dB,
1.2 dB, 1.2 dB, and 0.5 dB for the same number of
spans per step, respectively. The results for DBP with
1 and 0.5 span per step are also shown.1 As seen from
this figure, DBP with 1 span per step performs worse
than LDBP and PA-LDBP with 1 span per step. These
performance improvements are expected, given the fact
that PA-LDBP compensates for IXPM along with SPM
at each nonlinear step. Performance gains diminish when
the number of spans per step increases for both PA-
LDBP and LDBP, as a large number of spans per step
results in a numerical approximation error in calculating
the nonlinear distortion field. However, it is noticed that
PA-LDBP with 10 spans per step achieves a similar gain
when compared to LDBP with 2 spans per step. The
overall complexity with 10 spans per step would be much
lower than the case with 2 spans per step. Details are
shown in the complexity section.

C. Initialization for PA-LDBP

The initialization is critical to DNN’s performance, as an
inappropriate initialization could lead to slow learning
or divergence. The parameter initialization for the linear
steps is similar to that of the LDBP, which has been
discussed in [24]. Therefore, we focus on the discussion
of the initialization for the nonlinear steps. In particular,
for the four scenarios, the initial FIR filter length and
number of perturbation coefficients are listed in Table
I. Similar to what has been observed in [24] for the
linear steps, it turns out that the initialization of non-
linear step in PA-LDBP plays an important role on the
convergence of the DNN. Two initialization scenarios
are considered: the initialization with the perturbation
coefficients calculated by (9) and random initialization.
For the latter case, the real and imaginary parts of all
filter taps are drawn from a Gaussian distribution with
zero mean and unit variance. The results are shown in
Fig. 6, where the number of epochs to achieve 90%
to 99% of the converged value of the effective SNR
(CVESNR) is illustrated to indicate the quality and speed
of convergence. Note that when the random initialization
is used, 20 realizations are performed to obtain the
average. As can be seen, random initialization requires

1Typically, DBP is described by the number of steps per span;
however, in order to keep the way to describe DBP consistent with
that for LDBP and PA-LDBP, we use spans per step here.
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Fig. 6: Number of epochs required to achieve a certain
level of the CVESNR with different initializations for
PA-LDBP. Results for random initializations are plotted
in blue color, while those for initialization with the
perturbation coefficients are plotted in red color.

significantly more training effort to achieve the same
CVESNR. On the other hand, the initialization with the
perturbation coefficients leads to a fast and good conver-
gence of the DNN, especially when the number of spans
per step is greater than one. The calculated perturbation
coefficients from perturbation analysis provide a good
DNN initialization, and this could be an advantage for an
elastic optical network where training is required more
frequently to cope with the adaptive transmission.

IV. COMPLEXITY ANALYSIS AND REDUCTION

Complexity is crucial when designing a digital NLC
technique. The complexity metric adopted here is the
number of real-valued multiplications, as they typically
consume significantly more computation resources than
other operations. In this section, the complexity of PA-
LDBP is investigated first, followed by two proposed
methods to reduce the complexity. Then, the perfor-
mance versus complexity of PA-LDBP and LDBP is
provided.

A. The Complexity of PA-LDBP

Firstly, the complexity of LDBP is analysed as a bench-
mark. At each linear step, by considering that the FIR
filter is symmetric, the number of real-valued multipli-
cations per sample is 4 · ceil(NCD/2), where NCD is
the FIR filter length and ceil(·) is the ceiling function.
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Fig. 7: Prior- and post-pruning perturbation coefficients at step 1 and 2, for 10 spans per step. The perturbation
coefficients at the two steps are not identical after the PA-LDBP is trained.

TABLE II: The performance with perturbation coeffi-
cients pruning (10 spans per step at launch power of −2
dBm).

Number of perturbation
coefficients after pruning

31 21 11

Q factor (dB) 6.89 6.81 6.68

At each nonlinear step, each sample is squared (2 real-
valued multiplications), then multiplied by γ (1 real-
valued multiplication), followed by a phase rotation (4
real-valued multiplications). The exponential function
is implemented by a look-up table. The complexity
analysis for PA-LDBP is done in a similar way, and
the major difference lies in the nonlinear steps. On top
of the LDBP complexity in each nonlinear step, extra
4 · ceil(NPB/2) real-valued multiplications per sample
are required, where NPB is the number of perturbation
coefficients at each step.

B. Complexity Reduction

We propose two methods to reduce the overall complex-
ity of PA-LDBP, as presented below.

