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Abstract—Interference due to ship-radiated noise in the un-
derwater acoustic (UA) channel generates additive distortions
that degrade wireless UA communications signals. Compressed
sensing (CS) techniques are an approach used to estimate and
suppress the impulsive components of ship-radiated noise for
orthogonal frequency-division multiplexing (OFDM) systems by
exploiting the null sub-carriers not used for data transmission.
However, these CS-based estimation methods are constrained
to estimating sparse signals and typically require slow iterative
solvers. To combat these drawbacks, we propose a deep learning
(DL) approach to structured signal recovery for estimating and
mitigating the interfering effects of ship-radiated noise for OFDM
systems. Our results indicate that the DL models, trained via
publicly available long term acoustic data of shipping noise
signals, produce measurable mitigation gains to the benchmark
CS algorithms. In addition, we show the DL models outperform
the benchmark CS estimation methods on new never before
“seen” experimentally acquired ship-radiated noise data.

Index Terms—Deep learning (DL), deep neural network
(DNN), compressed sensing (CS), orthogonal frequency-division
multiplexing (OFDM), ship-radiated noise.

I. INTRODUCTION

Achieving high data rate and robust communications in the
underwater acoustic (UA) channel continues to be a challenge
due to a variety of factors [1]. The presence of multi-path ef-
fects, limited bandwidth, Doppler shifts, and numerous sources
of interference are just some of the characteristics of the UA
channel that contribute to producing the demanding channel
conditions. Ship-radiated noise is one example of interference,
found to carry impulsive characteristic [2] [3] that can be
detrimental to high data rate UA communication systems.
In this work, we focus on the challenge of suppressing
the impulsive components and correlative structure of ship-
radiated noise.

Orthogonal frequency-division multiplexing (OFDM) is a
popular transmission technique utilized to handle the fre-
quency selectivity present in the UA channel [4]. To combat
against impulse noise interference in OFDM communication
systems, compressed sensing (CS) based approaches for the
estimation and suppression of impulse noise have been pro-
posed [3] [5] [6]. These approaches take advantage of the null
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sub-carriers of the OFDM system to probe the impulsive in-
terference, then provide an iterative CS estimate by exploiting
the inherit sparsity of the impulse noise. The impulse noise
estimate is then subtracted from the received data to reduce the
overall level of degradation. However, the drawback of these
CS-based impulse noise mitigation methods is that they require
iterative solvers that may be too slow for real-time application.
To this end, a deep learning (DL) approach that replaces the
iterative CS recovery procedure with a trained deep neural
network (DNN) may serve as a suitable alternative.

The field of communications has seen extensive success
in using DL-based solutions, demonstrating measurable and
advantageous results to traditional analytical approaches in
areas such as physical layer transmitter and receiver design
[7], channel estimation and signal detection [8], and commu-
nication networks [9]. In general, DL-based solutions accept
slow off-line run-time during the training process to obtain
significantly faster on-line application speeds compared to
their respective counterpart approaches, thus desirable in many
communication systems applications. The applications of DL
in wireless communications have quickly extended into UA
communications to handle the various non-linear distortions
present in the UA channel. For instance, [10] offers a DL-
based receiver for on-line channel estimation and equaliza-
tion for single carrier UA communication systems. Likewise,
channel estimation techniques via DL in multi-carrier UA
OFDM systems have received significant research attention
[11]–[13]. While [11] and [12] offer DL-based solution for
channel estimation for UA OFDM systems, [13] is one of
very few research works that suggest a DL-based method for
handling impulse noise perturbations in the UA channel.

To the best of our knowledge, no research studies have
investigated the applicability of DL-based approaches for mit-
igating the interfering effects of ship-radiated noise. However,
various studies have suggested and shown the success of
DL methods for ship classification and detection via acoustic
signatures [14], [15]. This suggest that acoustic ship-radiated
noise carries correlative structure that can be captured by DL
models.

