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Abstract—We consider time and frequency-packed (TFP) mul-
ticarrier faster-than-Nyquist (MFTN) transmission that realizes
non-orthogonal linear modulation to achieve higher spectral effi-
ciency (SE) compared to the well-known orthogonal transmission
at Nyquist rate. Such SE benefits come at the price of inter-
symbol interference (ISI) and inter-carrier interference (ICI),
which usually are equalized through computationally demanding
receiver-side processing. In this paper, we investigate an alterna-
tive approach of pre-equalizing the interference at the transmit-
ter, for the first time in an MFTN system where symbols are
packed in both time and frequency dimensions. First, we present
a two-dimensional linear precoding technique to jointly mitigate
the ISI and ICI at the transmitter. Second, we propose a partial
precoding strategy to pre-equalize the ISI at the transmitter,
while ICI being compensated at the receiver through an iterative
interference cancellation method. We validate the flexibility of
our designs by simulating a precoded coherent optical fiber
communication system, as a practical application example for
MFTN. Our numerical results confirm significant performance
and complexity advantages of the proposed precoding schemes
over existing interference mitigation approaches.

Index Terms—Multicarrier faster-than-Nyquist (MFTN)
transmission, time-frequency-packing (TFP), precoding,
pre-equalization.

I. INTRODUCTION

Data traffic for the next generation communication systems
is increasing at a staggering pace. Such dramatic growth of
data rates warrants improved bandwidth-efficient transmission
schemes. One way to accomplish this is to employ multi-
carrier faster-than Nyquist (MFTN) transmission, also known
as time-frequency packing (TFP) [1]–[7], which relinquishes
the orthogonality condition imposed by the Nyquist criterion,
by deliberately reducing the time and frequency spacing of
the adjacent symbols. Transmitting at a faster-than-Nyquist
(FTN) rate theoretically provides a higher achievable rate [1].
From a practical implementation perspective, FTN signaling
is advantageous for transmission systems such as the point-to-
point microwave links [8] and longhaul optical fiber commu-
nication [2], [6], [7], [9], where the application of very high
modulation formats to increase the spectral efficiency (SE)
is challenging due to phase-noise and channel nonlinearities.
Denser TFP schemes are also being considered in the context
of new modulation formats for the cellular networks [5].

However, MFTN transmission introduces inter-symbol in-
terference (ISI) and inter-carrier interference (ICI). Therefore,
enjoying the SE benefits of the TFP systems entails successful
mitigation of such interference. For this, a significant volume

of work considers Bahl-Cocke-Jelinek-Raviv (BCJR) based
maximum a-posteriori probability (MAP) equalization [1], [2],
[6] or frequency domain equalization (FDE) techniques [10]
for ISI mitigation, and/or other sub-optimal iterative ICI miti-
gation methods [1], [3], [7], [9], [11]. However, the complexity
of such turbo-equalization schemes is substantial. Therefore,
exploiting the fact that the MFTN interference is known at
the transmitter, in this paper, we turn our attention to pre-
equalization techniques that can significantly diminish or com-
pletely eliminate the computational burden from equalization
at the receiver. Since the well-known Tomlinson-Harashima
precoding (THP) manifests significant “precoding loss” and
“modulo-loss” [12], particularly in an FTN transmission (see
e.g. [13]), we consider linear precoding [8], [13] in this work.
For our first contribution, we present a new two-dimensional
(2-D) linear pre-equalization (LPE) technique, as an extension
of the one-dimensional (1-D) LPE proposed in [13]. By
orthogonalizing the FTN transmission through joint filtering
of the constituent sub-channels (SCs) of an MFTN system,
2-D LPE yields optimal error-rate performance, which makes
it competitive to computationally prohibitive and buffer-space
constrained BCJR based equalization algorithms. However,
such a precoding method is restrictive in terms of the time and
frequency compression achievable in an MFTN transmission.
To address this problem, as a second contribution, we propose
a sub-optimal partial precoding (PP) strategy, which facilitates
transmitter-side 1-D LPE precoding for the individual SCs
of the TFP system, followed by a receiver-side turbo ICI
cancellation. We validate the advantages of our proposed pre-
coding schemes over the existing TFP interference mitigation
methods, through numerical simulations of a coherent TFP
optical wavelength division multiplexed (WDM) superchannel
transmission, which has attracted significant attention more
recently [2], [6], [7], [9].

