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Abstract—The re-use of channel estimation performed by
power line communication (PLC) modems for monitoring of
cable health conditions has recently been investigated in several
works. In particular, cable diagnostics solutions based on machine
learning techniques have been shown to process the PLC channel-
estimation samples intelligently to differentiate fault conditions
from the benevolent load changes. Previous studies have been
based on synthetically generated training and test signals to
optimize and validate the machine learning models. To deal
with the mismatches between the purely synthetically generated
signal samples and those encountered in a real implementation,
in this paper, we propose S-parameter measurement aided gen-
eration of channel estimation samples. Specifically, we describe
the behaviour of our device under test (DUT) through its
S-parameter measurement and synthetically generate varying
terminal load conditions. Then we train and use machine learning
models to determine the health of the DUT. We describe the
proposed approach and apply it to data obtained from laboratory
measurements.

I. INTRODUCTION

Cable diagnostics constitutes an indispensable part for the
asset monitoring to ensure the safe operation of smart power
grids [1]. Various cable diagnostics solutions have been devel-
oped in the past to help preventing cable in-service failures,
which could lead to potentially dangerous situations and severe
economic losses [2, Ch. 6]. One approach is to determine
the cable health conditions by analyzing the high-frequency
signals propagated along the cable. This is based on the
principle that the inception of a cable anomaly alters the
electric signal propagation [2, Ch. 6].

In recent years, several contributions have been made on
cable diagnostics solutions using power line communications
(PLC), including [3]–[6]. They exploit the fact that power
line modems (PLMs) obtain information about the propagation
medium by way of channel or impedance estimation, which
can be reused to infer the cable health conditions. This enables
the continuous monitoring of the cable health and avoids the
additional overhead of installing dedicated sensors solely for
the diagnostics purposes.

In [3], [5], [7], cable diagnostics solutions based on the
comparison between the currently measured PLC channel
state information (CSI) and a healthy reference measurement
have been developed. However, the load conditions of a PLC
network are constantly changing and the network topology
varies from time to time. These render any deviation from
the healthy reference measurement unreliable in determin-
ing the presence of a potential cable anomaly. Furthermore,
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traditional methods using the principle of traveling wave,
reflectometry [8], broadband impedance spectroscopy [9], and
partial discharge detection [10], which also exploit high-
frequency signal propagation characteristics, require manual
result interpretation by a technician with expertise.

To overcome the drawback of requiring an unreliable
healthy reference measurement and to enable the automatic
analysis of the sampled electric signal, several machine learn-
ing (ML) based PLC cable diagnostics solutions have been
developed [4], [6], [11], [12]. In this case, CSI samples of
healthy and faulty cable instances are used to train a machine.
Once the ML model has been trained, it can intelligently
analyze the incoming CSI sample and autonomously determine
the cable health condition associated with this sample.

However, one of the issues encountered in the field imple-
mentation of these ML based schemes is the acquisition of
training samples. On the one hand, it is typically infeasible to
obtain a sufficient amount of training data from measurements,
covering different cable states and network settings. On the
other hand, synthetically generated samples can be expected
to be mismatched to some degree compared to CSI sampled
in the field. Several factors could lead to such mismatches.
Firstly, information about the setting of the field implementa-
tion could be incomplete, e.g., the impedance characteristics
of loads in the PLC band. Secondly, the exact parameters
of the cable under test may not be documented or known.
Thirdly, approximations in the analysis of signal propagation
over multi-conductor cables lead to a mismatch.

In an effort to alleviate the problem of training data mis-
match, in this paper, we propose the measurement-aided gen-
eration of training data. In particular, we consider scattering
parameter (S-parameter) measurements of the cable section
that is being monitored as input to the synthetic generation of
CSI samples used for training, and we build a larger training
set through the variation of network loads at the ends of the
cable. We expect that this provides a mechanism to obtain a
training set that is more consistent with data observed in the
actual deployment compared to synthetically generated data
using only a channel emulator. As a specific use case, we
consider the ML-based cable diagnostics using samples of the
end-to-end channel frequency response (CFR) [6].