Recently, DL-based approaches for structured signal recov-
ery from linearly and non-linearly sampled measurement have
received attention in the domain of image processing [16] [17]



and have shown competitive recovery results to the counterpart
CS methods. In [16], a linear stacked de-noising autoencoder
(L-SDA) is employed to recover sets of original signals from
their linearly sampled measurements. Moreover, the authors
propose a non-linear stacked de-noising autoencoder (NL-
SDA), which simultaneously learns a non-linear sampling
procedure alongside the recovery stage, improving the overall
recovery results. The use of convolutional neural networks
(CNNs) in the setting of structured signal recovery presents
similar recovery results also measurable to state-of-the-art CS
methods [17]. The two key advantages of the DL recovery
methods in contrast to the counterpart CS solvers are: (1) they
do not rely on the sparsity of the signal of interest through
linear transformation as do the CS methods, and (2) they trade
off slow off-line run-time during the model training process
for superior on-line run-time.

Motivated by the fact that ship-radiated noise carries correl-
ative structure and due to the recent success and advantages of
DL methods for structured signal recovery, we propose the use
the existing DL models in the application of suppressing ship-
radiated noise for UA OFDM systems. In the same manner
as [3], we conduct a data driven study utilizing the Ocean
Networks Canada (ONC) publicly available database of long-
term acoustic shipping noise recordings [18]. In addition,
we include experimentally acquired data to show the off-line
trained DL models can scale to new never before “seen” sets
of ship-radiated noise signals.

The rest of this manuscript is organized as follows. In
Section II, we introduce the CS framework for sparse signal
estimation, the OFDM system model, and the ONC and
experimental data acquisition procedures. Section III outlines
the general structures of the DNN models for structured signal
recovery. Then, in Section IV, we present and discuss the
numerical results for ship-radiated noise suppression via the
DL-based approaches. Finally, we draw relevant conclusion
that adhere from the numerical results in Section V.

II. METHODOLOGY AND SYSTEM FORMULATION

We consider the utilization of an OFDM system for the
transmission and reception of data in the UA channel. Our
aim is to exploit a partition of the OFDM system sub-carriers
to probe, estimate, and then subtract out the ship-radiated noise
interference from the received OFDM signal. In particular, we
utilize the null sub-carriers of the OFDM system to sample
the ship-radiated noise contributions from the received OFDM
signal. The problem of estimating the ship-radiated noise
interference can then be posed as a CS recovery problem
[3]. In this section, we will introduce the CS framework for
sparse signal estimation in OFDM systems that will serve as
an underlying foundation for the DL-based structured signal
recovery methods.

A. Compressed Sensing

CS is concerned with the problem of finding a solution
to an undetermined linear system from a set of randomized
measurements sampled far below the Nyquist rate, under the

assumption that the solution is sparse [19]. Let us consider the
linear system y = Ax + n, where A is an m × K random
measurement matrix, y is the m × 1 measurement vector, x
is K × 1, n is additive white Gaussian noise (AWGN), and
m < K. With the sparsity constraint enforced by the `1-norm,
the CS recovery problem is formulated as

minimize
x

‖x‖1
subject to ‖y −Ax‖2 ≤ ε

(P1)

where the parameter ε is selected based on the measure-
ment noise vector n [20]. The recovery procedure of (P1)
is formally known as basis pursuit de-noise (BPDN) and
is considered as a benchmark recovery algorithm for the
remainder of this work.

B. OFDM System Model

Given N OFDM sub-carriers, we construct the N × N
discrete Fourier transform (DFT) matrix F . We define S as
the set of data sub-carriers used for transmission and Sc as
the set of null sub-carriers. Then, the partial DFT sampling
matrix F n is formed by selecting the rows of F from the
set of null index locations defined in Sc. The set of null sub-
carrier locations Sc are chosen to some extent at random such
that the reduced DFT measurement matrix F n satisfies the
restricted isometry property [21] in order to achieve greater
reconstruction accuracy.

let us denote the received time domain OFDM signal as z,
which carries the data d and the additive ship-radiated noise
interference w. We probe the ship-radiated noise interference
via the partial DFT sampling matrix, denoting the received
signal as

r′ = F nz = F n(d+w) (1)

Following the CS framework, the ship-radiated noise interfer-
ence w can be split into an impulse component i and AWGN
component ζ. Then, with the knowledge that F nd = 0, the
received vector r′ can be further simplified to

r = F n(i+ ζ)

= F ni+ ζ̃
(2)

where the pilot-data contribution has been subtracted from r′

and F nζ = ζ̃. Following from the result of equation (2) and
with the assumption that the impulse noise i is sparse, we
can formulate an estimate for the ship-radiated impulse noise
component as

minimize
i

‖i‖1
subject to ‖r − F ni‖2 ≤ ε

(P2)

where (P2) is consistent with the form of BPDN defined by
(P1).