II. SYSTEM MODEL

We consider the baseband system model for precoded
MFTN transmission under an additive white Gaussian noise
(AWGN) channel shown in Fig. 1. For each kth SC, k ∈
1, 2, · · · , N , with N being the total number of SCs, a low-
density parity-check (LDPC) coded and modulated data stream
ak is either jointly or separately precoded by a linear feedback
filter (FBF). The precoded signal dk is then frequency shifted
to produce xk, which is converted to an analog signal and
shaped by a root-raised cosine (RRC) pulse h with a roll-off
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Fig. 2. 2-D LPE, where the shaded blocks represent additional signal
processing compared to unprecoded MFTN systems.

factor β. The baseband equivalent aggregate signal s at the
MFTN transmitter can be expressed as [9]

s(t) =
∑
l

∑
k

xk[l]h(t− lτT )ej2π(k−N+1
2 )∆ft , (1)

where ∆f = ξ 1+β
T is the frequency-spacing between the

adjacent SCs, with 0<τ ≤1 and ξ>0 denoting the time and
frequency compression ratios, respectively, such that τ=ξ=1
corresponds to Nyquist signaling, 1

T is the baud rate per SC,
and l is the symbol index. At the receiver, the RRC matched-
filtered and τT -sampled digital samples uk of the kth SC are
frequency-shifted to produce the signal rk that is jointly or
separately processed by a feedforward filter (FFF). Thereafter,
the digital samples are sent as inputs to the demapper and the
LDPC decoder. For ease of characterization of the precoded
TFP systems, we state the following proposition.

Proposition 1. For the kth SC, k = 1, 2, . . . , N , shown in
Fig. 1, frequency shifts of the precoded signal dk at the
transmitter and the τT -sampled signal uk at the receiver by
an amount −ω0

(
k − N+1

2

)
and ω0

(
k − N+1

2

)
, respectively,

where ω0 =2π∆fτT , translates the overall TFP channel into
a linear time-invariant (LTI) system, and the z-transform H(z)
of the corresponding two-dimensional (2D) channel response
is a Hermitian matrix polynomial.

Proof: See Appendix A.

III. JOINT PRECODING: 2-D LPE
Schematics of the 2-D LPE are shown in Fig. 2(a)-2(b)

corresponding to the transmitter and receiver filtering opera-
tions, respectively. In Fig. 2(a), the modulated data symbols
ak, k = 1, 2, . . . , N from all SCs are jointly processed by a
linear 2-D FBF B to produce the precoded symbols dk, trans-
lating the overall precoding operation into an effective infinite
impulse response (IIR) filter. The minimum-phase property of
the FBF guarantees the stability of the IIR operation [12]1. At

1We remark that different from a conventional ISI channel, such linear IIR
filtering does not induce a precoding loss in an FTN system (see [13]), since
the MFTN “channel” is part of the transmitter.
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Fig. 3. Partial precoding, where the shaded blocks represent additional signal
processing compared to unprecoded MFTN systems.

ICI Est.
!"#$,"

+ Σ
-

-
LDPC 
Dec

bits out 
&'. = &'.*+,

LLR/01.
&'. < &'.*+,

LLR to
Soft Sym

ICI Est.
!","#$
ICI Est.
!","3$

ICI Est.
!"3$,"

...

...SC k-1

SC k+1

8" 9"

Fig. 4. ICI mitigation through PIC.

the receiver shown in Fig. 2(b), the frequency-shifted symbols
rk, k=1, 2, . . . , N from all SCs are further jointly processed
by a linear 2-D FFF F , which whitens the colored noise caused
by FTN sampling. Thereafter, the filtered samples are sent as
inputs to a symbol-by-symbol demapper. Inspired by [14], the
FFF and the FBF matrix computation from the 2-D channel
matrix H defined in Proposition 1 is summarized below.

