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Abstract—The design and performance evaluation of under-
water acoustic (UA) communication systems in shallow water
and harbour environments is a continuous challenge due to
the numerous degrading factors present in the UA channel,
one of which is the presence of noise generated due to nearby
shipping activity. However, few research studies have examined
the properties of ship-radiated noise in terms of its time-
domain statistical characteristics and its negative effects on UA
communication systems. We propose the use of unsupervised
learning techniques to train generative models that capture the
time-domain stochastic behaviours of ship-radiated noise using a
publicly available database of long-term acoustic shipping noise
recordings. These models can then be used for further analysis of
ship-radiated noise and performance evaluation of UA orthogonal
frequency-division multiplexing systems in the presence of such
interference. For further validation, we include experimentally
acquired ship-radiated noise recordings acquired off the coast
of Caesarea, Israel. The results indicate a two component
Gaussian mixture model serves as a better approximation for
high frequency ship-radiated noise while generative adversarial
networks produce improved realizations of shipping noise in
lower frequencies.

Index Terms—Generative adversarial network (GAN), Gaus-
sian mixture model (GMM), orthogonal frequency-division mul-
tiplexing (OFDM), ship-radiated noise.

I. INTRODUCTION

The underwater acoustic (UA) channel introduces signif-
icant linear and nonlinear distortions as well as additive
perturbations to a communication signal [1]. Among the latter,
ship-radiated noise is a major contributor in harbour and
shallow water environments, limiting the data rate performance
and reliability of UA communication systems. There have
been various studies that explore the spectral and ambient
characteristics associated with shipping activity in the UA
channel [2]–[6]. However, the development of a stochastic
model for ship-radiated noise has not received much attention.
The lack of an adequate stochastic noise model introduces
challenges when designing and evaluating the performance
of high data rate communication for implementation in the
presence of such interference. In this work, we focus on the
challenge of producing a time-domain probabilistic model for
ship-radiated noise.

Gaussian mixture models (GMMs) are a well known
stochastic model used in evaluating the performance of UA
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communication systems in the presence of impulse noise
[7]. Recent work in [8] postulates the use of GMMs to
temporally describe the statistical and impulsive behaviour
of ship-radiated noise. The GMM serves well in modelling
some of the probabilistic and impulsive properties of high
frequency (HF) ship-radiated noise, but does not capture
existing correlative structure, as in the case of low frequency
(LF) noise. Therefore, producing a probabilistic model that
can fully capture the varying properties and structure of ship-
radiated noise remains a challenge.

Generative adversarial networks (GANs) are another popu-
lar generative modelling approach. Different from the GMM,
which is trained via the expectation-maximization (EM) algo-
rithm [9, Chapter 11], GANs train a generative model through
a min-max two player game [10]. Since their original intro-
duction, extensive research interest in probabilistic generative
modelling via GANs has led to numerous variants of the
GAN model. For instance, the deep convolutional generative
adversarial network (DCGAN) [11], the conditional GAN
[12], and the stacked GAN [13] are some examples of GAN
model variants derived from the original adversarial training
framework of the GAN model.

Recently, GANs [10] have shown growing success in pro-
ducing probabilistic generative models for images and has
sparked motivation in the field of communications for use
in stochastic channel modelling. For instance, the authors in
[14] propose an end-to-end learning communication system
framework using a conditional GAN to model the stochastic
channel effects, where the gradients of the end-to-end training
procedure are propagated through the GAN. Likewise, [15]
suggests the use of variational GANs for modelling a wide
variety of stochastic channel effects learned from observed
data. To this end, there is reason to believe that GANs can
capture the stochastic behaviour and statistical characteristics
of ship-radiated noise.

GAN models for applications in UAs have been proposed
for acoustic signal identification [16] [17] and sonar imaging
[18] [19]. However, to the best of our knowledge there have
been no appearances in recent research that propose GAN
based channel modelling approaches for UA communication
systems. Due to the strenuous and unpredictable conditions
of the UA channel, GANs may serve as viable solution for
modelling UA stochastic channel behaviours when there is



access to data representative of the channel effects. Therefore,
in this work we address the aforementioned research gap and
provide the first attempt in using GANs for modelling ship-
radiated channel noise.