Fig. 1. Experimental set-up for acoustic acquisition of ship-radiated noise
recordings.

C. Data Acquisition and Pre-processing

We collect the ONC data in an identical manner to the
procedure outlined in [3, Section II-C]. In addition, we include
experimental ship-radiated noise acoustic recordings collected
through a set of sea trials off the coast of Caesarea, Israel,
over a two day period of May 20th and May 21st, 2019. The
experimentally acquired acoustic shipping noise recordings
are used for further test validation of the DNN models for
structured signal estimation.

The experimental acquisition set-up of the acoustic shipping
noise recordings is presented in Fig 1. A linear array of 6
hydrophones placed at approximately equal spacing over 10
meters of length with the first hydrophone starting at a depth of
approximately 15 meters is used. The “noise generating ship”
follows an elliptical trajectory around the acoustic recording
station which produces acoustic ship-radiated noise, as shown
in Fig 1. The experimental acoustic recording acquisition
procedure is outlined as follows:

1) With the “noise generating ship”, we encircle the pri-
mary ship in a circular trajectory and begin the acoustic
recording via the hydrophone array. We record via
the hydrophone array for approximately 1 minute in
duration.

2) The time of day of the acoustic recording, later used to
filter and find relevant data files, is noted.

We repeat the above steps at several occasions to gather an
assortment of acoustic ship-radiated noise recordings over the
duration of the 2 day sea trial.

The ONC and experimental acoustic recordings are pro-
cessed such that we can emulate signal reception of the
OFDM system. We down-convert and low pass filter (LPF)
the ONC and experimental shipping noise data. We consider
high frequency (HF) and low frequency (LF) systems, outlined
in Table I.

TABLE I
ACOUSTIC RECORDING PRE-PROCESSING FREQUENCY BANDS

Center Frequency Bandwidth LPF Cut-off
Low Frequency 2 kHz 4 kHz 2 kHz
High Frequency 12 kHz 8 kHz 4 kHz

III. DEEP NEURAL NETWORKS FOR STRUCTURED SIGNAL
ESTIMATION

We aim to utilize existing DL models, with the addition of
complex DNN operations [22] and some augmentation to the
model parameters, to realize ship-radiated noise estimation and
mitigation. In particular, our primary goal is to learn a non-
linear mapping to solve problem (P2) using the ONC shipping
noise data set.

We consider three DL models for the structured signal
recovery of ship-radiated noise in UA OFDM systems:
• The L-SDA [16] – a fully connected DNN.
• The NL-SDA [16] – a fully connected DNN.
• An implementation of the Deep-inverse model [17] – a

CNN-based model for structured signal recovery.
Unlike the standard CS solvers, which only estimate the sparse
components of the shipping interference signal, the DNN-
based approaches also recover the correlative structures of the
ship-radiated noise. Thus, we are able to achieve an estimate
for the entire shipping noise signal w in addition to the
impulsive components i. The outputs of the L-SDA, NL-SDA,
and the CNN models for structure signal recovery will yield
an estimate ŵ, and therefore the mitigated ship-radiated noise
signal is reported as w̃ = w − ŵ.

For the remainder of this section, we introduce and describe
the L-SDA, NL-SDA, and CNN models for the structured
signal recovery of ship-radiated noise in terms of single
real number networks. However, to handle the complex ship-
radiated noise signals we use complex DNN operations [22].
The complex DNN models consist of two identical networks
that are trained and evaluated in parallel that capture the
mathematical dependencies between the real and imaginary
components of the ship-radiated noise interference.