Proposition 2. With the Cholesky decomposition of the Her-
mitian matrix polynomial H(z) performed as

H(z) = V (z)V H
(
z−∗) , (2)

where V (z) =
∑
k≥0

Vkz
−k is causal and minimum-phase, i.e.,

Vk = 0 for k < 0, V (z) is nonsingular for |z| ≥ 1 and V0 is
lower triangular, the 2-D LPE FFF and FBF are given by

F (z) = D−1JV −1
(
z−∗)J , (3)

B(z) = D−1JV H (z∗)J , (4)

respectively, with J being the K×K anti-diagonal identity
matrix, K is the number of TFP-channel taps, (·)∗ represents
the complex conjugate of a complex scalar, (·)−∗ = 1

(·)∗ , [·]H
and [·]−1 denote the matrix Hermitian and matrix inverse,
respectively, D = diag

(
v∗0,K,K , · · · , v∗0,1,1

)
, v0,i,j are the ith

and jth entries of V0, and diag(· · · ) denotes the diagonal
matrix constructed with the specified elements.

Proof: See Appendix B.
By converting the MFTN transmission into an orthogonal

system similar to [13], 2-D LPE yields optimal error-rate
performance without performing any iterations between the
equalizer and the LDPC decoder. However, such precoding
suffers from the following two drawbacks: (a) for the joint
filtering across SCs, it requires access to the digital samples
of all SCs at both the transmitter and the receiver, which
precludes the realization of independent SC processing, and
(b) 2-D LPE is feasible only for a restricted range of τ, ξ pairs
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Fig. 5. Simulated MFTN system model: precoded DP TFP WDM optical superchannel transmission.

for a given β, since orthogonalizing the MFTN transmission
requires that the net symbol rate is lower than the aggregate
TFP bandwidth, and therefore,

N

(1 + β)τ [(N − 1)ξ + 1]
≤1 . (5)

Moreover, we also note that the computation of B and F
requires the factorization (2) that is possible if the following
Paley-Wiener condition (see e.g. [12], [15]) is satisfied

τT

∫ 1
2τT

− 1
2τT

∣∣∣ log det
(
H
(
ej2πfτT )) ∣∣∣df <∞ . (6)

To address such limitations of the 2-D LPE, we propose
another precoding strategy as follows.

IV. PARTIAL PRECODING (PP)

PP encapsulates a conceptual combination of transmitter-
side pre-equalization and receiver-side equalization of TFP in-
terference, as shown in Fig. 3(a)-3(b). In order to pre-mitigate
the MFTN-ISI, PP employs separate 1-D LPE FBFs and FFFs
for each SC, at the transmitter and receiver, respectively. For
this, the FFFs and FBFs are computed based on the spectral
factorization of the diagonal entries of the channel response
H(z) (see e.g. [8], [13] for the computational details). There-
after, the MFTN-ICI is mitigated at the receiver through an
iterative parallel interference cancellation (PIC) approach in a
turbo fashion as detailed in Fig. 4, similar to [1], [3], [9], [11].

As shown in Fig. 4, PIC enables the extrinsic log-likelihood-
ratios (LLRs) fed back from the LDPC decoders to estimate
and cancel the soft-estimates of the ICI stemming from the
adjacent SCs, iteratively. For example, each LDPC iteration
uses the extrinsic LLRs from the (k−1)th and (k+1)th SCs to
compute the soft estimates of the data symbols corresponding
to the neighboring SCs [9], [11]. Next, the soft-estimates
Ik−1,k and Ik+1,k are computed and subtracted from the 1-D
LPE FFF output symbols zk of the kth SC, where Ii,j denotes
the ICI from the ith SC to the jth SC, i, j∈1, 2, · · · , N .