The remainder of this paper is organized as follows. The
details of S-parameter measurements and synthetic channel
generation based on the extracted information are presented
in Section II. In Section III, we describe the ML-based
cable diagnostics solution based on the synthetically generated
channel. In Section IV, we conduct numerical evaluations, and
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Fig. 1: Abstraction of a two-port network.
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Fig. 2: Two-port network with signal voltages and currents.

Section V concludes this work.

II. CFR SYNTHESIS USING S-PARAMETER
MEASUREMENTS

We first briefly review the basics of the S-parameter descrip-
tion of two-port networks and then proceed to the method of
obtaining CFR samples for the training of the ML model.

A. S-Parameter Measurement

S-parameters are used to describe the electrical behavior of a
multi-port network composed of linear electrical components
operated under the steady state electrical signal stimuli [13,
Ch. 4].

The behaviour of a two-port network as shown in Fig. 1 is
described by four S-parameters, i.e., S11, S12, S21 and S22.
These are defined through[

b1
b2

]
=

[
S11 S12

S21 S22

]
·
[
a1
a2

]
, (1)

where a1 is the incident power wave at port 1 propagated
towards the two-port network, a2 is the incident power wave
at port 2, b1 is the reflected power wave at port 1 propagated
outward from the two-port network, and b2 is the reflected
power wave at port 2 (see Fig. 1). Note that to determine the
S-parameters, it is assumed that each port of the network is
terminated with a system impedance Z0, which usually takes
the value of 50 Ω.

B. PLC Signal Transmission Through Two-Port Networks

While the S-parameters can be obtained through mea-
surements, e.g. from a vector network analyzer, it is more
convenient to consider the ABCD parameters of the two-port
network to analyze the PLC signal propagation. The ABCD
parameters relate voltages and currents as shown in Fig. 2. In
particular, we define the voltage across port 1 as V1, the voltage
across port 2 as V2, the current entering the two-port network
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Fig. 3: Model for the setup for cable monitoring using PLMs.

from port 1 as I1, the current leaving the two-port network
from port 2 as I2. Then we obtain the ABCD parameters from[

V1
I1

]
=

[
A B
C D

]
·
[
V2
I2

]
. (2)

The relationship between the quantities shown in Figs. 1 and 2
is given by

ai =
1

2

Vi + Z0Ii√
|<{Z0}|

, (3)

bi =
1

2

Vi − Z∗
0 Ii√

|<{Z0}|
, (4)

where (·)∗ is taking the complex conjugate, <{·} is taking
the real part of a complex number and i ∈ {1, 2}. Using
Equations (1) to (4), we can obtain the ABCD parameters
from the measured S-parameters as[
A B
C D

]
=


(1+S11)(1−S22)+S12S21

2S21
Z0

(1+S11)(1+S22)−S12S21

2S21

1
Z0

(1−S11)(1−S22)−S12S21

2S21

(1−S11)(1+S22)+S12S21

2S21

 (5)

C. Data Synthesis for CFR Samples

We investigate a PLC network as shown in Fig. 3, where
TX is the transmitter power line modem (PLM), RX is the
receiver PLM, ZS is the source impedance of TX, the two-
port network 1 is the cable, or generally the device-under-
test (DUT), we wish to monitor, and ZL1 is the network load
impedance at the receiver side. In this setting, we assume
that the PLM at the transmitter can provide the signal voltage
regardless of the experienced network impedance. Then, if we
define the voltage across the transmitter as VS and the voltage
across the receiver as VL, measured from the ’+’ end to the ’-’
end as shown in Fig. 3, we would like to faithfully generate
the end-to-end CFR samples between TX and RX, H , defined
as1

H =
VL

VS
. (6)

Using [14, Eq. 2.26], we can calculate H using

1Note that the values of H , as for the quantities introduced earlier, are a
function of the wave or signal frequency f , which we do not make explicit
for compactness of notation.
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Fig. 4: Setup to draw network loads ZL1 for the model in
Fig. 3.

