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Abstract—Monitoring and control of network constituents are
integral aspects of the smart grid. In this paper, we present a tech-
nique for monitoring one such network asset, the underground
power cables, which are prone to degradation and damages,
resulting in possible power outages. We propose an intelligent
cable diagnostics solution using neural networks to determine the
health of power cables to predict and prevent eventual faults. To
this end, we reuse the communication channel state information
inherently estimated by power line modems that are envisioned to
enable smart grid communications. We advance the state-of-the-
art machine learning based cable health monitoring techniques
to present an automated diagnostics procedure using neural
networks, which eliminates the need to manually extract fea-
tures during operation. We demonstrate the architecture of our
designed feed-forward neural network, the procedures involved
in training, validating, and testing data, and the algorithms
we use to train our machines. We evaluate our solution for
medium voltage distribution network settings and show through
simulation results that our method provides accurate diagnosis
in detecting, locating, and assessing cable degradations.

I. INTRODUCTION

Power line communication (PLC) has conventionally been
conceived to enable reliable communication over existing in-
frastructure for indoor multimedia networks [1], outdoor smart
grid communication [2, Ch. 9], and a host of other specific
applications where power cables are reused for communication
purposes, such as in vehicular networks [2, Ch. 10] and
energy management systems [3], [4]. Recent advancements
have further reused the ability to transmit high frequency
communication signals over electrical power lines to extract
information about the communication media, for network
tomography [5], [6], smart grid fault diagnostics [7], anomaly
detection [8], intrusion detection [9], and power cable health
assessment [10]. In this paper, we focus on the latter, i.e., cable
diagnostics using PLC modems, to present an intelligent health
assessment solution.

Although cables are considered to be safe, relatively im-
mune to accidental contact, and aesthetically palatable, one of
the reasons hindering utilities from transitioning from over-
head lines to underground cables is the challenge of detecting,
locating, and rectifying faults that result from natural aging
and/or external activities [11]–[13]. Power outages resulting
from such faults lead to potentially dangerous situations and
incur substantial economic losses [14]–[16]. Therefore, a rich
body of work has focused on cable diagnostics targeted at
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examining cable health [17, Ch. 6], including techniques that
reuse PLC modems for this purpose [8], [10], [18]–[21].

PLC-based cable diagnostics methods present several ben-
efits compared to legacy solutions by way of enabling online
monitoring without requiring any portion of the network
to be shut-down, providing a low-cost solution by reusing
existing grid components, i.e., PLC modems, and allowing for
continuous monitoring. State-of-the-art PLC-based solutions
use machine learning (ML) techniques to further achieve
automated diagnosis without requiring any manual interven-
tion [10], [18], [19]. These methods reuse the intrinsically es-
timated channel state information (CSI), and examine channel
behavior deviations to detect and locate cable abnormalities.
They train dedicated machines to specifically distinguish such
CSI changes-of-interest from those caused by other network
activities, e.g., load variations. In this paper, we use such a
method as our benchmark, and propose enhancements using
neural networks to simplify the backend process involved in
assessing the cable health. In particular, prior arts [10], [19]
examined the use of support vector machines (SVMs) and
boosting techniques for diagnostics. A crucial aspect of such a
procedure is that the performance is highly dependent on the
features extracted from the raw data. For instance, using peak
locations and amplitudes from the estimated channel impulse
response were found to be valuable in detecting and locating
a possible localized cable degradation [10]. Two major draw-
backs are evident from relying on such a procedure. First, the
operation demands extracting the right set of features, which in
turn requires prior domain knowledge, and therefore restricts
layman accessibility of the solution. Additionally, the extracted
features are tailored for one diagnostics task considered, a spe-
cific network topology, and a particular infrastructure setting,
which therefore restricts its scalability across configurations.
To alleviate these constraints, we investigate the use of neural
network (NN) methods, which can match the performance
of the state-of-the-art, without requiring any manual feature
extraction process. We also draw inspiration from prior non-
PLC works that have developed NN-based methods for fault
diagnostics in transmission and distribution systems [22]–[24].

We design our NN framework to sequentially detect, locate,
and assess localized and homogeneous types of cable degra-
dation. We evaluate the performance of our solution under
typical medium voltage (MV) distribution network settings and
present simulation results of our performance accuracy. We
show that, unlike prior arts, our method achieves successful
cable diagnostics using only the CSI obtainable from legacy
half-duplex PLC modems, i.e., using end-to-end channel fre-978-1-7281-4816-8/20/$31.00 ©2020 IEEE



quency response, in lieu of also requiring the reflection channel
information available from PLC modems enabled with the in-
band full-duplex (IBFD) operation [25], [26].