While PIC is well investigated in the FTN literature as a
means to counter ICI, in this work, we apply it for the first
time in tandem with precoding. With this design, PP based
TFP systems completely eliminate the MFTN-ISI without per-
forming computationally challenging BCJR iterations, and can
also offer significant performance advantage over unprecoded
PIC-only ISI and ICI equalization approach, such as [3]. We
validate this claim through numerical simulations in Section V.
We remark that for a given roll-off β, implementation of PP
is feasible for the restricted range τ ≥ 1

1+β [13]. However,
any amount of ξ can be accommodated through the PP

implementation, which allows more flexible precoded TFP
design compared to 2-D LPE. However, such benefits come at
the expense of sub-optimal performance and iterative detection
at the receiver that entails higher complexity and buffering.

V. SIMULATION RESULTS

In this section, we validate the effectiveness of the proposed
precoded MFTN designs by way of numerical simulations
using parameter settings relevant for practical coherent op-
tical WDM superchannel transmission, which is a prime
candidate for the introduction of FTN. For the simulations,
we consider a dual-polarized (DP) quarternary phase-shift
keying (QPSK) 3-SC TFP WDM superchannel having per
SC baud rate 40 Gbaud2. In the simulation setup shown in
Fig. 5, the transmitter and receiver blocks for the discrete-
time baseband modules are same as those in Fig. 1 except
that the data processing for each of the two polarizations
is performed separately for each SC. The baseband analog
data after the digital-to-analog converter (DAC) is processed
by the opto-electronic front-end and transmitted as an optical
signal through a 1000 km standard single-mode fiber (SSMF)
with chromatic dispersion (CD) parameter value −18 ps2/km,
polarization mode dispersion (PMD) 0.5 ps/

√
km, and then

is received by the coherent optical receiver. LDPC codes
from the DVB-S2 standard with rate 0.9 and codeword-length
64800 bits, β = 0.3, 8-tap TFP-ISI for BCJR, 20-tap LPE-
FBF, 200-tap LPE-FFF, and maximum iteration count of 10
between the PIC and the LDPC decoder are considered for
the simulations. Perfect frequency synchronization and phase-
lock are assumed. Moreover, matched filtering at the receiver
is combined with the time-invariant frequency domain CD
compensator using overlap-and-add method, and for PMD
compensation, we use a 19-tap 2×2 butterfly-type fractionally-
spaced adaptive least-mean square (LMS) equalizer3.

We first show the advantages of the 2-D LPE and PP
in Fig. 6(a) by plotting the coded bit-error rate (BER) per-
formance averaged over both polarizations and all SCs, as
a function of the optical signal-to-noise ratio (OSNR) [6].
For reference, we also add the error rate curves in Fig 6(a)

2For additional information on fiber-optical channel and noise characteri-
zation, DP and WDM systems, interested readers are referred to [6], [7].

3For the PP TFP systems, independent SC processing enables us to employ
the PMD equalizer after the 1-D LPE FFFs, similar to [13], where the LMS
filter is trained with the known MFTN-interference induced pilots. However,
the matrix filtering operations in the 2-D LPE requires the placement of the
FFF before the PMD equalizer, for which the LMS update equations need to
be modified compared to a conventional Nyquist WDM transmission [6], [7].
Such modification is detailed in Appendix C.
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TABLE I
COMPLEXITY, MEMORY AND LATENCY PER CODEWORD

Method Complexity Memory Latency
2-D LPE O

(
N2NfLw

)
O(NLb) O(Lb)

PP O
(
(M+Lc+Nf)NImLw

)
O(NLbIm) O(LbIm)

PIC-Only O
(
(M+Lc+Ls)NImLw

)
O(NLbIm) O(LbIm)

BCJR-PIC O
(
(M

Ls
2 +Lc)NImLw

)
O(NLbIm) O(LbIm)