H =
ZL

A1ZL +B1 + C1ZSZL +D1ZS
, (7)

where A1, B1, C1, D1 are ABCD parameters of the two-
port network 1 and ZL is the total equivalent impedance at
the receiver side. We can further calculate ZL using 1

ZL
=

1
ZRX

+ 1
ZL1

, where ZRX is the impedance of RX.
We obtain the values for A1, B1, C1, D1 through S-

parameter measurements. For this, we assume that both
healthy and faulty states of the cable can be generated. Since
this is typically not possible in an actual deployment, we ex-
pect that the DUT can be represented through an experimental
setup in a laboratory.

The remaining task to generate CFR samples is to obtain
values for ZL. For this, we use a synthetic approach in an
attempt to capture the nature of typical and varying network
load conditions. In [6], the terminal loads were assumed to
be drawn from a uniform distribution, which was done to
introduce uncertainty due to varying load conditions. But this
approach is quite simplistic as it results in frequency-flat
impedances.

In this work, considering the typically frequency-selectivity
nature of load impedances in the PLC network, we consider
a generator network as shown in Fig. 4, to draw samples
of ZL1. The ABCD parameters of the two-port network 2
would be chosen to mimic what is seen into the network at
the receiver side. For example, if this part of the network is
similar to the monitored cable, we can set A2, B2, C2, D2

according to the S-parameter measurements obtained for two-
port network 1. The remainder of the network, whose effect
on ZL1 is largely “filtered” through two-port network 2 is
then modeled through a terminal impedance ZT generated
uniformly at random within a certain range. The network
load impedance used in Fig. 3 can then be calculated as [14,
Eq. 2.27]

ZL1 =
A2ZT +B2

C2ZT +D2
. (8)

III. ML-BASED CABLE DIAGNOSTICS

The task for the ML-based cable diagnostics is to identify
whether there is an anomalous condition between the transmit-
ter PLM and the receiver PLM, i.e., in the DUT represented by
two-port network 1 in Fig. 3. In this work, we formulate this
as a supervised classification task. In the following, we first
link the discussion about S-parameter measurements above to

the training and testing data generation for the ML model.
Then, we briefly review the ML models used in this study.

A. Training and Test Data Generation

For the purpose of supervised classification, the training data
should consist of measurements from healthy and abnormal
conditions of the specific DUT. Especially the latter may be
difficult to obtain from in-field measurements. We therefore
expect that in a practical scenario the DUT with healthy
and faulty states can be reproduced in a laboratory setting.
There may also be a number of nh and nf instances of S-
parameter measurements under healthy and abnormal condi-
tions, respectively. The nh and nf measurements would reflect
variations of the DUT, due to for example, load changes when
the DUT is a cable section with a branch point. To account
for the effect of varying network loads outside the two-port
network 1, we use each of the (nh + nf) measurements as
seeds to generate nL CFR instances associated with different
values ZL. The randomness is introduced through choosing
the load ZT in Fig. 4 uniformly at random from a certain
range of impedances. As described in Section II-C, the ABCD
parameters of the two-port network 2 through which ZT is
transformed would be selected to model the neighbouring
cable segment. For the results shown in Section IV, we
choose one of the S-parameter measurements for the DUT
corresponding to one cable type uniformly at random with
each realization for ZT. This means that we mimic the case
where the connecting line segment is similar in nature to the
DUT but could be in different states, including healthy or
faulty.

From the total number of terminal load conditions, i.e., nL
instances of ZL, we will have nhnL CFR samples for healthy
cables and nfnL CFR samples for cables with anomalies. For
our numerical tests in Section IV, we will apply equal (bal-
anced) numbers of seed measurements for healthy and faulty
cable conditions, i.e., nh = nf. Furthermore, we also consider
the scenario of using only a fraction of the measurements as
seeds to generate samples for training and validation, so as to
explore the generalization ability of the diagnostics method.

B. Considered ML Technique

We apply the support vector machine (SVM) in this paper,
which is a common and well-investigated machine learning
technique that has shown overall good performance across
various applications [15] and also for cable diagnostics [4], [6].
The SVM model encourages a parsimonious solution through
the hinge loss function, leading to a small number of support
vectors that define the ML model [15, Ch. 14]. Such sparsity
derived from the large margin principle of the SVM algorithm
avoids over-fitting and enables a good generalization capability
of the trained machine, i.e., the ability to predict well for
unseen data samples.