A. Stacked De-noising Autoencoder

Let us denote x as the 1024×1 complex input vector, y the
m× 1 sampled measurement vector, and Φ as the m× 1024
complex measurement matrix. The quantity of measurement
points is denoted by m, where m < 1024. The goal is to
achieve an estimate x̂ from the sampled measurement vector
y by training a stacked de-noising autoencoder (SDA) that
learns a non-linear mapping that is analogous to the CS
recovery problem. An example of the general structure of a
SDA is illustrated in Fig 2. Below we describe the individual
implementations of the L-SDA and NL-SDA.
• L-SDA: In this implementation, the measurement matrix

Φ is fixed. In our case, Φ = Fn, where Fn is the
reduced DFT sampling matrix. We use the hyperbolic
tangent function defined as tanh(z) = ez−e−z

ez+e−z at the



Fig. 2. Stacked de-noising autoencoder for structured signal recovery [16].

hidden layers, L1 and L2, as well as the output layer.
The L-SDA learns a non-linear mapping from y = Fnx
and produces an estimate x̂.

• NL-SDA: Different from the L-SDA, this implementation
learns the measurement paradigm defined by the matrix
Φ while simultaneously learning a non-linear mapping
to estimate x. This is advantageous to the L-SDA as the
learned measurement procedure enables more efficient
encoding of the input examples x compared to the
reduced DFT sampling matrix. Similar to the L-SDA,
the hyperbolic tangent activation function is used at the
hidden layers, L1 and L2, the output layer, and addi-
tionally at the sampling layer, i.e. tanh(y) = tanh(Φx).
Because the NL-SDA learns a new optimized sampling
procedure that is not the reduce DFT matrix, it does not
serve as a realizable implementation for OFDM systems.
Therefore, we use the NL-SDA as a upper benchmark
on the performance of the L-SDA with the reduce DFT
measurement matrix.

To aid and accelerate the training procedure, we also include
the use of batch normalization layers, placed after the fully
connected layers and prior to the activation layers.

B. Convolutional Neural Network

Different from the SDA implementations, the CNN for
structured signal recovery uses convolutional layers to reduce
the overall quantity of parameters for training while taking
advantage of the natural structures of the input signals in order
to achieve an accurate estimate x̂. Fig 3 illustrates our CNN
model architecture that stems from the Deep Inverse model
proposed by [17]. Different from Deep Inverse, our model
operates in one dimension and uses less feature maps at each
hidden layer, however the principle of first achieving a pseudo-
estimate x̃ = ΦHy from the linearly samples vector y remains
the same.

Fig. 3. Convolutional DNN for structured signal recovery [17].

Alike the SDA implementations we utilize the hyperbolic
tangent activation function at the output of hidden layers L1,
L2, and L3, as well as at the output layer. Batch normalization
layers are also included between the outputs of each hidden
layer and the activation layer to facilitate for a fast and robust
training phase. Each of the hidden layers L1, L2, and L3 use
a 16× 1 convolutional filter and preserve the input size of the
previous layers.

IV. NUMERICAL RESULTS

A. Training and Testing Data

We use the ONC ship-radiated noise data set to train and
test the DNN models for structured signal recovery and use
the experimentally acquired ship-radiated noise data for further
evaluation of the ONC trained DNN models. The evaluation
of the DNN models using the experimental data set serves to
demonstrate how the ONC trained DNN models scale to new
never before “seen” ship-radiated noise signals, acquired under
entirely different conditions compared to the ONC shipping
noise data. The ONC test data and experimental ship-radiated
noise data are used only in the testing stages of the DNN
models, thus have no influence on the training of the DNNs.