corresponding to the following three scenarios: (a) Nyquist
WDM transmission having the same baud rate and therefore,
larger bandwidth, (b) BCJR based ISI equalization in con-
junction with PIC for ICI mitigation as in [1], denoted by
the legend “BCJR-PIC, 10 it.” and (c) PIC based ISI and ICI
cancellation as in [3], indicated by the label “PIC only, 10 it”.
As shown in the figure, 2-D LPE achieves similar performance
as that of a Nyquist WDM system and an MFTN system
employing BCJR-PIC, by successfully pre-equalizing the ISI
and ICI completely. For this, 2-D LPE relies on simple non-
iterative filtering operations, as opposed to the substantially
complex and buffer-space constrained BCJR algorithm that
is impractical especially for larger constellations. Fig. 6(a)
also suggests that PP yields 0.6 dB performance improvement
over the PIC-only receiver structure. Moreover, it produces
sub-optimal performance compared to the 2-D LPE for this
particular combination of τ and ξ that is well within the range
specified by the inequality (5). However, as shown through the
subsequent results, PP is more effective for stricter values of
τ and ξ pairs, for which 2-D LPE precoding is infeasible.

In Fig. 6(b), we plot the range of τ and ξ where the
spectral factorization (2) and thereby, 2-D LPE precoding
is infeasible, for varying β. To numerically evaluate such
range of values that does not satisfy (6), we observe the
presence of spectral zeros in the overall TFP channel H(z).
Fig. 6(b) indicates that higher values of the RRC roll-off
translates to a larger range of feasible τ and ξ values for the
2-D LPE. Furthermore, we note that the plots in the figure
also correspond to the inequality (5). This means that the
dimensionality and factorization constraints are equivalent for
the considered precoded TFP systems.

Finally, to show the usefulness of PP in more detail, we
deliberately choose a pair of time and frequency compression
ratios in Fig. 6(c) such that (5) is violated for β = 0.3, and
therefore, 2-D LPE can not be employed. Fig. 6(c) shows that

the BCJR-PIC outperforms PP by 0.65 dB at the price of
significantly higher complexity. However, under such transmis-
sion scenarios, PP offers 1.1 dB performance gains over PIC-
only equalization scheme having similar computational cost.
The details of the receiver complexity, latency and memory
requirements for the different interference mitigation schemes
are furnished in Table I, where M , Ls, Lc, Nf , Lb, Im denote
the modulation order, truncated ISI and ICI-taps length, 1D/2D
LPE FFF taps length, LDPC codeword length in bits and the
maximum turbo iteration count, respectively, and Lw = Lb

log2M
is the number of modulated symbols corresponding to each
codeword. Values of the above parameters considered for our
simulations are mentioned at the beginning of this section.
Benefits of the proposed precoded systems can be seen in the
performance-complexity trade-off, through suitable precoding
technique selection depending on the MFTN parameters.

VI. CONCLUSIONS
We presented two precoding approaches for the first time

in MFTN systems that enable packing of symbols in both
time and frequency dimensions. First, a matrix linear filtering
based 2-D LPE precoding is proposed that performs joint
processing of the SCs to completely eliminate TFP ISI and
ICI, and thereby, accomplishes optimal error rate performance.
However, functionality of such precoding is limited to a
restricted range of time and frequency compression. Second,
we presented PP that facilitates independent processing of
SCs at the transmitter for mitigating ISI, but operates in an
iterative fashion with the LDPC decoder, to eliminate ICI at
the receiver. Simulation results for a DP QPSK TFP WDM
optical superchannel suggests up to 1.1 dB performance gains
by the proposed precoding techniques over existing interfer-
ence mitigation methods having similar or significantly higher
computational cost, buffer space and latency requirement.
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APPENDIX A
PROOF OF PROPOSITION 1

Projecting the received signal component onto the basis
functions h(t− lτT )ej2π(k−N+1

2 )∆ft as per [1], the resulting
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matched filtered analog signal for the kth SC, k=1, 2, . . . , N ,
can be written as

ûk(t)=s(t)e−j2π(k−N+1
2 )∆ft ? h(t) , (7)

where ? denotes linear convolution. Writing uk[n] as the τT
samples of ûk(t) in (7), we get

uk[n]=
N∑
m=1

(
xm[n]ejω0(m−k)n ? g0,m−k[n]