C. Feature Extraction

The extraction of features is an important element for many
machine learning tasks. Our previous works [4], [16] have
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suggested that moments statistics of the CFR and the channel
impulse response are informative features to determine the
cable health. We thus adopt the 16 features presented in [16,
Section IV] also in this work. We note however that feature
extraction runs the risk of incurring a critical information loss,
if not well or fully suited for capturing the essence of the
targeted label contained in the input data. In Section IV, we
therefore also consider the option of using the measured CFR
directly as input to the machine learning model.

IV. NUMERICAL EVALUATIONS

In this section, we present numerical results for the proposed
approach. That is, we perform data-set generation, and training
and testing of ML models based on measurements for a DUT.
Ideally, we would then test the effectiveness of our proposed
scheme in in-field test. However, here we only show the results
for testing based on the generated data, as we did not have
the option for in-field testing.

A. S-Parameter Measurements

The S-parameter measurement were conducted at the Zero
Energy Networks Laboratory at Indian Institute of Science in
Bangalore, India. We consider a 30 m symmetrical 4-conductor
PVC insulated YY control cable [17]. The cable is connected
to a variable load, that is added as a branch point at one end
of the cable, so that the cable together with the variable load
is considered as the DUT and the variable load can be viewed
as a DUT internal load. All the S-parameter measurements
were performed for 201 equally spaced frequency points from
2 MHz to 100 MHz.

The fault introduced to the YY control cable consists of
the removal of a 5 mm wide piece of the outer sheath in
the middle of the cable. Note that the individual insulation
wrapped around each conductor is kept intact. We consider two
different lengths for the removed patches of insulation, namely
of 5 mm and 3 cm. This gives us three different health states
of the DUT in total, i.e., healthy state, 5 mm fault and 3 cm
fault. For each health state, the measurements are repeated 30
times for each of the DUT internal load conditions. A total of
eight DUT internal load conditions are considered, including
no load, one light bulb (LB) load at R, B, Y, two LB loads
at BY, RB, RY and three LB loads at RBY. Here, one end of
each LB is connected to one of the three conductors, R, B,
Y, while the other end of the LB is connected to the neutral
conductor N.

B. Generation of Data Sets

We generate 1,000 samples for each of the DUT inter-
nal load conditions to train and test the ML models under
various external load conditions of ZL1. For this, we use
the 30 available measurements and pair them with randomly
generated samples of ZL1. To obtain ZL1, we sample ZT ∼
(U [0, 50] + jU [−50, 50]) Ω, where U [a, b] is the uniform
distribution between a and b, and j is the imaginary unit.
Then, we uniformly at random select one of the measurements
to obtain the ABCD parameters of the two-port network 2,

as shown in Fig. 4, using (5), and ZL1 follows from (8).
Furthermore, we set ZS = 0, as it is usually very small, and
ZRX = 100 Ω [18].

C. Results

The SVM is implemented with data standardization (nor-
malization) and automated kernel scale as provided in MAT-
LAB. The type of kernel used is determined through the
validation process. For most of the results presented below,
we use the polynomial kernel with degree 3. The exception is
the fault type classification task with feature extraction, where
the results are obtained with the radial basis function kernel.
Different kernels offer different tradeoffs between the detec-
tion rate, Pdet, and the false alarm (FA) rate, PFA. The desired
tradeoff should be determined through the requirements of the
application.