II. CABLE DIAGNOSTICS USING NEURAL NETWORKS

In this section, we propose our neural networks based cable
diagnostics procedure beginning with a brief summary of the
required preliminaries.

Algorithm 1 A generalized ML-based cable diagnostics.
1: Task−1: Identify degradation (classification)
2: if degradation exists then
3: Output: Cable degradation exists
4: Task−2: Identify type of degradation (classification)
5: if degradation is localized then
6: Output: Localized degradation exists
7: Task−3: Detect location (regression)
8: Output: degradation location
9: Task−4: Predict severity (regression)

10: Output: extent of damage
11: else
12: Output: Homogeneous degradation exists
13: Task−5: Predict severity (regression)
14: Output: extent of damage
15: end if
16: else
17: Output: Cable is intact
18: end if

A. Preliminaries

The foundational ML diagnostics framework that we pre-
viously developed is summarized in Algorithm 1 [10]. We
sequentially detect the presence of a degradation, assess the
type of damage, and determine its severity and/or location
depending on whether the degradation is homogeneous or
localized along a section of the cable. While detecting and
locating cable damage can assist in deploying targeted correc-
tive measures, assessing the extent of degradation is critical in
estimating the remaining life expectancy of the cable and in
predicting a possible imminent in-service failure. To this end,
we use supervised machine learning for both classification and
regression tasks by training separate machines beforehand for
each of the diagnostics tasks.

As part of the training process, we use synthetically gen-
erated PLC channel transfer functions modeled using the
bottom-up approach [27], [28]. This allows us to emulate
the signal propagation along any portion of the cable with
the flexibility to introduce degradation of arbitrary severity.
The overall transfer function can then be computed as a
concatenation of these individual sections. We use the trans-
mission line (TL) theory for computing the channel frequency
response (CFR) by viewing every section of the cable with the
same degradation severity as a uniform line with electrically
small cross-sectional dimensions, in which case, the PLC

Fig. 1. Architecture of a feed-forward neural network.

signal travels in the quasi-transverse-electromagnetic (quasi-
TEM) propagation mode. We then solve the TL equations for
every section of the cable, where the per-unit-length (PUL)
parameters vary depending on the extent of cable damage.

B. Feed-Forward Neural Networks

For a first investigation of applying NNs for cable di-
agnostics, we use the architecture of a feed-forward neural
network (FFNN), since its structure is ideally suited for the
various supervised ML tasks described in Algorithm 1. The
fully connected architecture of an FFNN is shown in Fig. 1,
with every two neurons in adjacent layers connected with a
weighted link. We train a dedicated NN for each ML task and
feed the synthetically generated CFR at the input layer for
training the machine. When the trained machine is deployed
in the real-world, the PLC modems are fed with the inherently
estimated CFRs for the prediction.

1) Structure: Our designed FFNN consists of n hidden
layers between the input and output layers. We denote the input
vector of CFR as

−→
H , and the output as y. Note that for all tasks

we consider, which are detecting a degradation, determining
the type of degradation, locating its position, and estimating
its severity, y is always a scalar. Further, by denoting the ith
hidden layer (1 ≤ i ≤ n) as the vector −→p i, we have

−→p 1= σ1(W1
−→
H +

−→
θ 1), (1)

−→p i= σi(Wi
−→p i−1 +

−→
θ i), 1 < i ≤ n, (2)

where Wi is the weight matrix of the links,
−→
θ i is the bias

vector, and σi is the activation function, all between the layers
i and i− 1. Consequently, the output is

y = σ(−→w · −→p n + θ), (3)

where −→w is the weight vector, θ is the bias, and σ is the
activation function, all between the hidden layer n and the
output, and · is the scalar product operator.