)
, (8)

where gu,v denotes τT samples of fu(t) ? fv(t) with fu(t)=

h(t)ej2πu∆ft. Multiplying both sides of (8) by ejω0(k−N+1
2 )n

for all k=1, 2, . . . , N , we obtain

rk[n]=
N∑
m=1

(
dm[n] ? gk−N+1

2 ,m−N+1
2

[n]
)
, (9)

which shows that the frequency-shift operations convert the
TFP transmission into an LTI system, with impulse responses
given by gk−N+1

2 ,m−N+1
2

, k,m=1, 2, . . . , N . Denoting by H(z)
the z-transform of the 2-D channel, conjugate symmetry of the
sequences gk−N+1

2 ,m−N+1
2

[n] implies H(z)=HH(z−∗), which
completes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

Following the notations in [14], we define:
S(z)=D−1JV H(z∗)J , Σ=DHD, and M(z)=JHH(z∗)J .
Considering the conjugate symmetry of the overall impulse
response, we have M(z)=H(z). Therefore, we can write:
SH(z−∗)ΣS(z) = JV (z−1)V H(z∗)J (10)

= JH(z−1)J = HH(z−∗) = H(z). (11)
Based on the above factorization, we obtain, as in [14],

F (z) = Σ−1S−H
(
z−∗) , (12)

B(z) = S(z) . (13)
Substituting S(z) and Σ defined above produces the result.

APPENDIX C
2-D LPE PMD EQUALIZER LMS ALGORITHM

We consider a half-symbol spaced LMS equalizer for PMD
mitigation [6]. Let us denote the 2×2 PMD compensating filter

for the ith SC, i = 1, 2, . . . , N , by
[
cxx,i[ν, k] cxy,i[ν, k]
cyx,i[ν, k] cyy,i[ν, k]

]
,

where each entry of the matrix corresponds to the νth

fractionally-spaced tap, ν = 0, 1, . . . , Nc−1, at the kth time
index. Considering Nf static symbol-spaced taps for each
filter-entry fij [µ], i, j ∈ {1, 2, . . . , N}, µ = 0, 1, . . . , Nf−1,
of the 2-D LPE static FFF matrix, we can write the X-pol and
Y-pol outputs, respectively, for the ith SC, i=1, 2, . . . , N , as

wi,X/Y[k]=
N∑
j=1

CH
X/Y,j [k] Ũj [k]Υij , (14)

where the subscript X/Y means “X respectively Y”, wi,X/Y
and ui,X/Y are the PMD equalizer input and the frequency-
shift output for the ith SC, respectively, shown in Fig. 5.
Moreover, in (14):

CX,j [k]=
[{
c∗xx,i[m, k]

}Nc−1

m=0
,
{
c∗xy,i[n, k]

}Nc−1

n=0

]T
,

CY,j [k]=
[{
c∗yx,i[m, k]

}Nc−1

m=0
,
{
c∗yy,i[n, k]

}Nc−1

n=0

]T
,

Ũj [k]=
[{
ϑ

(κ)
j [k]

}Nf−1

κ=0

]
Pj ,

ϑ
(κ)
j [k]=

[{
ui,X[k−2κ−γ]

}Nc−1

γ=0
,
{
ui,Y[k−2κ−γ]

}Nc−1

γ=0

]T
,

Pj=diag
(
e−jω̂0rjk,..., e−jω̂0rj(k−2(Nf−1))︸ ︷︷ ︸

Nf

)
,

ω̂0 =π(1 + β)ξτ , rj=j−1−N−1
2 , Υij=

[{
fi,j [µ]

}Nf−1

µ=0

]T
,

where [·]T denotes the matrix transpose and the expression{
x[j]

}N2

j=N1
denotes the row-vector [x[N1], . . . , x[N2]]. Writ-

ing the error signals as
εX/Y,i[k]=ui,X/Y[k]−ai,X/Y[k−k0] , (15)

with k0 being the decision delay, and ai,X/Y being the modu-
lated symbol for the ith SC and the corresponding polarization,
the LMS update equation for the ith SC, i=1, 2, . . . , N , can
be written as

CX/Y,i[k + 1]=CX/Y,i[k]−αŨi[k]
N∑
l=1

Υliε
∗
X/Y,l[k] , (16)

where α>0 is the step-size parameter.
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