To aid in the training procedure, each input data example
vector and output data label vector is normalized between
[−1, 1], thus after the estimation step we must re-normalize
the estimate x̂ to have a generalized framework for estimating
any ship-radiated noise signal via the DNN models. Let X ′

denote the n × N complex example matrix of ship-radiated
noise signals and Y ′ the n ×m sampled example matrix of
ship-radiated noise signals, where n is the number of shipping
noise signal examples, N = 1024 the number of OFDM
system sub-carriers, and m the quantity of null sub-carrier
sampling points. Then, for each example i, the per-signal data
normalization are defined as

Xi =
1√
2

X ′i
max{|X ′i|}

(3)

Y i =
1√
2

Y ′i
max{|Y ′i|}

. (4)



After the estimation stage of the DNN models, re-
normalization of the output is required to conserve the original
amplitudes of the ship-radiated noise signals. For the NL-
SDA, this is trivial as we reverse the process of equation (3).
However, for the L-SDA and CNN methods, we use the
the sampled ship-radiated noise vectors to re-normalize the
estimated output. Denoting the n×N complex estimate matrix
of ship-radiated noise signals as X̂ , the re-normalization of
estimated output vector i is defined as

X̂
′
i = X̂i

2
√
2

E[|Y ′i|]
= X̂iK . (5)

The matrix Y ′ consists of the DFT sampled examples of X ′,
i.e. Y ′ is a matrix containing the Fourier transformed ship-
radiated noise signals at the null sub-carrier indices. Therefore,
we use the spectral magnitude information provided from Y ′

of the sampled ship-radiated noise signals to estimate a re-
normalization factor K that re-normalizes X̂i to X̂

′
i.

The L-SDA, NL-SDA, and CNN models utilize dif-
ferent variants of training and testing sets. Let us de-
note Dtrain = {train data examples, train data labels} and
Dtest = {test data examples, test data labels} as the training
and testing sets, respectively. Then, for each DNN model, we
can define the individual training and testing sets:
• L-SDA: Dtrain = {Y train, Xtrain} and Dtest =
{Y test, Xtest}.

• NL-SDA: Dtrain = {Xtrain, Xtrain} and Dtest =
{Xtest, Xtest}.

• CNN: Dtrain = {Fn
HY train, Xtrain} and Dtest =

{Fn
HY test, Xtest}.

We consider OFDM systems with m = 256 and m = 128 null
sub-carriers, corresponding to the sampling ratios m/n = 25%
and m/n = 12.5%, and train DNN models for each case,
respectively.

All three models are trained using the momentum based
RMSprop optimizer and the mean squared error (MSE) loss
function. For the L-SDA and NL-SDA, the learning rate is set
to 0.0001 and the models are trained over 200 epochs. For the
CNN model, the learning rate is set to 0.001 and the model is
trained over 50 epochs. The DNN model weights for all cases
are initialized with a standard normal. The overall HF train
and test set sizes are 23040 and 5760, respectively. The LF
data set is lesser in size compared to the HF data set, thus we
include one-dimensional translation augmented versions of the
pre-processed shipping noise signals to increase the LF data
set size by a factor of 4. The LF train and test set sizes are
51321 and 5703, respectively. The training procedure uses a
mini-batch size of 128 examples and the training set examples
are randomly permuted at the start of every epoch to aid the
training procedure convergence of the DNN models.

B. ONC Data Noise Suppression

We evaluate noise mitigation performance for the L-SDA,
NL-SDA, and CNN methods by considering the per OFDM
symbol ship-radiated noise variance σ2 of the mitigated and
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Fig. 4. Per-OFDM symbol noise variance of original and mitigated ship-
radiated noise signals using 25% null sub-carriers sampling for HF-ONC test
data set.
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Fig. 5. Per-OFDM symbol noise variance of original and mitigated ship-
radiated noise signals using 25% null sub-carriers sampling for LF-ONC test
data set.

original shipping noise signals from the ONC test data set.
We compare the mitigation capabilities of the DNN models
to BPDN and an idealistic GM-GAMP [3] implementation. In
this setting, ideal GM-GAMP estimates the GMM parameters
from the true ship-radiated noise signals prior to the estimation
phase. In realistic applications, the full noise signals are un-
known, thus the aforementioned GM-GAMP implementation
is an idealistic approach. We plot the empirical cumulative
distribution functions (CDFs) for the HF and LF systems and
report the relative noise cancellation gains for the 90% and
99% strongest noise.