2) Parameters: We determine the trainable parameters of
the FFNN, Wi, −→w ,

−→
θ i, and θ during training to minimize a

loss function η. For the regression tasks, we select the mean
squared error as the loss function,

ηMSE =
1

N

N∑
i=1

(yi − ŷi)2, (4)



where N is the number of samples used, and yi and ŷi are
the known and predicted output values for the ith sample,
respectively. On the other hand, for the classification tasks,
the cross entropy is usually adopted as the loss function [29,
Eq. 2.112]. However, the conventional labeling scheme for
classification results in the convergence of the training al-
gorithm to a local minimum for our tasks. To this end,
we divide the classification task into two stages, beginning
with a regression that we perform with temporary labeling
and followed by a thresholding-based classification, as we
illustrate in Section III-B1. Next, before we initiate the training
procedure, we specify the hyperparameters, i.e., σi, σ, n, and
the size of each hidden layer i, which encode our prior beliefs
of the structure of the machine to be trained [29, Ch. 3].

Strategies for Setting Hyperparameters: To determine n, we
consider the multi-layer FFNN where the initial layers extract
low-level features, and as the layers approach the output, the
abstraction is higher and the number of neurons is fewer. The
gradually reducing size of the hidden layers restricts over-
fitting and empowers the FFNN with superior generalization
ability, i.e., higher performance accuracy on unseen test data,
since the information required to minimize the loss function
is confined within a small number of neurons towards the
output. Next, we choose an activation function to introduce
non-linearity and improve the representation power of the
FFNN. The common choice for σ is the linear function for
regression to allow for a wide range of output values, and the
sigmoid function,

σsigmoid(x) =
exp(x)

1 + exp(x)
, (5)

for classification to allow y to represent the class probability
ranging from 0 to 1. Within the hidden layers, we also use
two other activation functions,

σtanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
(6)

σrelu(x) = max(0, x). (7)

In particular, we choose σrelu to simultaneously allow for
certain degree of non-linearity and avoid the issue of vanishing
or exploding gradient [30].

3) Training: We use batch normalization (BN) techniques
to accelerate the training speed and to reduce the reliance of
the NN performance on the initialization as well as the random
dropout [31]. Specifically, we normalize the activations of the
ith hidden layer and then apply the linear transformations with
coefficients −→γ i and

−→
β i as

−→p ∗
i = −→γ i ·

(−→p i −mean(−→p i)

std(−→p i)

)
+
−→
β i, (8)

where mean(·) and std(·) are the functions to compute the
mean and standard deviation, respectively, over the batch-wise
number of samples empirically. We then apply the weights and
the activation functions to obtain the activations of the next
hidden layer,

−→p i+1 = σi+1(Wi+1
−→p ∗

i ), (9)
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Fig. 2. A generic sub-network of an MV distribution network. (BP: Branch
point)

to replace (2) when BN is applied to the activations of
the hidden layer i. This procedure introduces new learnable
parameters, −→γ i and

−→
β i, which are differentiable and can be

learned together with the other learnable parameters during
the training process. Various algorithms have been designed
for such an optimization process based on iterative back-
propagation [32]. For each iteration, we use a certain portion,
i.e., a batch, of the total available training data to update
the trainable parameters. After multiple iterations, the back-
propagation algorithm completes one epoch after seeing all of
the training data once. We run several such epochs until we
obtain a satisfactory performance or until the validation per-
formance ceases to improve. We use the RMSProp algorithm
in our design, that is built on the back-propagation algorithm
and uses an adaptive learning rate [33, Ch. 11].

III. RESULTS

In this section, we present simulation results to demonstrate
the performance of our proposed solution. Along the same
lines as the state-of-the-art technique [10], we evaluate our
method for diagnosing water-tree degradation that commonly
impacts underground MV cross-linked polyethylene (XLPE)
cables [11], [34].

A. Simulation Settings

1) Network Topology: We evaluate our solution for a
generic Y-network topology shown in Fig. 2, with the three
branches of equal length of 500 m. Given the transmission
range of BB-PLC modems [35], a larger MV network consists
of several building blocks of such Y-sub-networks. Each of
the three PLC modems in our considered Y-network, mk,
k = {1, 2, 3}, are also connected to an extended equivalent
impedance, Ze,k ∼ U(0, 50) + jU(−50, 50) Ω where U(a, b)
denotes a uniform distribution between a and b, and j =

√
−1,

which emulate realistic network extensions beyond the consid-
ered sub-network.