Stimulated by the lack of an adequate temporal stochastic
model for shipping noise, we propose the use of the DCGAN
[11] to capture the correlative structure of LF ship-radiated
noise, while investigating the suitability the GMM for mod-
elling HF ship-radiated noise. We consider the implication
of ship-radiated noise on orthogonal frequency-division multi-
plexing (OFDM) systems, thus we model ship-radiated noise
in the equivalent complex baseband representation. Similar
to [8], we conduct a data driven study utilizing the Ocean
Networks Canada (ONC) publicly available database of long
term acoustic recordings of shipping noise [20], to train a
DCGAN that can generate new realistic realizations of ship-
radiated noise. Likewise, with the ONC database, we use the
EM algorithm to fit a GMM that provides a stochastic model
for ship-radiated noise. We then evaluate the suitability of the
GMM and the DCGAN in producing stochastic time-domain
models of ship-radiated noise in the HF and LF band systems.

The remainder of this manuscript is organized as follows.
In Section II, we introduce the OFDM system model, the
GMM, and the data acquisition procedures. Then, the GAN for
the stochastic modelling of ship-radiated noise is presented in
Section III. In Section IV we present and discuss the numerical
results regarding the performance evaluations of the respective
generative models. Final concluding remarks are drawn are in
Section V.

II. METHODOLOGY AND MODEL OVERVIEW

We consider an OFDM system for data transmission and
reception in the presence of ship-radiated noise. Our goal is
to produce a time-domain stochastic model that can capture
the statistical and correlative structure of ship-radiated noise
interference while emulating OFDM signal reception. In this
section we introduce the OFDM system model, the two
component GMM, and the data acquisition and pre-processing
procedures.

A. OFDM System Model
OFDM is a multi-carrier transmission technique which par-

titions the total bandwidth W into N individual sub-channels
each separated by a narrow frequency interval ∆f = W/N ,
ultimately leading to transmission rates that are close to chan-
nel capacity. Each OFDM sub-channel may be individually
modulated and coded, thus by denoting the complex-valued
information symbols at each independent sub-channel as x[k],
where k = 0, 1, ..., N −1, the time-domain complex baseband
transmission signal is expressed as

d(t) =
1√
N

N−1∑
k=0

x[k]ej2πkt/T , 0 ≤ t ≤ T (1)

where T = 1/∆f is the symbol duration. Likewise, equation
(1), which utilizes the inverse discrete Fourier transform
(IDFT), can be defined as a linear system

Fig. 1: Experimental set-up for acoustic acquisition of ship-
radiated noise recordings.

d = FHx (2)

where d is the discrete time data transmission vector and
FH is the IDFT matrix, with (·)H defining the Hermitian
transpose. The OFDM signal reception process is reverse to
the transmission steps as defined by equation (1), using the
DFT to re-acquire the transmitted symbols x[k].

B. Gaussian Mixture Model

The previous work [8] shows the applicability of a two
component complex circularly symmetric GMM in modelling
the impulsive attributes of HF ship-radiated noise, and is
denoted as

f(w; ρ, σ2
n, σ̃i

2) = (1− ρ)NC(w; 0, σ2
n) + ρNC(w; 0, σ̃i

2)
(3)

where NC is the complex normal distribution, σ̃i2 = σ2
n +σ2

i

is the impulse noise variance, σ2
n is the background noise vari-

ance, and 0 ≤ ρ ≤ 1 is the sparsity rate of the impulses. The
GMM is trained in an unsupervised learning fashion using the
iterative EM algorithm [9, Chapter 11]. Different from [8], we
provide a more thorough evaluation the GMM for modelling
the statistical and impulsive properties of ship-radiated noise.
In addition, the GMM is evaluated and compared alongside
the GAN-based generative model in terms of producing new
realistic realizations of ship-radiated noise.

C. Data Acquisition and Pre-processing

The ONC data is collected identical to the procedure out-
lined in [8, Section II-C]. In addition to the ONC data, we
include experimental ship-radiated noise acoustic recordings
acquired through a set of sea trials off the coast of Caesarea,
Israel, over a two day period of May 20th and May 21st,
2019. We use the experimentally acquired acoustic shipping



TABLE I: Acoustic recording pre-processing frequency bands

Center Frequency Bandwidth LPF Cut-off
Low Frequency 2 kHz 4 kHz 2 kHz
High Frequency 12 kHz 8 kHz 4 kHz

noise recordings for further test validation of the DNN models
for structured signal recovery.