1) Individual Fault: First, we use the CFR samples for the
healthy DUT and those for one particular type of fault to train
and test the machine.

a) Shuffled Data: In this exercise, we randomly shuffle
the healthy and faulty samples and use a proportion of 4

5η
of the total samples for training and validating the machine,
where η ∈ {0.1, 0.2, 0.5, 0.8, 1}. The remaining samples
are used for testing. With this setup, we achieve perfect
classification results in terms of Pdet and PFA for both types
of faults and for all the values of η that we considered.
This is the case for when using the SVM with and without
the feature extraction, where the latter means that the SVM
directly processes the samples with the CFR values (including
phase and magnitude) across all the 201 subcarriers. The
results for the shuffled data show that the ML task under such
setting could be straightforward. Note that under the setting
of the shuffled data, the training and testing samples have
the same distribution. Therefore, in the following, we study
the generalization capability of our trained machine under
the setting of the partitioned data, where training and testing
samples have different distributions.

b) Partitioned Data: We investigate the performance of
our trained machine when we only use a fraction of the
measurements corresponding to a subset of the DUT internal
load conditions as seeds to generate the ABCD parameters
of the DUT for training and validation, and the remaining
measurements are used as seeds to generate CFR samples
for testing. Specifically, measurements with m different DUT
internal load conditions are used to generate the CFR samples
for training and validation, while the measurements with the
8 − m remaining DUT internal load conditions are used to
generate the testing samples, where 0 < m < 8. We expect
a better performance of the trained machine, both in terms
of Pdet and PFA, with increasing m, since more situations are
fed into the machine for training. But we are interested in how
many measurements are needed. In particular, we argue that
if a good performance is achieved with a lower value of m,
the machine has a better generalization capability to unseen
samples.
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TABLE I: Classification results for partitioned data for 5 mm
fault, with (“w/”) and without (“w/o”) feature extraction.

m 1 2 3 4 5 6 7
Pdet w/ feature 0.53 0.69 0.59 1.00 1.00 1.00 1.00
PFA w/ feature 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pdet w/o feature 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PFA w/o feature 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE II: Classification results for partitioned data for 3cm
fault, with (“w/”) and without (“w/o”) feature (“F”) extraction.

m 1 2 3 4 5 6 7
Pdet w/ F 0.86 0.87 0.89 1.00 1.00 1.00 1.00
PFA w/ F 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pdet w/o F 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PFA w/o F 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The results for the 5 mm fault case are shown in Table I,
where perfect classification results are obtained for all values
of m without feature extraction and m ≥ 4 with feature
extraction. The results for the 3 cm fault case are shown in
Table II, where the machine trained without feature extraction
has a better performance than the machine trained with feature
extraction for all possible values of m. In this regard, the
machine trained without feature extraction has a better gen-
eralization capability to unseen samples. This could probably
be attributed to the fact that the machine is able to learn more
aspects of the training samples without feature extraction while
the feature extraction process could lose some of these aspects.
We also note that the results for the partitioned data depend
on how we do the partition. For the results presented here and
in the following, we chose one partition and kept it the same
for all experiments.

2) Combined Faulty Setting: Our second experiment in-
volves training and testing using healthy samples and faulty
samples with multiple types of faults.

a) Fault detection: To detect the fault under combined
faulty settings, we combine the 5 mm fault CFR samples with
the 3 cm fault CFR samples so that the faulty sample size

TABLE III: Fault detection results for shuffled data under
combined faulty setting. Results without feature extraction in
parentheses.

Predicted healthy Predicted faulty
Actual healthy 1.00 (1.00) 0.00 (0.00)
Actual faulty 0.00 (0.00) 1.00 (0.00)

TABLE IV: Fault detection results for partitioned data under
combined faulty setting, with (“w/”) and without (“w/o”)
feature (“F”) extraction.

m 1 2 3 4 5 6 7
Pdet w/ F 0.97 0.91 0.94 0.95 1.00 1.00 1.00
PFA w/ F 0.33 0.01 0.06 0.00 0.00 0.00 0.00
Pdet w/o F 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PFA w/o F 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TABLE V: Probability of successful fault-type classification
for partitioned data under combined faulty setting, with (“w/”)
and without (“w/o”) feature (“F”) extraction.

m 1 2 3 4 5 6 7
Pcor w/ F 0.57 0.88 0.72 0.94 0.96 0.99 0.98
Pcor w/o F 0.71 1.00 1.00 1.00 1.00 1.00 1.00

is doubled. Then we generate additional 8000 CFR samples
(1000 for each of the DUT internal load conditions) with the
healthy DUT condition to obtained balanced healthy and faulty
samples. Table III shows the results for shuffled data, where
80% of the shuffled CFR samples are used for training and
validation and the remaining 20% samples are used for testing.
Then, the CFR samples with m different DUT internal load
conditions are used for the training and validation, while the
CFRs with the remaining 8−m DUT internal load conditions
are used for the testing, where 0 < m < 8. The results for the
partitioned data are shown in Table IV.