2) Channel Generation: We use the open-source PLC
channel synthesizer of [36] to generate PLC CFRs for training,
validating, and testing our machines. We generate CFRs with
inter-frequency spacing of 24.414 kHz between 2 − 30 MHz
conforming with the IEEE 1901 BB-PLC standard [37]. We
evaluate our solution under two different test conditions. The
first, when only the end-to-end link CFR, He2e, is available



TABLE I
NUMBER OF TRAINING AND TESTING SAMPLES CHOSEN FOR EACH TASK

Task 1 & 2 3 4 5
nTR 32000 14000 14000 8000
nTE 13200 2000 2000 2000

for diagnostics, and the second when the reflection CFR is
also available. The reflection CFR is also known as the self-
interference CFR, HSI, which is estimated by PLC modems
that are enabled with the IBFD communication ability as part
of the echo cancellation procedure [25], [26]. Further, since
our goal is to evaluate the potential of extracting diagnostics
information from CFRs, we ignore the impact of power line
noise on the practical CFR estimates in our evaluations.

3) Cable Degradation: We model the water-tree degrada-
tion by replicating its impact on the cable insulation dielectric-
ity [38], [39]. We then feed the values of intact and degraded
insulation permittivity into our PLC channel emulator to gen-
erate healthy and damaged cable CFRs. We subject the cable to
two types of degradation, namely, localized and homogeneous.
A homogeneous degradation (HD) affects the cable insulation
uniformly and is quantified by γhomo, which represents the ex-
tent of degradation relative to the total insulation thickness. For
instance, γhomo = 0.03 indicates that 3% of the cable insulation
is corroded by water treeing. We limit 0 ≤ γhomo ≤ 0.048,
where γhomo = 0 represents a healthy cable and γhomo = 0.048
corresponds to the maximum extent of HD caused due to water
treeing over a service time of tsr = 30 years [38], which is the
typical lifespan of an MV XLPE cable. On top of a possible
HD, we also introduce localized degradation (LD) that affects
a concentrated section of the cable for a length of `WT. The
extent of LD is quantified by γlocal, similar to γhomo, indicating
the extent of cumulative LD relative of the insulation depth,
i.e., γlocal = 0.5 represents that water tree degradation has
impacted 50% of the cable insulation in the LD section. For
all our simulation evaluations, we set γhomo ∼ U(0, 0.05),
γlocal ∼ U(0.1, 1), `WT ∼ U(100, 300) m, and the center of
the LD to be randomly located within 100 m from the center
of the six branches (three in the considered sub-network and
three extensions outward from every mk).

4) FFNN Operation: We choose the number of training
and testing samples, nTR and nTE, respectively, individually
for each diagnostics task (refer Algorithm 1 for the list of
tasks). We specify nTR and nTE for each task in Table I. We
choose a sufficient nTR to obtain a saturated performance of
the trained machine and an adequate nTE to achieve a clear
performance trend of the testing samples.

B. Simulation Results

1) Tasks−1 and 2: Identifying a Degradation and Classi-
fying its Type: We perform the two tasks of identifying a
possible degradation and classifying its type simultaneously.
To this end, we train each mk to detect an LD between itself
and the branch point (BP). A positive result not only indicates
the presence of an LD, but also detects the branch on which
it resides. A negative outcome from all mk conveys that no
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(b) Using He2e and HSI

Fig. 3. The scatter plot of prediction results of the label value.

LD is present in the sub-network and that the cable is only
subject to possible HD.

Binary classification requires only a bi-level labeling during
training. However, we discovered that the NN converges only
to one of its local minima with such a setting. We therefore
label the positive samples, i.e., CFRs with an LD present
between mk and BP, with the associated γlocal ∈ [0.1, 1], and
the negative samples with only the associated γhomo, even when
an LD is present either on an extended network branch or a
branch between mj and BP, j ∈ {1, 2, 3}, j 6= k.

Following our design architecture outlined in Section II,
we construct an FFNN with n = 7. The first five hidden
layers are followed by a BN layer. The sizes of the hidden
layers are 1024, 512, 256, 128, 64, 32, and 16 from the
input to the output layer direction. We use σtanh and σsigmoid
as the activation functions for the first two hidden layers,
respectively, and σrelu for the remaining ones. We apply the
RMSProp algorithm to train for 100 epochs, with the training
samples split evenly between positive and negative ones.
Among the 16000 negative samples, 6000 contain HD and
2000 each contain an LD on the other five branches, i.e.,
excluding the branch between mk and BP.