The experimental set-up for the acquisition of acoustic
shipping noise recordings is presented in Fig 1. We use a
linear array of 6 hydrophones placed at approximately equal
spacing over 10 meters of length with the first hydrophone
starting at a depth of approximately 15 meters. The “noise
generating ship” follows a continuous elliptical trajectory
around the acoustic recording station, situated on the primary
ship, producing acoustic ship-radiated noise, as shown in Fig 1.
The experimental data acquisition procedure is outlined as
follows:

1) With the “noise generating ship”, we encircle the main
ship in an elliptical trajectory and begin the acoustic
recording via the linear hydrophone array. This step is
carried out for approximately 1 minute in duration.

2) We record the time of day of the acoustic recording,
later used to filter and find relevant data files.

We repeat Steps 1 and 2 at several occasions to gather an
assortment of acoustic ship-radiated noise recordings over the
duration of the 2 day sea trial. After carrying out numerous
experimental trials, we identify the acoustic recordings with
the most prominent ship-radiated noise and with minimal inter-
ference from other noise sources. Two experimental recordings
of approximately one minute in length are identified and
considered for analysis:

• Acoustic recording 1: Date: May 20th, Time: 15:52 –
Label: EXP1

• Acoustic recording 2: Date: May 20th, Time: 15:53 –
Label: EXP2

The ONC and experimental acoustic recordings are pre-
processed such that signal reception in the OFDM system is
emulated. We down-convert and low pass filter (LPF) the ONC
and experimental shipping noise data. We consider HF and LF
OFDM systems of 1024 sub-carriers at center frequencies of
fc = 12 kHz and fc = 2 kHz with bandwidths of 8 kHz and
4 kHz, respectively (see Table I).

III. GENERATIVE ADVERSARIAL NETWORK FOR
MODELLING SHIP-RADIATED NOISE

GANs directly learn the distribution of a given set of
training example without any assumption or definition of the
probability distribution function (PDF) of the data [10]. In
contrast, the GMM first assumes the data follows a Gaussian
mixture PDF, then fits the model parameters via the EM
algorithm. Therefore, the GAN is desirable in the case where it
is difficult to assume that a Gaussian PDF can probabilistically
approximate the data. For instance, the case of LF ship-
radiated noise, which is found to be less well characterized

Fig. 2: General GAN structure.

by the GMM [8]. In this section, we first present the general
GAN model framework and introduce the iterative min-max
GAN training process. Then, we present the DCGAN model
for stochastic ship-radiated noise modelling.

A. Generative Adversarial Network

During training, GANs play a min-max two player game
between the generator network G, which aims to generate
new realistic and artificial instances of the training data, and
a discriminator network D, which attempts to differentiate
between real and fake data examples [10]. Let us denote the
real training data examples as x, the fake generated data
examples as x̃, and the latent space as z. The generator
network tries to learn an approximate distribution over the
training data examples x by mapping a randomly generated
low-dimensional latent space z, drawn from some prior dis-
tribution p(z), i.e. x̃ = G(z). We sample the latent space
z from a standard normal distribution, i.e. z ∼ N (µ, σ2),
where µ = 0 and σ2 = 1. The discriminator network takes
the real training data examples and the newly generated fake
data examples as input and attempts to determine whether a
certain example is drawn from the training set or generated
from G. We illustrate this process in Fig 2. The two stages of
the min-max training objective can be summarized:

• Train D such that the probability D(x) of classifying the
real and fake data examples is maximized.

• Train G such that the cost function log(1−D(G(z))) is
minimized.

Likewise, following from the two objectives listed above, we
can denote the GAN objective function as

min
G

max
D
{Ex [logD(x)] + Ez [log(1−D(G(z)))]} . (4)

The training procedure iterates between maximizing D(x) by
fixing G, then minimizing log(1 − D(G(z))) by fixing D,
until some convergence is achieved.