The performance for the shuffled-data case is quite similar
to that when the task was to detect a single fault type, i.e., the
5 mm or the 3 cm fault. Similarly, the performances reported in
Table IV are quite similar to those in Tables I and II. The main
difference is that the decreasing detection and the increasing
false alarm rates with smaller values of m is notably less
pronounced for the combined faulty setting in Table IV. This
suggests that learning from additional albeit different faulty
conditions can improve to differentiate healthy from faulty
scenarios. We note that in the combined faulty setting, the
characteristics of the faulty samples learned by the machine are
not associated with a particular type of fault anymore. Hence,
the machine is able to learn more general characteristics of
different types of faults.

b) Fault classification: Next, in the case that the DUT
has been classified as faulty, we want to further classify
whether the fault is the 5 mm case or the 3 cm case.
We achieve perfect classification for shuffled data (80% for
training and validation, and 20% for testing). The results for
the partitioned data, presented as a success rate for correct
fault-type classification, are shown in Table V. We observe
that for larger values of m, machines trained with or without
feature extraction have decent classification results. However,
for smaller value of m, we again note that the machine trained
without feature extraction has better generalization capability
to unseen samples.

3) Cross Faulty Settings: The results from the previous
sections suggest the inclusion of multiple types of faults in the
training samples in order to diagnose a deviation from healthy
conditions. However, it may not be possible to have data for
certain fault types during the training process, and thus the
trained machine may experience unseen fault types. Therefore,
in this last part, we investigate training with one type of fault
(together with the healthy CFR samples) and testing with
another type of fault. We again apply data partitioning. That is,
we use the healthy and faulty samples with m different DUT
internal load conditions to train and validate the machine, and
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TABLE VI: Pdet for first cross faulty setting, with (“w/”) and
without (“w/o”) feature extraction.

m 1 2 3 4 5 6 7 8
Train with 3 cm fault, test with 5 mm fault

w/ 0.69 0.50 0.57 0.57 0.63 0.71 0.73 0.65
w/o 0.24 1.00 0.93 1.00 1.00 1.00 1.00 1.00

Train with 5 mm fault, test with 3 cm fault
w/ 0.60 0.71 0.79 0.82 0.77 0.81 0.85 0.83

w/o 0.77 0.92 0.97 0.83 0.83 0.90 0.99 0.99

we use the faulty samples with another type of fault and all the
8 different DUT internal load conditions to test the machine.

The results2 for training with one fault and testing with
the other fault are presented in Table VI. We see from the
results that the machine has a decent performance for detecting
the other type of the fault which has not be seen during the
training, particularly for large values of m. This demonstrates
a generalization capability of the trained machine to unseen
fault types.

4) Summary: For the limited data set available to us, we
found that generally a good classification performance is
obtained. The results for the combined faulty setting show
that it is doable and in fact preferable to include multiple types
of faults during the training. The results for data partitioning
and cross faulty types indicate the machine’s generalization
capability to unseen internal load conditions and fault types,
respectively. This motivates us to conduct further investi-
gations with more measurement data for more fault types,
including the softer faults, as well as other cable types.

V. CONCLUSION

In this paper, we presented a scheme to extract critical
information from the S-parameter measurements of cable
sections to generate power line communications channel state
information samples for the machine learning based cable
diagnostics solution. The numerical evaluations using synthetic
data show an overall good performance under various cable
and fault types with a reasonable amount of measurements
taken for training. This motivates us to further conduct in-field
tests to verify the effectiveness of our proposed data synthesis
scheme to generate faithful samples for the machine learning
based PLC cable diagnostics solution.
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