The 13200 testing samples are split evenly into 11 groups
of 1200 samples each containing an LD with γlocal =
{0.1, 0.2, ..., 1} and an HD. For each condition with γlocal > 0,
we generate 200 samples for LD on each of the six branches,
i.e., 200 positive and 1000 negative testing samples. The
resultant scatter plots for these testing samples are shown in
Fig. 3, which demonstrates the performance of our method for
varying degrees of γlocal.

While the aforementioned results display the regression
ability in predicting the labels, our eventual goal is to translate
these predicted labels into classification decisions. To this
end, we apply a classification threshold, γth, for decision
making. We then use the predicted label, γ̂, to obtain the final
classification output, yclassify, as

yclassify =

{
0, if γ̂ < γth

1, otherwise,
(10)

where yclassify = 0 and yclassify = 1 indicate negative and
positive outputs of the classification task, respectively. Since
the positive samples are labeled with γlocal ≥ 0.1 while
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Fig. 4. Results for Tasks 1 and 2, where the legend specifies the chosen γth.
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Fig. 5. Results for Task - 3a: Estimating bk,near.

the negative ones with γhomo ≤ 0.05, we may choose any
0.05 ≤ γth ≤ 0.1 by considering the trade-off between
detection accuracy and false alarm. In Fig. 4, we present results
for our classification task for different values of γth under both
conditions when only He2e is available, and when HSI can
also be extracted. Fig. 4 demonstrates that we nearly match
the detection and false alarm rates achieved by the state-of-
the-art [10], without requiring any manual feature extraction.

2) Task−3: LD Location: Following the diagnostics frame-
work outlined in Algorithm 1, we proceed to locating the
LD when the result of Task−2 indicates the presence of
one. As part of this task, we locate the position of the two
ends of the LD, i.e., the near end towards mk, bk,near, and
the far end towards the BP, bk,far. For this purpose, we first
use regression to predict bk,near, and then estimate `WT to
determine bk,far = bk,near + `WT. Since the presence of an LD
causes additional signal reflections resulting from impedance
mismatches, we use the time domain versions of He2e and HSI
for this task. We show the results in Fig. 5 and Fig. 6, which
clearly illustrate that the fit line of the prediction is nearly
of unit slope and passes through the origin, indicating a high
degree of prediction accuracy. We also note that while the
state-of-the-art solution [10] requires a dual-stage prediction
of `WT to resolve location ambiguities, our proposed FFNN
architecture presents superior performance and can predict the
results in a single step. This indicates that our solution is
better suited to provide scalability across different network
topologies.
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Fig. 6. Results for Task - 3b: Estimating `WT.
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Fig. 7. Results for Task - 4: Estimating γlocal.

3) Task−4: LD Severity Prediction: As the final diagnosis
of an LD, we estimate the extent of its damage to assist us in
predicting a future in-service fault. As with Task−3, we use
the time-domain versions of the CFRs for prediction, whose
results are shown in Fig. 7. We notice that while the fit lines
under both evaluation conditions, i.e., using only He2e, and
together with HSI, are similar, the individual prediction vari-
ance is improved by using the added insight provided by HSI.
With sufficient averaging of predictions over time, however,
the performance of both conditions are nearly identical.

4) Task−5: HD Severity Prediction: When the classifica-
tion result from Task−2 indicates the case of an HD, we
perform HD severity prediction similar to Task−4 for an LD.
Note that this condition also includes the case of an intact cable
with γhomo = 0. For this task, we tweak the FFNN architecture
by applying BN for the first six layers, instead of five as
used previously. Once we predict γhomo from our machine,
we translate this into an artificial equivalent age, teq, of the
cable to provide an intuitive indication into the homogeneous
aging severity [10, Eq. 2]. Our estimation results are shown in
Fig. 8. We notice that while the machine under-fits a part of
the age range, the trend line of the predictions is nearly ideal.

IV. CONCLUSION

In this paper, we presented first investigation results of
using neural networks for cable diagnostics using power line
modems. Our online monitoring solution reuses power line
modems to intelligently diagnose the health of underground
power cables through the inherently estimated power line
communication channel state information. We illustrated the
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Fig. 8. Results for Task 5: HD severity prediction.

architectures of our designed feed-forward neural network and
presented simulation results to show that our method matches
the performance of the state-of-the-art to achieve a high degree
of accuracy in sequentially detecting, locating, and assessing
different variations of water tree degradation, without requiring
any manual intervention either for data analysis or feature
extraction.
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