B. Deep Convolutional GAN

The DCGAN has shown success in generating sharp and
realistic two dimensional images for various image data sets by
embedding the architecture of convolutional neural networks
(CNNs) within the GAN model framework [11]. Due to the



success of the DCGAN in probabilistically generating new
realizations of images, we adopt the DCGAN for the task
of stochastic ship-radiated noise modelling under a image
processing framework. However, unlike typical implementa-
tions of the DCGAN for two dimensional images, we devise
an alternate implementation for generating one dimensional
complex vectors of ship-radiated noise signals. We utilize the
complex number operations for deep neural networks (DNNs)
to train two real number networks in parallel that capture the
mathematical dependencies between the real and imaginary
components [21]. Fig 3 (a) and Fig 3 (b) illustrate the respec-
tive single real number generator and discriminator networks
of the DCGAN for ship-radiated noise modelling. Below
we denote the structures of the generator and discriminator
networks:

• Generator network: The general structure of the gen-
erator network is shown in Fig 3 (a). Let us denote z
as the complex standard normal generated latent space
vector. We use a latent space size of 64, thus the latent
space layer of the DCGAN model is 64×1. The generator
network consists of the four transposed convolutional hid-
den layers L1, L2, L3, and L4, which map the randomly
generated 64 × 1 latent space vector z to a 1024 × 1
output vector x̃. The dimensions of each layer are defined
as (n × 1 × k), where n × 1 is the feature map size
(the length of the one dimensional vectors) and k is the
number of feature maps. The output vector x̃ is the newly
generated ship-radiated noise signal that probabilistically
mimics the training data examples. The filter size of each
transposed convolutional layer is 4×1. We use a stride of
2 and zero padding of 1 at each transposed convolutional
layer. The rectified linear unit (ReLU) activation function
is placed after the outputs of hidden layers L1, L2, and
L3 and the hyperbolic tangent activation function is used
at the output layer L4. Batch normalization layers are
utilized at each hidden layer to aid in the convergence of
the training process.

• Discriminator network: The general structure of the
discriminator network is shown in Fig 3 (b). The dis-
criminator network comprises five convolutional hidden
layers that provide a mapping for determining whether a
1024×1 input vector is a real ship-radiated noise example
or a fake example generated by the generator network.
The five convolutional hidden layers L1, L2, L3, L4, and
L5 map the input vector to a single probability D(x). For
the discriminator network, we use a filter sizes of 4× 1,
a stride of 4, and zero padding of 1 at each convolutional
hidden layer. The leaky ReLU activation function with the
default α value is utilized at layers L1, L2, L3, and L4

and the sigmoid activation function is used at the output
layer L5. Identical to the generator network, we use batch
normalization layers at each hidden layer to help in the
convergence of the training process.

The activation function utilized in the DCGAN model are
outlined in Table II.

(a)

(b)

Fig. 3: DCGAN [11] for stochastic modelling of ship-radiated
noise with (a) the generator network G, and (b) the discrimi-
nator network D.

TABLE II: Activation functions for transformations in DNNs.

Activation Name Abbreviation Function

Identity – h(z) = z (5)

Rectified lin-
ear unit

ReLU(z) h(z) =

{
0 for z ≤ 0,
z for z > 0

(6)

Leaky recti-
fied
linear unit

LReLU(z)

h(z) =

{
αz for z ≤ 0,
z for z > 0

(7)

where α < 1 (default value:
α = 0.01)

Sigmoid
function

σ(z) h(z) =
1

1 + e−z
(8)

Hyperbolic
tangent
function

tanh(z) h(z) =
ez − e−z

ez + e−z
(9)

IV. NUMERICAL RESULTS

In this section, we present the numerical results of the
DCGAN and GMM stochastic models for HF and LF ship-
radiated noise. We consider three methods of evaluation to
determine the suitability of the respective generative models
for modelling the time-domain stochastic behaviour of ship-
ping noise:

1) The 1-nearest neighbour (1-NN) two sample test, report-
ing the leave-one-out (LOO) accuracy in classifying the
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Fig. 4: LF Ship-radiated noise samples (a) real data examples,
and (b) fake data examples generated via the LF DCGAN
model.

real and fake data examples [22].
2) Noise estimation and cancellation analysis via Gaussian

mixture generalized approximate message passing (GM-
GAMP) [8] on the ONC shipping noise, GMM generated
shipping noise, and DCGAN generated shipping noise.