1) Perturbation Coefficient Pruning: Network pruning
is important for memory size and complexity reduction,
and aims to remove redundant weights or neurons that
do not contribute significantly to the accuracy of the
networks output. In [24], the CD FIR filter length can
be decreased significantly through progressive pruning,
which contributes a substantial complexity reduction
with negligible performance penalty. More specifically,
the lengths of the FIR filters after pruning are 37, 51, 95,

251 per step for the 4 scenarios, respectively. Compared
to the values in Table I, the FIR filter lengths are pruned
by more than half. This enhancement is attributed to
the efforts of joint filter design by the DNN: all the
steps are incorporated into a multi-objective optimization
problem instead of the standard least-square formulation
on one step. The pruning for linear steps from LDBP
can be inherited by PA-LDBP. Furthermore, the trainable
parameters in the nonlinear steps, i.e., the perturbation
coefficients in c0, can be pruned as well.

Illustrative examples are provided in Table II, where the
performance for 10 spans per step is shown with 31,
21, and 11 perturbation coefficients, respectively. Out of
these cases, no performance penalty is observed when
reducing the number of perturbation coefficients from
41 to 31. The amplitudes of the perturbation coefficients
after pruning at each step are shown for steps 1 and
2 in Fig. 7. As it can be seen, the coefficients at
the two steps are not identical after training, while
the symmetry of perturbation coefficients is preserved
after pruning. Upon transmission through the fiber, the
IXPM and SPM at the end of each span are affected by
ASE noise, and such impact accumulates throughout the
propagation. Since the PA-LDBP “back-propagates” the
signal, the nonlinear distortion estimate at each step is
impacted by different amount of ASE noise, and thereby
the perturbation coefficients are adjusted by the DNN
accordingly.

Overall, pruning the perturbation coefficients is benefi-
cial for complexity reduction with a negligible perfor-
mance penalty. The reason is similar to what has been
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1 span per step

2 spans per step

10 spans per step

4 spans per step

Fig. 8: Performance gain versus the number of real-
valued multiplications for PA-LDBP (with and without
coefficient pruning) and LDBP with different numbers
of spans per step.

stated for the pruning strategy for the FIR filter in LDBP,
i.e., the efforts of joint filter design by the DNN.

2) CD Compensation in Frequency Domain: At each
linear step, one pair of fast Fourier transformation
(FFT) and inverse FFT, and multiplications with the
FDE filter coefficients at the corresponding discrete
frequencies are required. For processing long sequences,
the overlap-and-add (OLA) method is used to segment
the sequence into shorter-length blocks. Using FDE,
the number of real-valued multiplications per sample is
4·[2·NFFTlog2(NFFT)+NFFT]/(NFFT−NCD), where NFFT
is the FFT size in the OLA method. The complexity-
optimal FFT sizes corresponding to the four investigated
scenarios (from 1 span per step to 10 spans per step)
are 256, 512, 1024, and 2048, respectively. In practice,
we recommend to obtain the pruned TDE filter weights
through training and perform FDE at the inference stage,
as complexity at the inference stage is of more practical
interest.

C. Performance versus Complexity

Figure 8 shows the Q factor gain over linear com-
pensation as a function of the number of real-valued
multiplications per sample for LDBP and FDE-based
PA-LDBP. Pruning of the CD filter coefficients is applied
in all cases. As can be seen, for 1 and 2 spans per
step, PA-LDBP without perturbation coefficients pruning
obtains improved performance at the price of higher
complexity. However, when the number of spans per step

increases, in the cases of 4 and 10 spans per step, PA-
LDBP attains an enhanced performance with a reduced
complexity. Pruning for PA-LDBP reduces the number
of perturbation coefficients to 5, 13, 21, and 27 per step
for the 4 scenarios, respectively. We observe that this
leads to a considerable reduction of complexity for 1
and 2 spans per step. With the perturbation coefficients
pruning, PA-LDBP bears a similar complexity as LDBP
for 2 spans per step, while attaining an enhanced perfor-
mance.

V. CONCLUSION

A perturbation-aided machine learning scheme has been
proposed for intra-channel nonlinearity compensation in
coherent optical fiber communications systems. The pro-
posed scheme improves the nonlinearity compensation
at each nonlinear step by incorporating SPM and IXPM
terms based on the first-order perturbation theory. This
refinement has enabled a flexible restructuring of the
existing LDBP technique. Furthermore, the CD com-
pensation for multi-span per step can be performed in
the frequency domain, and this achieves a complexity
reduction compared to the TDE-based LDBP. In addi-
tion, pruning of the perturbation coefficients has been
investigated, and it has been showed that it successfully
reduces the complexity. Overall, the proposed scheme
attains an enhanced performance when compared with
the LDBP scheme, with possibility of reduced complex-
ity. Additionally, it provides practitioners with a flexible
way to configure the compensation scheme with different
numbers of spans per step. Regarding our future work,
the following two directions will be considered: adapting
PA-LDBP to dual-polarization systems and investigating
the feasibility of PA-LDBP in WDM systems.
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