Fig 4 and Fig 5 show the per OFDM symbol noise variance
of the respective method mitigated and original ship-radiated
noise signals for the HF and LF systems, respectively. From
Fig 4 It is visible that the NL-SDA and CNN methods achieve



TABLE II
RELATIVE MITIGATION GAIN OF SHIP-RADIATED NOISE WITH 25 % NULL SUB-CARRIER SAMPLING VIA THE DL-BASED ESTIMATION METHODS.

High Frequency
P (X > σ2) BPDN GM-GAMP L-SDA NL-SDA CNN

0.1 1.01 dB 1.64 dB 0.63 dB 1.37 dB 1.14 dB
0.01 0.97 dB 1.70 dB 0.66 dB 1.38 dB 1.16 dB

Low Frequency
P (X > σ2) BPDN GM-GAMP L-SDA NL-SDA CNN

0.1 0.26 dB 1.40 dB 1.33 dB 9.67 dB 1.64 dB
0.01 0.13 dB 1.65 dB 0.98 dB 6.05 dB 0.73 dB

TABLE III
RELATIVE MITIGATION GAIN OF SHIP-RADIATED NOISE WITH 12.5 % NULL SUB-CARRIER SAMPLING VIA THE DL-BASED ESTIMATION METHODS.

High Frequency
P (X > σ2) BPDN GM-GAMP L-SDA NL-SDA CNN

0.1 0.20 dB 0.72 dB 0.19 dB 0.54 dB 0.53 dB
0.01 0.22 dB 0.87 dB 0.26 dB 0.61 dB 0.63 dB

Low Frequency
P (X > σ2) BPDN GM-GAMP L-SDA NL-SDA CNN

0.1 −0.48 dB −0.08 dB 0.50 dB 7.50 dB 0.28 dB
0.01 −0.09 dB −0.05 dB 0.41 dB 5.74 dB 0.14 dB

measurable shipping noise mitigation to ideal GM-GAMP
and outperform the BPDN algorithm for the HF system.
Likewise, Fig 5 illustrates the superior mitigation gains of the
NL-SDA in the LF band system. This is likely due to the
increased correlative structure that exists in LF ship-radiated
noise which the NL-SDA can learn to estimate. In contrast, HF
ship-radiated noise contains a greater quantity of occurrences
of random impulsive agitations that are more challenging
to capture via the DNN models. Thus, the NL-SDA yields
significantly improved mitigation gains for LF ship-radiated
noise relative to HF ship-radiated noise. In addition, the L-
SDA and the CNN methods outperform BPDN and closely
match the mitigation performance of the ideal GM-GAMP
algorithm in the LF band system.

Tables II and III present the relative mitigation gains for the
90% and 99% strongest noise for the cases of using 256 and
128 null sub-carriers of the total 1024 available sub-carriers,
respectively. Tables II and III give a more precise presentation
of ship-radiated noise mitigation capabilities of the respective
approaches that are shown in Fig 4 and Fig 5.

The results suggest that the CNN method achieves mea-
surable mitigation gains to the ideal GM-GAMP algorithm
for ONC ship-radiated noise data, but with superior run-time
performance as no iterative solvers are required. In terms
of real-time applications, the superior run-time performance
of the CNN method for ship-radiated noise suppression is a
desirable trait. Therefore, in cases where high mitigation gains
are desirable, GM-GAMP would serve as the algorithm of
choice, but in cases where high run-time speed is required,
the CNN mitigation method would suit as a better alternative.

The L-SDA method for ship-radiated noise mitigation never
achieves the upper performance bound determined by the
NL-SDA. This indicates that the bottleneck for the DNN
approaches for shipping noise mitigation in UA OFDM sys-

tems is the reduced DFT sampling matrix. In the case such
as the NL-SDA, the learned sampling procedure leads to
improved mitigation results compared to the L-SDA and CNN
approaches in the HF systems where shipping noise is more
sparse. However, in the LF band system where ship-radiated
noise is highly correlative, the NL-SDA shows superior mit-
igation gains to all other approaches, including the L-SDA
which is approximately 5−9 dB short in mitigation capability
to the NL-SDA. This result demonstrates the power of the
DNN-based methods for ship-radiated noise estimation and
suppression, but standard OFDM systems that require the
reduced DFT sampling matrix constrain the performance of
the DNN-based approaches.