3) Empirical symbol error rate (SER) versus signal to noise
ratio (SNR) analysis of a quadrature phase shift key-
ing (QPSK) OFDM system without noise cancellation,
imposing ship-radiated noise vectors from the ONC
shipping noise, DCGAN generated shipping noise, and
GMM generated shipping noise.

A. Training and Testing Data

We use the ONC ship-radiated noise data to train DCGAN
models and GMMs for both the HF and LF band systems.
The HF and LF ONC data sets are partitioned and normalized
between [−1, 1]. The overall HF train and test set sizes are
23040 and 5760, respectively. The LF data set is lesser in size
compared to the HF data set, thus we include one-dimensional
translation augmented versions of the pre-processed shipping
noise signals to increase the LF data set size by a factor
of 4. The LF train and test set sizes are 51321 and 5703,
respectively.

We use the experimental ship-radiated noise recordings as
an additional test data set, which is acquired under different

0 200 400 600 800 1000
0

0.5

1

0 200 400 600 800 1000
0

0.5

1

0 200 400 600 800 1000
0

0.5

1

0 200 400 600 800 1000
0

0.5

1

0 200 400 600 800 1000
0

0.5

1

0 200 400 600 800 1000
0

0.5

1

0 200 400 600 800 1000
0

0.5

1

0 200 400 600 800 1000
0

0.5

1

0 200 400 600 800 1000

Discrete Time-domain Index

0

0.5

1N
o
rm

a
liz

e
d
 M

a
g
n
it
u
d
e

(a)

0 200 400 600 800 1000
0

0.5

1

0 200 400 600 800 1000
0

0.5

1

0 200 400 600 800 1000
0

0.5

1

0 200 400 600 800 1000
0

0.5

1

0 200 400 600 800 1000
0

0.5

1

0 200 400 600 800 1000
0

0.5

1

0 200 400 600 800 1000
0

0.5

1

0 200 400 600 800 1000
0

0.5

1

0 200 400 600 800 1000

Discrete Time-domain Index

0

0.5

1N
o
rm

a
liz

e
d
 M

a
g
n

it
u
d
e

(b)

Fig. 5: HF Ship-radiated noise samples (a) real data examples,
and (b) fake data examples generated via the HF GMM.

conditions relative the ONC shipping noise data. Because the
quantity of examples of the experimentally acquired ship-
radiated noise test data is significantly lesser compared to the
ONC data, we only use the experimental shipping noise data
for further evaluation of the 1-NN test, which requires less
data examples relative to the other evaluations considered in
this paper. The experimental data and the ONC test data have
no influence on the training stages of the DCGAN and GMM
models.

Both the HF and LF DCGAN models are trained using the
Adam optimizer [23] with a mini-batch size of 128 training
examples over a training period of 100 epochs with the HF and
LF ONC training data sets, respectively. We use a learning rate
of 0.0001 for both the generator and discriminator networks.
To fit the HF and LF GMMs, we first estimate the respective
GMM parameters via the EM algorithm for each shipping
noise vector from the respective HF and LF training sets.
Then, we take the medians of the respective EM estimated
GMM component parameters of the shipping noise signals.
This produces a HF and LF GMM with fixed parameters
that approximates the distribution of the ship-radiated noise
training data as a single two component Gaussian mixture for
the HF and LF ONC data sets, respectively.

Examples of LF real ship-radiated noise signals and fake
generated ship-radiated noise signals via the DCGAN model
are shown in Fig 4 (a) and Fig 4 (b), respectively. Likewise,



Fig 5 (a) and Fig 5 (b) present the HF real ship-radiated
noise signals and the fake GMM generated ship-radiated noise
signals, respectively. From initial observation of the generated
shipping noise signals shown in Fig 4 and Fig 5, it is visible
that the LF DCGAN model is able to capture some of the
correlative structure present in LF ship-radiated noise while
the HF GMM serves well in approximating the impulsive
behaviour of HF ship-radiated noise.

B. The 1-NN Two Sample Test

The 1-NN test is a type of two sample test, used to assess
whether or not two distributions match. The 1-NN two sample
test has been found to be an effective evaluation metric for
GAN models [22]. For the purpose of our evaluation, we
take advantage of the 1-NN test to provide initial observations
and comments regarding the trained DCGAN models and to
observe how the DCGAN models generalize to experimental
shipping noise data. We report the LOO of the 1-NN test
on the separated HF and LF ONC test data set and on the
experimentally acquired data. Below, we denote and outline
the general structure of the 1-NN two sample test.

We define Xtest and Xgen as K ×N matrices containing
K real ship-radiated noise examples from the test set and
generated ship-radiated noise examples, respectively. Here,
K denotes the number of generated and real ship-radiated
noise examples and N denotes the size of each example.

Xdata =
[
XT
test | X

T
gen

]T
is the 2K×N real and generated

concatenated shipping noise example matrix. Likewise, we
denote Y data as the 2K × 1 label matrix, labelling the real
ship-radiated noise signals as 1 and the fake ship-radiated
noise signals as −1. We shuffle the rows of Xdata and
Y data synchronously. Then, we fit a 1-NN classifier using all,
except for one, examples and respective labels from Xdata

and Y data. The single left out example, and respective label,
is used in the testing stage of the previously fit 1-NN classifier.
We record predicted label of the 1-NN test via the single left
out example from Xdata and the corresponding true label from
Y data. This process is then repeated until a 1-NN classifier is
fit and predicted for all 2K examples in Xdata. Finally, the
LOO accuracy is calculated using the subsequent predicted
and true labels from the 2K 1-NN classifiers. In this test,
a LOO accuracy of 50% indicates that the 1-NN classifier
cannot distinguish whether a certain example is real or fake,
suggesting that the generative model well approximates the
real data distribution.

We implement the 1-NN two sample test on the individual
complex discrete sample points of the ship-radiated noise
signals. On the ONC test data set, the Xtest matrix is
10240 × 2, containing the real and imaginary components
of the 10 randomly selected and concatenated actual ship-
radiated noise signals. Likewise, Xgen is a 10240× 2 matrix,
containing the real and imaginary components of 10 generated
and concatenated fake ship-radiated noise signals. Because the
experimental data sets are significantly smaller than the ONC
test data sets, we use 5 randomly selected, and 5 generated,

TABLE III: Per-complex-discrete sample LOO Accuracy of
1-NN Classifier For Classification of Real and Fake Data
Examples on ONC test data and Experimental Data

Ship Noise DCGAN
Data set Real Fake
HF-ONC 0.609 0.612
LF-ONC 0.531 0.527
HF-EXP1 0.624 0.625
HF-EXP2 0.623 0.620
LF-EXP1 0.523 0.524
LF-EXP2 0.529 0.527

Fig. 6: CDF plot of per-OFDM symbol GM-GAMP noise
cancellation results for (a) HF ship-radiated channel noise (b)
LF ship-radiated channel noise.

ship-radiated noise signals for the 1-NN evaluation on the
experimental data. Table III reports the LOO accuracy of the
1-NN two samples tests on the HF and LF ONC and experi-
mental shipping noise data. From Table III it is clear that the
LF DCGAN model generates samples closer to the distribution
of the real data compared to the HF DCGAN model, for both
the ONC and experimental shipping noise signals. Likewise,
the 1-NN two sample test on the ONC and experimental
data yield similar LOO accuracy results, suggesting the ONC
trained DCGAN models generate shipping noise samples that
to some degree represent the experimental shipping noise
signals. However, apart from initial observations regarding the
ability of the DCGAN model to approximate the distribution
of the ship-radiated noise data, the 1-NN test does not serve
as an absolute evaluation metric.

C. Acoustic Shipping Noise Suppression Analysis

We perform noise estimation and cancellation analysis using
actual ship-radiated noise signals and fake GMM and DCGAN
generated ship-radiated noise signals for the HF and LF band
systems. Similar to [8], we plot the empirical cumulative
distribution functions (CDFs) of the per-OFDM symbol noise
variance of the original and mitigated ship-radiated noise
signals. The GM-GAMP algorithm for the estimation and
cancellation of the real and generated ship-radiated noise
signals is considered for the extent of this evaluation. For
both the HF and LF band systems, we randomly select 8000
real shipping noise signals from the respective ONC training
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Fig. 7: SER v.s. SNR for QPSK-OFDM system in (a) HF ship-
radiated channel noise (b) LF ship-radiated channel noise.

sets and generated 8000 fake shipping noise signals via the
GMM and DCGAN generative models. Then, we apply the
GM-GAMP algorithm to estimate and cancel the respective
HF and LF actual and model generated ship-radiated noise
signals.