From Tables II and III, it is also visible that the CS-
based methods, BPDN and ideal GM-GAMP, achieve higher
mitigation gains for the 99% strongest noise relative to the
90% strongest noise. This is consistent to the basis of the CS-
based algorithms, as the 99% strongest noise pertains to more
impulsive (sparser) noise contributions. Moreover, we see
the DNN-based approaches yield improved mitigation gains
for the 90% strongest noise compared to the 99% strongest
noise. This is also consistent with our expectations as the
90% strongest noise is less impulsive and carries increased
correlative structure relative to the 99% strongest noise. This
result suggest that some form of a hybrid approach that utilizes
an iterative sparsity-based estimator and a DNN model in
parallel could achieve improved ship-radiated noise mitigation
capabilities.

C. Experimental Data Noise Suppression

After acquiring various experimental ship-radiated noise
recordings we identify the acoustic hydrophone recordings
with the most prominent shipping noise and no interference
from other noise sources present during the sea trials. Two



TABLE IV
MSE BETWEEN ESTIMATED AND ORIGINAL EXPERIMENTAL

SHIP-RADIATED NOISE SIGNALS USING 25% NULL SUB-CARRIER
SAMPLING.

Ship Noise Estimation Method
Data BPDN GM-GAMP L-SDA NL-SDA CNN

HF-EXP1 2.1E−6 1.7E−6 2.0E−6 1.6E−6 1.0E-6
HF-EXP2 3.0E−6 2.6E−6 3.0E−6 2.5E−6 1.6E-6
LF-EXP1 6.6E−5 5.4E−5 2.8E−4 5.2E−5 1.2E-5
LF-EXP2 6.9E−5 5.5E−5 2.7E−4 5.6E−5 1.3E-5

experimental recordings, both approximately one minute in
length, are identified and considered for analysis:
• Acoustic recording 1: Date: May 20th, Time: 15:52 –

Label: EXP1
• Acoustic recording 2: Date: May 20th, Time: 15:53 –

Label: EXP2
Table IV presents the MSE results between the estimated

and the actual experimental shipping noise signals using the
BPDN algorithm, the ideal GM-GAMP implementation, and
the three DNN models trained via the ONC data set. It is visi-
ble from Table IV that the CNN model for ship-radiated noise
estimation outperforms all other methods on the experimental
data in both HF and LF systems. This result suggests that the
experimental ship-radiated noise signals contain similar correl-
ative structure present in the ONC shipping noise data that is
well captured by the convolutional filters of the CNN model.
Thus, the CNN model is able to recover the experimental ship-
radiated signals with better accuracy compared to BPDN and
the ideal GM-GAMP implementation.

Overall the results indicate that the CNN method for ship-
radiated noise cancellation scales best to new shipping noise
instances that adhere from a source different from the ONC
data set. This further confirms the shipping noise mitigation
capabilities of the CNN method compared to ideal GM-GAMP,
with the key advantage of superior run-time speed for noise
cancellation.

V. CONCLUSION

In this paper, we introduced the DL-based approaches
for ship-radiated noise cancellation in UA OFDM systems
formulated under the CS noise estimation framework. The
DL methods were evaluated in terms the per OFDM symbol
noise variance shipping noise cancellation gains. The em-
pirical results for the noise cancellation capabilities of the
DNN-based approaches for ship-radiated noise suggest the
CNN-based method for structured signal recovery is suitable
as an alternative approach for the GM-GAMP and BPDN
algorithms. This is particularly the case in the LF band
system where ship-radiated noise exhibits increased correlative
structure compared to the HF band system. In addition, the
empirical mitigation results of the NL-SDA suggest that the
bottleneck for achieving higher cancellation gains of ship-
radiated noise in UA OFDM systems is the reduced DFT
sampling procedure. Finally, we have demonstrated that the

CNN model for ship-radiated noise cancellation scales best to
newly never before seen experimental shipping noise signals.
This is visible from the experimental results, where the CNN-
based approach outperforms all other cancellation methods.
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