Fig 6 (a) and Fig 6 (b) show the empirical CDF plots
of the original and mitigated per-OFDM symbol shipping
noise signal variances for the ONC shipping noise data,
GMM generated shipping noise data, and DCGAN generated
shipping noise data. With reference to Fig 6, it is clear that
the GMM model provides more accurate approximation of the
per-OFDM symbol ship-radiated noise variance compared to
the DCGAN for the HF band system. In contrast. the DCGAN
yields more realistic approximation of the per-OFDM symbol
ship-radiated noise variance compared to the GMM for the
LF band system. This result is consistent with our expectation
that the LF ship-radiated noise carries increased correlative
structure that is arguably well captured by the convolutional
layers of the DCGAN. On the other hand, the GMM serves
better in probabilistically modelling the impulsive attributes
of HF ship-radiated noise of which the convolutional layers
of the DCGAN struggle to capture.

D. OFDM System Simulation

To evaluate the effectiveness of the GMM and DCGAN in
generating realistic realizations of ship-radiated noise for HF
and LF OFDM systems, we report the SER versus SNR under
a QPSK-OFDM system simulation framework. The closer
the match between the SER curves pertaining to the QPSK-
OFDM system simulation using the actual versus generated
shipping noise interference, the more suitable the respective
generative model in approximating the ship-radiated noise. We
use ship-radiated noise samples from the ONC training set in
order to observes how well the respective generative models
approximate the probabilistic distributions of the training data.

We simulate a QPSK-OFDM system in the complex base-
band and consider the case where all 1024 OFDM sub-carrier
are utilized for data transmission. Likewise, we consider a
simple OFDM system with no cyclic pre-fix and no channel
estimation and equalization as we aim to only explore the

additive interfering effects of ship-radiated noise. The complex
QPSK modulated symbols are randomly generated from the set
of points defined in {±1, ±1} and placed at the 1024 OFDM
data sub-carriers. Following the IDFT of the OFDM sub-
carriers, as defined in equation (1), we impose the respective
ship-radiated noise signals to the time-domain OFDM signal.
Then, we perform the reception process via the DFT of the
time-domain OFDM signal, now containing the additive ship-
radiated noise interference. We then evaluate the SER of the
QPSK symbols. This process is performed and repeated over
8000 OFDM transmissions at various SNRs for the HF and
LF band systems (outlined in Table I).

Fig 7 (a) and Fig 7 (b) show the SER versus SNR curves for
the HF and LF OFDM systems, respectively. With reference to
Fig 7 (a), it is clearly visible that the GMM serves as a more
suitable time-domain stochastic model for HF ship-radiated
noise in the SNR range between−5 dB to 15 dB, relative to the
DCGAN. Likewise, from Fig 7 (b), we observe the DCGAN
serves as a more suitable time-domain stochastic model for
LF ship-radiated noise in the SNR range between −5 dB
to 20 dB, compared to the GMM. Overall, these results are
consistent with our expectations and indicate that the DCGAN
well captures the correlative structure present in LF ship-
radiated noise while the GMM is better suited in modelling
the impulsive agitations which occur in the presence of HF
ship-radiated noise.

V. CONCLUSION

In this paper we introduced the DCGAN model for mod-
elling the time-domain stochastic behaviour of ship-radiated
noise. In particular, we took advantage of convolutional layers
of the DCGAN to capture the correlative structure of LF ship-
radiated noise while further evaluating the GMM as a HF
ship-radiated noise model. The results suggest the DCGAN
model serves as a more suitable choice for modelling the
time-domain stochastic behaviour of LF ship-radiated noise.
This is expected as the convolutional layers of the DCGAN
model are able to capture the increased correlative structure
present in LF ship-radiated noise. In contrast, the GMM serves
as a more suitable choice for modelling the time-domain
stochastic behaviour of HF ship-radiated noise. Therefore,
when evaluating the performance of UA OFDM systems in
the presence of ship-radiated noise, the GMM and DCGAN
generative models produce relatively accurate approximations
of simulated ship-radiated noise for HF and LF band systems,
respectively.
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